Abstract

Nd3+-sensitized nanoparticles have attracted attention recently due to their large absorption cross section and lower water absorption coefficient at 808 nm, which can potentially solve the laser-induced heating problem and is essential for labelling and imaging applications in living organisms. Here, we report a single-step hydrothermal synthesis of CaF2:Yb3+/Er3+/Nd3+ upconversion nanoparticles (UCNPs). The size of the as-prepared UCNPs decreases from ∼138 to ∼30 nm as the Nd3+ doping concentration increases from 0 to 3 mol%. Under the excitation of a 808 nm continuous-wave (CW) laser, these UCNPs exhibit typical UC emissions at 539 nm (green) and 656 nm (red) for Er3+, and the luminescence is strongest when Nd3+ doping concentration is 0.75 mol%. Moreover, with the increase of doped Nd3+ ions, the suppressing of green and the enhancing of red UC emissions can be observed, which leads to the luminescence color tuning from green to red. Further investigations suggest that the resonant cross-relaxations (CRs) between Er3+ and Nd3+ ions contribute to the UC luminescence color changing and the remarkable red UC emission for the highly Nd3+-doped UCNPs. These advances make the UCNPs potentially to be applied in vivo labelling, bioimaging and phototherapy.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced upconversion fluorescence and altered particle size of β-NaGdF4:Yb3+/Er3+ nanocrystals by codoping with Mo3+ ions

Wei Zhu, Qixiao Wu, Suling Zhao, Zhiqin Liang, Yongxin Yang, Junjie Zhang, and Zheng Xu
Opt. Mater. Express 6(9) 3001-3007 (2016)

Up-conversion luminescence of Er3+-Yb3+ co-doped CaIn2O4

Ting Li, Chongfeng Guo, and Lin Li
Opt. Express 21(15) 18281-18289 (2013)

References

  • View by:
  • |
  • |
  • |

  1. F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
    [Crossref]
  2. F. Wang, R. Deng, and X. Liu, “Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes,” Nat. Protoc. 9(7), 1634–1644 (2014).
    [Crossref]
  3. M. Yuan, R. Wang, C. Zhang, Z. Yang, W. Cui, X. Yang, N. Xiao, H. Wang, and X. Xu, “Exploiting the silent upconversion emissions from a single β-NaYF4:Yb/Er microcrystal via saturated excitation,” J. Mater. Chem. C 6(38), 10226–10232 (2018).
    [Crossref]
  4. X. Li, R. Wang, F. Zhang, L. Zhou, D. Shen, C. Yao, and D. Zhao, “Nd3+ sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800 nm,” Sci. Rep. 3(1), 3536 (2013).
    [Crossref]
  5. M. Yuan, R. Wang, C. Zhang, Z. Yang, X. Yang, K. Han, J. Ye, H. Wang, and X. Xu, “Revisiting the enhanced red upconversion emission from a single β-NaYF4:Yb/Er microcrystal by doping with Mn2+ ions,” Nanoscale Res. Lett. 14(1), 103 (2019).
    [Crossref]
  6. B. Shao, Z. Yang, Y. Wang, J. Li, J. Yang, J. Qiu, and Z. Song, “Coupling of Ag nanoparticle with inverse opal photonic crystals as a novel strategy for upconversion emission enhancement of NaYF4: Yb3+, Er3+ nanoparticles,” ACS Appl. Mater. Interfaces 7(45), 25211–25218 (2015).
    [Crossref]
  7. T. Wang, Y. Lin, W. Lu, X. Guo, J. Qiu, X. Yu, Q. Zhan, S. F. Yu, and X. Xu, “Growth processes of LuF3 upconversion nanoflakes with the assistance of amorphous nanoclusters,” ACS Appl. Nano Mater. 2(8), 5254–5259 (2019).
    [Crossref]
  8. T. Wang, H. Yu, C. K. Siu, J. Qiu, X. Xu, and S. F. Yu, “White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods,” ACS Photonics 4(6), 1539–1543 (2017).
    [Crossref]
  9. D. Przybylska, A. Ekner-Grzyb, B. F. Grześkowiak, and T. Grzyb, “Upconverting SrF2 nanoparticles doped with Yb3+/Ho3+, Yb3+/Er3+ and Yb3+/Tm3+ ions–optimisation of synthesis method, structural, spectroscopic and cytotoxicity studies,” Sci. Rep. 9(1), 8669 (2019).
    [Crossref]
  10. X. Li, Z. Xue, and H. Liu, “Hydro-thermal synthesis of PEGylated Mn2+ dopant controlled NaYF4: Yb/Er up-conversion nano-particles for multi-color tuning,” J. Alloys Compd. 681, 379–383 (2016).
    [Crossref]
  11. R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
    [Crossref]
  12. M. R. Hamblin, “Upconversion in photodynamic therapy: plumbing the depths,” Dalton Trans. 47(26), 8571–8580 (2018).
    [Crossref]
  13. P. Du, X. Huang, and J. S. Yu, “Yb3+-concentration dependent upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ codoped Gd2MoO6 nanocrystals prepared by a facile citric-assisted sol–gel method,” Inorg. Chem. Front. 4(12), 1987–1995 (2017).
    [Crossref]
  14. B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
    [Crossref]
  15. E. S. de Lima Filho, M. Quintanilla, F. Vetrone, G. Nemova, V. K. Kummara, and R. Kashyap, “Characterization of fluoride nanocrystals for optical refrigeration,” in Laser Refrigeration of Solids VIII (International Society for Optics and Photonics, 2015), 9380, p. 93800Q.
  16. L. J. Q. Maia, J. Thomas, Y. Ledemi, K. V. Krishnaiah, D. Seletskiy, Y. Messaddeq, and R. Kashyap, “Photonic properties of novel Yb3+ doped germanium-lead oxyfluoride glass-ceramics for laser cooling applications,” Front. Optoelectron. 11(2), 189–198 (2018).
    [Crossref]
  17. K. V. Krishnaiah, Y. Ledemi, C. Genevois, E. Veron, X. Sauvage, S. Morency, E. S. de Lima Filho, G. Nemova, M. Allix, Y. Messaddeq, and R. Kashyap, “Ytterbium-doped oxyfluoride nano-glass-ceramic fibers for laser cooling,” Opt. Mater. Express 7(6), 1980–1994 (2017).
    [Crossref]
  18. K. V. Krishnaiah, Y. Ledemi, E. S. de Lima Filho, G. Nemova, Y. Messaddeq, and R. Kashyap, “Development of Yb3+-doped oxyfluoride glass-ceramics with low OH− content containing CaF2 nanocrystals for optical refrigeration,” Opt. Eng. 56(1), 011103 (2016).
    [Crossref]
  19. Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
    [Crossref]
  20. B. Liu, C. Li, P. Yang, Z. Hou, and J. Lin, “808-nm-light-excited lanthanide-doped nanoparticles: rational design, luminescence control and theranostic applications,” Adv. Mater. 29(18), 1605434 (2017).
    [Crossref]
  21. T. Kushida, H. M. Marcos, and J. E. Geusic, “Laser transition cross section and fluorescence branching ratio for Nd3+ in yttrium aluminum garnet,” Phys. Rev. 167(2), 289–291 (1968).
    [Crossref]
  22. F. Liégard, J. L. Doualan, R. Moncorgé, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in a codoped metaphosphate glass as a model for Yb3+ laser operation around 980 nm,” Appl. Phys. B: Lasers Opt. 80(8), 985–991 (2005).
    [Crossref]
  23. D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core-shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
    [Crossref]
  24. X. Liu, T. Li, X. Zhao, H. Suo, Z. Zhang, P. Zhao, S. Gao, and M. Niu, “808 nm-triggered optical thermometry based on up-conversion luminescence of Nd3+/Yb3+/Er3+ doped MIn2O4 (M = Ca, Sr and Ba) phosphors,” Dalton Trans. 47(19), 6713–6721 (2018).
    [Crossref]
  25. B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(Acrylic Acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
    [Crossref]
  26. L. Tian, Z. Xu, S. Zhao, Y. Cui, Z. Liang, J. Zhang, and X. Xu, “The upconversion luminescence of Er3+/Yb3+/Nd3+ triply-doped β-NaYF4 nanocrystals under 808-nm excitation,” Materials 7(11), 7289–7303 (2014).
    [Crossref]
  27. J. Shen, G. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
    [Crossref]
  28. H. Suo, X. Zhao, Z. Zhang, Y. Wu, and C. Guo, “Upconverting LuVO4:Nd3+/Yb3+/Er3+@SiO2@Cu2S Hollow nanoplatforms for self-monitored photothermal ablation,” ACS Appl. Mater. Interfaces 10(46), 39912–39920 (2018).
    [Crossref]
  29. Y. Shang, S. Hao, J. Liu, M. Tan, N. Wang, C. Yang, and G. Chen, “Synthesis of upconversion β-NaYF4:Nd3+/Yb3+/Er3+ particles with enhanced luminescent intensity through control of morphology and phase,” Nanomaterials 5(1), 218–232 (2015).
    [Crossref]
  30. A. J. Talib, M. Alkahtani, L. Jiang, F. Alghannam, R. Brick, C. L. Gomes, M. O. Scully, A. V. Sokolov, and P. R. Hemmer, “Lanthanide ions doped in vanadium oxide for sensitive optical glucose detection,” Opt. Mater. Express 8(11), 3277–3287 (2018).
    [Crossref]
  31. Y. Wang, Z. Yang, Y. Ma, Z. Chai, J. Qiu, and Z. Song, “Upconversion emission enhancement mechanisms of Nd3+-sensitized NaYF4:Yb3+, Er3+ nanoparticles using tunable plasmonic Au films: plasmonic-induced excitation, radiative decays rate and energy-transfer enhancement,” J. Mater. Chem. C 5(33), 8535–8544 (2017).
    [Crossref]
  32. Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
    [Crossref]
  33. L. M. Wiesholler, F. Frenzel, B. Grauel, C. Würth, U. Resch-Genger, and T. Hirsch, “Yb, Nd, Er-doped upconversion nanoparticles: 980 nm versus 808 nm excitation,” Nanoscale 11(28), 13440–13449 (2019).
    [Crossref]
  34. Y. Ma, Z. Yang, H. Zhang, J. Qiu, and Z. Song, “Preparation, growth mechanism, upconversion, and near-infrared photoluminescence properties of convex-lens-like NaYF4 microcrystals doped with various rare earth ions excited at 808 nm,” Cryst. Growth Des. 18(3), 1758–1767 (2018).
    [Crossref]
  35. Z. Sun, B. Mei, W. Li, Z. Liu, and L. Su, “Effects of Nd concentration on microstructure and optical properties of Nd:CaF2 transparent ceramics,” J. Am. Ceram. Soc. 99(12), 4039–4044 (2016).
    [Crossref]
  36. S. Sasidharan, A. Jayasree, S. Fazal, M. Koyakutty, S. V. Nair, and D. Menon, “Ambient temperature synthesis of citrate stabilized and biofunctionalized, fluorescent calcium fluoride nanocrystals for targeted labeling of cancer cells,” Biomater. Sci. 1(3), 294–305 (2013).
    [Crossref]
  37. X. Yang, M. Yuan, R. Wang, X. Zhao, Z. Yang, K. Han, H. Wang, and X. Xu, “Simultaneous size manipulation and red upconversion luminescence enhancement of CaF2:Yb3+/Ho3+ nanoparticles by doping with Ce3+ ions,” RSC Adv. 9(23), 13201–13206 (2019).
    [Crossref]
  38. X. Deng, Y. Dai, J. Liu, Y. Zhou, P. Ma, Z. Cheng, Y. Chen, K. Deng, X. Li, Z. Hou, C. Li, and J. Lin, “Multifunctional hollow CaF2:Yb3+/Er3+/Mn2+-poly(2-Aminoethyl methacrylate) microspheres for Pt(IV) pro-drug delivery and tri-modal imaging,” Biomaterials 50(1), 154–163 (2015).
    [Crossref]
  39. W. Zheng, S. Zhou, Z. Chen, P. Hu, Y. Liu, D. Tu, H. Zhu, R. Li, M. Huang, and X. Chen, “Sub-10 nm lanthanide-doped CaF2 nanoprobes for time-resolved luminescent biodetection,” Angew. Chem.-Int. Edit. 52(26), 6671–6676 (2013).
    [Crossref]
  40. J. Wei, W. Zheng, X. Shang, R. Li, P. Huang, Y. Liu, Z. Gong, S. Zhou, Z. Chen, and X. Chen, “Mn2+-activated calcium fluoride nanoprobes for time-resolved photoluminescence biosensing,” Sci. China Mater. 62(1), 130–137 (2019).
    [Crossref]
  41. N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
    [Crossref]
  42. S. Hao, G. Chen, C. Yang, W. Shao, W. Wei, Y. Liu, and P. N. Prasad, “Nd3+-sensitized multicolor upconversion luminescence from a sandwiched core/shell/shell nanostructure,” Nanoscale 9(30), 10633–10638 (2017).
    [Crossref]
  43. B. Xu, H. He, Z. Gu, S. Jin, Y. Ma, and T. Zhai, “Improving 800 nm triggered upconversion emission for lanthanide-doped CaF2 nanoparticles through sodium ion doping,” J. Phys. Chem. C 121(33), 18280–18287 (2017).
    [Crossref]
  44. G. Wang, Q. Peng, and Y. Li, “Upconversion luminescence of monodisperse CaF2: Yb3+/Er3+ nanocrystals,” J. Am. Chem. Soc. 131(40), 14200–14201 (2009).
    [Crossref]
  45. R. Wang, M. Yuan, C. Zhang, H. Wang, and X. Xu, “Tunable multicolor and enhanced red emission of monodisperse CaF2:Yb3+/Ho3+ microspheres via Mn2+ doping,” Opt. Mater. 79, 403–407 (2018).
    [Crossref]
  46. M. Zahedifar and E. Sadeghi, “Synthesis and dosimetric properties of the novel thermoluminescent CaF2:Tm nanoparticles,” Radiat. Phys. Chem. 81(12), 1856–1861 (2012).
    [Crossref]
  47. L. Sun, E. Liu, J. Fan, X. Hu, J. Wan, J. Li, H. Li, and Y. Hu, “Fabrication and luminescence properties of Tb3+ and Tb3+/Ag-doped CaF2 microcubes,” J. Lumin. 166, 361–365 (2015).
    [Crossref]
  48. P. Dolcet, A. Mambrini, M. Pedroni, A. Speghini, S. Gialanella, M. Casarin, and S. Gross, “Room temperature crystallization of highly luminescent lanthanide-doped CaF2 in nanosized droplets: first example of the synthesis of metal halogenide in miniemulsion with effective doping and size control,” RSC Adv. 5(21), 16302–16310 (2015).
    [Crossref]
  49. K. Liu, X. Yan, Y.-J. Xu, L. Dong, L.-N. Hao, Y.-H. Song, F. Li, Y. Su, Y.-D. Wu, H.-S. Qian, W. Tao, X.-Z. Yang, W. Zhou, and Y. Lu, “Sequential growth of CaF2: Yb, Er@ CaF2: Gd nanoparticles for efficient magnetic resonance angiography and tumor diagnosis,” Biomater. Sci. 5(12), 2403–2415 (2017).
    [Crossref]
  50. J. Sun, H. Wang, Y. Zhang, Y. Zheng, Z. Xu, and R. Liu, “Structure and luminescent properties of electrodeposited Eu3+-doped CaF2 thin films,” Thin Solid Films 562, 478–484 (2014).
    [Crossref]
  51. D. Yuan, W. Li, B. Mei, and J. Song, “Synthesis and characterization of Nd3+-doped CaF2 nanoparticles,” J. Nanosci. Nanotechnol. 15(12), 9741–9745 (2015).
    [Crossref]
  52. F. Wang, X. Fan, D. Pi, and M. Wang, “Synthesis and luminescence behavior of Eu3+-doped CaF2 nanoparticles,” Solid State Commun. 133(12), 775–779 (2005).
    [Crossref]
  53. M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 85(1), 29–37 (1999).
    [Crossref]
  54. P. C. Ricci, A. Casu, G. De Giudici, P. Scardi, and A. Anedda, “Phonon confinement effect in calcium fluoride nanoparticles,” Chem. Phys. Lett. 444(1-3), 145–148 (2007).
    [Crossref]
  55. M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
    [Crossref]

2019 (6)

M. Yuan, R. Wang, C. Zhang, Z. Yang, X. Yang, K. Han, J. Ye, H. Wang, and X. Xu, “Revisiting the enhanced red upconversion emission from a single β-NaYF4:Yb/Er microcrystal by doping with Mn2+ ions,” Nanoscale Res. Lett. 14(1), 103 (2019).
[Crossref]

T. Wang, Y. Lin, W. Lu, X. Guo, J. Qiu, X. Yu, Q. Zhan, S. F. Yu, and X. Xu, “Growth processes of LuF3 upconversion nanoflakes with the assistance of amorphous nanoclusters,” ACS Appl. Nano Mater. 2(8), 5254–5259 (2019).
[Crossref]

D. Przybylska, A. Ekner-Grzyb, B. F. Grześkowiak, and T. Grzyb, “Upconverting SrF2 nanoparticles doped with Yb3+/Ho3+, Yb3+/Er3+ and Yb3+/Tm3+ ions–optimisation of synthesis method, structural, spectroscopic and cytotoxicity studies,” Sci. Rep. 9(1), 8669 (2019).
[Crossref]

L. M. Wiesholler, F. Frenzel, B. Grauel, C. Würth, U. Resch-Genger, and T. Hirsch, “Yb, Nd, Er-doped upconversion nanoparticles: 980 nm versus 808 nm excitation,” Nanoscale 11(28), 13440–13449 (2019).
[Crossref]

