Abstract

The influence of laser parameters on silica based waveguide inscription is investigated by using femtosecond laser pulses at 1030 nm (near-IR) and at 343 nm (UV). Negative phase contrast microscopy technique is used to measure the refractive index contrast for different photo-inscribed waveguides and shows the effects of both laser wavelength and scanning speed. In particular, UV photons have a higher efficiency in the waveguide production process as also confirmed by the lower optical losses at 1550 nm in these waveguides. These measurements are combined with micro-Raman and photoluminescence techniques, highlighting that laser exposure induces both structural modification of the silica and point defects generation. The contribution of induced defects to the total refractive index change is singled out by applying two different thermal treatments on the waveguide. The first, up to 500 °C, is able to remove the most of the induced non-bridging-oxygen-hole-centers (NBOHCs) while the second up to 750 °C erases almost all absorbing induced defects, highlighting the strong contribution of additional defects, not yet identified.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond laser direct inscription of mid-IR transmitting waveguides in BGG glasses

Jean-Philippe Bérubé, Arthur Le Camus, Sandra Helena Messaddeq, Yannick Petit, Younès Messaddeq, Lionel Canioni, and Réal Vallée
Opt. Mater. Express 7(9) 3124-3135 (2017)

X-ray preconditioning for enhancing refractive index contrast in femtosecond laser photoinscription of embedded waveguides in pure silica

Maxime Royon, Emmanuel Marin, Sylvain Girard, Aziz Boukenter, Youcef Ouerdane, and Razvan Stoian
Opt. Mater. Express 9(1) 65-74 (2019)

Thermal annealing of femtosecond laser written structures in silica glass

Jonathan J. Witcher, Wilbur J. Reichman, Luke B. Fletcher, Neil W. Troy, and Denise M. Krol
Opt. Mater. Express 3(4) 502-510 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Grattas and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  2. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
    [Crossref]
  3. M. Ali, T. Wagner, M. Shakoor, and P. Molian, “Review of laser nanomachining,” J. Laser Appl. 20(3), 169–184 (2008).
    [Crossref]
  4. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21(24), 2023–2025 (1996).
    [Crossref]
  5. N. Jovanovic, P. G. Tuthill, B. Norrin, S. Gross, P. Steward, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427(1), 806–815 (2012).
    [Crossref]
  6. M. Royon, D. Piétroy, E. Marin, and A. Saoulot, “A thermomechanical sensor using photo-inscribed volume Bragg gratings,” Tribol. Int. 115, 417–423 (2017).
    [Crossref]
  7. Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett. 36(3), 226–227 (2000).
    [Crossref]
  8. G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, “1.5 µm single longitudinal mode waveguide laser fabricated by femtosecond laser writing,” Opt. Express 15(6), 3190–3194 (2007).
    [Crossref]
  9. S. Gross and M. J. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications,” Nanophotonics 4(3), 332–352 (2015).
    [Crossref]
  10. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref]
  11. Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized Nanogratings in glass irradiated by Ultrashort light,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [Crossref]
  12. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
    [Crossref]
  13. B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express 1(4), 766–782 (2011).
    [Crossref]
  14. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
    [Crossref]
  15. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
    [Crossref]
  16. V. V. Temnov, K. Sokolowki-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97(23), 237403 (2006).
    [Crossref]
  17. J. H. Rueda, J. Clarijs, D. van Ooste, and D. M. Krol, “The influence of femtosecond laser wavelength on waveguides fabrication inside fused silica,” Appl. Phys. Lett. 110(16), 161109 (2017).
    [Crossref]
  18. R. Brückner, “Properties and structures of vitreous silica,” J. Non-Cryst. Solids 5(2), 123–175 (1970).
    [Crossref]
  19. M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13(15), 5676–5681 (2005).
    [Crossref]
  20. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Control of the croos-sectional shape of a hollow microchannel embedded in photostructurable glass by the use of a femtosecond lase,” Opt. Lett. 28(1), 55–57 (2003).
    [Crossref]
  21. L. Skuja, “Optical properties of defects in silica,” in: G. Pacchioni, L. Skuja, and D. L. Griscom, eds., “Defects in related dielectrics: science and technology” (NATO Science Series II), (Kluwer, 2000), pp. 73–116
  22. A. Morana, M. Cannas, S. Girard, A. Boukenter, L. Vaccaro, J. Périsse, J.-R. Macé, Y. Ouerdane, and R. Boscaino, “Origin of the visible absorption in radiation-resistant optical fibers,” Opt. Mater. Express 3(10), 1769 (2013).
    [Crossref]
  23. A. L. Sluger, “The model of a triplet self-trapped exciton in crystalline SiO2,” J. Phys. C: Solid State Phys. 21(13), L431–L434 (1988).
    [Crossref]
  24. D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids 354(2-9), 416–424 (2008).
    [Crossref]
  25. G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “Structural change of GeO2-SiO2 glasses and melt: a Raman spectroscopy study,” J. Non-Cryst. Solids 355(8), 468–474 (2009).
    [Crossref]
  26. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural change in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
    [Crossref]
  27. M. Léon, L. Giacomazzi, S. Girard, N. Richard, P. Martín-Samos, A. Ibarra, A. Boukenter, and Y. Ouerdane, “Neutron irradiation effects on the structural properties of KU1, KS-4 V and I301 silica glasses,” IEEE Trans. Nucl. Sci. 61(4), 1522–1530 (2014).
    [Crossref]
  28. M. Royon, E. Marin, S. Girard, A. Boukenter, Y. Ouerdane, and R. Stoian, “X-ray preconditioning for enhancing refractive index contrast in femtosecond laser photoinscription of embedded waveguides in pure silica,” Opt. Mater. Express 9(1), 65–74 (2019).
    [Crossref]
  29. D. Di Francesca, A. Boukenter, S. Agnello, A. Alessi, S. Girard, M. Cannas, and Y. Ouerdane, “Resonance raman of oxygen dangling bonds in amorphous silicon dioxide,” J. Raman Spectrosc. 48(2), 230–234 (2017).
    [Crossref]
  30. Y. Zhang, C. Lin, C. Liao, K. Yang, Z. Li, and Y. Wang, “Femtosecond laser-inscribed fiber interface Mach-Zehnder interferometer for temperature-insensitive refractive index measurements,” Opt. Lett. 43(18), 4421–4424 (2018).
    [Crossref]
  31. M. Cavillon, M. Lancry, B. Poumellec, Y. Wang, J. Canning, K. Cook, T. Hawkings, P. Dragic, and B. Ballato, “Overview of high temperature fiber bragg gratings and potential improvement using highly doped aluminosilicate glass optical fibers,” J. Phys. Photonics 1(4), 042001 (2019).
    [Crossref]
  32. A. Saliminia, J.-P. Bérubé, and R. Vallée, “Refractive index-modified structures in glass written by 266 nm fs laser pulses,” Opt. Express 20(25), 27410–27419 (2012).
    [Crossref]
  33. A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B 19(10), 2496–2504 (2002).
    [Crossref]

