Abstract

Phase change nanoemulsions have been proposed as theranostic agents, using light to induce vaporization into bubbles (also called optical droplet vaporization). The current work uses perfluorohexane nanoemulsions (PFH-NEs) stabilized by a highly biocompatible and optically absorbing fluorosurfactant shell. Once vaporized, the bubbles can be used for contrast enhanced ultrasound (CEUS) imaging but also to enhance photoacoustic (PA) signals due to the presence of bubbles and optical absorbing shell material. The formation and expansion of these gas filled bubbles leads to increasing photoacoustic signals for imaging. Compared to other contrast agents which may not give stable signals due to photo-degradation, these contrast agents are shown to be stable up to 24 hours. The source of PA signal enhancement is through the presence of long lasting perfluorohexane (PFH) bubbles resulting from the optical vaporization. These bubbles generated from the PFH-NEs directly generate photoacoustic signals due to the optical absorption from the fluorosurfactant shell, but also secondary signals from the subsequent scattering of the photoacoustic waves from the PFH bubbles. In addition, the pressures generated from vaporization of NEs and ability to load chemotherapeutic agents enable these nanoparticles to also be used for cancer therapy by contributing to drug delivery and transport.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Biodegradable polymeric nanoparticles containing gold nanoparticles and Paclitaxel for cancer imaging and drug delivery using photoacoustic methods

Yanjie Wang, Eric M. Strohm, Yang Sun, Zhaoxia Wang, Yuanyi Zheng, Zhigang Wang, and Michael C. Kolios
Biomed. Opt. Express 7(10) 4125-4138 (2016)

Photoacoustic and ultrasound imaging using dual contrast perfluorocarbon nanodroplets triggered by laser pulses at 1064 nm

Alexander S. Hannah, Donald VanderLaan, Yun-Sheng Chen, and Stanislav Y. Emelianov
Biomed. Opt. Express 5(9) 3042-3052 (2014)

Development and optimization of near-IR contrast agents for immune cell tracking

Pratixa P. Joshi, Soon Joon Yoon, Yun-Sheng Chen, Stanislav Emelianov, and Konstantin V. Sokolov
Biomed. Opt. Express 4(11) 2609-2618 (2013)