X. Yang, M. Yuan, R. Wang, X. Zhao, Z. Yang, K. Han, H. Wang, and X. Xu, “Simultaneous size manipulation and red upconversion luminescence enhancement of CaF2:Yb3+/Ho3+ nanoparticles by doping with Ce3+ ions,” RSC Adv. 9(23), 13201–13206 (2019).
[Crossref]

J. Wei, W. Zheng, X. Shang, R. Li, P. Huang, Y. Liu, Z. Gong, S. Zhou, Z. Chen, and X. Chen, “Mn2+-activated calcium fluoride nanoprobes for time-resolved photoluminescence biosensing,” Sci. China Mater. 62(1), 130–137 (2019).
[Crossref]

2018 (8)

L. J. Q. Maia, J. Thomas, Y. Ledemi, K. V. Krishnaiah, D. Seletskiy, Y. Messaddeq, and R. Kashyap, “Photonic properties of novel Yb3+ doped germanium-lead oxyfluoride glass-ceramics for laser cooling applications,” Front. Optoelectron. 11(2), 189–198 (2018).
[Crossref]

R. Wang, M. Yuan, C. Zhang, H. Wang, and X. Xu, “Tunable multicolor and enhanced red emission of monodisperse CaF2:Yb3+/Ho3+ microspheres via Mn2+ doping,” Opt. Mater. 79, 403–407 (2018).
[Crossref]

Y. Ma, Z. Yang, H. Zhang, J. Qiu, and Z. Song, “Preparation, growth mechanism, upconversion, and near-infrared photoluminescence properties of convex-lens-like NaYF4 microcrystals doped with various rare earth ions excited at 808 nm,” Cryst. Growth Des. 18(3), 1758–1767 (2018).
[Crossref]

M. R. Hamblin, “Upconversion in photodynamic therapy: plumbing the depths,” Dalton Trans. 47(26), 8571–8580 (2018).
[Crossref]

M. Yuan, R. Wang, C. Zhang, Z. Yang, W. Cui, X. Yang, N. Xiao, H. Wang, and X. Xu, “Exploiting the silent upconversion emissions from a single β-NaYF4:Yb/Er microcrystal via saturated excitation,” J. Mater. Chem. C 6(38), 10226–10232 (2018).
[Crossref]

X. Liu, T. Li, X. Zhao, H. Suo, Z. Zhang, P. Zhao, S. Gao, and M. Niu, “808 nm-triggered optical thermometry based on up-conversion luminescence of Nd3+/Yb3+/Er3+ doped MIn2O4 (M = Ca, Sr and Ba) phosphors,” Dalton Trans. 47(19), 6713–6721 (2018).
[Crossref]

H. Suo, X. Zhao, Z. Zhang, Y. Wu, and C. Guo, “Upconverting LuVO4:Nd3+/Yb3+/Er3+@SiO2@Cu2S Hollow nanoplatforms for self-monitored photothermal ablation,” ACS Appl. Mater. Interfaces 10(46), 39912–39920 (2018).
[Crossref]

A. J. Talib, M. Alkahtani, L. Jiang, F. Alghannam, R. Brick, C. L. Gomes, M. O. Scully, A. V. Sokolov, and P. R. Hemmer, “Lanthanide ions doped in vanadium oxide for sensitive optical glucose detection,” Opt. Mater. Express 8(11), 3277–3287 (2018).
[Crossref]

2017 (8)

K. V. Krishnaiah, Y. Ledemi, C. Genevois, E. Veron, X. Sauvage, S. Morency, E. S. de Lima Filho, G. Nemova, M. Allix, Y. Messaddeq, and R. Kashyap, “Ytterbium-doped oxyfluoride nano-glass-ceramic fibers for laser cooling,” Opt. Mater. Express 7(6), 1980–1994 (2017).
[Crossref]

B. Liu, C. Li, P. Yang, Z. Hou, and J. Lin, “808-nm-light-excited lanthanide-doped nanoparticles: rational design, luminescence control and theranostic applications,” Adv. Mater. 29(18), 1605434 (2017).
[Crossref]

T. Wang, H. Yu, C. K. Siu, J. Qiu, X. Xu, and S. F. Yu, “White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods,” ACS Photonics 4(6), 1539–1543 (2017).
[Crossref]

P. Du, X. Huang, and J. S. Yu, “Yb3+-concentration dependent upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ codoped Gd2MoO6 nanocrystals prepared by a facile citric-assisted sol–gel method,” Inorg. Chem. Front. 4(12), 1987–1995 (2017).
[Crossref]

K. Liu, X. Yan, Y.-J. Xu, L. Dong, L.-N. Hao, Y.-H. Song, F. Li, Y. Su, Y.-D. Wu, H.-S. Qian, W. Tao, X.-Z. Yang, W. Zhou, and Y. Lu, “Sequential growth of CaF2: Yb, Er@ CaF2: Gd nanoparticles for efficient magnetic resonance angiography and tumor diagnosis,” Biomater. Sci. 5(12), 2403–2415 (2017).
[Crossref]

Y. Wang, Z. Yang, Y. Ma, Z. Chai, J. Qiu, and Z. Song, “Upconversion emission enhancement mechanisms of Nd3+-sensitized NaYF4:Yb3+, Er3+ nanoparticles using tunable plasmonic Au films: plasmonic-induced excitation, radiative decays rate and energy-transfer enhancement,” J. Mater. Chem. C 5(33), 8535–8544 (2017).
[Crossref]

S. Hao, G. Chen, C. Yang, W. Shao, W. Wei, Y. Liu, and P. N. Prasad, “Nd3+-sensitized multicolor upconversion luminescence from a sandwiched core/shell/shell nanostructure,” Nanoscale 9(30), 10633–10638 (2017).
[Crossref]

B. Xu, H. He, Z. Gu, S. Jin, Y. Ma, and T. Zhai, “Improving 800 nm triggered upconversion emission for lanthanide-doped CaF2 nanoparticles through sodium ion doping,” J. Phys. Chem. C 121(33), 18280–18287 (2017).
[Crossref]

2016 (3)

X. Li, Z. Xue, and H. Liu, “Hydro-thermal synthesis of PEGylated Mn2+ dopant controlled NaYF4: Yb/Er up-conversion nano-particles for multi-color tuning,” J. Alloys Compd. 681, 379–383 (2016).
[Crossref]

Z. Sun, B. Mei, W. Li, Z. Liu, and L. Su, “Effects of Nd concentration on microstructure and optical properties of Nd:CaF2 transparent ceramics,” J. Am. Ceram. Soc. 99(12), 4039–4044 (2016).
[Crossref]

K. V. Krishnaiah, Y. Ledemi, E. S. de Lima Filho, G. Nemova, Y. Messaddeq, and R. Kashyap, “Development of Yb3+-doped oxyfluoride glass-ceramics with low OH− content containing CaF2 nanocrystals for optical refrigeration,” Opt. Eng. 56(1), 011103 (2016).
[Crossref]

2015 (10)

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core-shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref]

Y. Shang, S. Hao, J. Liu, M. Tan, N. Wang, C. Yang, and G. Chen, “Synthesis of upconversion β-NaYF4:Nd3+/Yb3+/Er3+ particles with enhanced luminescent intensity through control of morphology and phase,” Nanomaterials 5(1), 218–232 (2015).
[Crossref]

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(Acrylic Acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref]

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref]

B. Shao, Z. Yang, Y. Wang, J. Li, J. Yang, J. Qiu, and Z. Song, “Coupling of Ag nanoparticle with inverse opal photonic crystals as a novel strategy for upconversion emission enhancement of NaYF4: Yb3+, Er3+ nanoparticles,” ACS Appl. Mater. Interfaces 7(45), 25211–25218 (2015).
[Crossref]

X. Deng, Y. Dai, J. Liu, Y. Zhou, P. Ma, Z. Cheng, Y. Chen, K. Deng, X. Li, Z. Hou, C. Li, and J. Lin, “Multifunctional hollow CaF2:Yb3+/Er3+/Mn2+-poly(2-Aminoethyl methacrylate) microspheres for Pt(IV) pro-drug delivery and tri-modal imaging,” Biomaterials 50(1), 154–163 (2015).
[Crossref]

D. Yuan, W. Li, B. Mei, and J. Song, “Synthesis and characterization of Nd3+-doped CaF2 nanoparticles,” J. Nanosci. Nanotechnol. 15(12), 9741–9745 (2015).
[Crossref]

L. Sun, E. Liu, J. Fan, X. Hu, J. Wan, J. Li, H. Li, and Y. Hu, “Fabrication and luminescence properties of Tb3+ and Tb3+/Ag-doped CaF2 microcubes,” J. Lumin. 166, 361–365 (2015).
[Crossref]

P. Dolcet, A. Mambrini, M. Pedroni, A. Speghini, S. Gialanella, M. Casarin, and S. Gross, “Room temperature crystallization of highly luminescent lanthanide-doped CaF2 in nanosized droplets: first example of the synthesis of metal halogenide in miniemulsion with effective doping and size control,” RSC Adv. 5(21), 16302–16310 (2015).
[Crossref]

2014 (4)

J. Sun, H. Wang, Y. Zhang, Y. Zheng, Z. Xu, and R. Liu, “Structure and luminescent properties of electrodeposited Eu3+-doped CaF2 thin films,” Thin Solid Films 562, 478–484 (2014).
[Crossref]

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref]

F. Wang, R. Deng, and X. Liu, “Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes,” Nat. Protoc. 9(7), 1634–1644 (2014).
[Crossref]

L. Tian, Z. Xu, S. Zhao, Y. Cui, Z. Liang, J. Zhang, and X. Xu, “The upconversion luminescence of Er3+/Yb3+/Nd3+ triply-doped β-NaYF4 nanocrystals under 808-nm excitation,” Materials 7(11), 7289–7303 (2014).
[Crossref]

2013 (5)

J. Shen, G. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
[Crossref]

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref]

X. Li, R. Wang, F. Zhang, L. Zhou, D. Shen, C. Yao, and D. Zhao, “Nd3+ sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800 nm,” Sci. Rep. 3(1), 3536 (2013).
[Crossref]

S. Sasidharan, A. Jayasree, S. Fazal, M. Koyakutty, S. V. Nair, and D. Menon, “Ambient temperature synthesis of citrate stabilized and biofunctionalized, fluorescent calcium fluoride nanocrystals for targeted labeling of cancer cells,” Biomater. Sci. 1(3), 294–305 (2013).
[Crossref]

W. Zheng, S. Zhou, Z. Chen, P. Hu, Y. Liu, D. Tu, H. Zhu, R. Li, M. Huang, and X. Chen, “Sub-10 nm lanthanide-doped CaF2 nanoprobes for time-resolved luminescent biodetection,” Angew. Chem.-Int. Edit. 52(26), 6671–6676 (2013).
[Crossref]

2012 (1)

M. Zahedifar and E. Sadeghi, “Synthesis and dosimetric properties of the novel thermoluminescent CaF2:Tm nanoparticles,” Radiat. Phys. Chem. 81(12), 1856–1861 (2012).
[Crossref]

2011 (1)

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref]

2010 (1)

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref]

2009 (1)

G. Wang, Q. Peng, and Y. Li, “Upconversion luminescence of monodisperse CaF2: Yb3+/Er3+ nanocrystals,” J. Am. Chem. Soc. 131(40), 14200–14201 (2009).
[Crossref]

2007 (1)

P. C. Ricci, A. Casu, G. De Giudici, P. Scardi, and A. Anedda, “Phonon confinement effect in calcium fluoride nanoparticles,” Chem. Phys. Lett. 444(1-3), 145–148 (2007).
[Crossref]

2005 (2)

F. Liégard, J. L. Doualan, R. Moncorgé, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in a codoped metaphosphate glass as a model for Yb3+ laser operation around 980 nm,” Appl. Phys. B: Lasers Opt. 80(8), 985–991 (2005).
[Crossref]

F. Wang, X. Fan, D. Pi, and M. Wang, “Synthesis and luminescence behavior of Eu3+-doped CaF2 nanoparticles,” Solid State Commun. 133(12), 775–779 (2005).
[Crossref]

2000 (1)

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

1999 (1)

M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 85(1), 29–37 (1999).
[Crossref]

1968 (1)

T. Kushida, H. M. Marcos, and J. E. Geusic, “Laser transition cross section and fluorescence branching ratio for Nd3+ in yttrium aluminum garnet,” Phys. Rev. 167(2), 289–291 (1968).
[Crossref]

Alghannam, F.

Alkahtani, M.

Allix, M.

Anedda, A.

P. C. Ricci, A. Casu, G. De Giudici, P. Scardi, and A. Anedda, “Phonon confinement effect in calcium fluoride nanoparticles,” Chem. Phys. Lett. 444(1-3), 145–148 (2007).
[Crossref]

Bettinelli, M.

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref]

F. Liégard, J. L. Doualan, R. Moncorgé, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in a codoped metaphosphate glass as a model for Yb3+ laser operation around 980 nm,” Appl. Phys. B: Lasers Opt. 80(8), 985–991 (2005).
[Crossref]

Bilsel, O. S.

J. Shen, G. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
[Crossref]

Brick, R.

Capobianco, J. A.

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref]

Casarin, M.

P. Dolcet, A. Mambrini, M. Pedroni, A. Speghini, S. Gialanella, M. Casarin, and S. Gross, “Room temperature crystallization of highly luminescent lanthanide-doped CaF2 in nanosized droplets: first example of the synthesis of metal halogenide in miniemulsion with effective doping and size control,” RSC Adv. 5(21), 16302–16310 (2015).
[Crossref]

Casu, A.

P. C. Ricci, A. Casu, G. De Giudici, P. Scardi, and A. Anedda, “Phonon confinement effect in calcium fluoride nanoparticles,” Chem. Phys. Lett. 444(1-3), 145–148 (2007).
[Crossref]

Chai, Z.

Y. Wang, Z. Yang, Y. Ma, Z. Chai, J. Qiu, and Z. Song, “Upconversion emission enhancement mechanisms of Nd3+-sensitized NaYF4:Yb3+, Er3+ nanoparticles using tunable plasmonic Au films: plasmonic-induced excitation, radiative decays rate and energy-transfer enhancement,” J. Mater. Chem. C 5(33), 8535–8544 (2017).
[Crossref]

Chang, C. C.

J. Shen, G. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
[Crossref]

Chen, D.

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core-shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref]

Chen, F.

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref]

Chen, G.

S. Hao, G. Chen, C. Yang, W. Shao, W. Wei, Y. Liu, and P. N. Prasad, “Nd3+-sensitized multicolor upconversion luminescence from a sandwiched core/shell/shell nanostructure,” Nanoscale 9(30), 10633–10638 (2017).
[Crossref]

Y. Shang, S. Hao, J. Liu, M. Tan, N. Wang, C. Yang, and G. Chen, “Synthesis of upconversion β-NaYF4:Nd3+/Yb3+/Er3+ particles with enhanced luminescent intensity through control of morphology and phase,” Nanomaterials 5(1), 218–232 (2015).
[Crossref]

J. Shen, G. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
[Crossref]

Chen, H.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref]

Chen, R.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref]

Chen, X.

J. Wei, W. Zheng, X. Shang, R. Li, P. Huang, Y. Liu, Z. Gong, S. Zhou, Z. Chen, and X. Chen, “Mn2+-activated calcium fluoride nanoprobes for time-resolved photoluminescence biosensing,” Sci. China Mater. 62(1), 130–137 (2019).
[Crossref]

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(Acrylic Acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

W. Zheng, S. Zhou, Z. Chen, P. Hu, Y. Liu, D. Tu, H. Zhu, R. Li, M. Huang, and X. Chen, “Sub-10 nm lanthanide-doped CaF2 nanoprobes for time-resolved luminescent biodetection,” Angew. Chem.-Int. Edit. 52(26), 6671–6676 (2013).
[Crossref]

Chen, Y.

X. Deng, Y. Dai, J. Liu, Y. Zhou, P. Ma, Z. Cheng, Y. Chen, K. Deng, X. Li, Z. Hou, C. Li, and J. Lin, “Multifunctional hollow CaF2:Yb3+/Er3+/Mn2+-poly(2-Aminoethyl methacrylate) microspheres for Pt(IV) pro-drug delivery and tri-modal imaging,” Biomaterials 50(1), 154–163 (2015).
[Crossref]

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(Acrylic Acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

Chen, Z.

J. Wei, W. Zheng, X. Shang, R. Li, P. Huang, Y. Liu, Z. Gong, S. Zhou, Z. Chen, and X. Chen, “Mn2+-activated calcium fluoride nanoprobes for time-resolved photoluminescence biosensing,” Sci. China Mater. 62(1), 130–137 (2019).
[Crossref]

W. Zheng, S. Zhou, Z. Chen, P. Hu, Y. Liu, D. Tu, H. Zhu, R. Li, M. Huang, and X. Chen, “Sub-10 nm lanthanide-doped CaF2 nanoprobes for time-resolved luminescent biodetection,” Angew. Chem.-Int. Edit. 52(26), 6671–6676 (2013).
[Crossref]

Cheng, Z.

X. Deng, Y. Dai, J. Liu, Y. Zhou, P. Ma, Z. Cheng, Y. Chen, K. Deng, X. Li, Z. Hou, C. Li, and J. Lin, “Multifunctional hollow CaF2:Yb3+/Er3+/Mn2+-poly(2-Aminoethyl methacrylate) microspheres for Pt(IV) pro-drug delivery and tri-modal imaging,” Biomaterials 50(1), 154–163 (2015).
[Crossref]

Conti, G.