2019 (2)

M. Cavillon, M. Lancry, B. Poumellec, Y. Wang, J. Canning, K. Cook, T. Hawkings, P. Dragic, and B. Ballato, “Overview of high temperature fiber bragg gratings and potential improvement using highly doped aluminosilicate glass optical fibers,” J. Phys. Photonics 1(4), 042001 (2019).
[Crossref]

M. Royon, E. Marin, S. Girard, A. Boukenter, Y. Ouerdane, and R. Stoian, “X-ray preconditioning for enhancing refractive index contrast in femtosecond laser photoinscription of embedded waveguides in pure silica,” Opt. Mater. Express 9(1), 65–74 (2019).
[Crossref]

2018 (1)

2017 (3)

D. Di Francesca, A. Boukenter, S. Agnello, A. Alessi, S. Girard, M. Cannas, and Y. Ouerdane, “Resonance raman of oxygen dangling bonds in amorphous silicon dioxide,” J. Raman Spectrosc. 48(2), 230–234 (2017).
[Crossref]

M. Royon, D. Piétroy, E. Marin, and A. Saoulot, “A thermomechanical sensor using photo-inscribed volume Bragg gratings,” Tribol. Int. 115, 417–423 (2017).
[Crossref]

J. H. Rueda, J. Clarijs, D. van Ooste, and D. M. Krol, “The influence of femtosecond laser wavelength on waveguides fabrication inside fused silica,” Appl. Phys. Lett. 110(16), 161109 (2017).
[Crossref]

2015 (1)

S. Gross and M. J. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications,” Nanophotonics 4(3), 332–352 (2015).
[Crossref]

2014 (1)

M. Léon, L. Giacomazzi, S. Girard, N. Richard, P. Martín-Samos, A. Ibarra, A. Boukenter, and Y. Ouerdane, “Neutron irradiation effects on the structural properties of KU1, KS-4 V and I301 silica glasses,” IEEE Trans. Nucl. Sci. 61(4), 1522–1530 (2014).
[Crossref]

2013 (1)

2012 (2)

A. Saliminia, J.-P. Bérubé, and R. Vallée, “Refractive index-modified structures in glass written by 266 nm fs laser pulses,” Opt. Express 20(25), 27410–27419 (2012).
[Crossref]

N. Jovanovic, P. G. Tuthill, B. Norrin, S. Gross, P. Steward, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427(1), 806–815 (2012).
[Crossref]

2011 (1)

2009 (1)

G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “Structural change of GeO2-SiO2 glasses and melt: a Raman spectroscopy study,” J. Non-Cryst. Solids 355(8), 468–474 (2009).
[Crossref]

2008 (3)

D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids 354(2-9), 416–424 (2008).
[Crossref]