References

  • View by:
  • |
  • |
  • |

  1. E. T. Ahrens and J. W. Bulte, “Tracking immune cells in vivo using magnetic resonance imaging,” Nat. Rev. Immunol. 13(10), 755–763 (2013).
    [Crossref]
  2. R. Williams, C. Wright, E. Cherin, N. Reznik, M. Lee, I. Gorelikov, F. S. Foster, N. Matsuura, and P. N. Burns, “Characterization of submicron phase-change perfluorocarbon droplets for extravascular ultrasound imaging of cancer,” Ultrasound in Medicine & Biology 39(3), 475–489 (2013).
    [Crossref]
  3. W. Tang, Z. Yang, S. Wang, Z. Wang, J. Song, G. Yu, W. Fan, Y. Dai, J. Wang, and L. Shan, “Organic semiconducting photoacoustic nanodroplets for laser-activatable ultrasound imaging and combinational cancer therapy,” ACS Nano 12(3), 2610–2622 (2018).
    [Crossref]
  4. C. A. Fraker, A. J. Mendez, L. Inverardi, C. Ricordi, and C. L. Stabler, “Optimization of perfluoro nano-scale emulsions: the importance of particle size for enhanced oxygen transfer in biomedical applications,” Colloids Surf., B 98, 26–35 (2012).
    [Crossref]
  5. H. Dewitte, B. Geers, S. Liang, U. Himmelreich, J. Demeester, S. C. De Smedt, and I. Lentacker, “Design and evaluation of theranostic perfluorocarbon particles for simultaneous antigen-loading and 19F-MRI tracking of dendritic cells,” J. Controlled Release 169(1–2), 141–149 (2013).
    [Crossref]
  6. N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, and J. Shea, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Controlled Release 153(1), 4–15 (2011).
    [Crossref]
  7. L. Yildirimer, N. T. Thanh, M. Loizidou, and A. M. Seifalian, “Toxicology and clinical potential of nanoparticles,” Nano Today 6(6), 585–607 (2011).
    [Crossref]
  8. K. Ferrara, R. Pollard, and M. Borden, “Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery,” Annu. Rev. Biomed. Eng. 9(1), 415–447 (2007).
    [Crossref]
  9. R. K. Manapuram, S. Aglyamov, F. Menodiado, M. Mashiatulla, S. Wang, S. Baranov, J. Li, S. Emelianov, and K. Larin, “Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT,” Laser Phys. 22(9), 1439–1444 (2012).
    [Crossref]
  10. J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11–12), 773–787 (2011).
    [Crossref]
  11. P. Lai, X. Xu, and L. V. Wang, “Dependence of optical scattering from Intralipid in gelatin-gel based tissue-mimicking phantoms on mixing temperature and time,” J. Biomed. Opt. 19(3), 035002 (2014).
    [Crossref]
  12. J. R. Cook, R. R. Bouchard, and S. Y. Emelianov, “Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging,” Biomed. Opt. Express 2(11), 3193–3206 (2011).
    [Crossref]
  13. L. Landini and R. Sarnelli, “Evaluation of the attenuation coefficients in normal and pathological breast tissue,” Med. Biol. Eng. Comput. 24(3), 243–247 (1986).
    [Crossref]
  14. D. A. Fernandes and M. C. Kolios, “Intrinsically absorbing photoacoustic and ultrasound contrast agents for cancer therapy and imaging,” Nanotechnology 29(50), 505103 (2018).
    [Crossref]
  15. V. J. Pansare, S. Hejazi, W. J. Faenza, and R. K. Prud’homme, “Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers,” Chem. Mater. 24(5), 812–827 (2012).
    [Crossref]
  16. M. Maturi, E. Locatelli, I. Monaco, and M. C. Franchini, “Current concepts in nanostructured contrast media development for in vivo photoacoustic imaging,” Biomater. Sci. 7(5), 1746–1775 (2019).
    [Crossref]
  17. P. K. Upputuri, K. Sivasubramanian, C. S. K. Mark, and M. Pramanik, “Recent developments in vascular imaging techniques in tissue engineering and regenerative medicine,” BioMed Res. Int. 2015, 1–9 (2015).
    [Crossref]
  18. P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging,” Ultrasound in Medicine & Biology 37(9), 1518–1530 (2011).
    [Crossref]
  19. E. Strohm, M. Rui, I. Gorelikov, N. Matsuura, and M. Kolios, “Vaporization of perfluorocarbon droplets using optical irradiation,” Biomed. Opt. Express 2(6), 1432–1442 (2011).
    [Crossref]
  20. D. A. Fernandes and M. C. Kolios, “Near-infrared absorbing nanoemulsions as nonlinear ultrasound contrast agents for cancer theranostics,” J. Mol. Liq. 287, 110848 (2019).
    [Crossref]
  21. J. Ruan, H. Song, C. Li, C. Bao, H. Fu, K. Wang, J. Ni, and D. Cui, “DiR-labeled embryonic stem cells for targeted imaging of in vivo gastric cancer cells,” Theranostics 2(6), 618–628 (2012).
    [Crossref]
  22. M. T. Berninger, P. Mohajerani, M. Wildgruber, N. Beziere, M. A. Kimm, X. Ma, B. Haller, M. J. Fleming, S. Vogt, and M. Anton, “Detection of intramyocardially injected DiR-labeled mesenchymal stem cells by optical and optoacoustic tomography,” Photoacoustics 6, 37–47 (2017).
    [Crossref]
  23. S. Tzoumas, A. Zaremba, U. Klemm, A. Nunes, K. Schaefer, and V. Ntziachristos, “Immune cell imaging using multi-spectral optoacoustic tomography,” Opt. Lett. 39(12), 3523–3526 (2014).
    [Crossref]

2019 (2)

M. Maturi, E. Locatelli, I. Monaco, and M. C. Franchini, “Current concepts in nanostructured contrast media development for in vivo photoacoustic imaging,” Biomater. Sci. 7(5), 1746–1775 (2019).
[Crossref]

D. A. Fernandes and M. C. Kolios, “Near-infrared absorbing nanoemulsions as nonlinear ultrasound contrast agents for cancer theranostics,” J. Mol. Liq. 287, 110848 (2019).
[Crossref]

2018 (2)

D. A. Fernandes and M. C. Kolios, “Intrinsically absorbing photoacoustic and ultrasound contrast agents for cancer therapy and imaging,” Nanotechnology 29(50), 505103 (2018).
[Crossref]

W. Tang, Z. Yang, S. Wang, Z. Wang, J. Song, G. Yu, W. Fan, Y. Dai, J. Wang, and L. Shan, “Organic semiconducting photoacoustic nanodroplets for laser-activatable ultrasound imaging and combinational cancer therapy,” ACS Nano 12(3), 2610–2622 (2018).
[Crossref]