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref]

Cui, W.

M. Yuan, R. Wang, C. Zhang, Z. Yang, W. Cui, X. Yang, N. Xiao, H. Wang, and X. Xu, “Exploiting the silent upconversion emissions from a single β-NaYF4:Yb/Er microcrystal via saturated excitation,” J. Mater. Chem. C 6(38), 10226–10232 (2018).
[Crossref]

Cui, Y.

L. Tian, Z. Xu, S. Zhao, Y. Cui, Z. Liang, J. Zhang, and X. Xu, “The upconversion luminescence of Er3+/Yb3+/Nd3+ triply-doped β-NaYF4 nanocrystals under 808-nm excitation,” Materials 7(11), 7289–7303 (2014).
[Crossref]

Dai, Y.

X. Deng, Y. Dai, J. Liu, Y. Zhou, P. Ma, Z. Cheng, Y. Chen, K. Deng, X. Li, Z. Hou, C. Li, and J. Lin, “Multifunctional hollow CaF2:Yb3+/Er3+/Mn2+-poly(2-Aminoethyl methacrylate) microspheres for Pt(IV) pro-drug delivery and tri-modal imaging,” Biomaterials 50(1), 154–163 (2015).
[Crossref]

De Giudici, G.

P. C. Ricci, A. Casu, G. De Giudici, P. Scardi, and A. Anedda, “Phonon confinement effect in calcium fluoride nanoparticles,” Chem. Phys. Lett. 444(1-3), 145–148 (2007).
[Crossref]

de Lima Filho, E. S.

K. V. Krishnaiah, Y. Ledemi, C. Genevois, E. Veron, X. Sauvage, S. Morency, E. S. de Lima Filho, G. Nemova, M. Allix, Y. Messaddeq, and R. Kashyap, “Ytterbium-doped oxyfluoride nano-glass-ceramic fibers for laser cooling,” Opt. Mater. Express 7(6), 1980–1994 (2017).
[Crossref]

K. V. Krishnaiah, Y. Ledemi, E. S. de Lima Filho, G. Nemova, Y. Messaddeq, and R. Kashyap, “Development of Yb3+-doped oxyfluoride glass-ceramics with low OH− content containing CaF2 nanocrystals for optical refrigeration,” Opt. Eng. 56(1), 011103 (2016).
[Crossref]

E. S. de Lima Filho, M. Quintanilla, F. Vetrone, G. Nemova, V. K. Kummara, and R. Kashyap, “Characterization of fluoride nanocrystals for optical refrigeration,” in Laser Refrigeration of Solids VIII (International Society for Optics and Photonics, 2015), 9380, p. 93800Q.

Deng, K.

X. Deng, Y. Dai, J. Liu, Y. Zhou, P. Ma, Z. Cheng, Y. Chen, K. Deng, X. Li, Z. Hou, C. Li, and J. Lin, “Multifunctional hollow CaF2:Yb3+/Er3+/Mn2+-poly(2-Aminoethyl methacrylate) microspheres for Pt(IV) pro-drug delivery and tri-modal imaging,” Biomaterials 50(1), 154–163 (2015).
[Crossref]

Deng, R.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref]

F. Wang, R. Deng, and X. Liu, “Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes,” Nat. Protoc. 9(7), 1634–1644 (2014).
[Crossref]

Deng, X.

X. Deng, Y. Dai, J. Liu, Y. Zhou, P. Ma, Z. Cheng, Y. Chen, K. Deng, X. Li, Z. Hou, C. Li, and J. Lin, “Multifunctional hollow CaF2:Yb3+/Er3+/Mn2+-poly(2-Aminoethyl methacrylate) microspheres for Pt(IV) pro-drug delivery and tri-modal imaging,” Biomaterials 50(1), 154–163 (2015).
[Crossref]

Ding, M.

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core-shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref]

Dolcet, P.

P. Dolcet, A. Mambrini, M. Pedroni, A. Speghini, S. Gialanella, M. Casarin, and S. Gross, “Room temperature crystallization of highly luminescent lanthanide-doped CaF2 in nanosized droplets: first example of the synthesis of metal halogenide in miniemulsion with effective doping and size control,” RSC Adv. 5(21), 16302–16310 (2015).
[Crossref]

Dong, L.

K. Liu, X. Yan, Y.-J. Xu, L. Dong, L.-N. Hao, Y.-H. Song, F. Li, Y. Su, Y.-D. Wu, H.-S. Qian, W. Tao, X.-Z. Yang, W. Zhou, and Y. Lu, “Sequential growth of CaF2: Yb, Er@ CaF2: Gd nanoparticles for efficient magnetic resonance angiography and tumor diagnosis,” Biomater. Sci. 5(12), 2403–2415 (2017).
[Crossref]

Dong, N. N.

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref]

Doualan, J. L.

F. Liégard, J. L. Doualan, R. Moncorgé, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in a codoped metaphosphate glass as a model for Yb3+ laser operation around 980 nm,” Appl. Phys. B: Lasers Opt. 80(8), 985–991 (2005).
[Crossref]

Du, P.

P. Du, X. Huang, and J. S. Yu, “Yb3+-concentration dependent upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ codoped Gd2MoO6 nanocrystals prepared by a facile citric-assisted sol–gel method,” Inorg. Chem. Front. 4(12), 1987–1995 (2017).
[Crossref]

Ekner-Grzyb, A.

D. Przybylska, A. Ekner-Grzyb, B. F. Grześkowiak, and T. Grzyb, “Upconverting SrF2 nanoparticles doped with Yb3+/Ho3+, Yb3+/Er3+ and Yb3+/Tm3+ ions–optimisation of synthesis method, structural, spectroscopic and cytotoxicity studies,” Sci. Rep. 9(1), 8669 (2019).
[Crossref]

Fan, J.

L. Sun, E. Liu, J. Fan, X. Hu, J. Wan, J. Li, H. Li, and Y. Hu, “Fabrication and luminescence properties of Tb3+ and Tb3+/Ag-doped CaF2 microcubes,” J. Lumin. 166, 361–365 (2015).
[Crossref]

Fan, W.

J. Shen, G. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
[Crossref]

Fan, X.

F. Wang, X. Fan, D. Pi, and M. Wang, “Synthesis and luminescence behavior of Eu3+-doped CaF2 nanoparticles,” Solid State Commun. 133(12), 775–779 (2005).
[Crossref]

Fazal, S.

S. Sasidharan, A. Jayasree, S. Fazal, M. Koyakutty, S. V. Nair, and D. Menon, “Ambient temperature synthesis of citrate stabilized and biofunctionalized, fluorescent calcium fluoride nanocrystals for targeted labeling of cancer cells,” Biomater. Sci. 1(3), 294–305 (2013).
[Crossref]

Frenzel, F.

L. M. Wiesholler, F. Frenzel, B. Grauel, C. Würth, U. Resch-Genger, and T. Hirsch, “Yb, Nd, Er-doped upconversion nanoparticles: 980 nm versus 808 nm excitation,” Nanoscale 11(28), 13440–13449 (2019).
[Crossref]

Gamelin, D. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Gao, S.

X. Liu, T. Li, X. Zhao, H. Suo, Z. Zhang, P. Zhao, S. Gao, and M. Niu, “808 nm-triggered optical thermometry based on up-conversion luminescence of Nd3+/Yb3+/Er3+ doped MIn2O4 (M = Ca, Sr and Ba) phosphors,” Dalton Trans. 47(19), 6713–6721 (2018).
[Crossref]

Genevois, C.

Geusic, J. E.

T. Kushida, H. M. Marcos, and J. E. Geusic, “Laser transition cross section and fluorescence branching ratio for Nd3+ in yttrium aluminum garnet,” Phys. Rev. 167(2), 289–291 (1968).
[Crossref]

Gialanella, S.

P. Dolcet, A. Mambrini, M. Pedroni, A. Speghini, S. Gialanella, M. Casarin, and S. Gross, “Room temperature crystallization of highly luminescent lanthanide-doped CaF2 in nanosized droplets: first example of the synthesis of metal halogenide in miniemulsion with effective doping and size control,” RSC Adv. 5(21), 16302–16310 (2015).
[Crossref]

Gomes, C. L.

Gong, Z.

J. Wei, W. Zheng, X. Shang, R. Li, P. Huang, Y. Liu, Z. Gong, S. Zhou, Z. Chen, and X. Chen, “Mn2+-activated calcium fluoride nanoprobes for time-resolved photoluminescence biosensing,” Sci. China Mater. 62(1), 130–137 (2019).
[Crossref]

Grauel, B.

L. M. Wiesholler, F. Frenzel, B. Grauel, C. Würth, U. Resch-Genger, and T. Hirsch, “Yb, Nd, Er-doped upconversion nanoparticles: 980 nm versus 808 nm excitation,” Nanoscale 11(28), 13440–13449 (2019).
[Crossref]

Gross, S.

P. Dolcet, A. Mambrini, M. Pedroni, A. Speghini, S. Gialanella, M. Casarin, and S. Gross, “Room temperature crystallization of highly luminescent lanthanide-doped CaF2 in nanosized droplets: first example of the synthesis of metal halogenide in miniemulsion with effective doping and size control,” RSC Adv. 5(21), 16302–16310 (2015).
[Crossref]

Grzeskowiak, B. F.

D. Przybylska, A. Ekner-Grzyb, B. F. Grześkowiak, and T. Grzyb, “Upconverting SrF2 nanoparticles doped with Yb3+/Ho3+, Yb3+/Er3+ and Yb3+/Tm3+ ions–optimisation of synthesis method, structural, spectroscopic and cytotoxicity studies,” Sci. Rep. 9(1), 8669 (2019).
[Crossref]

Grzyb, T.

D. Przybylska, A. Ekner-Grzyb, B. F. Grześkowiak, and T. Grzyb, “Upconverting SrF2 nanoparticles doped with Yb3+/Ho3+, Yb3+/Er3+ and Yb3+/Tm3+ ions–optimisation of synthesis method, structural, spectroscopic and cytotoxicity studies,” Sci. Rep. 9(1), 8669 (2019).
[Crossref]

Gu, L.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref]

Gu, Z.

B. Xu, H. He, Z. Gu, S. Jin, Y. Ma, and T. Zhai, “Improving 800 nm triggered upconversion emission for lanthanide-doped CaF2 nanoparticles through sodium ion doping,” J. Phys. Chem. C 121(33), 18280–18287 (2017).
[Crossref]

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref]

Güdel, H. U.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Guo, C.

H. Suo, X. Zhao, Z. Zhang, Y. Wu, and C. Guo, “Upconverting LuVO4:Nd3+/Yb3+/Er3+@SiO2@Cu2S Hollow nanoplatforms for self-monitored photothermal ablation,” ACS Appl. Mater. Interfaces 10(46), 39912–39920 (2018).
[Crossref]

Guo, X.

T. Wang, Y. Lin, W. Lu, X. Guo, J. Qiu, X. Yu, Q. Zhan, S. F. Yu, and X. Xu, “Growth processes of LuF3 upconversion nanoflakes with the assistance of amorphous nanoclusters,” ACS Appl. Nano Mater. 2(8), 5254–5259 (2019).
[Crossref]

Hamblin, M. R.

M. R. Hamblin, “Upconversion in photodynamic therapy: plumbing the depths,” Dalton Trans. 47(26), 8571–8580 (2018).
[Crossref]

Han, G.

J. Shen, G. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
[Crossref]

Han, K.

X. Yang, M. Yuan, R. Wang, X. Zhao, Z. Yang, K. Han, H. Wang, and X. Xu, “Simultaneous size manipulation and red upconversion luminescence enhancement of CaF2:Yb3+/Ho3+ nanoparticles by doping with Ce3+ ions,” RSC Adv. 9(23), 13201–13206 (2019).
[Crossref]

M. Yuan, R. Wang, C. Zhang, Z. Yang, X. Yang, K. Han, J. Ye, H. Wang, and X. Xu, “Revisiting the enhanced red upconversion emission from a single β-NaYF4:Yb/Er microcrystal by doping with Mn2+ ions,” Nanoscale Res. Lett. 14(1), 103 (2019).
[Crossref]

Han, Y.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref]

Hao, L.-N.

K. Liu, X. Yan, Y.-J. Xu, L. Dong, L.-N. Hao, Y.-H. Song, F. Li, Y. Su, Y.-D. Wu, H.-S. Qian, W. Tao, X.-Z. Yang, W. Zhou, and Y. Lu, “Sequential growth of CaF2: Yb, Er@ CaF2: Gd nanoparticles for efficient magnetic resonance angiography and tumor diagnosis,” Biomater. Sci. 5(12), 2403–2415 (2017).
[Crossref]

Hao, S.

S. Hao, G. Chen, C. Yang, W. Shao, W. Wei, Y. Liu, and P. N. Prasad, “Nd3+-sensitized multicolor upconversion luminescence from a sandwiched core/shell/shell nanostructure,” Nanoscale 9(30), 10633–10638 (2017).
[Crossref]

Y. Shang, S. Hao, J. Liu, M. Tan, N. Wang, C. Yang, and G. Chen, “Synthesis of upconversion β-NaYF4:Nd3+/Yb3+/Er3+ particles with enhanced luminescent intensity through control of morphology and phase,” Nanomaterials 5(1), 218–232 (2015).
[Crossref]

He, F.

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(Acrylic Acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

He, H.

B. Xu, H. He, Z. Gu, S. Jin, Y. Ma, and T. Zhai, “Improving 800 nm triggered upconversion emission for lanthanide-doped CaF2 nanoparticles through sodium ion doping,” J. Phys. Chem. C 121(33), 18280–18287 (2017).
[Crossref]

Hehlen, M. P.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Hemmer, P. R.

Hirsch, T.

L. M. Wiesholler, F. Frenzel, B. Grauel, C. Würth, U. Resch-Genger, and T. Hirsch, “Yb, Nd, Er-doped upconversion nanoparticles: 980 nm versus 808 nm excitation,” Nanoscale 11(28), 13440–13449 (2019).
[Crossref]

Hong, M.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref]

Hou, Z.

B. Liu, C. Li, P. Yang, Z. Hou, and J. Lin, “808-nm-light-excited lanthanide-doped nanoparticles: rational design, luminescence control and theranostic applications,” Adv. Mater. 29(18), 1605434 (2017).
[Crossref]

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(Acrylic Acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

X. Deng, Y. Dai, J. Liu, Y. Zhou, P. Ma, Z. Cheng, Y. Chen, K. Deng, X. Li, Z. Hou, C. Li, and J. Lin, “Multifunctional hollow CaF2:Yb3+/Er3+/Mn2+-poly(2-Aminoethyl methacrylate) microspheres for Pt(IV) pro-drug delivery and tri-modal imaging,” Biomaterials 50(1), 154–163 (2015).
[Crossref]

Hu, P.

W. Zheng, S. Zhou, Z. Chen, P. Hu, Y. Liu, D. Tu, H. Zhu, R. Li, M. Huang, and X. Chen, “Sub-10 nm lanthanide-doped CaF2 nanoprobes for time-resolved luminescent biodetection,” Angew. Chem.-Int. Edit. 52(26), 6671–6676 (2013).
[Crossref]

Hu, X.

L. Sun, E. Liu, J. Fan, X. Hu, J. Wan, J. Li, H. Li, and Y. Hu, “Fabrication and luminescence properties of Tb3+ and Tb3+/Ag-doped CaF2 microcubes,” J. Lumin. 166, 361–365 (2015).
[Crossref]

Hu, Y.

L. Sun, E. Liu, J. Fan, X. Hu, J. Wan, J. Li, H. Li, and Y. Hu, “Fabrication and luminescence properties of Tb3+ and Tb3+/Ag-doped CaF2 microcubes,” J. Lumin. 166, 361–365 (2015).
[Crossref]

Huang, M.

W. Zheng, S. Zhou, Z. Chen, P. Hu, Y. Liu, D. Tu, H. Zhu, R. Li, M. Huang, and X. Chen, “Sub-10 nm lanthanide-doped CaF2 nanoprobes for time-resolved luminescent biodetection,” Angew. Chem.-Int. Edit. 52(26), 6671–6676 (2013).
[Crossref]

Huang, P.

J. Wei, W. Zheng, X. Shang, R. Li, P. Huang, Y. Liu, Z. Gong, S. Zhou, Z. Chen, and X. Chen, “Mn2+-activated calcium fluoride nanoprobes for time-resolved photoluminescence biosensing,” Sci. China Mater. 62(1), 130–137 (2019).
[Crossref]

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core-shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref]

Huang, S.

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(Acrylic Acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

Huang, W.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref]

Huang, X.

P. Du, X. Huang, and J. S. Yu, “Yb3+-concentration dependent upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ codoped Gd2MoO6 nanocrystals prepared by a facile citric-assisted sol–gel method,” Inorg. Chem. Front. 4(12), 1987–1995 (2017).
[Crossref]

Iglesias-de la Cruz, M. C.

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref]

Inoue, H.

M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 85(1), 29–37 (1999).
[Crossref]

Inoue, S.

M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 85(1), 29–37 (1999).
[Crossref]

Jaque, D.

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref]

Jayasree, A.

S. Sasidharan, A. Jayasree, S. Fazal, M. Koyakutty, S. V. Nair, and D. Menon, “Ambient temperature synthesis of citrate stabilized and biofunctionalized, fluorescent calcium fluoride nanocrystals for targeted labeling of cancer cells,” Biomater. Sci. 1(3), 294–305 (2013).
[Crossref]

Ji, Z.

