Abstract

Rare-earth ion doped KY(WO4)2 is a well-known active laser crystal, due to its excellent gain characteristics and its relatively high nonlinear refractive index. As these properties are of great benefit to applications in integrated photonics, a study has been done into the fabrication of high refractive index contrast slab waveguides in KY(WO4)2 as a first step towards the fabrication of channel waveguides. When properly choosing the fluence and annealing parameters, ion irradiation with 12 MeV carbon ions produces a step-like damage profile. Confocal Raman microscopy, X-ray diffraction and transmission electron microscopy are used in this work to study the structural damage induced by ion irradiation. The characterization indicates damage to the crystal structure due to the ion irradiation that increases as a function of both depth and ion fluence till the threshold for amorphization is achieved. Successive annealing steps of the irradiated crystals at different temperatures show partial repair of the crystalline structure when the irradiation did not fully amorphize the material. When the threshold of amorphization was reached, annealing further increases the damage induced by the irradiation. By tuning the irradiation fluence, a high-refractive index contrast slab waveguide in KY(WO4)2 produced by ion irradiation was demonstrated.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Planar optical waveguides in Bi4Ge3O12 crystal fabricated by swift heavy-ion irradiation

Jin Yang, Chao Zhang, Feng Chen, Sh. Akhmadaliev, and Shengqiang Zhou
Appl. Opt. 50(36) 6678-6681 (2011)

Pedestal microdisks in potassium yttrium double tungstate

Simen M. Martinussen, Raimond N. Frentrop, Meindert Dijkstra, Frans Segerink, Victoria Tormo-Márquez, José Olivares, and Sonia M. Garcia-Blanco
Opt. Mater. Express 9(8) 3371-3378 (2019)

Thick optical waveguides in lithium niobate induced by swift heavy ions (~10 MeV/amu) at ultralow fluences

José Olivares, Miguel L. Crespillo, Olga Caballero-Calero, María D. Ynsa, Angel García-Cabañes, Marcel Toulemonde, Christina Trautmann, and Fernando Agulló-López
Opt. Express 17(26) 24175-24182 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45-46, 3–160 (2016).
    [Crossref]
  2. Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light: Sci. Appl. 4(11), e358 (2015).
    [Crossref]
  3. K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15(2), 024603 (2014).
    [Crossref]
  4. J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
    [Crossref]
  5. P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for biosensing in the mid-infrared,” in Proceedings - 2014 Summer Topicals Meeting Series, SUM 2014, (IEEE, 2014), pp. 59–60.
  6. N. M. Pires, T. Dong, U. Hanke, and N. Hoivik, “Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications,” Sensors 14(8), 15458–15479 (2014).
    [Crossref]
  7. C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091 (2017).
    [Crossref]
  8. A. A. Kovalyov, V. V. Preobrazhenskii, M. A. Putyato, O. P. Pchelyakov, N. N. Rubtsova, B. R. Semyagin, V. E. Kisel’, S. V. Kuril’chik, and N. V. Kuleshov, “115 fs pulses from Yb3+:KY(WO4)2 laser with low loss nanostructured saturable absorber,” Laser Phys. Lett. 8(6), 431–435 (2011).
    [Crossref]
  9. U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465 (2005).
    [Crossref]
  10. A. A. Lagatsky, F. Fusari, S. Calvez, J. a. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. a. Brown, M. D. Dawson, and W. Sibbett, “Passive mode locking of a Tm,Ho:KY(WO4)2 laser around 2 microm,” Opt. Lett. 34(17), 2587–2589 (2009).
    [Crossref]
  11. A. Beyertt, D. Nickel, and A. Giesen, “Femtosecond thin-disk Yb:KYW regenerative amplifier,” Appl. Phys. B: Lasers Opt. 80(6), 655–660 (2005).
    [Crossref]
  12. F. Brunner, G. J. Spühler, J. Aus der Au, L. Krainer, F. Morier-Genoud, R. Paschotta, N. Lichtenstein, S. Weiss, C. Harder, A. A. Lagatsky, A. Abdolvand, N. V. Kuleshov, and U. Keller, “Diode-pumped femtosecond Yb:KGd(WO4)2 laser with 1.1-W average power,” Opt. Lett. 25(15), 1119 (2000).
    [Crossref]
  13. A. A. Kaminskii, P. V. Klevtsov, L. Li, and A. A. Pavlyuk, “Stimulated emission from KY(WO4)2: Nd3+ crystal laser,” Phys. Stat. Sol. (a) 5(2), K79–K81 (1971).
    [Crossref]
  14. V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
    [Crossref]
  15. Z. Cong, Z. Liu, Z. Qin, X. Zhang, H. Zhang, J. Li, H. Yu, and W. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185nm,” Opt. Laser Technol. 73, 50–53 (2015).
    [Crossref]
  16. D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
    [Crossref]
  17. S. Aravazhi, D. Geskus, K. Van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
    [Crossref]
  18. K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ~80% slope efficiency,” Opt. Lett. 39(15), 4380 (2014).
    [Crossref]
  19. Y.-S. Yong, S. Aravazhi, S. A. Vázquez-Córdova, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Gain dynamics in a highly ytterbium-doped potassium double tungstate epitaxial layer,” J. Opt. Soc. Am. B 35(9), 2176 (2018).
    [Crossref]
  20. M. A. Sefunc, F. B. Segerink, and S. M. García-Blanco, “High index contrast passive potassium double tungstate waveguides,” Opt. Mater. Express 8(3), 629 (2018).
    [Crossref]
  21. C. I. van Emmerik, S. M. Martinussen, J. Mu, M. Dijkstra, R. Kooijman, and S. M. García-Blanco, “A novel polishing stop for accurate integration of potassium yttrium double tungstate on a silicon dioxide,” Proc. SPIE 10535, 105350U (2018).
    [Crossref]
  22. C. A. Merchant, J. S. Aitchison, S. Garcia-Blanco, C. Hnatovsky, R. S. Taylor, F. Agulló-Rueda, A. J. Kellock, and J. E. E. Baglin, “Direct observation of waveguide formation in KGd(WO4)2 by low dose H+ ion implantation,” Appl. Phys. Lett. 89(11), 111116 (2006).
    [Crossref]
  23. C. A. Merchant, P. Scrutton, C. Hnatovsky, R. S. Taylor, G. García, J. Olivares, A. S. Helmy, S. Member, and J. S. Aitchison, “High-Resolution Refractive Index and Micro-Raman Spectroscopy of Planar Waveguides in KGd(WO4)2 Formed by Swift Heavy Ion Irradiation,” IEEE J. Quantum Electron. 45(4), 373–379 (2009).
    [Crossref]
  24. A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 249(1-2), 177–180 (2006).
    [Crossref]
  25. M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: from bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
    [Crossref]
  26. R. Frentrop, V. Tormo-Márquez, J. Olivares, and S. García-Blanco, “High-contrast slab waveguide fabrication in KY(WO4)2 by swift heavy ion irradiation,” Proc. SPIE 10535, 105350O (2018).
    [Crossref]
  27. X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
    [Crossref]
  28. A. Climent-Font, F. Pászti, G. García, M. T. Fernández-Jiménez, and F. Agulló, “First measurements with the Madrid 5 MV tandem accelerator,” Nucl. Instrum. Methods Phys. Res., Sect. B 219-220, 400–404 (2004).
    [Crossref]
  29. J. Olivares, G. García, F. Agulló-López, F. Agulló-Rueda, A. Kling, and J. C. Soares, “Generation of amorphous surface layers in LiNbO3 by ion-beam irradiation: Thresholding and boundary propagation,” Appl. Phys. A: Mater. Sci. Process. 81(7), 1465–1469 (2005).
    [Crossref]
  30. J. Lindhard, M. Scharff, and H. Schiott, “Range concepts and heavy ion ranges,” Mat. Fys. Medd. Dan. Vid. Selsk. 33, 1 (1963).
  31. J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM - The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods Phys. Res., Sect. B 268(11-12), 1818–1823 (2010).
    [Crossref]
  32. M. A. Krivoglaz, X-ray and Neutron Diffraction in Non-Ideal Crystals (Springer, 1996).
  33. E. Kreyszig, Advanced Engineering Mathematics (John Wiley & Sons, 2010).
  34. C. R. Wie, T. A. Tombrello, and T. Vreeland, “Dynamical X-ray diffraction from nonuniform crystalline films: Application to X-ray rocking curve analysis,” J. Appl. Phys. 59(11), 3743–3746 (1986).
    [Crossref]
  35. K. D. Chtcherbatchev, V. T. Bublik, A. S. Markevich, V. N. Mordkovich, E. Alves, N. P. Barradas, and A. D. Sequeira, “The influence of in situ photoexcitation on a defect structure generation in Ar+ implanted GaAs(001) crystals revealed by high-resolution X-ray diffraction and Rutherford backscattering spectroscopy,” J. Phys. D: Appl. Phys. 36(10A), A143–A147 (2003).
    [Crossref]
  36. J. Mayer, L. A. Giannuzzi, T. Kamino, and J. Michael, “TEM Sample Preparation and FIB-Induced Damage,” MRS Bull. 32(5), 400–407 (2007).
    [Crossref]
  37. S. G. Blanco, J. S. Aitchison, C. Hnatovsky, and R. S. Taylor, “Microreflectivity characterization of the two-dimensional refractive index distribution of electron-beam-written optical waveguides in germanium-doped flame-hydrolysis silica,” Appl. Phys. Lett. 85(8), 1314–1316 (2004).
    [Crossref]
  38. N. Itoh, D. M. Duffy, S. Khakshouri, and A. M. Stoneham, “Making tracks: electronic excitation roles in forming swift heavy ion tracks,” J. Phys.: Condens. Matter 21(47), 474205 (2009).
    [Crossref]
  39. W. L. Zhu, K. S. Wan, Y. L. Huang, X. Q. Feng, and G. Pezzotti, “Stress dependence of Raman vibrational bands of PbWO4 single crystals,” Phys. Stat. Sol. (a) 203(10), 2376–2385 (2006).
    [Crossref]
  40. A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the $\chi$χ(3)-active monoclinic $\alpha$α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
    [Crossref]