2017 (1)

M. T. Berninger, P. Mohajerani, M. Wildgruber, N. Beziere, M. A. Kimm, X. Ma, B. Haller, M. J. Fleming, S. Vogt, and M. Anton, “Detection of intramyocardially injected DiR-labeled mesenchymal stem cells by optical and optoacoustic tomography,” Photoacoustics 6, 37–47 (2017).
[Crossref]

2015 (1)

P. K. Upputuri, K. Sivasubramanian, C. S. K. Mark, and M. Pramanik, “Recent developments in vascular imaging techniques in tissue engineering and regenerative medicine,” BioMed Res. Int. 2015, 1–9 (2015).
[Crossref]

2014 (2)

P. Lai, X. Xu, and L. V. Wang, “Dependence of optical scattering from Intralipid in gelatin-gel based tissue-mimicking phantoms on mixing temperature and time,” J. Biomed. Opt. 19(3), 035002 (2014).
[Crossref]

S. Tzoumas, A. Zaremba, U. Klemm, A. Nunes, K. Schaefer, and V. Ntziachristos, “Immune cell imaging using multi-spectral optoacoustic tomography,” Opt. Lett. 39(12), 3523–3526 (2014).
[Crossref]

2013 (3)

E. T. Ahrens and J. W. Bulte, “Tracking immune cells in vivo using magnetic resonance imaging,” Nat. Rev. Immunol. 13(10), 755–763 (2013).
[Crossref]

R. Williams, C. Wright, E. Cherin, N. Reznik, M. Lee, I. Gorelikov, F. S. Foster, N. Matsuura, and P. N. Burns, “Characterization of submicron phase-change perfluorocarbon droplets for extravascular ultrasound imaging of cancer,” Ultrasound in Medicine & Biology 39(3), 475–489 (2013).
[Crossref]

H. Dewitte, B. Geers, S. Liang, U. Himmelreich, J. Demeester, S. C. De Smedt, and I. Lentacker, “Design and evaluation of theranostic perfluorocarbon particles for simultaneous antigen-loading and 19F-MRI tracking of dendritic cells,” J. Controlled Release 169(1–2), 141–149 (2013).
[Crossref]

2012 (4)

C. A. Fraker, A. J. Mendez, L. Inverardi, C. Ricordi, and C. L. Stabler, “Optimization of perfluoro nano-scale emulsions: the importance of particle size for enhanced oxygen transfer in biomedical applications,” Colloids Surf., B 98, 26–35 (2012).
[Crossref]

R. K. Manapuram, S. Aglyamov, F. Menodiado, M. Mashiatulla, S. Wang, S. Baranov, J. Li, S. Emelianov, and K. Larin, “Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT,” Laser Phys. 22(9), 1439–1444 (2012).
[Crossref]

V. J. Pansare, S. Hejazi, W. J. Faenza, and R. K. Prud’homme, “Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref]

J. Ruan, H. Song, C. Li, C. Bao, H. Fu, K. Wang, J. Ni, and D. Cui, “DiR-labeled embryonic stem cells for targeted imaging of in vivo gastric cancer cells,” Theranostics 2(6), 618–628 (2012).
[Crossref]

2011 (6)

J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11–12), 773–787 (2011).
[Crossref]

J. R. Cook, R. R. Bouchard, and S. Y. Emelianov, “Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging,” Biomed. Opt. Express 2(11), 3193–3206 (2011).
[Crossref]

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging,” Ultrasound in Medicine & Biology 37(9), 1518–1530 (2011).
[Crossref]

E. Strohm, M. Rui, I. Gorelikov, N. Matsuura, and M. Kolios, “Vaporization of perfluorocarbon droplets using optical irradiation,” Biomed. Opt. Express 2(6), 1432–1442 (2011).
[Crossref]

N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, and J. Shea, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Controlled Release 153(1), 4–15 (2011).
[Crossref]

L. Yildirimer, N. T. Thanh, M. Loizidou, and A. M. Seifalian, “Toxicology and clinical potential of nanoparticles,” Nano Today 6(6), 585–607 (2011).
[Crossref]

2007 (1)

K. Ferrara, R. Pollard, and M. Borden, “Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery,” Annu. Rev. Biomed. Eng. 9(1), 415–447 (2007).
[Crossref]

1986 (1)

L. Landini and R. Sarnelli, “Evaluation of the attenuation coefficients in normal and pathological breast tissue,” Med. Biol. Eng. Comput. 24(3), 243–247 (1986).
[Crossref]

Aglyamov, S.