M. Ali, T. Wagner, M. Shakoor, and P. Molian, “Review of laser nanomachining,” J. Laser Appl. 20(3), 169–184 (2008).
[Crossref]

R. R. Grattas and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2007 (2)

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[Crossref]

G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, “1.5 µm single longitudinal mode waveguide laser fabricated by femtosecond laser writing,” Opt. Express 15(6), 3190–3194 (2007).
[Crossref]

2006 (1)

V. V. Temnov, K. Sokolowki-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97(23), 237403 (2006).
[Crossref]

2005 (1)

2003 (2)

2002 (1)

2001 (2)

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural change in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
[Crossref]

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

2000 (1)

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett. 36(3), 226–227 (2000).
[Crossref]

1996 (2)

1995 (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref]

1988 (1)

A. L. Sluger, “The model of a triplet self-trapped exciton in crystalline SiO2,” J. Phys. C: Solid State Phys. 21(13), L431–L434 (1988).
[Crossref]

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

1970 (1)

R. Brückner, “Properties and structures of vitreous silica,” J. Non-Cryst. Solids 5(2), 123–175 (1970).
[Crossref]

Agnello, S.

D. Di Francesca, A. Boukenter, S. Agnello, A. Alessi, S. Girard, M. Cannas, and Y. Ouerdane, “Resonance raman of oxygen dangling bonds in amorphous silicon dioxide,” J. Raman Spectrosc. 48(2), 230–234 (2017).
[Crossref]

Alessi, A.

D. Di Francesca, A. Boukenter, S. Agnello, A. Alessi, S. Girard, M. Cannas, and Y. Ouerdane, “Resonance raman of oxygen dangling bonds in amorphous silicon dioxide,” J. Raman Spectrosc. 48(2), 230–234 (2017).
[Crossref]

Ali, M.

M. Ali, T. Wagner, M. Shakoor, and P. Molian, “Review of laser nanomachining,” J. Laser Appl. 20(3), 169–184 (2008).
[Crossref]

Ams, M.

N. Jovanovic, P. G. Tuthill, B. Norrin, S. Gross, P. Steward, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427(1), 806–815 (2012).
[Crossref]

M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13(15), 5676–5681 (2005).
[Crossref]

Audouard, E.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[Crossref]

Bado, P.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett. 36(3), 226–227 (2000).
[Crossref]

Ballato, B.

M. Cavillon, M. Lancry, B. Poumellec, Y. Wang, J. Canning, K. Cook, T. Hawkings, P. Dragic, and B. Ballato, “Overview of high temperature fiber bragg gratings and potential improvement using highly doped aluminosilicate glass optical fibers,” J. Phys. Photonics 1(4), 042001 (2019).
[Crossref]

Bérubé, J.-P.

Borrelli, N. F.

Boscaino, R.

Boukenter, A.

M. Royon, E. Marin, S. Girard, A. Boukenter, Y. Ouerdane, and R. Stoian, “X-ray preconditioning for enhancing refractive index contrast in femtosecond laser photoinscription of embedded waveguides in pure silica,” Opt. Mater. Express 9(1), 65–74 (2019).
[Crossref]

D. Di Francesca, A. Boukenter, S. Agnello, A. Alessi, S. Girard, M. Cannas, and Y. Ouerdane, “Resonance raman of oxygen dangling bonds in amorphous silicon dioxide,” J. Raman Spectrosc. 48(2), 230–234 (2017).
[Crossref]

M. Léon, L. Giacomazzi, S. Girard, N. Richard, P. Martín-Samos, A. Ibarra, A. Boukenter, and Y. Ouerdane, “Neutron irradiation effects on the structural properties of KU1, KS-4 V and I301 silica glasses,” IEEE Trans. Nucl. Sci. 61(4), 1522–1530 (2014).
[Crossref]

A. Morana, M. Cannas, S. Girard, A. Boukenter, L. Vaccaro, J. Périsse, J.-R. Macé, Y. Ouerdane, and R. Boscaino, “Origin of the visible absorption in radiation-resistant optical fibers,” Opt. Mater. Express 3(10), 1769 (2013).
[Crossref]

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Brückner, R.

R. Brückner, “Properties and structures of vitreous silica,” J. Non-Cryst. Solids 5(2), 123–175 (1970).
[Crossref]

Bulgakova, N. M.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[Crossref]

Burakov, I. M.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[Crossref]

Callan, J. P.

Cannas, M.

D. Di Francesca, A. Boukenter, S. Agnello, A. Alessi, S. Girard, M. Cannas, and Y. Ouerdane, “Resonance raman of oxygen dangling bonds in amorphous silicon dioxide,” J. Raman Spectrosc. 48(2), 230–234 (2017).
[Crossref]

A. Morana, M. Cannas, S. Girard, A. Boukenter, L. Vaccaro, J. Périsse, J.-R. Macé, Y. Ouerdane, and R. Boscaino, “Origin of the visible absorption in radiation-resistant optical fibers,” Opt. Mater. Express 3(10), 1769 (2013).
[Crossref]

Canning, J.