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core-shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref]

Jiang, L.

Jin, D.

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref]

Jin, S.

B. Xu, H. He, Z. Gu, S. Jin, Y. Ma, and T. Zhai, “Improving 800 nm triggered upconversion emission for lanthanide-doped CaF2 nanoparticles through sodium ion doping,” J. Phys. Chem. C 121(33), 18280–18287 (2017).
[Crossref]

Juarranz, A.

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref]

Kashyap, R.

L. J. Q. Maia, J. Thomas, Y. Ledemi, K. V. Krishnaiah, D. Seletskiy, Y. Messaddeq, and R. Kashyap, “Photonic properties of novel Yb3+ doped germanium-lead oxyfluoride glass-ceramics for laser cooling applications,” Front. Optoelectron. 11(2), 189–198 (2018).
[Crossref]

K. V. Krishnaiah, Y. Ledemi, C. Genevois, E. Veron, X. Sauvage, S. Morency, E. S. de Lima Filho, G. Nemova, M. Allix, Y. Messaddeq, and R. Kashyap, “Ytterbium-doped oxyfluoride nano-glass-ceramic fibers for laser cooling,” Opt. Mater. Express 7(6), 1980–1994 (2017).
[Crossref]

K. V. Krishnaiah, Y. Ledemi, E. S. de Lima Filho, G. Nemova, Y. Messaddeq, and R. Kashyap, “Development of Yb3+-doped oxyfluoride glass-ceramics with low OH− content containing CaF2 nanocrystals for optical refrigeration,” Opt. Eng. 56(1), 011103 (2016).
[Crossref]

E. S. de Lima Filho, M. Quintanilla, F. Vetrone, G. Nemova, V. K. Kummara, and R. Kashyap, “Characterization of fluoride nanocrystals for optical refrigeration,” in Laser Refrigeration of Solids VIII (International Society for Optics and Photonics, 2015), 9380, p. 93800Q.

Koyakutty, M.

S. Sasidharan, A. Jayasree, S. Fazal, M. Koyakutty, S. V. Nair, and D. Menon, “Ambient temperature synthesis of citrate stabilized and biofunctionalized, fluorescent calcium fluoride nanocrystals for targeted labeling of cancer cells,” Biomater. Sci. 1(3), 294–305 (2013).
[Crossref]

Krishnaiah, K. V.

L. J. Q. Maia, J. Thomas, Y. Ledemi, K. V. Krishnaiah, D. Seletskiy, Y. Messaddeq, and R. Kashyap, “Photonic properties of novel Yb3+ doped germanium-lead oxyfluoride glass-ceramics for laser cooling applications,” Front. Optoelectron. 11(2), 189–198 (2018).
[Crossref]

K. V. Krishnaiah, Y. Ledemi, C. Genevois, E. Veron, X. Sauvage, S. Morency, E. S. de Lima Filho, G. Nemova, M. Allix, Y. Messaddeq, and R. Kashyap, “Ytterbium-doped oxyfluoride nano-glass-ceramic fibers for laser cooling,” Opt. Mater. Express 7(6), 1980–1994 (2017).
[Crossref]

K. V. Krishnaiah, Y. Ledemi, E. S. de Lima Filho, G. Nemova, Y. Messaddeq, and R. Kashyap, “Development of Yb3+-doped oxyfluoride glass-ceramics with low OH− content containing CaF2 nanocrystals for optical refrigeration,” Opt. Eng. 56(1), 011103 (2016).
[Crossref]

Kummara, V. K.

E. S. de Lima Filho, M. Quintanilla, F. Vetrone, G. Nemova, V. K. Kummara, and R. Kashyap, “Characterization of fluoride nanocrystals for optical refrigeration,” in Laser Refrigeration of Solids VIII (International Society for Optics and Photonics, 2015), 9380, p. 93800Q.

Kushida, T.

T. Kushida, H. M. Marcos, and J. E. Geusic, “Laser transition cross section and fluorescence branching ratio for Nd3+ in yttrium aluminum garnet,” Phys. Rev. 167(2), 289–291 (1968).
[Crossref]

Ledemi, Y.

L. J. Q. Maia, J. Thomas, Y. Ledemi, K. V. Krishnaiah, D. Seletskiy, Y. Messaddeq, and R. Kashyap, “Photonic properties of novel Yb3+ doped germanium-lead oxyfluoride glass-ceramics for laser cooling applications,” Front. Optoelectron. 11(2), 189–198 (2018).
[Crossref]

K. V. Krishnaiah, Y. Ledemi, C. Genevois, E. Veron, X. Sauvage, S. Morency, E. S. de Lima Filho, G. Nemova, M. Allix, Y. Messaddeq, and R. Kashyap, “Ytterbium-doped oxyfluoride nano-glass-ceramic fibers for laser cooling,” Opt. Mater. Express 7(6), 1980–1994 (2017).
[Crossref]

K. V. Krishnaiah, Y. Ledemi, E. S. de Lima Filho, G. Nemova, Y. Messaddeq, and R. Kashyap, “Development of Yb3+-doped oxyfluoride glass-ceramics with low OH− content containing CaF2 nanocrystals for optical refrigeration,” Opt. Eng. 56(1), 011103 (2016).
[Crossref]

Li, C.

B. Liu, C. Li, P. Yang, Z. Hou, and J. Lin, “808-nm-light-excited lanthanide-doped nanoparticles: rational design, luminescence control and theranostic applications,” Adv. Mater. 29(18), 1605434 (2017).
[Crossref]

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(Acrylic Acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

X. Deng, Y. Dai, J. Liu, Y. Zhou, P. Ma, Z. Cheng, Y. Chen, K. Deng, X. Li, Z. Hou, C. Li, and J. Lin, “Multifunctional hollow CaF2:Yb3+/Er3+/Mn2+-poly(2-Aminoethyl methacrylate) microspheres for Pt(IV) pro-drug delivery and tri-modal imaging,” Biomaterials 50(1), 154–163 (2015).
[Crossref]

Li, F.

K. Liu, X. Yan, Y.-J. Xu, L. Dong, L.-N. Hao, Y.-H. Song, F. Li, Y. Su, Y.-D. Wu, H.-S. Qian, W. Tao, X.-Z. Yang, W. Zhou, and Y. Lu, “Sequential growth of CaF2: Yb, Er@ CaF2: Gd nanoparticles for efficient magnetic resonance angiography and tumor diagnosis,” Biomater. Sci. 5(12), 2403–2415 (2017).
[Crossref]

Li, H.

L. Sun, E. Liu, J. Fan, X. Hu, J. Wan, J. Li, H. Li, and Y. Hu, “Fabrication and luminescence properties of Tb3+ and Tb3+/Ag-doped CaF2 microcubes,” J. Lumin. 166, 361–365 (2015).
[Crossref]

Li, J.

L. Sun, E. Liu, J. Fan, X. Hu, J. Wan, J. Li, H. Li, and Y. Hu, “Fabrication and luminescence properties of Tb3+ and Tb3+/Ag-doped CaF2 microcubes,” J. Lumin. 166, 361–365 (2015).
[Crossref]

B. Shao, Z. Yang, Y. Wang, J. Li, J. Yang, J. Qiu, and Z. Song, “Coupling of Ag nanoparticle with inverse opal photonic crystals as a novel strategy for upconversion emission enhancement of NaYF4: Yb3+, Er3+ nanoparticles,” ACS Appl. Mater. Interfaces 7(45), 25211–25218 (2015).
[Crossref]

Li, R.

J. Wei, W. Zheng, X. Shang, R. Li, P. Huang, Y. Liu, Z. Gong, S. Zhou, Z. Chen, and X. Chen, “Mn2+-activated calcium fluoride nanoprobes for time-resolved photoluminescence biosensing,” Sci. China Mater. 62(1), 130–137 (2019).
[Crossref]

W. Zheng, S. Zhou, Z. Chen, P. Hu, Y. Liu, D. Tu, H. Zhu, R. Li, M. Huang, and X. Chen, “Sub-10 nm lanthanide-doped CaF2 nanoprobes for time-resolved luminescent biodetection,” Angew. Chem.-Int. Edit. 52(26), 6671–6676 (2013).
[Crossref]

Li, T.

X. Liu, T. Li, X. Zhao, H. Suo, Z. Zhang, P. Zhao, S. Gao, and M. Niu, “808 nm-triggered optical thermometry based on up-conversion luminescence of Nd3+/Yb3+/Er3+ doped MIn2O4 (M = Ca, Sr and Ba) phosphors,” Dalton Trans. 47(19), 6713–6721 (2018).
[Crossref]

Li, W.

Z. Sun, B. Mei, W. Li, Z. Liu, and L. Su, “Effects of Nd concentration on microstructure and optical properties of Nd:CaF2 transparent ceramics,” J. Am. Ceram. Soc. 99(12), 4039–4044 (2016).
[Crossref]

D. Yuan, W. Li, B. Mei, and J. Song, “Synthesis and characterization of Nd3+-doped CaF2 nanoparticles,” J. Nanosci. Nanotechnol. 15(12), 9741–9745 (2015).
[Crossref]

Li, X.

X. Li, Z. Xue, and H. Liu, “Hydro-thermal synthesis of PEGylated Mn2+ dopant controlled NaYF4: Yb/Er up-conversion nano-particles for multi-color tuning,” J. Alloys Compd. 681, 379–383 (2016).
[Crossref]

X. Deng, Y. Dai, J. Liu, Y. Zhou, P. Ma, Z. Cheng, Y. Chen, K. Deng, X. Li, Z. Hou, C. Li, and J. Lin, “Multifunctional hollow CaF2:Yb3+/Er3+/Mn2+-poly(2-Aminoethyl methacrylate) microspheres for Pt(IV) pro-drug delivery and tri-modal imaging,” Biomaterials 50(1), 154–163 (2015).
[Crossref]

X. Li, R. Wang, F. Zhang, L. Zhou, D. Shen, C. Yao, and D. Zhao, “Nd3+ sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800 nm,” Sci. Rep. 3(1), 3536 (2013).
[Crossref]

Li, Y.

G. Wang, Q. Peng, and Y. Li, “Upconversion luminescence of monodisperse CaF2: Yb3+/Er3+ nanocrystals,” J. Am. Chem. Soc. 131(40), 14200–14201 (2009).
[Crossref]

Liang, Z.

L. Tian, Z. Xu, S. Zhao, Y. Cui, Z. Liang, J. Zhang, and X. Xu, “The upconversion luminescence of Er3+/Yb3+/Nd3+ triply-doped β-NaYF4 nanocrystals under 808-nm excitation,” Materials 7(11), 7289–7303 (2014).
[Crossref]

Liégard, F.

F. Liégard, J. L. Doualan, R. Moncorgé, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in a codoped metaphosphate glass as a model for Yb3+ laser operation around 980 nm,” Appl. Phys. B: Lasers Opt. 80(8), 985–991 (2005).
[Crossref]

Lim, C. S.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref]

Lin, J.

B. Liu, C. Li, P. Yang, Z. Hou, and J. Lin, “808-nm-light-excited lanthanide-doped nanoparticles: rational design, luminescence control and theranostic applications,” Adv. Mater. 29(18), 1605434 (2017).
[Crossref]

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(Acrylic Acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

X. Deng, Y. Dai, J. Liu, Y. Zhou, P. Ma, Z. Cheng, Y. Chen, K. Deng, X. Li, Z. Hou, C. Li, and J. Lin, “Multifunctional hollow CaF2:Yb3+/Er3+/Mn2+-poly(2-Aminoethyl methacrylate) microspheres for Pt(IV) pro-drug delivery and tri-modal imaging,” Biomaterials 50(1), 154–163 (2015).
[Crossref]

Lin, Y.

T. Wang, Y. Lin, W. Lu, X. Guo, J. Qiu, X. Yu, Q. Zhan, S. F. Yu, and X. Xu, “Growth processes of LuF3 upconversion nanoflakes with the assistance of amorphous nanoclusters,” ACS Appl. Nano Mater. 2(8), 5254–5259 (2019).
[Crossref]

Liu, B.

B. Liu, C. Li, P. Yang, Z. Hou, and J. Lin, “808-nm-light-excited lanthanide-doped nanoparticles: rational design, luminescence control and theranostic applications,” Adv. Mater. 29(18), 1605434 (2017).
[Crossref]

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(Acrylic Acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

Liu, E.

L. Sun, E. Liu, J. Fan, X. Hu, J. Wan, J. Li, H. Li, and Y. Hu, “Fabrication and luminescence properties of Tb3+ and Tb3+/Ag-doped CaF2 microcubes,” J. Lumin. 166, 361–365 (2015).
[Crossref]

Liu, G. Y.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref]

Liu, H.

X. Li, Z. Xue, and H. Liu, “Hydro-thermal synthesis of PEGylated Mn2+ dopant controlled NaYF4: Yb/Er up-conversion nano-particles for multi-color tuning,” J. Alloys Compd. 681, 379–383 (2016).
[Crossref]

Liu, J.

Y. Shang, S. Hao, J. Liu, M. Tan, N. Wang, C. Yang, and G. Chen, “Synthesis of upconversion β-NaYF4:Nd3+/Yb3+/Er3+ particles with enhanced luminescent intensity through control of morphology and phase,” Nanomaterials 5(1), 218–232 (2015).
[Crossref]

X. Deng, Y. Dai, J. Liu, Y. Zhou, P. Ma, Z. Cheng, Y. Chen, K. Deng, X. Li, Z. Hou, C. Li, and J. Lin, “Multifunctional hollow CaF2:Yb3+/Er3+/Mn2+-poly(2-Aminoethyl methacrylate) microspheres for Pt(IV) pro-drug delivery and tri-modal imaging,” Biomaterials 50(1), 154–163 (2015).
[Crossref]

Liu, K.

K. Liu, X. Yan, Y.-J. Xu, L. Dong, L.-N. Hao, Y.-H. Song, F. Li, Y. Su, Y.-D. Wu, H.-S. Qian, W. Tao, X.-Z. Yang, W. Zhou, and Y. Lu, “Sequential growth of CaF2: Yb, Er@ CaF2: Gd nanoparticles for efficient magnetic resonance angiography and tumor diagnosis,” Biomater. Sci. 5(12), 2403–2415 (2017).
[Crossref]

Liu, L.

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core-shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref]

Liu, R.

J. Sun, H. Wang, Y. Zhang, Y. Zheng, Z. Xu, and R. Liu, “Structure and luminescent properties of electrodeposited Eu3+-doped CaF2 thin films,” Thin Solid Films 562, 478–484 (2014).
[Crossref]

Liu, X.

X. Liu, T. Li, X. Zhao, H. Suo, Z. Zhang, P. Zhao, S. Gao, and M. Niu, “808 nm-triggered optical thermometry based on up-conversion luminescence of Nd3+/Yb3+/Er3+ doped MIn2O4 (M = Ca, Sr and Ba) phosphors,” Dalton Trans. 47(19), 6713–6721 (2018).
[Crossref]

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref]

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref]

F. Wang, R. Deng, and X. Liu, “Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes,” Nat. Protoc. 9(7), 1634–1644 (2014).
[Crossref]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref]

Liu, Y.

J. Wei, W. Zheng, X. Shang, R. Li, P. Huang, Y. Liu, Z. Gong, S. Zhou, Z. Chen, and X. Chen, “Mn2+-activated calcium fluoride nanoprobes for time-resolved photoluminescence biosensing,” Sci. China Mater. 62(1), 130–137 (2019).
[Crossref]

S. Hao, G. Chen, C. Yang, W. Shao, W. Wei, Y. Liu, and P. N. Prasad, “Nd3+-sensitized multicolor upconversion luminescence from a sandwiched core/shell/shell nanostructure,” Nanoscale 9(30), 10633–10638 (2017).
[Crossref]

W. Zheng, S. Zhou, Z. Chen, P. Hu, Y. Liu, D. Tu, H. Zhu, R. Li, M. Huang, and X. Chen, “Sub-10 nm lanthanide-doped CaF2 nanoprobes for time-resolved luminescent biodetection,” Angew. Chem.-Int. Edit. 52(26), 6671–6676 (2013).
[Crossref]

Liu, Z.

Z. Sun, B. Mei, W. Li, Z. Liu, and L. Su, “Effects of Nd concentration on microstructure and optical properties of Nd:CaF2 transparent ceramics,” J. Am. Ceram. Soc. 99(12), 4039–4044 (2016).
[Crossref]

Lu, W.

T. Wang, Y. Lin, W. Lu, X. Guo, J. Qiu, X. Yu, Q. Zhan, S. F. Yu, and X. Xu, “Growth processes of LuF3 upconversion nanoflakes with the assistance of amorphous nanoclusters,” ACS Appl. Nano Mater. 2(8), 5254–5259 (2019).
[Crossref]

Lu, Y.

K. Liu, X. Yan, Y.-J. Xu, L. Dong, L.-N. Hao, Y.-H. Song, F. Li, Y. Su, Y.-D. Wu, H.-S. Qian, W. Tao, X.-Z. Yang, W. Zhou, and Y. Lu, “Sequential growth of CaF2: Yb, Er@ CaF2: Gd nanoparticles for efficient magnetic resonance angiography and tumor diagnosis,” Biomater. Sci. 5(12), 2403–2415 (2017).
[Crossref]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref]

Lüthi, S. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Ma, P.

X. Deng, Y. Dai, J. Liu, Y. Zhou, P. Ma, Z. Cheng, Y. Chen, K. Deng, X. Li, Z. Hou, C. Li, and J. Lin, “Multifunctional hollow CaF2:Yb3+/Er3+/Mn2+-poly(2-Aminoethyl methacrylate) microspheres for Pt(IV) pro-drug delivery and tri-modal imaging,” Biomaterials 50(1), 154–163 (2015).
[Crossref]

Ma, Y.