2018 (4)

C. I. van Emmerik, S. M. Martinussen, J. Mu, M. Dijkstra, R. Kooijman, and S. M. García-Blanco, “A novel polishing stop for accurate integration of potassium yttrium double tungstate on a silicon dioxide,” Proc. SPIE 10535, 105350U (2018).
[Crossref]

R. Frentrop, V. Tormo-Márquez, J. Olivares, and S. García-Blanco, “High-contrast slab waveguide fabrication in KY(WO4)2 by swift heavy ion irradiation,” Proc. SPIE 10535, 105350O (2018).
[Crossref]

M. A. Sefunc, F. B. Segerink, and S. M. García-Blanco, “High index contrast passive potassium double tungstate waveguides,” Opt. Mater. Express 8(3), 629 (2018).
[Crossref]

Y.-S. Yong, S. Aravazhi, S. A. Vázquez-Córdova, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Gain dynamics in a highly ytterbium-doped potassium double tungstate epitaxial layer,” J. Opt. Soc. Am. B 35(9), 2176 (2018).
[Crossref]

2017 (1)

2016 (1)

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45-46, 3–160 (2016).
[Crossref]

2015 (2)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light: Sci. Appl. 4(11), e358 (2015).
[Crossref]

Z. Cong, Z. Liu, Z. Qin, X. Zhang, H. Zhang, J. Li, H. Yu, and W. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

2014 (4)

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ~80% slope efficiency,” Opt. Lett. 39(15), 4380 (2014).
[Crossref]

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15(2), 024603 (2014).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

N. M. Pires, T. Dong, U. Hanke, and N. Hoivik, “Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications,” Sensors 14(8), 15458–15479 (2014).
[Crossref]

2013 (1)

S. Aravazhi, D. Geskus, K. Van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

2012 (1)

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref]

2011 (1)

A. A. Kovalyov, V. V. Preobrazhenskii, M. A. Putyato, O. P. Pchelyakov, N. N. Rubtsova, B. R. Semyagin, V. E. Kisel’, S. V. Kuril’chik, and N. V. Kuleshov, “115 fs pulses from Yb3+:KY(WO4)2 laser with low loss nanostructured saturable absorber,” Laser Phys. Lett. 8(6), 431–435 (2011).
[Crossref]

2010 (1)

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM - The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods Phys. Res., Sect. B 268(11-12), 1818–1823 (2010).
[Crossref]

2009 (3)

N. Itoh, D. M. Duffy, S. Khakshouri, and A. M. Stoneham, “Making tracks: electronic excitation roles in forming swift heavy ion tracks,” J. Phys.: Condens. Matter 21(47), 474205 (2009).
[Crossref]

C. A. Merchant, P. Scrutton, C. Hnatovsky, R. S. Taylor, G. García, J. Olivares, A. S. Helmy, S. Member, and J. S. Aitchison, “High-Resolution Refractive Index and Micro-Raman Spectroscopy of Planar Waveguides in KGd(WO4)2 Formed by Swift Heavy Ion Irradiation,” IEEE J. Quantum Electron. 45(4), 373–379 (2009).
[Crossref]

A. A. Lagatsky, F. Fusari, S. Calvez, J. a. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. a. Brown, M. D. Dawson, and W. Sibbett, “Passive mode locking of a Tm,Ho:KY(WO4)2 laser around 2 microm,” Opt. Lett. 34(17), 2587–2589 (2009).
[Crossref]

2007 (3)

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

J. Mayer, L. A. Giannuzzi, T. Kamino, and J. Michael, “TEM Sample Preparation and FIB-Induced Damage,” MRS Bull. 32(5), 400–407 (2007).
[Crossref]

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: from bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

2006 (4)

W. L. Zhu, K. S. Wan, Y. L. Huang, X. Q. Feng, and G. Pezzotti, “Stress dependence of Raman vibrational bands of PbWO4 single crystals,” Phys. Stat. Sol. (a) 203(10), 2376–2385 (2006).
[Crossref]

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 249(1-2), 177–180 (2006).
[Crossref]

C. A. Merchant, J. S. Aitchison, S. Garcia-Blanco, C. Hnatovsky, R. S. Taylor, F. Agulló-Rueda, A. J. Kellock, and J. E. E. Baglin, “Direct observation of waveguide formation in KGd(WO4)2 by low dose H+ ion implantation,” Appl. Phys. Lett. 89(11), 111116 (2006).
[Crossref]

X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

2005 (3)

J. Olivares, G. García, F. Agulló-López, F. Agulló-Rueda, A. Kling, and J. C. Soares, “Generation of amorphous surface layers in LiNbO3 by ion-beam irradiation: Thresholding and boundary propagation,” Appl. Phys. A: Mater. Sci. Process. 81(7), 1465–1469 (2005).
[Crossref]

U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465 (2005).
[Crossref]

A. Beyertt, D. Nickel, and A. Giesen, “Femtosecond thin-disk Yb:KYW regenerative amplifier,” Appl. Phys. B: Lasers Opt. 80(6), 655–660 (2005).
[Crossref]

2004 (2)

A. Climent-Font, F. Pászti, G. García, M. T. Fernández-Jiménez, and F. Agulló, “First measurements with the Madrid 5 MV tandem accelerator,” Nucl. Instrum. Methods Phys. Res., Sect. B 219-220, 400–404 (2004).
[Crossref]

S. G. Blanco, J. S. Aitchison, C. Hnatovsky, and R. S. Taylor, “Microreflectivity characterization of the two-dimensional refractive index distribution of electron-beam-written optical waveguides in germanium-doped flame-hydrolysis silica,” Appl. Phys. Lett. 85(8), 1314–1316 (2004).
[Crossref]

2003 (1)

K. D. Chtcherbatchev, V. T. Bublik, A. S. Markevich, V. N. Mordkovich, E. Alves, N. P. Barradas, and A. D. Sequeira, “The influence of in situ photoexcitation on a defect structure generation in Ar+ implanted GaAs(001) crystals revealed by high-resolution X-ray diffraction and Rutherford backscattering spectroscopy,” J. Phys. D: Appl. Phys. 36(10A), A143–A147 (2003).
[Crossref]

2001 (1)

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the $\chi$χ(3)-active monoclinic $\alpha$α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

2000 (1)

1986 (1)

C. R. Wie, T. A. Tombrello, and T. Vreeland, “Dynamical X-ray diffraction from nonuniform crystalline films: Application to X-ray rocking curve analysis,” J. Appl. Phys. 59(11), 3743–3746 (1986).
[Crossref]

1971 (1)

A. A. Kaminskii, P. V. Klevtsov, L. Li, and A. A. Pavlyuk, “Stimulated emission from KY(WO4)2: Nd3+ crystal laser,” Phys. Stat. Sol. (a) 5(2), K79–K81 (1971).
[Crossref]

1963 (1)

J. Lindhard, M. Scharff, and H. Schiott, “Range concepts and heavy ion ranges,” Mat. Fys. Medd. Dan. Vid. Selsk. 33, 1 (1963).

a. Brown, C. T.

a. Gupta, J.

Abdolvand, A.

Aguiló, M.