M. Cavillon, M. Lancry, B. Poumellec, Y. Wang, J. Canning, K. Cook, T. Hawkings, P. Dragic, and B. Ballato, “Overview of high temperature fiber bragg gratings and potential improvement using highly doped aluminosilicate glass optical fibers,” J. Phys. Photonics 1(4), 042001 (2019).
[Crossref]

Cavillon, M.

M. Cavillon, M. Lancry, B. Poumellec, Y. Wang, J. Canning, K. Cook, T. Hawkings, P. Dragic, and B. Ballato, “Overview of high temperature fiber bragg gratings and potential improvement using highly doped aluminosilicate glass optical fibers,” J. Phys. Photonics 1(4), 042001 (2019).
[Crossref]

Cerullo, G.

Chahid-Erraji, A.

Chan, J. W.

Charles, N.

N. Jovanovic, P. G. Tuthill, B. Norrin, S. Gross, P. Steward, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427(1), 806–815 (2012).
[Crossref]

Cheng, Y.

Clarijs, J.

J. H. Rueda, J. Clarijs, D. van Ooste, and D. M. Krol, “The influence of femtosecond laser wavelength on waveguides fabrication inside fused silica,” Appl. Phys. Lett. 110(16), 161109 (2017).
[Crossref]

Cochain, B.

G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “Structural change of GeO2-SiO2 glasses and melt: a Raman spectroscopy study,” J. Non-Cryst. Solids 355(8), 468–474 (2009).
[Crossref]

Cook, K.

M. Cavillon, M. Lancry, B. Poumellec, Y. Wang, J. Canning, K. Cook, T. Hawkings, P. Dragic, and B. Ballato, “Overview of high temperature fiber bragg gratings and potential improvement using highly doped aluminosilicate glass optical fibers,” J. Phys. Photonics 1(4), 042001 (2019).
[Crossref]

Cormier, L.

G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “Structural change of GeO2-SiO2 glasses and melt: a Raman spectroscopy study,” J. Non-Cryst. Solids 355(8), 468–474 (2009).
[Crossref]

Davis, K. M.

Della Valle, G.

Di Francesca, D.

D. Di Francesca, A. Boukenter, S. Agnello, A. Alessi, S. Girard, M. Cannas, and Y. Ouerdane, “Resonance raman of oxygen dangling bonds in amorphous silicon dioxide,” J. Raman Spectrosc. 48(2), 230–234 (2017).
[Crossref]

Dragic, P.

M. Cavillon, M. Lancry, B. Poumellec, Y. Wang, J. Canning, K. Cook, T. Hawkings, P. Dragic, and B. Ballato, “Overview of high temperature fiber bragg gratings and potential improvement using highly doped aluminosilicate glass optical fibers,” J. Phys. Photonics 1(4), 042001 (2019).
[Crossref]

El-Khamhawy, A.

V. V. Temnov, K. Sokolowki-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97(23), 237403 (2006).
[Crossref]

Feit, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref]

Festa, A.

Finlay, R. J.

Florea, C.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett. 36(3), 226–227 (2000).
[Crossref]

Fuerbach, A.

N. Jovanovic, P. G. Tuthill, B. Norrin, S. Gross, P. Steward, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427(1), 806–815 (2012).
[Crossref]

Giacomazzi, L.

M. Léon, L. Giacomazzi, S. Girard, N. Richard, P. Martín-Samos, A. Ibarra, A. Boukenter, and Y. Ouerdane, “Neutron irradiation effects on the structural properties of KU1, KS-4 V and I301 silica glasses,” IEEE Trans. Nucl. Sci. 61(4), 1522–1530 (2014).
[Crossref]

Girard, S.

M. Royon, E. Marin, S. Girard, A. Boukenter, Y. Ouerdane, and R. Stoian, “X-ray preconditioning for enhancing refractive index contrast in femtosecond laser photoinscription of embedded waveguides in pure silica,” Opt. Mater. Express 9(1), 65–74 (2019).
[Crossref]

D. Di Francesca, A. Boukenter, S. Agnello, A. Alessi, S. Girard, M. Cannas, and Y. Ouerdane, “Resonance raman of oxygen dangling bonds in amorphous silicon dioxide,” J. Raman Spectrosc. 48(2), 230–234 (2017).
[Crossref]

M. Léon, L. Giacomazzi, S. Girard, N. Richard, P. Martín-Samos, A. Ibarra, A. Boukenter, and Y. Ouerdane, “Neutron irradiation effects on the structural properties of KU1, KS-4 V and I301 silica glasses,” IEEE Trans. Nucl. Sci. 61(4), 1522–1530 (2014).
[Crossref]

A. Morana, M. Cannas, S. Girard, A. Boukenter, L. Vaccaro, J. Périsse, J.-R. Macé, Y. Ouerdane, and R. Boscaino, “Origin of the visible absorption in radiation-resistant optical fibers,” Opt. Mater. Express 3(10), 1769 (2013).
[Crossref]

Glezer, E. N.