R. K. Manapuram, S. Aglyamov, F. Menodiado, M. Mashiatulla, S. Wang, S. Baranov, J. Li, S. Emelianov, and K. Larin, “Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT,” Laser Phys. 22(9), 1439–1444 (2012).
[Crossref]

Ahrens, E. T.

E. T. Ahrens and J. W. Bulte, “Tracking immune cells in vivo using magnetic resonance imaging,” Nat. Rev. Immunol. 13(10), 755–763 (2013).
[Crossref]

Anton, M.

M. T. Berninger, P. Mohajerani, M. Wildgruber, N. Beziere, M. A. Kimm, X. Ma, B. Haller, M. J. Fleming, S. Vogt, and M. Anton, “Detection of intramyocardially injected DiR-labeled mesenchymal stem cells by optical and optoacoustic tomography,” Photoacoustics 6, 37–47 (2017).
[Crossref]

Bao, C.

J. Ruan, H. Song, C. Li, C. Bao, H. Fu, K. Wang, J. Ni, and D. Cui, “DiR-labeled embryonic stem cells for targeted imaging of in vivo gastric cancer cells,” Theranostics 2(6), 618–628 (2012).
[Crossref]

Baranov, S.

R. K. Manapuram, S. Aglyamov, F. Menodiado, M. Mashiatulla, S. Wang, S. Baranov, J. Li, S. Emelianov, and K. Larin, “Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT,” Laser Phys. 22(9), 1439–1444 (2012).
[Crossref]

Berninger, M. T.

M. T. Berninger, P. Mohajerani, M. Wildgruber, N. Beziere, M. A. Kimm, X. Ma, B. Haller, M. J. Fleming, S. Vogt, and M. Anton, “Detection of intramyocardially injected DiR-labeled mesenchymal stem cells by optical and optoacoustic tomography,” Photoacoustics 6, 37–47 (2017).
[Crossref]

Beziere, N.

M. T. Berninger, P. Mohajerani, M. Wildgruber, N. Beziere, M. A. Kimm, X. Ma, B. Haller, M. J. Fleming, S. Vogt, and M. Anton, “Detection of intramyocardially injected DiR-labeled mesenchymal stem cells by optical and optoacoustic tomography,” Photoacoustics 6, 37–47 (2017).
[Crossref]

Borden, M.

K. Ferrara, R. Pollard, and M. Borden, “Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery,” Annu. Rev. Biomed. Eng. 9(1), 415–447 (2007).
[Crossref]

Bouchard, R. R.

Bulte, J. W.

E. T. Ahrens and J. W. Bulte, “Tracking immune cells in vivo using magnetic resonance imaging,” Nat. Rev. Immunol. 13(10), 755–763 (2013).
[Crossref]

Burns, P. N.

R. Williams, C. Wright, E. Cherin, N. Reznik, M. Lee, I. Gorelikov, F. S. Foster, N. Matsuura, and P. N. Burns, “Characterization of submicron phase-change perfluorocarbon droplets for extravascular ultrasound imaging of cancer,” Ultrasound in Medicine & Biology 39(3), 475–489 (2013).
[Crossref]

Cherin, E.

R. Williams, C. Wright, E. Cherin, N. Reznik, M. Lee, I. Gorelikov, F. S. Foster, N. Matsuura, and P. N. Burns, “Characterization of submicron phase-change perfluorocarbon droplets for extravascular ultrasound imaging of cancer,” Ultrasound in Medicine & Biology 39(3), 475–489 (2013).
[Crossref]

Cook, J. R.

Cui, D.

J. Ruan, H. Song, C. Li, C. Bao, H. Fu, K. Wang, J. Ni, and D. Cui, “DiR-labeled embryonic stem cells for targeted imaging of in vivo gastric cancer cells,” Theranostics 2(6), 618–628 (2012).
[Crossref]

Dai, Y.

W. Tang, Z. Yang, S. Wang, Z. Wang, J. Song, G. Yu, W. Fan, Y. Dai, J. Wang, and L. Shan, “Organic semiconducting photoacoustic nanodroplets for laser-activatable ultrasound imaging and combinational cancer therapy,” ACS Nano 12(3), 2610–2622 (2018).
[Crossref]

Dayton, P. A.

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging,” Ultrasound in Medicine & Biology 37(9), 1518–1530 (2011).
[Crossref]

De Smedt, S. C.