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465 (2005).
[Crossref]

Agulló, F.

A. Climent-Font, F. Pászti, G. García, M. T. Fernández-Jiménez, and F. Agulló, “First measurements with the Madrid 5 MV tandem accelerator,” Nucl. Instrum. Methods Phys. Res., Sect. B 219-220, 400–404 (2004).
[Crossref]

Agulló-López, F.

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 249(1-2), 177–180 (2006).
[Crossref]

J. Olivares, G. García, F. Agulló-López, F. Agulló-Rueda, A. Kling, and J. C. Soares, “Generation of amorphous surface layers in LiNbO3 by ion-beam irradiation: Thresholding and boundary propagation,” Appl. Phys. A: Mater. Sci. Process. 81(7), 1465–1469 (2005).
[Crossref]

Agulló-Rueda, F.

C. A. Merchant, J. S. Aitchison, S. Garcia-Blanco, C. Hnatovsky, R. S. Taylor, F. Agulló-Rueda, A. J. Kellock, and J. E. E. Baglin, “Direct observation of waveguide formation in KGd(WO4)2 by low dose H+ ion implantation,” Appl. Phys. Lett. 89(11), 111116 (2006).
[Crossref]

J. Olivares, G. García, F. Agulló-López, F. Agulló-Rueda, A. Kling, and J. C. Soares, “Generation of amorphous surface layers in LiNbO3 by ion-beam irradiation: Thresholding and boundary propagation,” Appl. Phys. A: Mater. Sci. Process. 81(7), 1465–1469 (2005).
[Crossref]

Aitchison, J. S.

C. A. Merchant, P. Scrutton, C. Hnatovsky, R. S. Taylor, G. García, J. Olivares, A. S. Helmy, S. Member, and J. S. Aitchison, “High-Resolution Refractive Index and Micro-Raman Spectroscopy of Planar Waveguides in KGd(WO4)2 Formed by Swift Heavy Ion Irradiation,” IEEE J. Quantum Electron. 45(4), 373–379 (2009).
[Crossref]

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 249(1-2), 177–180 (2006).
[Crossref]

C. A. Merchant, J. S. Aitchison, S. Garcia-Blanco, C. Hnatovsky, R. S. Taylor, F. Agulló-Rueda, A. J. Kellock, and J. E. E. Baglin, “Direct observation of waveguide formation in KGd(WO4)2 by low dose H+ ion implantation,” Appl. Phys. Lett. 89(11), 111116 (2006).
[Crossref]

S. G. Blanco, J. S. Aitchison, C. Hnatovsky, and R. S. Taylor, “Microreflectivity characterization of the two-dimensional refractive index distribution of electron-beam-written optical waveguides in germanium-doped flame-hydrolysis silica,” Appl. Phys. Lett. 85(8), 1314–1316 (2004).
[Crossref]

Alves, E.

K. D. Chtcherbatchev, V. T. Bublik, A. S. Markevich, V. N. Mordkovich, E. Alves, N. P. Barradas, and A. D. Sequeira, “The influence of in situ photoexcitation on a defect structure generation in Ar+ implanted GaAs(001) crystals revealed by high-resolution X-ray diffraction and Rutherford backscattering spectroscopy,” J. Phys. D: Appl. Phys. 36(10A), A143–A147 (2003).
[Crossref]

Aravazhi, S.

Y.-S. Yong, S. Aravazhi, S. A. Vázquez-Córdova, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Gain dynamics in a highly ytterbium-doped potassium double tungstate epitaxial layer,” J. Opt. Soc. Am. B 35(9), 2176 (2018).
[Crossref]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ~80% slope efficiency,” Opt. Lett. 39(15), 4380 (2014).
[Crossref]

S. Aravazhi, D. Geskus, K. Van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref]

Aus der Au, J.

Baglin, J. E. E.

C. A. Merchant, J. S. Aitchison, S. Garcia-Blanco, C. Hnatovsky, R. S. Taylor, F. Agulló-Rueda, A. J. Kellock, and J. E. E. Baglin, “Direct observation of waveguide formation in KGd(WO4)2 by low dose H+ ion implantation,” Appl. Phys. Lett. 89(11), 111116 (2006).
[Crossref]

Barradas, N. P.

K. D. Chtcherbatchev, V. T. Bublik, A. S. Markevich, V. N. Mordkovich, E. Alves, N. P. Barradas, and A. D. Sequeira, “The influence of in situ photoexcitation on a defect structure generation in Ar+ implanted GaAs(001) crystals revealed by high-resolution X-ray diffraction and Rutherford backscattering spectroscopy,” J. Phys. D: Appl. Phys. 36(10A), A143–A147 (2003).
[Crossref]

Beyertt, A.

A. Beyertt, D. Nickel, and A. Giesen, “Femtosecond thin-disk Yb:KYW regenerative amplifier,” Appl. Phys. B: Lasers Opt. 80(6), 655–660 (2005).
[Crossref]

Biersack, J. P.

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM - The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods Phys. Res., Sect. B 268(11-12), 1818–1823 (2010).
[Crossref]

Blanco, S. G.

S. G. Blanco, J. S. Aitchison, C. Hnatovsky, and R. S. Taylor, “Microreflectivity characterization of the two-dimensional refractive index distribution of electron-beam-written optical waveguides in germanium-doped flame-hydrolysis silica,” Appl. Phys. Lett. 85(8), 1314–1316 (2004).
[Crossref]

Borca, C. N.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: from bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

Brasch, V.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Brunner, F.

Bublik, V. T.

K. D. Chtcherbatchev, V. T. Bublik, A. S. Markevich, V. N. Mordkovich, E. Alves, N. P. Barradas, and A. D. Sequeira, “The influence of in situ photoexcitation on a defect structure generation in Ar+ implanted GaAs(001) crystals revealed by high-resolution X-ray diffraction and Rutherford backscattering spectroscopy,” J. Phys. D: Appl. Phys. 36(10A), A143–A147 (2003).
[Crossref]

Butashin, A. V.

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the $\chi$χ(3)-active monoclinic $\alpha$α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Byrd, M. J.

Calvez, S.

Choi, D. Y.

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for biosensing in the mid-infrared,” in Proceedings - 2014 Summer Topicals Meeting Series, SUM 2014, (IEEE, 2014), pp. 59–60.

Chtcherbatchev, K. D.

K. D. Chtcherbatchev, V. T. Bublik, A. S. Markevich, V. N. Mordkovich, E. Alves, N. P. Barradas, and A. D. Sequeira, “The influence of in situ photoexcitation on a defect structure generation in Ar+ implanted GaAs(001) crystals revealed by high-resolution X-ray diffraction and Rutherford backscattering spectroscopy,” J. Phys. D: Appl. Phys. 36(10A), A143–A147 (2003).
[Crossref]

Climent-Font, A.

A. Climent-Font, F. Pászti, G. García, M. T. Fernández-Jiménez, and F. Agulló, “First measurements with the Madrid 5 MV tandem accelerator,” Nucl. Instrum. Methods Phys. Res., Sect. B 219-220, 400–404 (2004).
[Crossref]

Cole, D. B.

Cong, Z.

Z. Cong, Z. Liu, Z. Qin, X. Zhang, H. Zhang, J. Li, H. Yu, and W. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

Dawson, M. D.

Debbarma, S.

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for biosensing in the mid-infrared,” in Proceedings - 2014 Summer Topicals Meeting Series, SUM 2014, (IEEE, 2014), pp. 59–60.

Díaz, F.

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465 (2005).
[Crossref]

Dijkstra, M.

C. I. van Emmerik, S. M. Martinussen, J. Mu, M. Dijkstra, R. Kooijman, and S. M. García-Blanco, “A novel polishing stop for accurate integration of potassium yttrium double tungstate on a silicon dioxide,” Proc. SPIE 10535, 105350U (2018).
[Crossref]

Dong, T.

N. M. Pires, T. Dong, U. Hanke, and N. Hoivik, “Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications,” Sensors 14(8), 15458–15479 (2014).
[Crossref]

Duffy, D. M.

N. Itoh, D. M. Duffy, S. Khakshouri, and A. M. Stoneham, “Making tracks: electronic excitation roles in forming swift heavy ion tracks,” J. Phys.: Condens. Matter 21(47), 474205 (2009).
[Crossref]

Erbert, G.

Feng, X. Q.

W. L. Zhu, K. S. Wan, Y. L. Huang, X. Q. Feng, and G. Pezzotti, “Stress dependence of Raman vibrational bands of PbWO4 single crystals,” Phys. Stat. Sol. (a) 203(10), 2376–2385 (2006).
[Crossref]

Fernández-Jiménez, M. T.