Grattas, R. R.

R. R. Grattas and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gross, S.

S. Gross and M. J. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications,” Nanophotonics 4(3), 332–352 (2015).
[Crossref]

N. Jovanovic, P. G. Tuthill, B. Norrin, S. Gross, P. Steward, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427(1), 806–815 (2012).
[Crossref]

Hawkings, T.

M. Cavillon, M. Lancry, B. Poumellec, Y. Wang, J. Canning, K. Cook, T. Hawkings, P. Dragic, and B. Ballato, “Overview of high temperature fiber bragg gratings and potential improvement using highly doped aluminosilicate glass optical fibers,” J. Phys. Photonics 1(4), 042001 (2019).
[Crossref]

Henderson, G. S.

G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “Structural change of GeO2-SiO2 glasses and melt: a Raman spectroscopy study,” J. Non-Cryst. Solids 355(8), 468–474 (2009).
[Crossref]

Her, T.-H.

Hertel, I. V.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[Crossref]

Hirao, K.

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized Nanogratings in glass irradiated by Ultrashort light,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref]

Huang, L.

Husakou, A.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[Crossref]

Huser, T.

Ibarra, A.

M. Léon, L. Giacomazzi, S. Girard, N. Richard, P. Martín-Samos, A. Ibarra, A. Boukenter, and Y. Ouerdane, “Neutron irradiation effects on the structural properties of KU1, KS-4 V and I301 silica glasses,” IEEE Trans. Nucl. Sci. 61(4), 1522–1530 (2014).
[Crossref]

Ireland, M.

N. Jovanovic, P. G. Tuthill, B. Norrin, S. Gross, P. Steward, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427(1), 806–815 (2012).
[Crossref]

Jovanovic, N.

N. Jovanovic, P. G. Tuthill, B. Norrin, S. Gross, P. Steward, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427(1), 806–815 (2012).
[Crossref]

Kawachi, M.

Kazansky, P.

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized Nanogratings in glass irradiated by Ultrashort light,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref]

Kazansky, P. G.

Krol, D. M.

J. H. Rueda, J. Clarijs, D. van Ooste, and D. M. Krol, “The influence of femtosecond laser wavelength on waveguides fabrication inside fused silica,” Appl. Phys. Lett. 110(16), 161109 (2017).
[Crossref]

D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids 354(2-9), 416–424 (2008).
[Crossref]

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural change in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
[Crossref]

Lacour, S.

N. Jovanovic, P. G. Tuthill, B. Norrin, S. Gross, P. Steward, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427(1), 806–815 (2012).
[Crossref]

Lancry, M.

M. Cavillon, M. Lancry, B. Poumellec, Y. Wang, J. Canning, K. Cook, T. Hawkings, P. Dragic, and B. Ballato, “Overview of high temperature fiber bragg gratings and potential improvement using highly doped aluminosilicate glass optical fibers,” J. Phys. Photonics 1(4), 042001 (2019).
[Crossref]

B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express 1(4), 766–782 (2011).
[Crossref]

Laporta, P.

Lawrence, J. S.

N. Jovanovic, P. G. Tuthill, B. Norrin, S. Gross, P. Steward, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427(1), 806–815 (2012).
[Crossref]

Lehmann, A.

N. Jovanovic, P. G. Tuthill, B. Norrin, S. Gross, P. Steward, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427(1), 806–815 (2012).
[Crossref]

Léon, M.

M. Léon, L. Giacomazzi, S. Girard, N. Richard, P. Martín-Samos, A. Ibarra, A. Boukenter, and Y. Ouerdane, “Neutron irradiation effects on the structural properties of KU1, KS-4 V and I301 silica glasses,” IEEE Trans. Nucl. Sci. 61(4), 1522–1530 (2014).
[Crossref]

Li, Z.

Liao, C.

Lin, C.

Macé, J.-R.

Marin, E.

Marshall, G. D.

N. Jovanovic, P. G. Tuthill, B. Norrin, S. Gross, P. Steward, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427(1), 806–815 (2012).
[Crossref]

M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13(15), 5676–5681 (2005).
[Crossref]

Martín-Samos, P.

M. Léon, L. Giacomazzi, S. Girard, N. Richard, P. Martín-Samos, A. Ibarra, A. Boukenter, and Y. Ouerdane, “Neutron irradiation effects on the structural properties of KU1, KS-4 V and I301 silica glasses,” IEEE Trans. Nucl. Sci. 61(4), 1522–1530 (2014).
[Crossref]

Masuda, M.

Maynard, R.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett. 36(3), 226–227 (2000).
[Crossref]

Mazur, E.

R. R. Grattas and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21(24), 2023–2025 (1996).
[Crossref]

Mermillod-Blondin, A.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[Crossref]

Midorikawa, K.

Milosavljevic, M.