H. Dewitte, B. Geers, S. Liang, U. Himmelreich, J. Demeester, S. C. De Smedt, and I. Lentacker, “Design and evaluation of theranostic perfluorocarbon particles for simultaneous antigen-loading and 19F-MRI tracking of dendritic cells,” J. Controlled Release 169(1–2), 141–149 (2013).
[Crossref]

Demeester, J.

H. Dewitte, B. Geers, S. Liang, U. Himmelreich, J. Demeester, S. C. De Smedt, and I. Lentacker, “Design and evaluation of theranostic perfluorocarbon particles for simultaneous antigen-loading and 19F-MRI tracking of dendritic cells,” J. Controlled Release 169(1–2), 141–149 (2013).
[Crossref]

Dewitte, H.

H. Dewitte, B. Geers, S. Liang, U. Himmelreich, J. Demeester, S. C. De Smedt, and I. Lentacker, “Design and evaluation of theranostic perfluorocarbon particles for simultaneous antigen-loading and 19F-MRI tracking of dendritic cells,” J. Controlled Release 169(1–2), 141–149 (2013).
[Crossref]

Emelianov, S.

R. K. Manapuram, S. Aglyamov, F. Menodiado, M. Mashiatulla, S. Wang, S. Baranov, J. Li, S. Emelianov, and K. Larin, “Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT,” Laser Phys. 22(9), 1439–1444 (2012).
[Crossref]

Emelianov, S. Y.

Faenza, W. J.

V. J. Pansare, S. Hejazi, W. J. Faenza, and R. K. Prud’homme, “Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref]

Fan, W.

W. Tang, Z. Yang, S. Wang, Z. Wang, J. Song, G. Yu, W. Fan, Y. Dai, J. Wang, and L. Shan, “Organic semiconducting photoacoustic nanodroplets for laser-activatable ultrasound imaging and combinational cancer therapy,” ACS Nano 12(3), 2610–2622 (2018).
[Crossref]

Feingold, S.

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging,” Ultrasound in Medicine & Biology 37(9), 1518–1530 (2011).
[Crossref]

Fernandes, D. A.

D. A. Fernandes and M. C. Kolios, “Near-infrared absorbing nanoemulsions as nonlinear ultrasound contrast agents for cancer theranostics,” J. Mol. Liq. 287, 110848 (2019).
[Crossref]

D. A. Fernandes and M. C. Kolios, “Intrinsically absorbing photoacoustic and ultrasound contrast agents for cancer therapy and imaging,” Nanotechnology 29(50), 505103 (2018).
[Crossref]

Ferrara, K.

K. Ferrara, R. Pollard, and M. Borden, “Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery,” Annu. Rev. Biomed. Eng. 9(1), 415–447 (2007).
[Crossref]

Fleming, M. J.

M. T. Berninger, P. Mohajerani, M. Wildgruber, N. Beziere, M. A. Kimm, X. Ma, B. Haller, M. J. Fleming, S. Vogt, and M. Anton, “Detection of intramyocardially injected DiR-labeled mesenchymal stem cells by optical and optoacoustic tomography,” Photoacoustics 6, 37–47 (2017).
[Crossref]

Foster, F. S.

R. Williams, C. Wright, E. Cherin, N. Reznik, M. Lee, I. Gorelikov, F. S. Foster, N. Matsuura, and P. N. Burns, “Characterization of submicron phase-change perfluorocarbon droplets for extravascular ultrasound imaging of cancer,” Ultrasound in Medicine & Biology 39(3), 475–489 (2013).
[Crossref]

Fraker, C. A.

C. A. Fraker, A. J. Mendez, L. Inverardi, C. Ricordi, and C. L. Stabler, “Optimization of perfluoro nano-scale emulsions: the importance of particle size for enhanced oxygen transfer in biomedical applications,” Colloids Surf., B 98, 26–35 (2012).
[Crossref]

Franchini, M. C.

M. Maturi, E. Locatelli, I. Monaco, and M. C. Franchini, “Current concepts in nanostructured contrast media development for in vivo photoacoustic imaging,” Biomater. Sci. 7(5), 1746–1775 (2019).
[Crossref]

Fu, H.

J. Ruan, H. Song, C. Li, C. Bao, H. Fu, K. Wang, J. Ni, and D. Cui, “DiR-labeled embryonic stem cells for targeted imaging of in vivo gastric cancer cells,” Theranostics 2(6), 618–628 (2012).
[Crossref]

Gao, Z.

N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, and J. Shea, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Controlled Release 153(1), 4–15 (2011).
[Crossref]

Geers, B.