A. Climent-Font, F. Pászti, G. García, M. T. Fernández-Jiménez, and F. Agulló, “First measurements with the Madrid 5 MV tandem accelerator,” Nucl. Instrum. Methods Phys. Res., Sect. B 219-220, 400–404 (2004).
[Crossref]

Frentrop, R.

R. Frentrop, V. Tormo-Márquez, J. Olivares, and S. García-Blanco, “High-contrast slab waveguide fabrication in KY(WO4)2 by swift heavy ion irradiation,” Proc. SPIE 10535, 105350O (2018).
[Crossref]

Freude, W.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Fukuda, H.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15(2), 024603 (2014).
[Crossref]

Fusari, F.

Gai, X.

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for biosensing in the mid-infrared,” in Proceedings - 2014 Summer Topicals Meeting Series, SUM 2014, (IEEE, 2014), pp. 59–60.

García, G.

C. A. Merchant, P. Scrutton, C. Hnatovsky, R. S. Taylor, G. García, J. Olivares, A. S. Helmy, S. Member, and J. S. Aitchison, “High-Resolution Refractive Index and Micro-Raman Spectroscopy of Planar Waveguides in KGd(WO4)2 Formed by Swift Heavy Ion Irradiation,” IEEE J. Quantum Electron. 45(4), 373–379 (2009).
[Crossref]

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 249(1-2), 177–180 (2006).
[Crossref]

J. Olivares, G. García, F. Agulló-López, F. Agulló-Rueda, A. Kling, and J. C. Soares, “Generation of amorphous surface layers in LiNbO3 by ion-beam irradiation: Thresholding and boundary propagation,” Appl. Phys. A: Mater. Sci. Process. 81(7), 1465–1469 (2005).
[Crossref]

A. Climent-Font, F. Pászti, G. García, M. T. Fernández-Jiménez, and F. Agulló, “First measurements with the Madrid 5 MV tandem accelerator,” Nucl. Instrum. Methods Phys. Res., Sect. B 219-220, 400–404 (2004).
[Crossref]

Garcia-Blanco, S.

C. A. Merchant, J. S. Aitchison, S. Garcia-Blanco, C. Hnatovsky, R. S. Taylor, F. Agulló-Rueda, A. J. Kellock, and J. E. E. Baglin, “Direct observation of waveguide formation in KGd(WO4)2 by low dose H+ ion implantation,” Appl. Phys. Lett. 89(11), 111116 (2006).
[Crossref]

García-Blanco, S.

R. Frentrop, V. Tormo-Márquez, J. Olivares, and S. García-Blanco, “High-contrast slab waveguide fabrication in KY(WO4)2 by swift heavy ion irradiation,” Proc. SPIE 10535, 105350O (2018).
[Crossref]

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 249(1-2), 177–180 (2006).
[Crossref]

García-Blanco, S. M.

C. I. van Emmerik, S. M. Martinussen, J. Mu, M. Dijkstra, R. Kooijman, and S. M. García-Blanco, “A novel polishing stop for accurate integration of potassium yttrium double tungstate on a silicon dioxide,” Proc. SPIE 10535, 105350U (2018).
[Crossref]

M. A. Sefunc, F. B. Segerink, and S. M. García-Blanco, “High index contrast passive potassium double tungstate waveguides,” Opt. Mater. Express 8(3), 629 (2018).
[Crossref]

Y.-S. Yong, S. Aravazhi, S. A. Vázquez-Córdova, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Gain dynamics in a highly ytterbium-doped potassium double tungstate epitaxial layer,” J. Opt. Soc. Am. B 35(9), 2176 (2018).
[Crossref]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ~80% slope efficiency,” Opt. Lett. 39(15), 4380 (2014).
[Crossref]

S. Aravazhi, D. Geskus, K. Van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref]

García-Navarro, A.

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 249(1-2), 177–180 (2006).
[Crossref]

Gardillou, F.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: from bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

Gavaldà, J.

X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

Geskus, D.

S. Aravazhi, D. Geskus, K. Van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref]

Giannuzzi, L. A.

J. Mayer, L. A. Giannuzzi, T. Kamino, and J. Michael, “TEM Sample Preparation and FIB-Induced Damage,” MRS Bull. 32(5), 400–407 (2007).
[Crossref]

Giesen, A.

A. Beyertt, D. Nickel, and A. Giesen, “Femtosecond thin-disk Yb:KYW regenerative amplifier,” Appl. Phys. B: Lasers Opt. 80(6), 655–660 (2005).
[Crossref]

Griebner, U.

S. Aravazhi, D. Geskus, K. Van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: from bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465 (2005).
[Crossref]

Grivas, C.

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45-46, 3–160 (2016).
[Crossref]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ~80% slope efficiency,” Opt. Lett. 39(15), 4380 (2014).
[Crossref]

S. Aravazhi, D. Geskus, K. Van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

Hanke, U.

N. M. Pires, T. Dong, U. Hanke, and N. Hoivik, “Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications,” Sensors 14(8), 15458–15479 (2014).
[Crossref]

Harder, C.

Hartinger, K.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Helmy, A. S.

C. A. Merchant, P. Scrutton, C. Hnatovsky, R. S. Taylor, G. García, J. Olivares, A. S. Helmy, S. Member, and J. S. Aitchison, “High-Resolution Refractive Index and Micro-Raman Spectroscopy of Planar Waveguides in KGd(WO4)2 Formed by Swift Heavy Ion Irradiation,” IEEE J. Quantum Electron. 45(4), 373–379 (2009).
[Crossref]

Herek, J. L.

Herr, T.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Hillerkuss, D.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Hiraki, T.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15(2), 024603 (2014).
[Crossref]

Hnatovsky, C.

C. A. Merchant, P. Scrutton, C. Hnatovsky, R. S. Taylor, G. García, J. Olivares, A. S. Helmy, S. Member, and J. S. Aitchison, “High-Resolution Refractive Index and Micro-Raman Spectroscopy of Planar Waveguides in KGd(WO4)2 Formed by Swift Heavy Ion Irradiation,” IEEE J. Quantum Electron. 45(4), 373–379 (2009).
[Crossref]

C. A. Merchant, J. S. Aitchison, S. Garcia-Blanco, C. Hnatovsky, R. S. Taylor, F. Agulló-Rueda, A. J. Kellock, and J. E. E. Baglin, “Direct observation of waveguide formation in KGd(WO4)2 by low dose H+ ion implantation,” Appl. Phys. Lett. 89(11), 111116 (2006).
[Crossref]

S. G. Blanco, J. S. Aitchison, C. Hnatovsky, and R. S. Taylor, “Microreflectivity characterization of the two-dimensional refractive index distribution of electron-beam-written optical waveguides in germanium-doped flame-hydrolysis silica,” Appl. Phys. Lett. 85(8), 1314–1316 (2004).
[Crossref]

Hoivik, N.

N. M. Pires, T. Dong, U. Hanke, and N. Hoivik, “Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications,” Sensors 14(8), 15458–15479 (2014).
[Crossref]

Holzwarth, R.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Huang, Y. L.

W. L. Zhu, K. S. Wan, Y. L. Huang, X. Q. Feng, and G. Pezzotti, “Stress dependence of Raman vibrational bands of PbWO4 single crystals,” Phys. Stat. Sol. (a) 203(10), 2376–2385 (2006).
[Crossref]

Ishikawa, Y.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15(2), 024603 (2014).
[Crossref]

Itoh, N.

N. Itoh, D. M. Duffy, S. Khakshouri, and A. M. Stoneham, “Making tracks: electronic excitation roles in forming swift heavy ion tracks,” J. Phys.: Condens. Matter 21(47), 474205 (2009).
[Crossref]

Kamino, T.

J. Mayer, L. A. Giannuzzi, T. Kamino, and J. Michael, “TEM Sample Preparation and FIB-Induced Damage,” MRS Bull. 32(5), 400–407 (2007).
[Crossref]

Kaminskii, A. A.

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the $\chi$χ(3)-active monoclinic $\alpha$α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

A. A. Kaminskii, P. V. Klevtsov, L. Li, and A. A. Pavlyuk, “Stimulated emission from KY(WO4)2: Nd3+ crystal laser,” Phys. Stat. Sol. (a) 5(2), K79–K81 (1971).
[Crossref]

Keller, U.

Kellock, A. J.

C. A. Merchant, J. S. Aitchison, S. Garcia-Blanco, C. Hnatovsky, R. S. Taylor, F. Agulló-Rueda, A. J. Kellock, and J. E. E. Baglin, “Direct observation of waveguide formation in KGd(WO4)2 by low dose H+ ion implantation,” Appl. Phys. Lett. 89(11), 111116 (2006).
[Crossref]

Khakshouri, S.