Miura, K.

Molian, P.

M. Ali, T. Wagner, M. Shakoor, and P. Molian, “Review of laser nanomachining,” J. Laser Appl. 20(3), 169–184 (2008).
[Crossref]

Morana, A.

Mourou, G.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Neuville, D. R.

G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “Structural change of GeO2-SiO2 glasses and melt: a Raman spectroscopy study,” J. Non-Cryst. Solids 355(8), 468–474 (2009).
[Crossref]

Niel, C.

N. Jovanovic, P. G. Tuthill, B. Norrin, S. Gross, P. Steward, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427(1), 806–815 (2012).
[Crossref]

Norrin, B.

N. Jovanovic, P. G. Tuthill, B. Norrin, S. Gross, P. Steward, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427(1), 806–815 (2012).
[Crossref]

Osellame, R.

Ouerdane, Y.

M. Royon, E. Marin, S. Girard, A. Boukenter, Y. Ouerdane, and R. Stoian, “X-ray preconditioning for enhancing refractive index contrast in femtosecond laser photoinscription of embedded waveguides in pure silica,” Opt. Mater. Express 9(1), 65–74 (2019).
[Crossref]

D. Di Francesca, A. Boukenter, S. Agnello, A. Alessi, S. Girard, M. Cannas, and Y. Ouerdane, “Resonance raman of oxygen dangling bonds in amorphous silicon dioxide,” J. Raman Spectrosc. 48(2), 230–234 (2017).
[Crossref]

M. Léon, L. Giacomazzi, S. Girard, N. Richard, P. Martín-Samos, A. Ibarra, A. Boukenter, and Y. Ouerdane, “Neutron irradiation effects on the structural properties of KU1, KS-4 V and I301 silica glasses,” IEEE Trans. Nucl. Sci. 61(4), 1522–1530 (2014).
[Crossref]

A. Morana, M. Cannas, S. Girard, A. Boukenter, L. Vaccaro, J. Périsse, J.-R. Macé, Y. Ouerdane, and R. Boscaino, “Origin of the visible absorption in radiation-resistant optical fibers,” Opt. Mater. Express 3(10), 1769 (2013).
[Crossref]

Périsse, J.

Perry, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref]

Piétroy, D.

M. Royon, D. Piétroy, E. Marin, and A. Saoulot, “A thermomechanical sensor using photo-inscribed volume Bragg gratings,” Tribol. Int. 115, 417–423 (2017).
[Crossref]

Poumellec, B.

M. Cavillon, M. Lancry, B. Poumellec, Y. Wang, J. Canning, K. Cook, T. Hawkings, P. Dragic, and B. Ballato, “Overview of high temperature fiber bragg gratings and potential improvement using highly doped aluminosilicate glass optical fibers,” J. Phys. Photonics 1(4), 042001 (2019).
[Crossref]

B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express 1(4), 766–782 (2011).
[Crossref]

Qiu, J.

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized Nanogratings in glass irradiated by Ultrashort light,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref]

Richard, N.

M. Léon, L. Giacomazzi, S. Girard, N. Richard, P. Martín-Samos, A. Ibarra, A. Boukenter, and Y. Ouerdane, “Neutron irradiation effects on the structural properties of KU1, KS-4 V and I301 silica glasses,” IEEE Trans. Nucl. Sci. 61(4), 1522–1530 (2014).
[Crossref]

Risbud, S.

Robertson, J. G.

N. Jovanovic, P. G. Tuthill, B. Norrin, S. Gross, P. Steward, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427(1), 806–815 (2012).
[Crossref]

Rosenfeld, A.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[Crossref]

Royon, M.

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref]

Rueda, J. H.

J. H. Rueda, J. Clarijs, D. van Ooste, and D. M. Krol, “The influence of femtosecond laser wavelength on waveguides fabrication inside fused silica,” Appl. Phys. Lett. 110(16), 161109 (2017).
[Crossref]

Said, A. A.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett. 36(3), 226–227 (2000).
[Crossref]

Saliminia, A.

Saoulot, A.

M. Royon, D. Piétroy, E. Marin, and A. Saoulot, “A thermomechanical sensor using photo-inscribed volume Bragg gratings,” Tribol. Int. 115, 417–423 (2017).
[Crossref]

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Shakoor, M.

M. Ali, T. Wagner, M. Shakoor, and P. Molian, “Review of laser nanomachining,” J. Laser Appl. 20(3), 169–184 (2008).
[Crossref]

Shihoyama, K.

Shimotsuma, Y.

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized Nanogratings in glass irradiated by Ultrashort light,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref]

Shore, B. W.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref]

Sikorski, Y.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett. 36(3), 226–227 (2000).
[Crossref]

Skuja, L.

L. Skuja, “Optical properties of defects in silica,” in: G. Pacchioni, L. Skuja, and D. L. Griscom, eds., “Defects in related dielectrics: science and technology” (NATO Science Series II), (Kluwer, 2000), pp. 73–116

Sluger, A. L.