Y. Ma, Z. Yang, H. Zhang, J. Qiu, and Z. Song, “Preparation, growth mechanism, upconversion, and near-infrared photoluminescence properties of convex-lens-like NaYF4 microcrystals doped with various rare earth ions excited at 808 nm,” Cryst. Growth Des. 18(3), 1758–1767 (2018).
[Crossref]

Y. Wang, Z. Yang, Y. Ma, Z. Chai, J. Qiu, and Z. Song, “Upconversion emission enhancement mechanisms of Nd3+-sensitized NaYF4:Yb3+, Er3+ nanoparticles using tunable plasmonic Au films: plasmonic-induced excitation, radiative decays rate and energy-transfer enhancement,” J. Mater. Chem. C 5(33), 8535–8544 (2017).
[Crossref]

B. Xu, H. He, Z. Gu, S. Jin, Y. Ma, and T. Zhai, “Improving 800 nm triggered upconversion emission for lanthanide-doped CaF2 nanoparticles through sodium ion doping,” J. Phys. Chem. C 121(33), 18280–18287 (2017).
[Crossref]

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref]

Maestro, L. M.

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref]

Maia, L. J. Q.

L. J. Q. Maia, J. Thomas, Y. Ledemi, K. V. Krishnaiah, D. Seletskiy, Y. Messaddeq, and R. Kashyap, “Photonic properties of novel Yb3+ doped germanium-lead oxyfluoride glass-ceramics for laser cooling applications,” Front. Optoelectron. 11(2), 189–198 (2018).
[Crossref]

Makishima, A.

M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 85(1), 29–37 (1999).
[Crossref]

Mambrini, A.

P. Dolcet, A. Mambrini, M. Pedroni, A. Speghini, S. Gialanella, M. Casarin, and S. Gross, “Room temperature crystallization of highly luminescent lanthanide-doped CaF2 in nanosized droplets: first example of the synthesis of metal halogenide in miniemulsion with effective doping and size control,” RSC Adv. 5(21), 16302–16310 (2015).
[Crossref]

Marcos, H. M.

T. Kushida, H. M. Marcos, and J. E. Geusic, “Laser transition cross section and fluorescence branching ratio for Nd3+ in yttrium aluminum garnet,” Phys. Rev. 167(2), 289–291 (1968).
[Crossref]

Mei, B.

Z. Sun, B. Mei, W. Li, Z. Liu, and L. Su, “Effects of Nd concentration on microstructure and optical properties of Nd:CaF2 transparent ceramics,” J. Am. Ceram. Soc. 99(12), 4039–4044 (2016).
[Crossref]

D. Yuan, W. Li, B. Mei, and J. Song, “Synthesis and characterization of Nd3+-doped CaF2 nanoparticles,” J. Nanosci. Nanotechnol. 15(12), 9741–9745 (2015).
[Crossref]

Menon, D.

S. Sasidharan, A. Jayasree, S. Fazal, M. Koyakutty, S. V. Nair, and D. Menon, “Ambient temperature synthesis of citrate stabilized and biofunctionalized, fluorescent calcium fluoride nanocrystals for targeted labeling of cancer cells,” Biomater. Sci. 1(3), 294–305 (2013).
[Crossref]

Messaddeq, Y.

L. J. Q. Maia, J. Thomas, Y. Ledemi, K. V. Krishnaiah, D. Seletskiy, Y. Messaddeq, and R. Kashyap, “Photonic properties of novel Yb3+ doped germanium-lead oxyfluoride glass-ceramics for laser cooling applications,” Front. Optoelectron. 11(2), 189–198 (2018).
[Crossref]

K. V. Krishnaiah, Y. Ledemi, C. Genevois, E. Veron, X. Sauvage, S. Morency, E. S. de Lima Filho, G. Nemova, M. Allix, Y. Messaddeq, and R. Kashyap, “Ytterbium-doped oxyfluoride nano-glass-ceramic fibers for laser cooling,” Opt. Mater. Express 7(6), 1980–1994 (2017).
[Crossref]

K. V. Krishnaiah, Y. Ledemi, E. S. de Lima Filho, G. Nemova, Y. Messaddeq, and R. Kashyap, “Development of Yb3+-doped oxyfluoride glass-ceramics with low OH− content containing CaF2 nanocrystals for optical refrigeration,” Opt. Eng. 56(1), 011103 (2016).
[Crossref]

Moncorgé, R.

F. Liégard, J. L. Doualan, R. Moncorgé, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in a codoped metaphosphate glass as a model for Yb3+ laser operation around 980 nm,” Appl. Phys. B: Lasers Opt. 80(8), 985–991 (2005).
[Crossref]

Morency, S.

Nair, S. V.

S. Sasidharan, A. Jayasree, S. Fazal, M. Koyakutty, S. V. Nair, and D. Menon, “Ambient temperature synthesis of citrate stabilized and biofunctionalized, fluorescent calcium fluoride nanocrystals for targeted labeling of cancer cells,” Biomater. Sci. 1(3), 294–305 (2013).
[Crossref]

Nemova, G.

K. V. Krishnaiah, Y. Ledemi, C. Genevois, E. Veron, X. Sauvage, S. Morency, E. S. de Lima Filho, G. Nemova, M. Allix, Y. Messaddeq, and R. Kashyap, “Ytterbium-doped oxyfluoride nano-glass-ceramic fibers for laser cooling,” Opt. Mater. Express 7(6), 1980–1994 (2017).
[Crossref]

K. V. Krishnaiah, Y. Ledemi, E. S. de Lima Filho, G. Nemova, Y. Messaddeq, and R. Kashyap, “Development of Yb3+-doped oxyfluoride glass-ceramics with low OH− content containing CaF2 nanocrystals for optical refrigeration,” Opt. Eng. 56(1), 011103 (2016).
[Crossref]

E. S. de Lima Filho, M. Quintanilla, F. Vetrone, G. Nemova, V. K. Kummara, and R. Kashyap, “Characterization of fluoride nanocrystals for optical refrigeration,” in Laser Refrigeration of Solids VIII (International Society for Optics and Photonics, 2015), 9380, p. 93800Q.

Niu, M.

X. Liu, T. Li, X. Zhao, H. Suo, Z. Zhang, P. Zhao, S. Gao, and M. Niu, “808 nm-triggered optical thermometry based on up-conversion luminescence of Nd3+/Yb3+/Er3+ doped MIn2O4 (M = Ca, Sr and Ba) phosphors,” Dalton Trans. 47(19), 6713–6721 (2018).
[Crossref]

Pedroni, M.

P. Dolcet, A. Mambrini, M. Pedroni, A. Speghini, S. Gialanella, M. Casarin, and S. Gross, “Room temperature crystallization of highly luminescent lanthanide-doped CaF2 in nanosized droplets: first example of the synthesis of metal halogenide in miniemulsion with effective doping and size control,” RSC Adv. 5(21), 16302–16310 (2015).
[Crossref]

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref]

Peng, Q.

G. Wang, Q. Peng, and Y. Li, “Upconversion luminescence of monodisperse CaF2: Yb3+/Er3+ nanocrystals,” J. Am. Chem. Soc. 131(40), 14200–14201 (2009).
[Crossref]

Pi, D.

F. Wang, X. Fan, D. Pi, and M. Wang, “Synthesis and luminescence behavior of Eu3+-doped CaF2 nanoparticles,” Solid State Commun. 133(12), 775–779 (2005).
[Crossref]

Piccinelli, F.

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref]

Pollnau, M.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Prasad, P. N.

S. Hao, G. Chen, C. Yang, W. Shao, W. Wei, Y. Liu, and P. N. Prasad, “Nd3+-sensitized multicolor upconversion luminescence from a sandwiched core/shell/shell nanostructure,” Nanoscale 9(30), 10633–10638 (2017).
[Crossref]

Przybylska, D.

D. Przybylska, A. Ekner-Grzyb, B. F. Grześkowiak, and T. Grzyb, “Upconverting SrF2 nanoparticles doped with Yb3+/Ho3+, Yb3+/Er3+ and Yb3+/Tm3+ ions–optimisation of synthesis method, structural, spectroscopic and cytotoxicity studies,” Sci. Rep. 9(1), 8669 (2019).
[Crossref]

Qian, H.-S.

K. Liu, X. Yan, Y.-J. Xu, L. Dong, L.-N. Hao, Y.-H. Song, F. Li, Y. Su, Y.-D. Wu, H.-S. Qian, W. Tao, X.-Z. Yang, W. Zhou, and Y. Lu, “Sequential growth of CaF2: Yb, Er@ CaF2: Gd nanoparticles for efficient magnetic resonance angiography and tumor diagnosis,” Biomater. Sci. 5(12), 2403–2415 (2017).
[Crossref]

Qin, F.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref]

Qiu, J.

T. Wang, Y. Lin, W. Lu, X. Guo, J. Qiu, X. Yu, Q. Zhan, S. F. Yu, and X. Xu, “Growth processes of LuF3 upconversion nanoflakes with the assistance of amorphous nanoclusters,” ACS Appl. Nano Mater. 2(8), 5254–5259 (2019).
[Crossref]

Y. Ma, Z. Yang, H. Zhang, J. Qiu, and Z. Song, “Preparation, growth mechanism, upconversion, and near-infrared photoluminescence properties of convex-lens-like NaYF4 microcrystals doped with various rare earth ions excited at 808 nm,” Cryst. Growth Des. 18(3), 1758–1767 (2018).
[Crossref]

Y. Wang, Z. Yang, Y. Ma, Z. Chai, J. Qiu, and Z. Song, “Upconversion emission enhancement mechanisms of Nd3+-sensitized NaYF4:Yb3+, Er3+ nanoparticles using tunable plasmonic Au films: plasmonic-induced excitation, radiative decays rate and energy-transfer enhancement,” J. Mater. Chem. C 5(33), 8535–8544 (2017).
[Crossref]

T. Wang, H. Yu, C. K. Siu, J. Qiu, X. Xu, and S. F. Yu, “White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods,” ACS Photonics 4(6), 1539–1543 (2017).
[Crossref]

B. Shao, Z. Yang, Y. Wang, J. Li, J. Yang, J. Qiu, and Z. Song, “Coupling of Ag nanoparticle with inverse opal photonic crystals as a novel strategy for upconversion emission enhancement of NaYF4: Yb3+, Er3+ nanoparticles,” ACS Appl. Mater. Interfaces 7(45), 25211–25218 (2015).
[Crossref]

Quintanilla, M.

E. S. de Lima Filho, M. Quintanilla, F. Vetrone, G. Nemova, V. K. Kummara, and R. Kashyap, “Characterization of fluoride nanocrystals for optical refrigeration,” in Laser Refrigeration of Solids VIII (International Society for Optics and Photonics, 2015), 9380, p. 93800Q.

Ramírez-Hernández, J. E.

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref]

Resch-Genger, U.

L. M. Wiesholler, F. Frenzel, B. Grauel, C. Würth, U. Resch-Genger, and T. Hirsch, “Yb, Nd, Er-doped upconversion nanoparticles: 980 nm versus 808 nm excitation,” Nanoscale 11(28), 13440–13449 (2019).
[Crossref]

Ricci, P. C.

P. C. Ricci, A. Casu, G. De Giudici, P. Scardi, and A. Anedda, “Phonon confinement effect in calcium fluoride nanoparticles,” Chem. Phys. Lett. 444(1-3), 145–148 (2007).
[Crossref]

Sadeghi, E.

M. Zahedifar and E. Sadeghi, “Synthesis and dosimetric properties of the novel thermoluminescent CaF2:Tm nanoparticles,” Radiat. Phys. Chem. 81(12), 1856–1861 (2012).
[Crossref]

Sanz-Rodriguez, F.

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref]

Sasidharan, S.

S. Sasidharan, A. Jayasree, S. Fazal, M. Koyakutty, S. V. Nair, and D. Menon, “Ambient temperature synthesis of citrate stabilized and biofunctionalized, fluorescent calcium fluoride nanocrystals for targeted labeling of cancer cells,” Biomater. Sci. 1(3), 294–305 (2013).
[Crossref]

Sauvage, X.

Sbarbati, A.

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref]

Scardi, P.

P. C. Ricci, A. Casu, G. De Giudici, P. Scardi, and A. Anedda, “Phonon confinement effect in calcium fluoride nanoparticles,” Chem. Phys. Lett. 444(1-3), 145–148 (2007).
[Crossref]

Scully, M. O.

Seletskiy, D.

L. J. Q. Maia, J. Thomas, Y. Ledemi, K. V. Krishnaiah, D. Seletskiy, Y. Messaddeq, and R. Kashyap, “Photonic properties of novel Yb3+ doped germanium-lead oxyfluoride glass-ceramics for laser cooling applications,” Front. Optoelectron. 11(2), 189–198 (2018).
[Crossref]

Shang, X.

J. Wei, W. Zheng, X. Shang, R. Li, P. Huang, Y. Liu, Z. Gong, S. Zhou, Z. Chen, and X. Chen, “Mn2+-activated calcium fluoride nanoprobes for time-resolved photoluminescence biosensing,” Sci. China Mater. 62(1), 130–137 (2019).
[Crossref]

Shang, Y.

Y. Shang, S. Hao, J. Liu, M. Tan, N. Wang, C. Yang, and G. Chen, “Synthesis of upconversion β-NaYF4:Nd3+/Yb3+/Er3+ particles with enhanced luminescent intensity through control of morphology and phase,” Nanomaterials 5(1), 218–232 (2015).
[Crossref]

Shao, B.

B. Shao, Z. Yang, Y. Wang, J. Li, J. Yang, J. Qiu, and Z. Song, “Coupling of Ag nanoparticle with inverse opal photonic crystals as a novel strategy for upconversion emission enhancement of NaYF4: Yb3+, Er3+ nanoparticles,” ACS Appl. Mater. Interfaces 7(45), 25211–25218 (2015).
[Crossref]

Shao, W.

S. Hao, G. Chen, C. Yang, W. Shao, W. Wei, Y. Liu, and P. N. Prasad, “Nd3+-sensitized multicolor upconversion luminescence from a sandwiched core/shell/shell nanostructure,” Nanoscale 9(30), 10633–10638 (2017).
[Crossref]

Shen, D.

X. Li, R. Wang, F. Zhang, L. Zhou, D. Shen, C. Yao, and D. Zhao, “Nd3+ sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800 nm,” Sci. Rep. 3(1), 3536 (2013).
[Crossref]

Shen, J.

J. Shen, G. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
[Crossref]

Shi, B.

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref]

Siu, C. K.

T. Wang, H. Yu, C. K. Siu, J. Qiu, X. Xu, and S. F. Yu, “White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods,” ACS Photonics 4(6), 1539–1543 (2017).
[Crossref]

Soga, K.

M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 85(1), 29–37 (1999).
[Crossref]

Sokolov, A. V.

Solé, J. G.

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref]

Song, J.

D. Yuan, W. Li, B. Mei, and J. Song, “Synthesis and characterization of Nd3+-doped CaF2 nanoparticles,” J. Nanosci. Nanotechnol. 15(12), 9741–9745 (2015).
[Crossref]

Song, Y.-H.

K. Liu, X. Yan, Y.-J. Xu, L. Dong, L.-N. Hao, Y.-H. Song, F. Li, Y. Su, Y.-D. Wu, H.-S. Qian, W. Tao, X.-Z. Yang, W. Zhou, and Y. Lu, “Sequential growth of CaF2: Yb, Er@ CaF2: Gd nanoparticles for efficient magnetic resonance angiography and tumor diagnosis,” Biomater. Sci. 5(12), 2403–2415 (2017).
[Crossref]

Song, Z.

Y. Ma, Z. Yang, H. Zhang, J. Qiu, and Z. Song, “Preparation, growth mechanism, upconversion, and near-infrared photoluminescence properties of convex-lens-like NaYF4 microcrystals doped with various rare earth ions excited at 808 nm,” Cryst. Growth Des. 18(3), 1758–1767 (2018).
[Crossref]

Y. Wang, Z. Yang, Y. Ma, Z. Chai, J. Qiu, and Z. Song, “Upconversion emission enhancement mechanisms of Nd3+-sensitized NaYF4:Yb3+, Er3+ nanoparticles using tunable plasmonic Au films: plasmonic-induced excitation, radiative decays rate and energy-transfer enhancement,” J. Mater. Chem. C 5(33), 8535–8544 (2017).
[Crossref]

B. Shao, Z. Yang, Y. Wang, J. Li, J. Yang, J. Qiu, and Z. Song, “Coupling of Ag nanoparticle with inverse opal photonic crystals as a novel strategy for upconversion emission enhancement of NaYF4: Yb3+, Er3+ nanoparticles,” ACS Appl. Mater. Interfaces 7(45), 25211–25218 (2015).
[Crossref]

Speghini, A.

P. Dolcet, A. Mambrini, M. Pedroni, A. Speghini, S. Gialanella, M. Casarin, and S. Gross, “Room temperature crystallization of highly luminescent lanthanide-doped CaF2 in nanosized droplets: first example of the synthesis of metal halogenide in miniemulsion with effective doping and size control,” RSC Adv. 5(21), 16302–16310 (2015).
[Crossref]

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref]

Su, L.

Z. Sun, B. Mei, W. Li, Z. Liu, and L. Su, “Effects of Nd concentration on microstructure and optical properties of Nd:CaF2 transparent ceramics,” J. Am. Ceram. Soc. 99(12), 4039–4044 (2016).
[Crossref]

Su, Y.