N. Itoh, D. M. Duffy, S. Khakshouri, and A. M. Stoneham, “Making tracks: electronic excitation roles in forming swift heavy ion tracks,” J. Phys.: Condens. Matter 21(47), 474205 (2009).
[Crossref]

Kippenberg, T. J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Kisel, V. E.

Kisel’, V. E.

A. A. Kovalyov, V. V. Preobrazhenskii, M. A. Putyato, O. P. Pchelyakov, N. N. Rubtsova, B. R. Semyagin, V. E. Kisel’, S. V. Kuril’chik, and N. V. Kuleshov, “115 fs pulses from Yb3+:KY(WO4)2 laser with low loss nanostructured saturable absorber,” Laser Phys. Lett. 8(6), 431–435 (2011).
[Crossref]

Klevtsov, P. V.

A. A. Kaminskii, P. V. Klevtsov, L. Li, and A. A. Pavlyuk, “Stimulated emission from KY(WO4)2: Nd3+ crystal laser,” Phys. Stat. Sol. (a) 5(2), K79–K81 (1971).
[Crossref]

Klevtsova, R. F.

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the $\chi$χ(3)-active monoclinic $\alpha$α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Kling, A.

J. Olivares, G. García, F. Agulló-López, F. Agulló-Rueda, A. Kling, and J. C. Soares, “Generation of amorphous surface layers in LiNbO3 by ion-beam irradiation: Thresholding and boundary propagation,” Appl. Phys. A: Mater. Sci. Process. 81(7), 1465–1469 (2005).
[Crossref]

Konstantinova, A. F.

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the $\chi$χ(3)-active monoclinic $\alpha$α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Kooijman, R.

C. I. van Emmerik, S. M. Martinussen, J. Mu, M. Dijkstra, R. Kooijman, and S. M. García-Blanco, “A novel polishing stop for accurate integration of potassium yttrium double tungstate on a silicon dioxide,” Proc. SPIE 10535, 105350U (2018).
[Crossref]

Koos, C.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Kou, R.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15(2), 024603 (2014).
[Crossref]

Kovalyov, A. A.

A. A. Kovalyov, V. V. Preobrazhenskii, M. A. Putyato, O. P. Pchelyakov, N. N. Rubtsova, B. R. Semyagin, V. E. Kisel’, S. V. Kuril’chik, and N. V. Kuleshov, “115 fs pulses from Yb3+:KY(WO4)2 laser with low loss nanostructured saturable absorber,” Laser Phys. Lett. 8(6), 431–435 (2011).
[Crossref]

Krainer, L.

Kreyszig, E.

E. Kreyszig, Advanced Engineering Mathematics (John Wiley & Sons, 2010).

Krivoglaz, M. A.

M. A. Krivoglaz, X-ray and Neutron Diffraction in Non-Ideal Crystals (Springer, 1996).

Kuleshov, N. V.

Kuril’chik, S. V.

A. A. Kovalyov, V. V. Preobrazhenskii, M. A. Putyato, O. P. Pchelyakov, N. N. Rubtsova, B. R. Semyagin, V. E. Kisel’, S. V. Kuril’chik, and N. V. Kuleshov, “115 fs pulses from Yb3+:KY(WO4)2 laser with low loss nanostructured saturable absorber,” Laser Phys. Lett. 8(6), 431–435 (2011).
[Crossref]

Lagatsky, A. A.

Lauermann, M.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Leuthold, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Li, J.

Z. Cong, Z. Liu, Z. Qin, X. Zhang, H. Zhang, J. Li, H. Yu, and W. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Li, L.

A. A. Kaminskii, P. V. Klevtsov, L. Li, and A. A. Pavlyuk, “Stimulated emission from KY(WO4)2: Nd3+ crystal laser,” Phys. Stat. Sol. (a) 5(2), K79–K81 (1971).
[Crossref]

Lichtenstein, N.

Lindhard, J.

J. Lindhard, M. Scharff, and H. Schiott, “Range concepts and heavy ion ranges,” Mat. Fys. Medd. Dan. Vid. Selsk. 33, 1 (1963).

Liu, J.

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Liu, Z.

Z. Cong, Z. Liu, Z. Qin, X. Zhang, H. Zhang, J. Li, H. Yu, and W. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

Luther-Davies, B.

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for biosensing in the mid-infrared,” in Proceedings - 2014 Summer Topicals Meeting Series, SUM 2014, (IEEE, 2014), pp. 59–60.

Ma, P.

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for biosensing in the mid-infrared,” in Proceedings - 2014 Summer Topicals Meeting Series, SUM 2014, (IEEE, 2014), pp. 59–60.

Madden, S.

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for biosensing in the mid-infrared,” in Proceedings - 2014 Summer Topicals Meeting Series, SUM 2014, (IEEE, 2014), pp. 59–60.

Markevich, A. S.

K. D. Chtcherbatchev, V. T. Bublik, A. S. Markevich, V. N. Mordkovich, E. Alves, N. P. Barradas, and A. D. Sequeira, “The influence of in situ photoexcitation on a defect structure generation in Ar+ implanted GaAs(001) crystals revealed by high-resolution X-ray diffraction and Rutherford backscattering spectroscopy,” J. Phys. D: Appl. Phys. 36(10A), A143–A147 (2003).
[Crossref]

Martinussen, S. M.

C. I. van Emmerik, S. M. Martinussen, J. Mu, M. Dijkstra, R. Kooijman, and S. M. García-Blanco, “A novel polishing stop for accurate integration of potassium yttrium double tungstate on a silicon dioxide,” Proc. SPIE 10535, 105350U (2018).
[Crossref]

Massons, J.

X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465 (2005).
[Crossref]

Mateos, X.

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465 (2005).
[Crossref]

Mayer, J.

J. Mayer, L. A. Giannuzzi, T. Kamino, and J. Michael, “TEM Sample Preparation and FIB-Induced Damage,” MRS Bull. 32(5), 400–407 (2007).
[Crossref]

Member, S.

C. A. Merchant, P. Scrutton, C. Hnatovsky, R. S. Taylor, G. García, J. Olivares, A. S. Helmy, S. Member, and J. S. Aitchison, “High-Resolution Refractive Index and Micro-Raman Spectroscopy of Planar Waveguides in KGd(WO4)2 Formed by Swift Heavy Ion Irradiation,” IEEE J. Quantum Electron. 45(4), 373–379 (2009).
[Crossref]

Merchant, C.

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 249(1-2), 177–180 (2006).
[Crossref]

Merchant, C. A.

C. A. Merchant, P. Scrutton, C. Hnatovsky, R. S. Taylor, G. García, J. Olivares, A. S. Helmy, S. Member, and J. S. Aitchison, “High-Resolution Refractive Index and Micro-Raman Spectroscopy of Planar Waveguides in KGd(WO4)2 Formed by Swift Heavy Ion Irradiation,” IEEE J. Quantum Electron. 45(4), 373–379 (2009).
[Crossref]

C. A. Merchant, J. S. Aitchison, S. Garcia-Blanco, C. Hnatovsky, R. S. Taylor, F. Agulló-Rueda, A. J. Kellock, and J. E. E. Baglin, “Direct observation of waveguide formation in KGd(WO4)2 by low dose H+ ion implantation,” Appl. Phys. Lett. 89(11), 111116 (2006).
[Crossref]

Michael, J.

J. Mayer, L. A. Giannuzzi, T. Kamino, and J. Michael, “TEM Sample Preparation and FIB-Induced Damage,” MRS Bull. 32(5), 400–407 (2007).
[Crossref]

Michel, J.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light: Sci. Appl. 4(11), e358 (2015).
[Crossref]

Mordkovich, V. N.

K. D. Chtcherbatchev, V. T. Bublik, A. S. Markevich, V. N. Mordkovich, E. Alves, N. P. Barradas, and A. D. Sequeira, “The influence of in situ photoexcitation on a defect structure generation in Ar+ implanted GaAs(001) crystals revealed by high-resolution X-ray diffraction and Rutherford backscattering spectroscopy,” J. Phys. D: Appl. Phys. 36(10A), A143–A147 (2003).
[Crossref]

Morier-Genoud, F.

Mu, J.

C. I. van Emmerik, S. M. Martinussen, J. Mu, M. Dijkstra, R. Kooijman, and S. M. García-Blanco, “A novel polishing stop for accurate integration of potassium yttrium double tungstate on a silicon dioxide,” Proc. SPIE 10535, 105350U (2018).
[Crossref]

Nickel, D.