A. L. Sluger, “The model of a triplet self-trapped exciton in crystalline SiO2,” J. Phys. C: Solid State Phys. 21(13), L431–L434 (1988).
[Crossref]

Sokolowki-Tinten, K.

V. V. Temnov, K. Sokolowki-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97(23), 237403 (2006).
[Crossref]

Spence, D. J.

Steward, P.

N. Jovanovic, P. G. Tuthill, B. Norrin, S. Gross, P. Steward, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427(1), 806–815 (2012).
[Crossref]

Stoian, R.

M. Royon, E. Marin, S. Girard, A. Boukenter, Y. Ouerdane, and R. Stoian, “X-ray preconditioning for enhancing refractive index contrast in femtosecond laser photoinscription of embedded waveguides in pure silica,” Opt. Mater. Express 9(1), 65–74 (2019).
[Crossref]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[Crossref]

Streltsov, A. M.

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Stuart, B. C.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref]

Sugimoto, N.

Sugioka, K.

Taccheo, S.

Temnov, V. V.

V. V. Temnov, K. Sokolowki-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97(23), 237403 (2006).
[Crossref]

Toyoda, K.

Tuthill, P. G.

N. Jovanovic, P. G. Tuthill, B. Norrin, S. Gross, P. Steward, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427(1), 806–815 (2012).
[Crossref]

Vaccaro, L.

Vallée, R.

van Ooste, D.

J. H. Rueda, J. Clarijs, D. van Ooste, and D. M. Krol, “The influence of femtosecond laser wavelength on waveguides fabrication inside fused silica,” Appl. Phys. Lett. 110(16), 161109 (2017).
[Crossref]

von der Linde, D.

V. V. Temnov, K. Sokolowki-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97(23), 237403 (2006).
[Crossref]

Wagner, T.

M. Ali, T. Wagner, M. Shakoor, and P. Molian, “Review of laser nanomachining,” J. Laser Appl. 20(3), 169–184 (2008).
[Crossref]

Wang, Y.

M. Cavillon, M. Lancry, B. Poumellec, Y. Wang, J. Canning, K. Cook, T. Hawkings, P. Dragic, and B. Ballato, “Overview of high temperature fiber bragg gratings and potential improvement using highly doped aluminosilicate glass optical fibers,” J. Phys. Photonics 1(4), 042001 (2019).
[Crossref]

Y. Zhang, C. Lin, C. Liao, K. Yang, Z. Li, and Y. Wang, “Femtosecond laser-inscribed fiber interface Mach-Zehnder interferometer for temperature-insensitive refractive index measurements,” Opt. Lett. 43(18), 4421–4424 (2018).
[Crossref]

Winick, K. A.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett. 36(3), 226–227 (2000).
[Crossref]

Withford, M. J.

S. Gross and M. J. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications,” Nanophotonics 4(3), 332–352 (2015).
[Crossref]

N. Jovanovic, P. G. Tuthill, B. Norrin, S. Gross, P. Steward, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427(1), 806–815 (2012).
[Crossref]

M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13(15), 5676–5681 (2005).
[Crossref]

Yang, K.

Zhang, Y.

Zhou, P.

V. V. Temnov, K. Sokolowki-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97(23), 237403 (2006).
[Crossref]

Appl. Phys. Lett. (1)

J. H. Rueda, J. Clarijs, D. van Ooste, and D. M. Krol, “The influence of femtosecond laser wavelength on waveguides fabrication inside fused silica,” Appl. Phys. Lett. 110(16), 161109 (2017).
[Crossref]

Electron. Lett. (1)

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett. 36(3), 226–227 (2000).
[Crossref]

IEEE Trans. Nucl. Sci. (1)

M. Léon, L. Giacomazzi, S. Girard, N. Richard, P. Martín-Samos, A. Ibarra, A. Boukenter, and Y. Ouerdane, “Neutron irradiation effects on the structural properties of KU1, KS-4 V and I301 silica glasses,” IEEE Trans. Nucl. Sci. 61(4), 1522–1530 (2014).
[Crossref]

J. Appl. Phys. (1)

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[Crossref]

J. Laser Appl. (1)

M. Ali, T. Wagner, M. Shakoor, and P. Molian, “Review of laser nanomachining,” J. Laser Appl. 20(3), 169–184 (2008).
[Crossref]

J. Non-Cryst. Solids (3)

R. Brückner, “Properties and structures of vitreous silica,” J. Non-Cryst. Solids 5(2), 123–175 (1970).
[Crossref]

D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids 354(2-9), 416–424 (2008).
[Crossref]

G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “Structural change of GeO2-SiO2 glasses and melt: a Raman spectroscopy study,” J. Non-Cryst. Solids 355(8), 468–474 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. C: Solid State Phys. (1)

A. L. Sluger, “The model of a triplet self-trapped exciton in crystalline SiO2,” J. Phys. C: Solid State Phys. 21(13), L431–L434 (1988).
[Crossref]