H. Dewitte, B. Geers, S. Liang, U. Himmelreich, J. Demeester, S. C. De Smedt, and I. Lentacker, “Design and evaluation of theranostic perfluorocarbon particles for simultaneous antigen-loading and 19F-MRI tracking of dendritic cells,” J. Controlled Release 169(1–2), 141–149 (2013).
[Crossref]

Gorelikov, I.

R. Williams, C. Wright, E. Cherin, N. Reznik, M. Lee, I. Gorelikov, F. S. Foster, N. Matsuura, and P. N. Burns, “Characterization of submicron phase-change perfluorocarbon droplets for extravascular ultrasound imaging of cancer,” Ultrasound in Medicine & Biology 39(3), 475–489 (2013).
[Crossref]

E. Strohm, M. Rui, I. Gorelikov, N. Matsuura, and M. Kolios, “Vaporization of perfluorocarbon droplets using optical irradiation,” Biomed. Opt. Express 2(6), 1432–1442 (2011).
[Crossref]

Gupta, R.

N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, and J. Shea, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Controlled Release 153(1), 4–15 (2011).
[Crossref]

Haller, B.

M. T. Berninger, P. Mohajerani, M. Wildgruber, N. Beziere, M. A. Kimm, X. Ma, B. Haller, M. J. Fleming, S. Vogt, and M. Anton, “Detection of intramyocardially injected DiR-labeled mesenchymal stem cells by optical and optoacoustic tomography,” Photoacoustics 6, 37–47 (2017).
[Crossref]

Hejazi, S.

V. J. Pansare, S. Hejazi, W. J. Faenza, and R. K. Prud’homme, “Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref]

Himmelreich, U.

H. Dewitte, B. Geers, S. Liang, U. Himmelreich, J. Demeester, S. C. De Smedt, and I. Lentacker, “Design and evaluation of theranostic perfluorocarbon particles for simultaneous antigen-loading and 19F-MRI tracking of dendritic cells,” J. Controlled Release 169(1–2), 141–149 (2013).
[Crossref]

Inverardi, L.

C. A. Fraker, A. J. Mendez, L. Inverardi, C. Ricordi, and C. L. Stabler, “Optimization of perfluoro nano-scale emulsions: the importance of particle size for enhanced oxygen transfer in biomedical applications,” Colloids Surf., B 98, 26–35 (2012).
[Crossref]

Kim, T.

N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, and J. Shea, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Controlled Release 153(1), 4–15 (2011).
[Crossref]

Kimm, M. A.

M. T. Berninger, P. Mohajerani, M. Wildgruber, N. Beziere, M. A. Kimm, X. Ma, B. Haller, M. J. Fleming, S. Vogt, and M. Anton, “Detection of intramyocardially injected DiR-labeled mesenchymal stem cells by optical and optoacoustic tomography,” Photoacoustics 6, 37–47 (2017).
[Crossref]

Klemm, U.

Kolios, M.

Kolios, M. C.

D. A. Fernandes and M. C. Kolios, “Near-infrared absorbing nanoemulsions as nonlinear ultrasound contrast agents for cancer theranostics,” J. Mol. Liq. 287, 110848 (2019).
[Crossref]

D. A. Fernandes and M. C. Kolios, “Intrinsically absorbing photoacoustic and ultrasound contrast agents for cancer therapy and imaging,” Nanotechnology 29(50), 505103 (2018).
[Crossref]

Lai, P.

P. Lai, X. Xu, and L. V. Wang, “Dependence of optical scattering from Intralipid in gelatin-gel based tissue-mimicking phantoms on mixing temperature and time,” J. Biomed. Opt. 19(3), 035002 (2014).
[Crossref]

Landini, L.

L. Landini and R. Sarnelli, “Evaluation of the attenuation coefficients in normal and pathological breast tissue,” Med. Biol. Eng. Comput. 24(3), 243–247 (1986).
[Crossref]

Larin, K.

R. K. Manapuram, S. Aglyamov, F. Menodiado, M. Mashiatulla, S. Wang, S. Baranov, J. Li, S. Emelianov, and K. Larin, “Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT,” Laser Phys. 22(9), 1439–1444 (2012).
[Crossref]

Lee, M.

R. Williams, C. Wright, E. Cherin, N. Reznik, M. Lee, I. Gorelikov, F. S. Foster, N. Matsuura, and P. N. Burns, “Characterization of submicron phase-change perfluorocarbon droplets for extravascular ultrasound imaging of cancer,” Ultrasound in Medicine & Biology 39(3), 475–489 (2013).
[Crossref]

Lentacker, I.