A. Beyertt, D. Nickel, and A. Giesen, “Femtosecond thin-disk Yb:KYW regenerative amplifier,” Appl. Phys. B: Lasers Opt. 80(6), 655–660 (2005).
[Crossref]

Nishi, H.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15(2), 024603 (2014).
[Crossref]

Olivares, J.

R. Frentrop, V. Tormo-Márquez, J. Olivares, and S. García-Blanco, “High-contrast slab waveguide fabrication in KY(WO4)2 by swift heavy ion irradiation,” Proc. SPIE 10535, 105350O (2018).
[Crossref]

C. A. Merchant, P. Scrutton, C. Hnatovsky, R. S. Taylor, G. García, J. Olivares, A. S. Helmy, S. Member, and J. S. Aitchison, “High-Resolution Refractive Index and Micro-Raman Spectroscopy of Planar Waveguides in KGd(WO4)2 Formed by Swift Heavy Ion Irradiation,” IEEE J. Quantum Electron. 45(4), 373–379 (2009).
[Crossref]

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 249(1-2), 177–180 (2006).
[Crossref]

J. Olivares, G. García, F. Agulló-López, F. Agulló-Rueda, A. Kling, and J. C. Soares, “Generation of amorphous surface layers in LiNbO3 by ion-beam irradiation: Thresholding and boundary propagation,” Appl. Phys. A: Mater. Sci. Process. 81(7), 1465–1469 (2005).
[Crossref]

Orekhova, V. P.

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the $\chi$χ(3)-active monoclinic $\alpha$α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Paschotta, R.

Pászti, F.

A. Climent-Font, F. Pászti, G. García, M. T. Fernández-Jiménez, and F. Agulló, “First measurements with the Madrid 5 MV tandem accelerator,” Nucl. Instrum. Methods Phys. Res., Sect. B 219-220, 400–404 (2004).
[Crossref]

Pavlyuk, A. A.

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the $\chi$χ(3)-active monoclinic $\alpha$α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

A. A. Kaminskii, P. V. Klevtsov, L. Li, and A. A. Pavlyuk, “Stimulated emission from KY(WO4)2: Nd3+ crystal laser,” Phys. Stat. Sol. (a) 5(2), K79–K81 (1971).
[Crossref]

Pchelyakov, O. P.

A. A. Kovalyov, V. V. Preobrazhenskii, M. A. Putyato, O. P. Pchelyakov, N. N. Rubtsova, B. R. Semyagin, V. E. Kisel’, S. V. Kuril’chik, and N. V. Kuleshov, “115 fs pulses from Yb3+:KY(WO4)2 laser with low loss nanostructured saturable absorber,” Laser Phys. Lett. 8(6), 431–435 (2011).
[Crossref]

Petrov, V.

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: from bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465 (2005).
[Crossref]

Pezzotti, G.

W. L. Zhu, K. S. Wan, Y. L. Huang, X. Q. Feng, and G. Pezzotti, “Stress dependence of Raman vibrational bands of PbWO4 single crystals,” Phys. Stat. Sol. (a) 203(10), 2376–2385 (2006).
[Crossref]

Pfeifle, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Pires, N. M.

N. M. Pires, T. Dong, U. Hanke, and N. Hoivik, “Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications,” Sensors 14(8), 15458–15479 (2014).
[Crossref]

Pollnau, M.

Y.-S. Yong, S. Aravazhi, S. A. Vázquez-Córdova, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Gain dynamics in a highly ytterbium-doped potassium double tungstate epitaxial layer,” J. Opt. Soc. Am. B 35(9), 2176 (2018).
[Crossref]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ~80% slope efficiency,” Opt. Lett. 39(15), 4380 (2014).
[Crossref]

S. Aravazhi, D. Geskus, K. Van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref]

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: from bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

Poulton, C. V.

Preobrazhenskii, V. V.

A. A. Kovalyov, V. V. Preobrazhenskii, M. A. Putyato, O. P. Pchelyakov, N. N. Rubtsova, B. R. Semyagin, V. E. Kisel’, S. V. Kuril’chik, and N. V. Kuleshov, “115 fs pulses from Yb3+:KY(WO4)2 laser with low loss nanostructured saturable absorber,” Laser Phys. Lett. 8(6), 431–435 (2011).
[Crossref]

Pujol, M. C.

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Putyato, M. A.

A. A. Kovalyov, V. V. Preobrazhenskii, M. A. Putyato, O. P. Pchelyakov, N. N. Rubtsova, B. R. Semyagin, V. E. Kisel’, S. V. Kuril’chik, and N. V. Kuleshov, “115 fs pulses from Yb3+:KY(WO4)2 laser with low loss nanostructured saturable absorber,” Laser Phys. Lett. 8(6), 431–435 (2011).
[Crossref]

Qin, Z.

Z. Cong, Z. Liu, Z. Qin, X. Zhang, H. Zhang, J. Li, H. Yu, and W. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

Raval, M.

Rivier, S.

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: from bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465 (2005).
[Crossref]

Romanyuk, Y. E.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: from bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

Rubtsova, N. N.

A. A. Kovalyov, V. V. Preobrazhenskii, M. A. Putyato, O. P. Pchelyakov, N. N. Rubtsova, B. R. Semyagin, V. E. Kisel’, S. V. Kuril’chik, and N. V. Kuleshov, “115 fs pulses from Yb3+:KY(WO4)2 laser with low loss nanostructured saturable absorber,” Laser Phys. Lett. 8(6), 431–435 (2011).
[Crossref]

Scharff, M.

J. Lindhard, M. Scharff, and H. Schiott, “Range concepts and heavy ion ranges,” Mat. Fys. Medd. Dan. Vid. Selsk. 33, 1 (1963).

Schindler, P.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Schiott, H.

J. Lindhard, M. Scharff, and H. Schiott, “Range concepts and heavy ion ranges,” Mat. Fys. Medd. Dan. Vid. Selsk. 33, 1 (1963).

Schmogrow, R.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Scrutton, P.

C. A. Merchant, P. Scrutton, C. Hnatovsky, R. S. Taylor, G. García, J. Olivares, A. S. Helmy, S. Member, and J. S. Aitchison, “High-Resolution Refractive Index and Micro-Raman Spectroscopy of Planar Waveguides in KGd(WO4)2 Formed by Swift Heavy Ion Irradiation,” IEEE J. Quantum Electron. 45(4), 373–379 (2009).
[Crossref]

Sefunc, M. A.

Segerink, F. B.

Semyagin, B. R.

A. A. Kovalyov, V. V. Preobrazhenskii, M. A. Putyato, O. P. Pchelyakov, N. N. Rubtsova, B. R. Semyagin, V. E. Kisel’, S. V. Kuril’chik, and N. V. Kuleshov, “115 fs pulses from Yb3+:KY(WO4)2 laser with low loss nanostructured saturable absorber,” Laser Phys. Lett. 8(6), 431–435 (2011).
[Crossref]

Sequeira, A. D.

K. D. Chtcherbatchev, V. T. Bublik, A. S. Markevich, V. N. Mordkovich, E. Alves, N. P. Barradas, and A. D. Sequeira, “The influence of in situ photoexcitation on a defect structure generation in Ar+ implanted GaAs(001) crystals revealed by high-resolution X-ray diffraction and Rutherford backscattering spectroscopy,” J. Phys. D: Appl. Phys. 36(10A), A143–A147 (2003).
[Crossref]

Sibbett, W.

Silvestre, Ò.

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Soares, J. C.

J. Olivares, G. García, F. Agulló-López, F. Agulló-Rueda, A. Kling, and J. C. Soares, “Generation of amorphous surface layers in LiNbO3 by ion-beam irradiation: Thresholding and boundary propagation,” Appl. Phys. A: Mater. Sci. Process. 81(7), 1465–1469 (2005).
[Crossref]

Solé, R.

X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

Solé, R. M.

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Spühler, G. J.

Stoneham, A. M.

N. Itoh, D. M. Duffy, S. Khakshouri, and A. M. Stoneham, “Making tracks: electronic excitation roles in forming swift heavy ion tracks,” J. Phys.: Condens. Matter 21(47), 474205 (2009).
[Crossref]

Takeda, K.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15(2), 024603 (2014).
[Crossref]

Taylor, R. S.