K. Liu, X. Yan, Y.-J. Xu, L. Dong, L.-N. Hao, Y.-H. Song, F. Li, Y. Su, Y.-D. Wu, H.-S. Qian, W. Tao, X.-Z. Yang, W. Zhou, and Y. Lu, “Sequential growth of CaF2: Yb, Er@ CaF2: Gd nanoparticles for efficient magnetic resonance angiography and tumor diagnosis,” Biomater. Sci. 5(12), 2403–2415 (2017).
[Crossref]

Sun, J.

J. Sun, H. Wang, Y. Zhang, Y. Zheng, Z. Xu, and R. Liu, “Structure and luminescent properties of electrodeposited Eu3+-doped CaF2 thin films,” Thin Solid Films 562, 478–484 (2014).
[Crossref]

Sun, L.

L. Sun, E. Liu, J. Fan, X. Hu, J. Wan, J. Li, H. Li, and Y. Hu, “Fabrication and luminescence properties of Tb3+ and Tb3+/Ag-doped CaF2 microcubes,” J. Lumin. 166, 361–365 (2015).
[Crossref]

Sun, L. D.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref]

Sun, Z.

Z. Sun, B. Mei, W. Li, Z. Liu, and L. Su, “Effects of Nd concentration on microstructure and optical properties of Nd:CaF2 transparent ceramics,” J. Am. Ceram. Soc. 99(12), 4039–4044 (2016).
[Crossref]

Suo, H.

H. Suo, X. Zhao, Z. Zhang, Y. Wu, and C. Guo, “Upconverting LuVO4:Nd3+/Yb3+/Er3+@SiO2@Cu2S Hollow nanoplatforms for self-monitored photothermal ablation,” ACS Appl. Mater. Interfaces 10(46), 39912–39920 (2018).
[Crossref]

X. Liu, T. Li, X. Zhao, H. Suo, Z. Zhang, P. Zhao, S. Gao, and M. Niu, “808 nm-triggered optical thermometry based on up-conversion luminescence of Nd3+/Yb3+/Er3+ doped MIn2O4 (M = Ca, Sr and Ba) phosphors,” Dalton Trans. 47(19), 6713–6721 (2018).
[Crossref]

Talib, A. J.

Tan, M.

Y. Shang, S. Hao, J. Liu, M. Tan, N. Wang, C. Yang, and G. Chen, “Synthesis of upconversion β-NaYF4:Nd3+/Yb3+/Er3+ particles with enhanced luminescent intensity through control of morphology and phase,” Nanomaterials 5(1), 218–232 (2015).
[Crossref]

Tao, W.

K. Liu, X. Yan, Y.-J. Xu, L. Dong, L.-N. Hao, Y.-H. Song, F. Li, Y. Su, Y.-D. Wu, H.-S. Qian, W. Tao, X.-Z. Yang, W. Zhou, and Y. Lu, “Sequential growth of CaF2: Yb, Er@ CaF2: Gd nanoparticles for efficient magnetic resonance angiography and tumor diagnosis,” Biomater. Sci. 5(12), 2403–2415 (2017).
[Crossref]

Thomas, J.

L. J. Q. Maia, J. Thomas, Y. Ledemi, K. V. Krishnaiah, D. Seletskiy, Y. Messaddeq, and R. Kashyap, “Photonic properties of novel Yb3+ doped germanium-lead oxyfluoride glass-ceramics for laser cooling applications,” Front. Optoelectron. 11(2), 189–198 (2018).
[Crossref]

Tian, G.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref]

Tian, L.

L. Tian, Z. Xu, S. Zhao, Y. Cui, Z. Liang, J. Zhang, and X. Xu, “The upconversion luminescence of Er3+/Yb3+/Nd3+ triply-doped β-NaYF4 nanocrystals under 808-nm excitation,” Materials 7(11), 7289–7303 (2014).
[Crossref]

Tsuda, M.

M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 85(1), 29–37 (1999).
[Crossref]

Tu, D.

W. Zheng, S. Zhou, Z. Chen, P. Hu, Y. Liu, D. Tu, H. Zhu, R. Li, M. Huang, and X. Chen, “Sub-10 nm lanthanide-doped CaF2 nanoprobes for time-resolved luminescent biodetection,” Angew. Chem.-Int. Edit. 52(26), 6671–6676 (2013).
[Crossref]

Veron, E.

Vetrone, F.

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref]

E. S. de Lima Filho, M. Quintanilla, F. Vetrone, G. Nemova, V. K. Kummara, and R. Kashyap, “Characterization of fluoride nanocrystals for optical refrigeration,” in Laser Refrigeration of Solids VIII (International Society for Optics and Photonics, 2015), 9380, p. 93800Q.

Vu, A. M.

J. Shen, G. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
[Crossref]

Wan, J.

L. Sun, E. Liu, J. Fan, X. Hu, J. Wan, J. Li, H. Li, and Y. Hu, “Fabrication and luminescence properties of Tb3+ and Tb3+/Ag-doped CaF2 microcubes,” J. Lumin. 166, 361–365 (2015).
[Crossref]

Wang, F.

F. Wang, R. Deng, and X. Liu, “Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes,” Nat. Protoc. 9(7), 1634–1644 (2014).
[Crossref]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref]

F. Wang, X. Fan, D. Pi, and M. Wang, “Synthesis and luminescence behavior of Eu3+-doped CaF2 nanoparticles,” Solid State Commun. 133(12), 775–779 (2005).
[Crossref]

Wang, G.

G. Wang, Q. Peng, and Y. Li, “Upconversion luminescence of monodisperse CaF2: Yb3+/Er3+ nanocrystals,” J. Am. Chem. Soc. 131(40), 14200–14201 (2009).
[Crossref]

Wang, H.

X. Yang, M. Yuan, R. Wang, X. Zhao, Z. Yang, K. Han, H. Wang, and X. Xu, “Simultaneous size manipulation and red upconversion luminescence enhancement of CaF2:Yb3+/Ho3+ nanoparticles by doping with Ce3+ ions,” RSC Adv. 9(23), 13201–13206 (2019).
[Crossref]

M. Yuan, R. Wang, C. Zhang, Z. Yang, X. Yang, K. Han, J. Ye, H. Wang, and X. Xu, “Revisiting the enhanced red upconversion emission from a single β-NaYF4:Yb/Er microcrystal by doping with Mn2+ ions,” Nanoscale Res. Lett. 14(1), 103 (2019).
[Crossref]

M. Yuan, R. Wang, C. Zhang, Z. Yang, W. Cui, X. Yang, N. Xiao, H. Wang, and X. Xu, “Exploiting the silent upconversion emissions from a single β-NaYF4:Yb/Er microcrystal via saturated excitation,” J. Mater. Chem. C 6(38), 10226–10232 (2018).
[Crossref]

R. Wang, M. Yuan, C. Zhang, H. Wang, and X. Xu, “Tunable multicolor and enhanced red emission of monodisperse CaF2:Yb3+/Ho3+ microspheres via Mn2+ doping,” Opt. Mater. 79, 403–407 (2018).
[Crossref]

J. Sun, H. Wang, Y. Zhang, Y. Zheng, Z. Xu, and R. Liu, “Structure and luminescent properties of electrodeposited Eu3+-doped CaF2 thin films,” Thin Solid Films 562, 478–484 (2014).
[Crossref]

Wang, J.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref]

Wang, M.

F. Wang, X. Fan, D. Pi, and M. Wang, “Synthesis and luminescence behavior of Eu3+-doped CaF2 nanoparticles,” Solid State Commun. 133(12), 775–779 (2005).
[Crossref]

Wang, N.

Y. Shang, S. Hao, J. Liu, M. Tan, N. Wang, C. Yang, and G. Chen, “Synthesis of upconversion β-NaYF4:Nd3+/Yb3+/Er3+ particles with enhanced luminescent intensity through control of morphology and phase,” Nanomaterials 5(1), 218–232 (2015).
[Crossref]

Wang, R.

X. Yang, M. Yuan, R. Wang, X. Zhao, Z. Yang, K. Han, H. Wang, and X. Xu, “Simultaneous size manipulation and red upconversion luminescence enhancement of CaF2:Yb3+/Ho3+ nanoparticles by doping with Ce3+ ions,” RSC Adv. 9(23), 13201–13206 (2019).
[Crossref]

M. Yuan, R. Wang, C. Zhang, Z. Yang, X. Yang, K. Han, J. Ye, H. Wang, and X. Xu, “Revisiting the enhanced red upconversion emission from a single β-NaYF4:Yb/Er microcrystal by doping with Mn2+ ions,” Nanoscale Res. Lett. 14(1), 103 (2019).
[Crossref]

M. Yuan, R. Wang, C. Zhang, Z. Yang, W. Cui, X. Yang, N. Xiao, H. Wang, and X. Xu, “Exploiting the silent upconversion emissions from a single β-NaYF4:Yb/Er microcrystal via saturated excitation,” J. Mater. Chem. C 6(38), 10226–10232 (2018).
[Crossref]

R. Wang, M. Yuan, C. Zhang, H. Wang, and X. Xu, “Tunable multicolor and enhanced red emission of monodisperse CaF2:Yb3+/Ho3+ microspheres via Mn2+ doping,” Opt. Mater. 79, 403–407 (2018).
[Crossref]

X. Li, R. Wang, F. Zhang, L. Zhou, D. Shen, C. Yao, and D. Zhao, “Nd3+ sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800 nm,” Sci. Rep. 3(1), 3536 (2013).
[Crossref]

Wang, T.

T. Wang, Y. Lin, W. Lu, X. Guo, J. Qiu, X. Yu, Q. Zhan, S. F. Yu, and X. Xu, “Growth processes of LuF3 upconversion nanoflakes with the assistance of amorphous nanoclusters,” ACS Appl. Nano Mater. 2(8), 5254–5259 (2019).
[Crossref]

T. Wang, H. Yu, C. K. Siu, J. Qiu, X. Xu, and S. F. Yu, “White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods,” ACS Photonics 4(6), 1539–1543 (2017).
[Crossref]

Wang, Y.

Y. Wang, Z. Yang, Y. Ma, Z. Chai, J. Qiu, and Z. Song, “Upconversion emission enhancement mechanisms of Nd3+-sensitized NaYF4:Yb3+, Er3+ nanoparticles using tunable plasmonic Au films: plasmonic-induced excitation, radiative decays rate and energy-transfer enhancement,” J. Mater. Chem. C 5(33), 8535–8544 (2017).
[Crossref]

B. Shao, Z. Yang, Y. Wang, J. Li, J. Yang, J. Qiu, and Z. Song, “Coupling of Ag nanoparticle with inverse opal photonic crystals as a novel strategy for upconversion emission enhancement of NaYF4: Yb3+, Er3+ nanoparticles,” ACS Appl. Mater. Interfaces 7(45), 25211–25218 (2015).
[Crossref]

Wang, Y. F.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref]

Wei, J.

J. Wei, W. Zheng, X. Shang, R. Li, P. Huang, Y. Liu, Z. Gong, S. Zhou, Z. Chen, and X. Chen, “Mn2+-activated calcium fluoride nanoprobes for time-resolved photoluminescence biosensing,” Sci. China Mater. 62(1), 130–137 (2019).
[Crossref]

Wei, W.

S. Hao, G. Chen, C. Yang, W. Shao, W. Wei, Y. Liu, and P. N. Prasad, “Nd3+-sensitized multicolor upconversion luminescence from a sandwiched core/shell/shell nanostructure,” Nanoscale 9(30), 10633–10638 (2017).
[Crossref]

Wiesholler, L. M.

L. M. Wiesholler, F. Frenzel, B. Grauel, C. Würth, U. Resch-Genger, and T. Hirsch, “Yb, Nd, Er-doped upconversion nanoparticles: 980 nm versus 808 nm excitation,” Nanoscale 11(28), 13440–13449 (2019).
[Crossref]

Wu, Y.

H. Suo, X. Zhao, Z. Zhang, Y. Wu, and C. Guo, “Upconverting LuVO4:Nd3+/Yb3+/Er3+@SiO2@Cu2S Hollow nanoplatforms for self-monitored photothermal ablation,” ACS Appl. Mater. Interfaces 10(46), 39912–39920 (2018).
[Crossref]

Wu, Y.-D.

K. Liu, X. Yan, Y.-J. Xu, L. Dong, L.-N. Hao, Y.-H. Song, F. Li, Y. Su, Y.-D. Wu, H.-S. Qian, W. Tao, X.-Z. Yang, W. Zhou, and Y. Lu, “Sequential growth of CaF2: Yb, Er@ CaF2: Gd nanoparticles for efficient magnetic resonance angiography and tumor diagnosis,” Biomater. Sci. 5(12), 2403–2415 (2017).
[Crossref]

Würth, C.

L. M. Wiesholler, F. Frenzel, B. Grauel, C. Würth, U. Resch-Genger, and T. Hirsch, “Yb, Nd, Er-doped upconversion nanoparticles: 980 nm versus 808 nm excitation,” Nanoscale 11(28), 13440–13449 (2019).
[Crossref]

Xiao, J. W.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref]

Xiao, N.

M. Yuan, R. Wang, C. Zhang, Z. Yang, W. Cui, X. Yang, N. Xiao, H. Wang, and X. Xu, “Exploiting the silent upconversion emissions from a single β-NaYF4:Yb/Er microcrystal via saturated excitation,” J. Mater. Chem. C 6(38), 10226–10232 (2018).
[Crossref]

Xu, B.

B. Xu, H. He, Z. Gu, S. Jin, Y. Ma, and T. Zhai, “Improving 800 nm triggered upconversion emission for lanthanide-doped CaF2 nanoparticles through sodium ion doping,” J. Phys. Chem. C 121(33), 18280–18287 (2017).
[Crossref]

Xu, J.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref]

Xu, X.

M. Yuan, R. Wang, C. Zhang, Z. Yang, X. Yang, K. Han, J. Ye, H. Wang, and X. Xu, “Revisiting the enhanced red upconversion emission from a single β-NaYF4:Yb/Er microcrystal by doping with Mn2+ ions,” Nanoscale Res. Lett. 14(1), 103 (2019).
[Crossref]

T. Wang, Y. Lin, W. Lu, X. Guo, J. Qiu, X. Yu, Q. Zhan, S. F. Yu, and X. Xu, “Growth processes of LuF3 upconversion nanoflakes with the assistance of amorphous nanoclusters,” ACS Appl. Nano Mater. 2(8), 5254–5259 (2019).
[Crossref]

X. Yang, M. Yuan, R. Wang, X. Zhao, Z. Yang, K. Han, H. Wang, and X. Xu, “Simultaneous size manipulation and red upconversion luminescence enhancement of CaF2:Yb3+/Ho3+ nanoparticles by doping with Ce3+ ions,” RSC Adv. 9(23), 13201–13206 (2019).
[Crossref]

R. Wang, M. Yuan, C. Zhang, H. Wang, and X. Xu, “Tunable multicolor and enhanced red emission of monodisperse CaF2:Yb3+/Ho3+ microspheres via Mn2+ doping,” Opt. Mater. 79, 403–407 (2018).
[Crossref]

M. Yuan, R. Wang, C. Zhang, Z. Yang, W. Cui, X. Yang, N. Xiao, H. Wang, and X. Xu, “Exploiting the silent upconversion emissions from a single β-NaYF4:Yb/Er microcrystal via saturated excitation,” J. Mater. Chem. C 6(38), 10226–10232 (2018).
[Crossref]

T. Wang, H. Yu, C. K. Siu, J. Qiu, X. Xu, and S. F. Yu, “White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods,” ACS Photonics 4(6), 1539–1543 (2017).
[Crossref]

L. Tian, Z. Xu, S. Zhao, Y. Cui, Z. Liang, J. Zhang, and X. Xu, “The upconversion luminescence of Er3+/Yb3+/Nd3+ triply-doped β-NaYF4 nanocrystals under 808-nm excitation,” Materials 7(11), 7289–7303 (2014).
[Crossref]

Xu, Y.-J.

K. Liu, X. Yan, Y.-J. Xu, L. Dong, L.-N. Hao, Y.-H. Song, F. Li, Y. Su, Y.-D. Wu, H.-S. Qian, W. Tao, X.-Z. Yang, W. Zhou, and Y. Lu, “Sequential growth of CaF2: Yb, Er@ CaF2: Gd nanoparticles for efficient magnetic resonance angiography and tumor diagnosis,” Biomater. Sci. 5(12), 2403–2415 (2017).
[Crossref]

Xu, Z.

J. Sun, H. Wang, Y. Zhang, Y. Zheng, Z. Xu, and R. Liu, “Structure and luminescent properties of electrodeposited Eu3+-doped CaF2 thin films,” Thin Solid Films 562, 478–484 (2014).
[Crossref]

L. Tian, Z. Xu, S. Zhao, Y. Cui, Z. Liang, J. Zhang, and X. Xu, “The upconversion luminescence of Er3+/Yb3+/Nd3+ triply-doped β-NaYF4 nanocrystals under 808-nm excitation,” Materials 7(11), 7289–7303 (2014).
[Crossref]

Xue, Z.

X. Li, Z. Xue, and H. Liu, “Hydro-thermal synthesis of PEGylated Mn2+ dopant controlled NaYF4: Yb/Er up-conversion nano-particles for multi-color tuning,” J. Alloys Compd. 681, 379–383 (2016).
[Crossref]

Yan, C. H.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref]

Yan, X.