H. Dewitte, B. Geers, S. Liang, U. Himmelreich, J. Demeester, S. C. De Smedt, and I. Lentacker, “Design and evaluation of theranostic perfluorocarbon particles for simultaneous antigen-loading and 19F-MRI tracking of dendritic cells,” J. Controlled Release 169(1–2), 141–149 (2013).
[Crossref]

Li, C.

J. Ruan, H. Song, C. Li, C. Bao, H. Fu, K. Wang, J. Ni, and D. Cui, “DiR-labeled embryonic stem cells for targeted imaging of in vivo gastric cancer cells,” Theranostics 2(6), 618–628 (2012).
[Crossref]

Li, J.

R. K. Manapuram, S. Aglyamov, F. Menodiado, M. Mashiatulla, S. Wang, S. Baranov, J. Li, S. Emelianov, and K. Larin, “Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT,” Laser Phys. 22(9), 1439–1444 (2012).
[Crossref]

Liang, S.

H. Dewitte, B. Geers, S. Liang, U. Himmelreich, J. Demeester, S. C. De Smedt, and I. Lentacker, “Design and evaluation of theranostic perfluorocarbon particles for simultaneous antigen-loading and 19F-MRI tracking of dendritic cells,” J. Controlled Release 169(1–2), 141–149 (2013).
[Crossref]

Liu, X.

N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, and J. Shea, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Controlled Release 153(1), 4–15 (2011).
[Crossref]

Locatelli, E.

M. Maturi, E. Locatelli, I. Monaco, and M. C. Franchini, “Current concepts in nanostructured contrast media development for in vivo photoacoustic imaging,” Biomater. Sci. 7(5), 1746–1775 (2019).
[Crossref]

Loizidou, M.

L. Yildirimer, N. T. Thanh, M. Loizidou, and A. M. Seifalian, “Toxicology and clinical potential of nanoparticles,” Nano Today 6(6), 585–607 (2011).
[Crossref]

Luois, S.

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging,” Ultrasound in Medicine & Biology 37(9), 1518–1530 (2011).
[Crossref]

Ma, X.

M. T. Berninger, P. Mohajerani, M. Wildgruber, N. Beziere, M. A. Kimm, X. Ma, B. Haller, M. J. Fleming, S. Vogt, and M. Anton, “Detection of intramyocardially injected DiR-labeled mesenchymal stem cells by optical and optoacoustic tomography,” Photoacoustics 6, 37–47 (2017).
[Crossref]

Manapuram, R. K.

R. K. Manapuram, S. Aglyamov, F. Menodiado, M. Mashiatulla, S. Wang, S. Baranov, J. Li, S. Emelianov, and K. Larin, “Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT,” Laser Phys. 22(9), 1439–1444 (2012).
[Crossref]

Mark, C. S. K.

P. K. Upputuri, K. Sivasubramanian, C. S. K. Mark, and M. Pramanik, “Recent developments in vascular imaging techniques in tissue engineering and regenerative medicine,” BioMed Res. Int. 2015, 1–9 (2015).
[Crossref]

Mashiatulla, M.

R. K. Manapuram, S. Aglyamov, F. Menodiado, M. Mashiatulla, S. Wang, S. Baranov, J. Li, S. Emelianov, and K. Larin, “Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT,” Laser Phys. 22(9), 1439–1444 (2012).
[Crossref]

Matsunaga, T. O.

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging,” Ultrasound in Medicine & Biology 37(9), 1518–1530 (2011).
[Crossref]

Matsuura, N.

R. Williams, C. Wright, E. Cherin, N. Reznik, M. Lee, I. Gorelikov, F. S. Foster, N. Matsuura, and P. N. Burns, “Characterization of submicron phase-change perfluorocarbon droplets for extravascular ultrasound imaging of cancer,” Ultrasound in Medicine & Biology 39(3), 475–489 (2013).
[Crossref]

E. Strohm, M. Rui, I. Gorelikov, N. Matsuura, and M. Kolios, “Vaporization of perfluorocarbon droplets using optical irradiation,” Biomed. Opt. Express 2(6), 1432–1442 (2011).
[Crossref]

Maturi, M.

M. Maturi, E. Locatelli, I. Monaco, and M. C. Franchini, “Current concepts in nanostructured contrast media development for in vivo photoacoustic imaging,” Biomater. Sci. 7(5), 1746–1775 (2019).
[Crossref]

McFarland, R. J.

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging,” Ultrasound in Medicine & Biology 37(9), 1518–1530 (2011).
[Crossref]

Mendez, A. J.