C. A. Merchant, P. Scrutton, C. Hnatovsky, R. S. Taylor, G. García, J. Olivares, A. S. Helmy, S. Member, and J. S. Aitchison, “High-Resolution Refractive Index and Micro-Raman Spectroscopy of Planar Waveguides in KGd(WO4)2 Formed by Swift Heavy Ion Irradiation,” IEEE J. Quantum Electron. 45(4), 373–379 (2009).
[Crossref]

C. A. Merchant, J. S. Aitchison, S. Garcia-Blanco, C. Hnatovsky, R. S. Taylor, F. Agulló-Rueda, A. J. Kellock, and J. E. E. Baglin, “Direct observation of waveguide formation in KGd(WO4)2 by low dose H+ ion implantation,” Appl. Phys. Lett. 89(11), 111116 (2006).
[Crossref]

S. G. Blanco, J. S. Aitchison, C. Hnatovsky, and R. S. Taylor, “Microreflectivity characterization of the two-dimensional refractive index distribution of electron-beam-written optical waveguides in germanium-doped flame-hydrolysis silica,” Appl. Phys. Lett. 85(8), 1314–1316 (2004).
[Crossref]

Tombrello, T. A.

C. R. Wie, T. A. Tombrello, and T. Vreeland, “Dynamical X-ray diffraction from nonuniform crystalline films: Application to X-ray rocking curve analysis,” J. Appl. Phys. 59(11), 3743–3746 (1986).
[Crossref]

Tormo-Márquez, V.

R. Frentrop, V. Tormo-Márquez, J. Olivares, and S. García-Blanco, “High-contrast slab waveguide fabrication in KY(WO4)2 by swift heavy ion irradiation,” Proc. SPIE 10535, 105350O (2018).
[Crossref]

Tsuchizawa, T.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15(2), 024603 (2014).
[Crossref]

van Dalfsen, K.

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ~80% slope efficiency,” Opt. Lett. 39(15), 4380 (2014).
[Crossref]

S. Aravazhi, D. Geskus, K. Van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

van Emmerik, C. I.

C. I. van Emmerik, S. M. Martinussen, J. Mu, M. Dijkstra, R. Kooijman, and S. M. García-Blanco, “A novel polishing stop for accurate integration of potassium yttrium double tungstate on a silicon dioxide,” Proc. SPIE 10535, 105350U (2018).
[Crossref]

Vázquez-Córdova, S. A.

Y.-S. Yong, S. Aravazhi, S. A. Vázquez-Córdova, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Gain dynamics in a highly ytterbium-doped potassium double tungstate epitaxial layer,” J. Opt. Soc. Am. B 35(9), 2176 (2018).
[Crossref]

S. Aravazhi, D. Geskus, K. Van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

Vermeulen, D.

Vreeland, T.

C. R. Wie, T. A. Tombrello, and T. Vreeland, “Dynamical X-ray diffraction from nonuniform crystalline films: Application to X-ray rocking curve analysis,” J. Appl. Phys. 59(11), 3743–3746 (1986).
[Crossref]

Wada, K.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15(2), 024603 (2014).
[Crossref]

Wan, K. S.

W. L. Zhu, K. S. Wan, Y. L. Huang, X. Q. Feng, and G. Pezzotti, “Stress dependence of Raman vibrational bands of PbWO4 single crystals,” Phys. Stat. Sol. (a) 203(10), 2376–2385 (2006).
[Crossref]

Wang, W.

Z. Cong, Z. Liu, Z. Qin, X. Zhang, H. Zhang, J. Li, H. Yu, and W. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

Watts, M. R.

Wegner, D.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Weimann, C.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Weiss, S.

Weyers, M.

Wie, C. R.

C. R. Wie, T. A. Tombrello, and T. Vreeland, “Dynamical X-ray diffraction from nonuniform crystalline films: Application to X-ray rocking curve analysis,” J. Appl. Phys. 59(11), 3743–3746 (1986).
[Crossref]

Yaacobi, A.

Yamada, K.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15(2), 024603 (2014).
[Crossref]

Yamamoto, T.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15(2), 024603 (2014).
[Crossref]

Yang, Z.

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for biosensing in the mid-infrared,” in Proceedings - 2014 Summer Topicals Meeting Series, SUM 2014, (IEEE, 2014), pp. 59–60.

Yin, B.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light: Sci. Appl. 4(11), e358 (2015).
[Crossref]

Yong, Y.-S.

Yu, H.

Z. Cong, Z. Liu, Z. Qin, X. Zhang, H. Zhang, J. Li, H. Yu, and W. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

Yu, Y.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for biosensing in the mid-infrared,” in Proceedings - 2014 Summer Topicals Meeting Series, SUM 2014, (IEEE, 2014), pp. 59–60.

Zhang, H.

Z. Cong, Z. Liu, Z. Qin, X. Zhang, H. Zhang, J. Li, H. Yu, and W. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

Zhang, X.

Z. Cong, Z. Liu, Z. Qin, X. Zhang, H. Zhang, J. Li, H. Yu, and W. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

Zhou, Z.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light: Sci. Appl. 4(11), e358 (2015).
[Crossref]

Zhu, W. L.

W. L. Zhu, K. S. Wan, Y. L. Huang, X. Q. Feng, and G. Pezzotti, “Stress dependence of Raman vibrational bands of PbWO4 single crystals,” Phys. Stat. Sol. (a) 203(10), 2376–2385 (2006).
[Crossref]

Ziegler, J. F.

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM - The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods Phys. Res., Sect. B 268(11-12), 1818–1823 (2010).
[Crossref]

Ziegler, M. D.

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM - The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods Phys. Res., Sect. B 268(11-12), 1818–1823 (2010).
[Crossref]

Zorn, M.

Adv. Mater. (1)

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref]

Appl. Phys. A: Mater. Sci. Process. (1)

J. Olivares, G. García, F. Agulló-López, F. Agulló-Rueda, A. Kling, and J. C. Soares, “Generation of amorphous surface layers in LiNbO3 by ion-beam irradiation: Thresholding and boundary propagation,” Appl. Phys. A: Mater. Sci. Process. 81(7), 1465–1469 (2005).
[Crossref]

Appl. Phys. B: Lasers Opt. (2)

S. Aravazhi, D. Geskus, K. Van Dalfsen, S. A. Vázquez-Córdova, C. Grivas, U. Griebner, S. M. García-Blanco, and M. Pollnau, “Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser,” Appl. Phys. B: Lasers Opt. 111(3), 433–446 (2013).
[Crossref]

A. Beyertt, D. Nickel, and A. Giesen, “Femtosecond thin-disk Yb:KYW regenerative amplifier,” Appl. Phys. B: Lasers Opt. 80(6), 655–660 (2005).
[Crossref]

Appl. Phys. Lett. (2)

C. A. Merchant, J. S. Aitchison, S. Garcia-Blanco, C. Hnatovsky, R. S. Taylor, F. Agulló-Rueda, A. J. Kellock, and J. E. E. Baglin, “Direct observation of waveguide formation in KGd(WO4)2 by low dose H+ ion implantation,” Appl. Phys. Lett. 89(11), 111116 (2006).
[Crossref]

S. G. Blanco, J. S. Aitchison, C. Hnatovsky, and R. S. Taylor, “Microreflectivity characterization of the two-dimensional refractive index distribution of electron-beam-written optical waveguides in germanium-doped flame-hydrolysis silica,” Appl. Phys. Lett. 85(8), 1314–1316 (2004).
[Crossref]

Crystallogr. Rep. (1)

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the $\chi$χ(3)-active monoclinic $\alpha$α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

IEEE J. Quantum Electron. (1)

C. A. Merchant, P. Scrutton, C. Hnatovsky, R. S. Taylor, G. García, J. Olivares, A. S. Helmy, S. Member, and J. S. Aitchison, “High-Resolution Refractive Index and Micro-Raman Spectroscopy of Planar Waveguides in KGd(WO4)2 Formed by Swift Heavy Ion Irradiation,” IEEE J. Quantum Electron. 45(4), 373–379 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: from bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

J. Appl. Phys. (1)

C. R. Wie, T. A. Tombrello, and T. Vreeland, “Dynamical X-ray diffraction from nonuniform crystalline films: Application to X-ray rocking curve analysis,” J. Appl. Phys. 59(11), 3743–3746 (1986).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

K. D. Chtcherbatchev, V. T. Bublik, A. S. Markevich, V. N. Mordkovich, E. Alves, N. P. Barradas, and A. D. Sequeira, “The influence of in situ photoexcitation on a defect structure generation in Ar+ implanted GaAs(001) crystals revealed by high-resolution X-ray diffraction and Rutherford backscattering spectroscopy,” J. Phys. D: Appl. Phys. 36(10A), A143–A147 (2003).
[Crossref]

J. Phys.: Condens. Matter (1)

N. Itoh, D. M. Duffy, S. Khakshouri, and A. M. Stoneham, “Making tracks: electronic excitation roles in forming swift heavy ion tracks,” J. Phys.: Condens. Matter 21(47), 474205 (2009).
[Crossref]

Laser Photonics Rev. (1)

V. Petrov, M. C. Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Laser Phys. Lett. (1)

A. A. Kovalyov, V. V. Preobrazhenskii, M. A. Putyato, O. P. Pchelyakov, N. N. Rubtsova, B. R. Semyagin, V. E. Kisel’, S. V. Kuril’chik, and N. V. Kuleshov, “115 fs pulses from Yb3+:KY(WO4)2 laser with low loss nanostructured saturable absorber,” Laser Phys. Lett. 8(6), 431–435 (2011).
[Crossref]

Light: Sci. Appl. (1)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light: Sci. Appl. 4(11), e358 (2015).
[Crossref]

Mat. Fys. Medd. Dan. Vid. Selsk. (1)

J. Lindhard, M. Scharff, and H. Schiott, “Range concepts and heavy ion ranges,” Mat. Fys. Medd. Dan. Vid. Selsk. 33, 1 (1963).