K. Liu, X. Yan, Y.-J. Xu, L. Dong, L.-N. Hao, Y.-H. Song, F. Li, Y. Su, Y.-D. Wu, H.-S. Qian, W. Tao, X.-Z. Yang, W. Zhou, and Y. Lu, “Sequential growth of CaF2: Yb, Er@ CaF2: Gd nanoparticles for efficient magnetic resonance angiography and tumor diagnosis,” Biomater. Sci. 5(12), 2403–2415 (2017).
[Crossref]

Yang, C.

S. Hao, G. Chen, C. Yang, W. Shao, W. Wei, Y. Liu, and P. N. Prasad, “Nd3+-sensitized multicolor upconversion luminescence from a sandwiched core/shell/shell nanostructure,” Nanoscale 9(30), 10633–10638 (2017).
[Crossref]

Y. Shang, S. Hao, J. Liu, M. Tan, N. Wang, C. Yang, and G. Chen, “Synthesis of upconversion β-NaYF4:Nd3+/Yb3+/Er3+ particles with enhanced luminescent intensity through control of morphology and phase,” Nanomaterials 5(1), 218–232 (2015).
[Crossref]

Yang, J.

B. Shao, Z. Yang, Y. Wang, J. Li, J. Yang, J. Qiu, and Z. Song, “Coupling of Ag nanoparticle with inverse opal photonic crystals as a novel strategy for upconversion emission enhancement of NaYF4: Yb3+, Er3+ nanoparticles,” ACS Appl. Mater. Interfaces 7(45), 25211–25218 (2015).
[Crossref]

Yang, P.

B. Liu, C. Li, P. Yang, Z. Hou, and J. Lin, “808-nm-light-excited lanthanide-doped nanoparticles: rational design, luminescence control and theranostic applications,” Adv. Mater. 29(18), 1605434 (2017).
[Crossref]

Yang, X.

M. Yuan, R. Wang, C. Zhang, Z. Yang, X. Yang, K. Han, J. Ye, H. Wang, and X. Xu, “Revisiting the enhanced red upconversion emission from a single β-NaYF4:Yb/Er microcrystal by doping with Mn2+ ions,” Nanoscale Res. Lett. 14(1), 103 (2019).
[Crossref]

X. Yang, M. Yuan, R. Wang, X. Zhao, Z. Yang, K. Han, H. Wang, and X. Xu, “Simultaneous size manipulation and red upconversion luminescence enhancement of CaF2:Yb3+/Ho3+ nanoparticles by doping with Ce3+ ions,” RSC Adv. 9(23), 13201–13206 (2019).
[Crossref]

M. Yuan, R. Wang, C. Zhang, Z. Yang, W. Cui, X. Yang, N. Xiao, H. Wang, and X. Xu, “Exploiting the silent upconversion emissions from a single β-NaYF4:Yb/Er microcrystal via saturated excitation,” J. Mater. Chem. C 6(38), 10226–10232 (2018).
[Crossref]

Yang, X.-Z.

K. Liu, X. Yan, Y.-J. Xu, L. Dong, L.-N. Hao, Y.-H. Song, F. Li, Y. Su, Y.-D. Wu, H.-S. Qian, W. Tao, X.-Z. Yang, W. Zhou, and Y. Lu, “Sequential growth of CaF2: Yb, Er@ CaF2: Gd nanoparticles for efficient magnetic resonance angiography and tumor diagnosis,” Biomater. Sci. 5(12), 2403–2415 (2017).
[Crossref]

Yang, Y.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref]

Yang, Z.

X. Yang, M. Yuan, R. Wang, X. Zhao, Z. Yang, K. Han, H. Wang, and X. Xu, “Simultaneous size manipulation and red upconversion luminescence enhancement of CaF2:Yb3+/Ho3+ nanoparticles by doping with Ce3+ ions,” RSC Adv. 9(23), 13201–13206 (2019).
[Crossref]

M. Yuan, R. Wang, C. Zhang, Z. Yang, X. Yang, K. Han, J. Ye, H. Wang, and X. Xu, “Revisiting the enhanced red upconversion emission from a single β-NaYF4:Yb/Er microcrystal by doping with Mn2+ ions,” Nanoscale Res. Lett. 14(1), 103 (2019).
[Crossref]

M. Yuan, R. Wang, C. Zhang, Z. Yang, W. Cui, X. Yang, N. Xiao, H. Wang, and X. Xu, “Exploiting the silent upconversion emissions from a single β-NaYF4:Yb/Er microcrystal via saturated excitation,” J. Mater. Chem. C 6(38), 10226–10232 (2018).
[Crossref]

Y. Ma, Z. Yang, H. Zhang, J. Qiu, and Z. Song, “Preparation, growth mechanism, upconversion, and near-infrared photoluminescence properties of convex-lens-like NaYF4 microcrystals doped with various rare earth ions excited at 808 nm,” Cryst. Growth Des. 18(3), 1758–1767 (2018).
[Crossref]

Y. Wang, Z. Yang, Y. Ma, Z. Chai, J. Qiu, and Z. Song, “Upconversion emission enhancement mechanisms of Nd3+-sensitized NaYF4:Yb3+, Er3+ nanoparticles using tunable plasmonic Au films: plasmonic-induced excitation, radiative decays rate and energy-transfer enhancement,” J. Mater. Chem. C 5(33), 8535–8544 (2017).
[Crossref]

B. Shao, Z. Yang, Y. Wang, J. Li, J. Yang, J. Qiu, and Z. Song, “Coupling of Ag nanoparticle with inverse opal photonic crystals as a novel strategy for upconversion emission enhancement of NaYF4: Yb3+, Er3+ nanoparticles,” ACS Appl. Mater. Interfaces 7(45), 25211–25218 (2015).
[Crossref]

Yao, C.

X. Li, R. Wang, F. Zhang, L. Zhou, D. Shen, C. Yao, and D. Zhao, “Nd3+ sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800 nm,” Sci. Rep. 3(1), 3536 (2013).
[Crossref]

Yao, J.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref]

Ye, J.

M. Yuan, R. Wang, C. Zhang, Z. Yang, X. Yang, K. Han, J. Ye, H. Wang, and X. Xu, “Revisiting the enhanced red upconversion emission from a single β-NaYF4:Yb/Er microcrystal by doping with Mn2+ ions,” Nanoscale Res. Lett. 14(1), 103 (2019).
[Crossref]

Yu, H.

T. Wang, H. Yu, C. K. Siu, J. Qiu, X. Xu, and S. F. Yu, “White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods,” ACS Photonics 4(6), 1539–1543 (2017).
[Crossref]

Yu, J. S.

P. Du, X. Huang, and J. S. Yu, “Yb3+-concentration dependent upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ codoped Gd2MoO6 nanocrystals prepared by a facile citric-assisted sol–gel method,” Inorg. Chem. Front. 4(12), 1987–1995 (2017).
[Crossref]

Yu, S. F.

T. Wang, Y. Lin, W. Lu, X. Guo, J. Qiu, X. Yu, Q. Zhan, S. F. Yu, and X. Xu, “Growth processes of LuF3 upconversion nanoflakes with the assistance of amorphous nanoclusters,” ACS Appl. Nano Mater. 2(8), 5254–5259 (2019).
[Crossref]

T. Wang, H. Yu, C. K. Siu, J. Qiu, X. Xu, and S. F. Yu, “White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods,” ACS Photonics 4(6), 1539–1543 (2017).
[Crossref]

Yu, X.

T. Wang, Y. Lin, W. Lu, X. Guo, J. Qiu, X. Yu, Q. Zhan, S. F. Yu, and X. Xu, “Growth processes of LuF3 upconversion nanoflakes with the assistance of amorphous nanoclusters,” ACS Appl. Nano Mater. 2(8), 5254–5259 (2019).
[Crossref]

Yuan, D.

D. Yuan, W. Li, B. Mei, and J. Song, “Synthesis and characterization of Nd3+-doped CaF2 nanoparticles,” J. Nanosci. Nanotechnol. 15(12), 9741–9745 (2015).
[Crossref]

Yuan, M.

M. Yuan, R. Wang, C. Zhang, Z. Yang, X. Yang, K. Han, J. Ye, H. Wang, and X. Xu, “Revisiting the enhanced red upconversion emission from a single β-NaYF4:Yb/Er microcrystal by doping with Mn2+ ions,” Nanoscale Res. Lett. 14(1), 103 (2019).
[Crossref]

X. Yang, M. Yuan, R. Wang, X. Zhao, Z. Yang, K. Han, H. Wang, and X. Xu, “Simultaneous size manipulation and red upconversion luminescence enhancement of CaF2:Yb3+/Ho3+ nanoparticles by doping with Ce3+ ions,” RSC Adv. 9(23), 13201–13206 (2019).
[Crossref]

R. Wang, M. Yuan, C. Zhang, H. Wang, and X. Xu, “Tunable multicolor and enhanced red emission of monodisperse CaF2:Yb3+/Ho3+ microspheres via Mn2+ doping,” Opt. Mater. 79, 403–407 (2018).
[Crossref]

M. Yuan, R. Wang, C. Zhang, Z. Yang, W. Cui, X. Yang, N. Xiao, H. Wang, and X. Xu, “Exploiting the silent upconversion emissions from a single β-NaYF4:Yb/Er microcrystal via saturated excitation,” J. Mater. Chem. C 6(38), 10226–10232 (2018).
[Crossref]

Zahedifar, M.

M. Zahedifar and E. Sadeghi, “Synthesis and dosimetric properties of the novel thermoluminescent CaF2:Tm nanoparticles,” Radiat. Phys. Chem. 81(12), 1856–1861 (2012).
[Crossref]

Zhai, T.

B. Xu, H. He, Z. Gu, S. Jin, Y. Ma, and T. Zhai, “Improving 800 nm triggered upconversion emission for lanthanide-doped CaF2 nanoparticles through sodium ion doping,” J. Phys. Chem. C 121(33), 18280–18287 (2017).
[Crossref]

Zhan, Q.

T. Wang, Y. Lin, W. Lu, X. Guo, J. Qiu, X. Yu, Q. Zhan, S. F. Yu, and X. Xu, “Growth processes of LuF3 upconversion nanoflakes with the assistance of amorphous nanoclusters,” ACS Appl. Nano Mater. 2(8), 5254–5259 (2019).
[Crossref]

Zhang, C.

M. Yuan, R. Wang, C. Zhang, Z. Yang, X. Yang, K. Han, J. Ye, H. Wang, and X. Xu, “Revisiting the enhanced red upconversion emission from a single β-NaYF4:Yb/Er microcrystal by doping with Mn2+ ions,” Nanoscale Res. Lett. 14(1), 103 (2019).
[Crossref]

M. Yuan, R. Wang, C. Zhang, Z. Yang, W. Cui, X. Yang, N. Xiao, H. Wang, and X. Xu, “Exploiting the silent upconversion emissions from a single β-NaYF4:Yb/Er microcrystal via saturated excitation,” J. Mater. Chem. C 6(38), 10226–10232 (2018).
[Crossref]

R. Wang, M. Yuan, C. Zhang, H. Wang, and X. Xu, “Tunable multicolor and enhanced red emission of monodisperse CaF2:Yb3+/Ho3+ microspheres via Mn2+ doping,” Opt. Mater. 79, 403–407 (2018).
[Crossref]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref]

Zhang, F.

X. Li, R. Wang, F. Zhang, L. Zhou, D. Shen, C. Yao, and D. Zhao, “Nd3+ sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800 nm,” Sci. Rep. 3(1), 3536 (2013).
[Crossref]

Zhang, H.

Y. Ma, Z. Yang, H. Zhang, J. Qiu, and Z. Song, “Preparation, growth mechanism, upconversion, and near-infrared photoluminescence properties of convex-lens-like NaYF4 microcrystals doped with various rare earth ions excited at 808 nm,” Cryst. Growth Des. 18(3), 1758–1767 (2018).
[Crossref]

Zhang, J.

L. Tian, Z. Xu, S. Zhao, Y. Cui, Z. Liang, J. Zhang, and X. Xu, “The upconversion luminescence of Er3+/Yb3+/Nd3+ triply-doped β-NaYF4 nanocrystals under 808-nm excitation,” Materials 7(11), 7289–7303 (2014).
[Crossref]

Zhang, Y.

J. Sun, H. Wang, Y. Zhang, Y. Zheng, Z. Xu, and R. Liu, “Structure and luminescent properties of electrodeposited Eu3+-doped CaF2 thin films,” Thin Solid Films 562, 478–484 (2014).
[Crossref]

Zhang, Z.

H. Suo, X. Zhao, Z. Zhang, Y. Wu, and C. Guo, “Upconverting LuVO4:Nd3+/Yb3+/Er3+@SiO2@Cu2S Hollow nanoplatforms for self-monitored photothermal ablation,” ACS Appl. Mater. Interfaces 10(46), 39912–39920 (2018).
[Crossref]

X. Liu, T. Li, X. Zhao, H. Suo, Z. Zhang, P. Zhao, S. Gao, and M. Niu, “808 nm-triggered optical thermometry based on up-conversion luminescence of Nd3+/Yb3+/Er3+ doped MIn2O4 (M = Ca, Sr and Ba) phosphors,” Dalton Trans. 47(19), 6713–6721 (2018).
[Crossref]

Zhao, D.

X. Li, R. Wang, F. Zhang, L. Zhou, D. Shen, C. Yao, and D. Zhao, “Nd3+ sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800 nm,” Sci. Rep. 3(1), 3536 (2013).
[Crossref]

Zhao, P.

X. Liu, T. Li, X. Zhao, H. Suo, Z. Zhang, P. Zhao, S. Gao, and M. Niu, “808 nm-triggered optical thermometry based on up-conversion luminescence of Nd3+/Yb3+/Er3+ doped MIn2O4 (M = Ca, Sr and Ba) phosphors,” Dalton Trans. 47(19), 6713–6721 (2018).
[Crossref]

Zhao, S.

L. Tian, Z. Xu, S. Zhao, Y. Cui, Z. Liang, J. Zhang, and X. Xu, “The upconversion luminescence of Er3+/Yb3+/Nd3+ triply-doped β-NaYF4 nanocrystals under 808-nm excitation,” Materials 7(11), 7289–7303 (2014).
[Crossref]

Zhao, X.

X. Yang, M. Yuan, R. Wang, X. Zhao, Z. Yang, K. Han, H. Wang, and X. Xu, “Simultaneous size manipulation and red upconversion luminescence enhancement of CaF2:Yb3+/Ho3+ nanoparticles by doping with Ce3+ ions,” RSC Adv. 9(23), 13201–13206 (2019).
[Crossref]

H. Suo, X. Zhao, Z. Zhang, Y. Wu, and C. Guo, “Upconverting LuVO4:Nd3+/Yb3+/Er3+@SiO2@Cu2S Hollow nanoplatforms for self-monitored photothermal ablation,” ACS Appl. Mater. Interfaces 10(46), 39912–39920 (2018).
[Crossref]

X. Liu, T. Li, X. Zhao, H. Suo, Z. Zhang, P. Zhao, S. Gao, and M. Niu, “808 nm-triggered optical thermometry based on up-conversion luminescence of Nd3+/Yb3+/Er3+ doped MIn2O4 (M = Ca, Sr and Ba) phosphors,” Dalton Trans. 47(19), 6713–6721 (2018).
[Crossref]

Zhao, Y.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref]

Zheng, W.

J. Wei, W. Zheng, X. Shang, R. Li, P. Huang, Y. Liu, Z. Gong, S. Zhou, Z. Chen, and X. Chen, “Mn2+-activated calcium fluoride nanoprobes for time-resolved photoluminescence biosensing,” Sci. China Mater. 62(1), 130–137 (2019).
[Crossref]

W. Zheng, S. Zhou, Z. Chen, P. Hu, Y. Liu, D. Tu, H. Zhu, R. Li, M. Huang, and X. Chen, “Sub-10 nm lanthanide-doped CaF2 nanoprobes for time-resolved luminescent biodetection,” Angew. Chem.-Int. Edit. 52(26), 6671–6676 (2013).
[Crossref]

Zheng, Y.

J. Sun, H. Wang, Y. Zhang, Y. Zheng, Z. Xu, and R. Liu, “Structure and luminescent properties of electrodeposited Eu3+-doped CaF2 thin films,” Thin Solid Films 562, 478–484 (2014).
[Crossref]

Zhong, J.

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core-shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref]

Zhong, Y.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref]

Zhou, B.

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref]

Zhou, J. C.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref]

Zhou, L.

X. Li, R. Wang, F. Zhang, L. Zhou, D. Shen, C. Yao, and D. Zhao, “Nd3+ sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800 nm,” Sci. Rep. 3(1), 3536 (2013).
[Crossref]

Zhou, S.

J. Wei, W. Zheng, X. Shang, R. Li, P. Huang, Y. Liu, Z. Gong, S. Zhou, Z. Chen, and X. Chen, “Mn2+-activated calcium fluoride nanoprobes for time-resolved photoluminescence biosensing,” Sci. China Mater. 62(1), 130–137 (2019).
[Crossref]

W. Zheng, S. Zhou, Z. Chen, P. Hu, Y. Liu, D. Tu, H. Zhu, R. Li, M. Huang, and X. Chen, “Sub-10 nm lanthanide-doped CaF2 nanoprobes for time-resolved luminescent biodetection,” Angew. Chem.-Int. Edit. 52(26), 6671–6676 (2013).
[Crossref]

Zhou, W.

K. Liu, X. Yan, Y.-J. Xu, L. Dong, L.-N. Hao, Y.-H. Song, F. Li, Y. Su, Y.-D. Wu, H.-S. Qian, W. Tao, X.-Z. Yang, W. Zhou, and Y. Lu, “Sequential growth of CaF2: Yb, Er@ CaF2: Gd nanoparticles for efficient magnetic resonance angiography and tumor diagnosis,” Biomater. Sci. 5(12), 2403–2415 (2017).
[Crossref]

Zhou, Y.