J. Phys. Photonics (1)

M. Cavillon, M. Lancry, B. Poumellec, Y. Wang, J. Canning, K. Cook, T. Hawkings, P. Dragic, and B. Ballato, “Overview of high temperature fiber bragg gratings and potential improvement using highly doped aluminosilicate glass optical fibers,” J. Phys. Photonics 1(4), 042001 (2019).
[Crossref]

J. Raman Spectrosc. (1)

D. Di Francesca, A. Boukenter, S. Agnello, A. Alessi, S. Girard, M. Cannas, and Y. Ouerdane, “Resonance raman of oxygen dangling bonds in amorphous silicon dioxide,” J. Raman Spectrosc. 48(2), 230–234 (2017).
[Crossref]

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Mon. Not. R. Astron. Soc. (1)

N. Jovanovic, P. G. Tuthill, B. Norrin, S. Gross, P. Steward, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427(1), 806–815 (2012).
[Crossref]

Nanophotonics (1)

S. Gross and M. J. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications,” Nanophotonics 4(3), 332–352 (2015).
[Crossref]

Nat. Photonics (1)

R. R. Grattas and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Commun. (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Opt. Mater. Express (3)

Phys. Rev. Lett. (3)

V. V. Temnov, K. Sokolowki-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97(23), 237403 (2006).
[Crossref]

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized Nanogratings in glass irradiated by Ultrashort light,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref]

Tribol. Int. (1)

M. Royon, D. Piétroy, E. Marin, and A. Saoulot, “A thermomechanical sensor using photo-inscribed volume Bragg gratings,” Tribol. Int. 115, 417–423 (2017).
[Crossref]

Other (1)

L. Skuja, “Optical properties of defects in silica,” in: G. Pacchioni, L. Skuja, and D. L. Griscom, eds., “Defects in related dielectrics: science and technology” (NATO Science Series II), (Kluwer, 2000), pp. 73–116

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. At left, the comparison between the PL spectra of the pristine sample (red line) and the PL spectra of the waveguide inscribed using 0.20 µJ/pulse, 100 µm/s @ 343 nm. At right the normalized PL spectra of different waveguides: dark red line at 1.30 µJ/pulse, 100 µm/s @ 1030 nm, red line at 1.20 µJ/pulse, 100 µm/s @ 1030 nm, green line at 0.35 µJ/pulse, 300 µm/s @ 343 nm and the blue line at 0.20 µJ/pulse, 100 µm/s @ 343 nm.
Fig. 2.
Fig. 2. (a) Comparison between the Raman spectra measured in the pristine sample (black line) and in the waveguides inscribed with the following conditions: dark red line at 1.30 µJ/pulse, 100 µm/s @ 1030 nm, red line at 1.20 µJ/pulse, 100 µm/s @ 1030 nm and the blue line at 0.20 µJ/pulse, 100 µm/s @ 343 nm. (b) Ratio between the areas of the D2 band of the inscribed waveguides and of the pristine sample ($D_2^0$). (c) Photo-bleaching investigation of the NBOHC 325 nm resonant band at 896 cm−1: comparison between long (black line) and short (red line) laser exposure.
Fig. 3.
Fig. 3. PCM images as function of scanning speed of the waveguides inscribed with the following experimental conditions: left at 1.30 µJ/pulse @ 1030 nm, in the center at 0.35 µJ/pulse and at right at 0.20 µJ/pulse both @ 343 nm. Below are shown the corresponding refractive index contrasts in grey levels with the relative cross sections.
Fig. 4.
Fig. 4. Normalized large band mode (left), with the corresponding measured spot at the output of the waveguides (right), of the inscribed waveguides at 0.20 µJ/pulse, 100 µm/s @ 343 nm in blue, 0.35 µJ/pulse, 300 µm/s @ 343 nm in green, 1.30 µJ/pulse, 100 µm/s @ 1030 nm in red and 1.30 µJ/pulse, 300 µm/s @ 343 nm in dark red line.
Fig. 5.
Fig. 5. Measured refractive index changes as function of the scanning speed for the different waveguides: empty blue circles inscribed at 0.35 µJ/pulse @343 nm, full blue circles at 0.20 µJ/pulse @ 343 nm, empty red squares at 1.30 µJ/pulse @ 1030 nm and full red squares at 1.20 µJ/pulse @ 1030 nm. Values with ${\Delta }n$ lower than $4 \cdot {10^{ - 4}}$ are below our detection limit.
Fig. 6.
Fig. 6. Comparison between the refractive index contrasts in grey level of the waveguides before (black line) and after the thermal treatments (TT1 in red and TT2 in blue). For each graph, the waveguide at left is inscribed at 100 µm/s, in the center at 300 µm/s and at right at 600 µm/s.

Tables (1)

Tables Icon

Table 1. Refractive index changes of the inscribed waveguides.

Metrics