MRS Bull. (1)

J. Mayer, L. A. Giannuzzi, T. Kamino, and J. Michael, “TEM Sample Preparation and FIB-Induced Damage,” MRS Bull. 32(5), 400–407 (2007).
[Crossref]

Nat. Photonics (1)

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Nucl. Instrum. Methods Phys. Res., Sect. B (3)

A. Climent-Font, F. Pászti, G. García, M. T. Fernández-Jiménez, and F. Agulló, “First measurements with the Madrid 5 MV tandem accelerator,” Nucl. Instrum. Methods Phys. Res., Sect. B 219-220, 400–404 (2004).
[Crossref]

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM - The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods Phys. Res., Sect. B 268(11-12), 1818–1823 (2010).
[Crossref]

A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 249(1-2), 177–180 (2006).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

Z. Cong, Z. Liu, Z. Qin, X. Zhang, H. Zhang, J. Li, H. Yu, and W. Wang, “LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185nm,” Opt. Laser Technol. 73, 50–53 (2015).
[Crossref]

Opt. Lett. (4)

Opt. Mater. (1)

X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

Opt. Mater. Express (1)

Phys. Stat. Sol. (a) (2)

A. A. Kaminskii, P. V. Klevtsov, L. Li, and A. A. Pavlyuk, “Stimulated emission from KY(WO4)2: Nd3+ crystal laser,” Phys. Stat. Sol. (a) 5(2), K79–K81 (1971).
[Crossref]

W. L. Zhu, K. S. Wan, Y. L. Huang, X. Q. Feng, and G. Pezzotti, “Stress dependence of Raman vibrational bands of PbWO4 single crystals,” Phys. Stat. Sol. (a) 203(10), 2376–2385 (2006).
[Crossref]

Proc. SPIE (2)

R. Frentrop, V. Tormo-Márquez, J. Olivares, and S. García-Blanco, “High-contrast slab waveguide fabrication in KY(WO4)2 by swift heavy ion irradiation,” Proc. SPIE 10535, 105350O (2018).
[Crossref]

C. I. van Emmerik, S. M. Martinussen, J. Mu, M. Dijkstra, R. Kooijman, and S. M. García-Blanco, “A novel polishing stop for accurate integration of potassium yttrium double tungstate on a silicon dioxide,” Proc. SPIE 10535, 105350U (2018).
[Crossref]

Prog. Quantum Electron. (1)

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45-46, 3–160 (2016).
[Crossref]

Sci. Technol. Adv. Mater. (1)

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15(2), 024603 (2014).
[Crossref]

Sensors (1)

N. M. Pires, T. Dong, U. Hanke, and N. Hoivik, “Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications,” Sensors 14(8), 15458–15479 (2014).
[Crossref]

Other (3)

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for biosensing in the mid-infrared,” in Proceedings - 2014 Summer Topicals Meeting Series, SUM 2014, (IEEE, 2014), pp. 59–60.

M. A. Krivoglaz, X-ray and Neutron Diffraction in Non-Ideal Crystals (Springer, 1996).

E. Kreyszig, Advanced Engineering Mathematics (John Wiley & Sons, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. (a) Electronic (’e’, solid line) and nuclear (’n’, dotted line) stopping force curves for a single ion, calculated by SRIM-2013 for irradiation of KY(WO4)2 with 12 MeV carbon ions. The arrows indicate the y-axis for both lines. (b) Schematic indication of the scanning method used for the confocal Raman microscope line scans. The white arrow indicates the scanning direction, the green arrow indicates the direction of oscillation of the incident electric field, and the green cone depicts the focused excitation light. Scanning was started in the bulk (undamaged) crystal because correct focusing was performed using the known Raman signal of the bulk KY(WO4)2.
Fig. 2.
Fig. 2. 3D plot of Raman line scans of KY(WO4)2 crystals after 12 MeV carbon irradiation at fluences of (a) 1•1014 ions/cm2 and (b) 4•1014 ions/cm2, accompanied by (c) the Raman spectra at several depths into the material for the sample irradiated with 4•1014 ions/cm2; close to the surface (core), at the locations of maximum electronic damage (electronic), between the electronic and nuclear maxima (intermediate), at the nuclear barrier (nuclear) and far away from the irradiation damage (bulk).
Fig. 3.
Fig. 3. Evolution of the 906 cm−1 KY(WO4)2 Raman peak intensity (normalized to bulk intensity) and exact Raman shift as function of depth of different irradiated samples with various fluences, prior to annealing. The vertical lines indicate the SRIM-2013 calculated depth of the maximum electronic and nuclear stopping forces. The peak wavenumber and intensity were determined by fitting of the spectral data with a Lorentzian profile.
Fig. 4.
Fig. 4. The HRXRD scan data with fit, and the lattice parameter deviation along the b-axis and the Debye-Waller factor (crystallinity factor) as function of depth into the crystal, reconstructed from the HRXRD data for 12 MeV carbon irradiated KY(WO4)2 at fluences of (a) 1•1014 ions/cm2 and (b) 4•1014 ions/cm2.
Fig. 5.
Fig. 5. TEM images of the structure of an as-irradiated sample (fluence 2.7•1014 ions/cm2) at three different depths along the irradiation path: (a) the surface, (b) just outside the amorphous barrier (depth of 2.5 µm), and (c) inside the amorphous barrier. Damage appears in the form of black dots, changes in crystal orientation and disappearance of the crystalline structure. The last two effects are also present in the diffractogram as smeared lines and a raised background, respectively.
Fig. 6.
Fig. 6. Raman analysis of a (a) 1•1014 ions/cm2 and (b-c) 4•1014 ions/cm2 irradiated crystal, after annealing at several temperatures, showing the peak intensity of the 906 cm−1 KY(WO4)2 peak (a-b) and 953 cm−1 amorphous peak (c) after least-squares fitting to a Lorentzian profile, as function of depth into the crystal. The peak intensity is normalized to the peak height in the unirradiated Raman signal.
Fig. 7.
Fig. 7. TEM images of annealing at 350°C of a 2.7•1014 ions/cm2 irradiated sample, at (a) the surface, and (b) close to the amorphous barrier (depth of 2.5 µm). In both cases most of the damage is repaired, but small displacements and black spots are still visible, and from the diffractogram its clear an amorphous fraction is still present.
Fig. 8.
Fig. 8. HRXRD scan data with fit, lattice parameter deviation along the b axis and Debye-Waller factor (crystallinity factor) as function of depth into the crystal, reconstructed from the HRXRD data of KY(WO4)2 irradiated at a fluence of 4•1014 ions/cm2 after annealing at 350°C.
Fig. 9.
Fig. 9. Refractive index of the 12 MeV carbon ion irradiated KY(WO4)2, measured using a micro-reflectivity type setup with a wavelength of 532 nm and incident electric field polarized along the a-axis. The bulk refractive index of KY(WO4)2 at this wavelength is ~2.04. The vertical and horizontal dashed lines indicate the crystal surface and bulk refractive index, respectively.
Fig. 10.
Fig. 10. (a) Top camera image of the scattering loss in a slab waveguide produced by 9 MeV carbon ion irradiation and subsequent annealing at 350°C, at a wavelength of 1550 nm. The arrow indicates direction of propagation and the square the area used to measure the scattering loss. (b) The reflected intensity in a prism coupling setup (Metricon 2010/M) as function of propagation constant, indicating the existence of two modes at a wavelength of 1550 nm. Radiating modes are visible at propagation constants below 1.8.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

L H = 8 ( π sin θ B λ ) 2 u 2
χ h = χ h e L H
5.2 10 5 [ d i s p l a c e m e n t s i o n c m ] × 2.7 10 14 [ i o n c m 2 ] 7.66 10 22 [ a t o m c m 3 ] = 1.8 10 3   d p a