X. Deng, Y. Dai, J. Liu, Y. Zhou, P. Ma, Z. Cheng, Y. Chen, K. Deng, X. Li, Z. Hou, C. Li, and J. Lin, “Multifunctional hollow CaF2:Yb3+/Er3+/Mn2+-poly(2-Aminoethyl methacrylate) microspheres for Pt(IV) pro-drug delivery and tri-modal imaging,” Biomaterials 50(1), 154–163 (2015).
[Crossref]

Zhu, H.

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(Acrylic Acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

W. Zheng, S. Zhou, Z. Chen, P. Hu, Y. Liu, D. Tu, H. Zhu, R. Li, M. Huang, and X. Chen, “Sub-10 nm lanthanide-doped CaF2 nanoprobes for time-resolved luminescent biodetection,” Angew. Chem.-Int. Edit. 52(26), 6671–6676 (2013).
[Crossref]

ACS Appl. Mater. Interfaces (2)

B. Shao, Z. Yang, Y. Wang, J. Li, J. Yang, J. Qiu, and Z. Song, “Coupling of Ag nanoparticle with inverse opal photonic crystals as a novel strategy for upconversion emission enhancement of NaYF4: Yb3+, Er3+ nanoparticles,” ACS Appl. Mater. Interfaces 7(45), 25211–25218 (2015).
[Crossref]

H. Suo, X. Zhao, Z. Zhang, Y. Wu, and C. Guo, “Upconverting LuVO4:Nd3+/Yb3+/Er3+@SiO2@Cu2S Hollow nanoplatforms for self-monitored photothermal ablation,” ACS Appl. Mater. Interfaces 10(46), 39912–39920 (2018).
[Crossref]

ACS Appl. Nano Mater. (1)

T. Wang, Y. Lin, W. Lu, X. Guo, J. Qiu, X. Yu, Q. Zhan, S. F. Yu, and X. Xu, “Growth processes of LuF3 upconversion nanoflakes with the assistance of amorphous nanoclusters,” ACS Appl. Nano Mater. 2(8), 5254–5259 (2019).
[Crossref]

ACS Nano (2)

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref]

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref]

ACS Photonics (1)

T. Wang, H. Yu, C. K. Siu, J. Qiu, X. Xu, and S. F. Yu, “White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods,” ACS Photonics 4(6), 1539–1543 (2017).
[Crossref]

Adv. Funct. Mater. (1)

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(Acrylic Acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

Adv. Mater. (2)

B. Liu, C. Li, P. Yang, Z. Hou, and J. Lin, “808-nm-light-excited lanthanide-doped nanoparticles: rational design, luminescence control and theranostic applications,” Adv. Mater. 29(18), 1605434 (2017).
[Crossref]

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles,” Adv. Mater. 26(18), 2831–2837 (2014).
[Crossref]

Adv. Opt. Mater. (1)

J. Shen, G. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang, and G. Han, “Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm,” Adv. Opt. Mater. 1(9), 644–650 (2013).
[Crossref]

Angew. Chem.-Int. Edit. (1)

W. Zheng, S. Zhou, Z. Chen, P. Hu, Y. Liu, D. Tu, H. Zhu, R. Li, M. Huang, and X. Chen, “Sub-10 nm lanthanide-doped CaF2 nanoprobes for time-resolved luminescent biodetection,” Angew. Chem.-Int. Edit. 52(26), 6671–6676 (2013).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

F. Liégard, J. L. Doualan, R. Moncorgé, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in a codoped metaphosphate glass as a model for Yb3+ laser operation around 980 nm,” Appl. Phys. B: Lasers Opt. 80(8), 985–991 (2005).
[Crossref]

Biomater. Sci. (2)

S. Sasidharan, A. Jayasree, S. Fazal, M. Koyakutty, S. V. Nair, and D. Menon, “Ambient temperature synthesis of citrate stabilized and biofunctionalized, fluorescent calcium fluoride nanocrystals for targeted labeling of cancer cells,” Biomater. Sci. 1(3), 294–305 (2013).
[Crossref]

K. Liu, X. Yan, Y.-J. Xu, L. Dong, L.-N. Hao, Y.-H. Song, F. Li, Y. Su, Y.-D. Wu, H.-S. Qian, W. Tao, X.-Z. Yang, W. Zhou, and Y. Lu, “Sequential growth of CaF2: Yb, Er@ CaF2: Gd nanoparticles for efficient magnetic resonance angiography and tumor diagnosis,” Biomater. Sci. 5(12), 2403–2415 (2017).
[Crossref]

Biomaterials (1)

X. Deng, Y. Dai, J. Liu, Y. Zhou, P. Ma, Z. Cheng, Y. Chen, K. Deng, X. Li, Z. Hou, C. Li, and J. Lin, “Multifunctional hollow CaF2:Yb3+/Er3+/Mn2+-poly(2-Aminoethyl methacrylate) microspheres for Pt(IV) pro-drug delivery and tri-modal imaging,” Biomaterials 50(1), 154–163 (2015).
[Crossref]

Chem. Phys. Lett. (1)

P. C. Ricci, A. Casu, G. De Giudici, P. Scardi, and A. Anedda, “Phonon confinement effect in calcium fluoride nanoparticles,” Chem. Phys. Lett. 444(1-3), 145–148 (2007).
[Crossref]

Cryst. Growth Des. (1)

Y. Ma, Z. Yang, H. Zhang, J. Qiu, and Z. Song, “Preparation, growth mechanism, upconversion, and near-infrared photoluminescence properties of convex-lens-like NaYF4 microcrystals doped with various rare earth ions excited at 808 nm,” Cryst. Growth Des. 18(3), 1758–1767 (2018).
[Crossref]

Dalton Trans. (2)

X. Liu, T. Li, X. Zhao, H. Suo, Z. Zhang, P. Zhao, S. Gao, and M. Niu, “808 nm-triggered optical thermometry based on up-conversion luminescence of Nd3+/Yb3+/Er3+ doped MIn2O4 (M = Ca, Sr and Ba) phosphors,” Dalton Trans. 47(19), 6713–6721 (2018).
[Crossref]

M. R. Hamblin, “Upconversion in photodynamic therapy: plumbing the depths,” Dalton Trans. 47(26), 8571–8580 (2018).
[Crossref]

Front. Optoelectron. (1)

L. J. Q. Maia, J. Thomas, Y. Ledemi, K. V. Krishnaiah, D. Seletskiy, Y. Messaddeq, and R. Kashyap, “Photonic properties of novel Yb3+ doped germanium-lead oxyfluoride glass-ceramics for laser cooling applications,” Front. Optoelectron. 11(2), 189–198 (2018).
[Crossref]

Inorg. Chem. Front. (1)

P. Du, X. Huang, and J. S. Yu, “Yb3+-concentration dependent upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ codoped Gd2MoO6 nanocrystals prepared by a facile citric-assisted sol–gel method,” Inorg. Chem. Front. 4(12), 1987–1995 (2017).
[Crossref]

J. Alloys Compd. (1)

X. Li, Z. Xue, and H. Liu, “Hydro-thermal synthesis of PEGylated Mn2+ dopant controlled NaYF4: Yb/Er up-conversion nano-particles for multi-color tuning,” J. Alloys Compd. 681, 379–383 (2016).
[Crossref]

J. Am. Ceram. Soc. (1)

Z. Sun, B. Mei, W. Li, Z. Liu, and L. Su, “Effects of Nd concentration on microstructure and optical properties of Nd:CaF2 transparent ceramics,” J. Am. Ceram. Soc. 99(12), 4039–4044 (2016).
[Crossref]

J. Am. Chem. Soc. (1)

G. Wang, Q. Peng, and Y. Li, “Upconversion luminescence of monodisperse CaF2: Yb3+/Er3+ nanocrystals,” J. Am. Chem. Soc. 131(40), 14200–14201 (2009).
[Crossref]

J. Appl. Phys. (1)

M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 85(1), 29–37 (1999).
[Crossref]

J. Lumin. (1)

L. Sun, E. Liu, J. Fan, X. Hu, J. Wan, J. Li, H. Li, and Y. Hu, “Fabrication and luminescence properties of Tb3+ and Tb3+/Ag-doped CaF2 microcubes,” J. Lumin. 166, 361–365 (2015).
[Crossref]

J. Mater. Chem. C (2)

Y. Wang, Z. Yang, Y. Ma, Z. Chai, J. Qiu, and Z. Song, “Upconversion emission enhancement mechanisms of Nd3+-sensitized NaYF4:Yb3+, Er3+ nanoparticles using tunable plasmonic Au films: plasmonic-induced excitation, radiative decays rate and energy-transfer enhancement,” J. Mater. Chem. C 5(33), 8535–8544 (2017).
[Crossref]

M. Yuan, R. Wang, C. Zhang, Z. Yang, W. Cui, X. Yang, N. Xiao, H. Wang, and X. Xu, “Exploiting the silent upconversion emissions from a single β-NaYF4:Yb/Er microcrystal via saturated excitation,” J. Mater. Chem. C 6(38), 10226–10232 (2018).
[Crossref]

J. Nanosci. Nanotechnol. (1)

D. Yuan, W. Li, B. Mei, and J. Song, “Synthesis and characterization of Nd3+-doped CaF2 nanoparticles,” J. Nanosci. Nanotechnol. 15(12), 9741–9745 (2015).
[Crossref]

J. Phys. Chem. C (1)

B. Xu, H. He, Z. Gu, S. Jin, Y. Ma, and T. Zhai, “Improving 800 nm triggered upconversion emission for lanthanide-doped CaF2 nanoparticles through sodium ion doping,” J. Phys. Chem. C 121(33), 18280–18287 (2017).
[Crossref]

J. Phys. Chem. Lett. (1)

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core-shell nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref]

Materials (1)

L. Tian, Z. Xu, S. Zhao, Y. Cui, Z. Liang, J. Zhang, and X. Xu, “The upconversion luminescence of Er3+/Yb3+/Nd3+ triply-doped β-NaYF4 nanocrystals under 808-nm excitation,” Materials 7(11), 7289–7303 (2014).
[Crossref]

Nanomaterials (1)

Y. Shang, S. Hao, J. Liu, M. Tan, N. Wang, C. Yang, and G. Chen, “Synthesis of upconversion β-NaYF4:Nd3+/Yb3+/Er3+ particles with enhanced luminescent intensity through control of morphology and phase,” Nanomaterials 5(1), 218–232 (2015).
[Crossref]

Nanoscale (2)

L. M. Wiesholler, F. Frenzel, B. Grauel, C. Würth, U. Resch-Genger, and T. Hirsch, “Yb, Nd, Er-doped upconversion nanoparticles: 980 nm versus 808 nm excitation,” Nanoscale 11(28), 13440–13449 (2019).
[Crossref]

S. Hao, G. Chen, C. Yang, W. Shao, W. Wei, Y. Liu, and P. N. Prasad, “Nd3+-sensitized multicolor upconversion luminescence from a sandwiched core/shell/shell nanostructure,” Nanoscale 9(30), 10633–10638 (2017).
[Crossref]

Nanoscale Res. Lett. (1)

M. Yuan, R. Wang, C. Zhang, Z. Yang, X. Yang, K. Han, J. Ye, H. Wang, and X. Xu, “Revisiting the enhanced red upconversion emission from a single β-NaYF4:Yb/Er microcrystal by doping with Mn2+ ions,” Nanoscale Res. Lett. 14(1), 103 (2019).
[Crossref]

Nat. Nanotechnol. (2)

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref]

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref]

Nat. Protoc. (1)

F. Wang, R. Deng, and X. Liu, “Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes,” Nat. Protoc. 9(7), 1634–1644 (2014).
[Crossref]

Nature (1)

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref]

Opt. Eng. (1)

K. V. Krishnaiah, Y. Ledemi, E. S. de Lima Filho, G. Nemova, Y. Messaddeq, and R. Kashyap, “Development of Yb3+-doped oxyfluoride glass-ceramics with low OH− content containing CaF2 nanocrystals for optical refrigeration,” Opt. Eng. 56(1), 011103 (2016).
[Crossref]

Opt. Mater. (1)

R. Wang, M. Yuan, C. Zhang, H. Wang, and X. Xu, “Tunable multicolor and enhanced red emission of monodisperse CaF2:Yb3+/Ho3+ microspheres via Mn2+ doping,” Opt. Mater. 79, 403–407 (2018).
[Crossref]

Opt. Mater. Express (2)

Phys. Rev. (1)

T. Kushida, H. M. Marcos, and J. E. Geusic, “Laser transition cross section and fluorescence branching ratio for Nd3+ in yttrium aluminum garnet,” Phys. Rev. 167(2), 289–291 (1968).
[Crossref]

Phys. Rev. B (1)

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Radiat. Phys. Chem. (1)

M. Zahedifar and E. Sadeghi, “Synthesis and dosimetric properties of the novel thermoluminescent CaF2:Tm nanoparticles,” Radiat. Phys. Chem. 81(12), 1856–1861 (2012).
[Crossref]

RSC Adv. (2)

P. Dolcet, A. Mambrini, M. Pedroni, A. Speghini, S. Gialanella, M. Casarin, and S. Gross, “Room temperature crystallization of highly luminescent lanthanide-doped CaF2 in nanosized droplets: first example of the synthesis of metal halogenide in miniemulsion with effective doping and size control,” RSC Adv. 5(21), 16302–16310 (2015).
[Crossref]

X. Yang, M. Yuan, R. Wang, X. Zhao, Z. Yang, K. Han, H. Wang, and X. Xu, “Simultaneous size manipulation and red upconversion luminescence enhancement of CaF2:Yb3+/Ho3+ nanoparticles by doping with Ce3+ ions,” RSC Adv. 9(23), 13201–13206 (2019).
[Crossref]

Sci. China Mater. (1)

J. Wei, W. Zheng, X. Shang, R. Li, P. Huang, Y. Liu, Z. Gong, S. Zhou, Z. Chen, and X. Chen, “Mn2+-activated calcium fluoride nanoprobes for time-resolved photoluminescence biosensing,” Sci. China Mater. 62(1), 130–137 (2019).
[Crossref]

Sci. Rep. (2)

X. Li, R. Wang, F. Zhang, L. Zhou, D. Shen, C. Yao, and D. Zhao, “Nd3+ sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800 nm,” Sci. Rep. 3(1), 3536 (2013).
[Crossref]

D. Przybylska, A. Ekner-Grzyb, B. F. Grześkowiak, and T. Grzyb, “Upconverting SrF2 nanoparticles doped with Yb3+/Ho3+, Yb3+/Er3+ and Yb3+/Tm3+ ions–optimisation of synthesis method, structural, spectroscopic and cytotoxicity studies,” Sci. Rep. 9(1), 8669 (2019).
[Crossref]

Solid State Commun. (1)

F. Wang, X. Fan, D. Pi, and M. Wang, “Synthesis and luminescence behavior of Eu3+-doped CaF2 nanoparticles,” Solid State Commun. 133(12), 775–779 (2005).
[Crossref]

Thin Solid Films (1)

J. Sun, H. Wang, Y. Zhang, Y. Zheng, Z. Xu, and R. Liu, “Structure and luminescent properties of electrodeposited Eu3+-doped CaF2 thin films,” Thin Solid Films 562, 478–484 (2014).
[Crossref]

Other (1)

E. S. de Lima Filho, M. Quintanilla, F. Vetrone, G. Nemova, V. K. Kummara, and R. Kashyap, “Characterization of fluoride nanocrystals for optical refrigeration,” in Laser Refrigeration of Solids VIII (International Society for Optics and Photonics, 2015), 9380, p. 93800Q.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. TEM images of CaF2:Yb3+/Er3+/Nd3+ (20/2/x mol%) UCNPs, (a) x = 0, (b) x = 0.25, (c) x = 1, (d) x = 1.5, (e) x = 3. (f) XRD patterns of CaF2:Yb3+/Er3+/Nd3+ UCNPs, (g) Local magnification of XRD patterns between 46.6°and 47.4°.
Fig. 2.
Fig. 2. (a) Normalized UC emission spectra of CaF2:Yb3+/Er3+/Nd3+ (20/2/x mol%) UCNPs under the excitation of 808 nm CW laser at an excitation intensity of 267 W cm−2. The insets are the corresponding UC luminescence color. (b) Intensity ratios of green (539 nm) to red (656 nm) UC luminescence for CaF2:Yb3+/Er3+ (20/2 mol%) UCNPs doped with different concentrations of Nd3+ ions.
Fig. 3.
Fig. 3. The energy levels diagram for Yb3+, Er3+ and Nd3+ ions under the excitation of the 808 nm CW laser. The principle of the ET processes, non-radiative transitions, UC luminescence, and CR transitions are also presented in the diagram.
Fig. 4.
Fig. 4. UC emission intensity of CaF2:Yb3+/Er3+/Nd3+(20/2/x mol%) UCNPs as a function of excitation intensity. (a) x = 0 mol%, (b) x = 3 mol%.
Fig. 5.
Fig. 5. Time-decay curve of luminescence with different Nd3+ doping concentrations, (a) 539 nm (b) 656 nm. (c) UC emission spectra of CaF2:Yb3+/Er3+/Nd3+ (20/2/x mol%) UCNPs with different concentrations of Nd3+ ions. (d) The lifetime trends of 4S3/2 and 4F9/2 levels as a function of the Nd3+ doping concentrations.

Metrics