C. A. Fraker, A. J. Mendez, L. Inverardi, C. Ricordi, and C. L. Stabler, “Optimization of perfluoro nano-scale emulsions: the importance of particle size for enhanced oxygen transfer in biomedical applications,” Colloids Surf., B 98, 26–35 (2012).
[Crossref]

Menodiado, F.

R. K. Manapuram, S. Aglyamov, F. Menodiado, M. Mashiatulla, S. Wang, S. Baranov, J. Li, S. Emelianov, and K. Larin, “Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT,” Laser Phys. 22(9), 1439–1444 (2012).
[Crossref]

Mohajerani, P.

M. T. Berninger, P. Mohajerani, M. Wildgruber, N. Beziere, M. A. Kimm, X. Ma, B. Haller, M. J. Fleming, S. Vogt, and M. Anton, “Detection of intramyocardially injected DiR-labeled mesenchymal stem cells by optical and optoacoustic tomography,” Photoacoustics 6, 37–47 (2017).
[Crossref]

Mohan, P.

N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, and J. Shea, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Controlled Release 153(1), 4–15 (2011).
[Crossref]

Monaco, I.

M. Maturi, E. Locatelli, I. Monaco, and M. C. Franchini, “Current concepts in nanostructured contrast media development for in vivo photoacoustic imaging,” Biomater. Sci. 7(5), 1746–1775 (2019).
[Crossref]

Nam, K.-H.

N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, and J. Shea, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Controlled Release 153(1), 4–15 (2011).
[Crossref]

Ni, J.

J. Ruan, H. Song, C. Li, C. Bao, H. Fu, K. Wang, J. Ni, and D. Cui, “DiR-labeled embryonic stem cells for targeted imaging of in vivo gastric cancer cells,” Theranostics 2(6), 618–628 (2012).
[Crossref]

Ntziachristos, V.

Nunes, A.

Pansare, V. J.

V. J. Pansare, S. Hejazi, W. J. Faenza, and R. K. Prud’homme, “Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref]

Payne, A.

N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, and J. Shea, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Controlled Release 153(1), 4–15 (2011).
[Crossref]

Pollard, R.

K. Ferrara, R. Pollard, and M. Borden, “Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery,” Annu. Rev. Biomed. Eng. 9(1), 415–447 (2007).
[Crossref]

Pramanik, M.

P. K. Upputuri, K. Sivasubramanian, C. S. K. Mark, and M. Pramanik, “Recent developments in vascular imaging techniques in tissue engineering and regenerative medicine,” BioMed Res. Int. 2015, 1–9 (2015).
[Crossref]

Prud’homme, R. K.

V. J. Pansare, S. Hejazi, W. J. Faenza, and R. K. Prud’homme, “Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref]

Rapoport, N.

N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, and J. Shea, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Controlled Release 153(1), 4–15 (2011).
[Crossref]

Reznik, N.

R. Williams, C. Wright, E. Cherin, N. Reznik, M. Lee, I. Gorelikov, F. S. Foster, N. Matsuura, and P. N. Burns, “Characterization of submicron phase-change perfluorocarbon droplets for extravascular ultrasound imaging of cancer,” Ultrasound in Medicine & Biology 39(3), 475–489 (2013).
[Crossref]

Ricordi, C.

C. A. Fraker, A. J. Mendez, L. Inverardi, C. Ricordi, and C. L. Stabler, “Optimization of perfluoro nano-scale emulsions: the importance of particle size for enhanced oxygen transfer in biomedical applications,” Colloids Surf., B 98, 26–35 (2012).
[Crossref]

Ross, W. D.

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging,” Ultrasound in Medicine & Biology 37(9), 1518–1530 (2011).
[Crossref]

Ruan, J.

J. Ruan, H. Song, C. Li, C. Bao, H. Fu, K. Wang, J. Ni, and D. Cui, “DiR-labeled embryonic stem cells for targeted imaging of in vivo gastric cancer cells,” Theranostics 2(6), 618–628 (2012).
[Crossref]

Rui, M.

Sandell, J. L.

J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11–12), 773–787 (2011).
[Crossref]

Sarnelli, R.

L. Landini and R. Sarnelli, “Evaluation of the attenuation coefficients in normal and pathological breast tissue,” Med. Biol. Eng. Comput. 24(3), 243–247 (1986).
[Crossref]

Schaefer, K.

Seifalian, A. M.

L. Yildirimer, N. T. Thanh, M. Loizidou, and A. M. Seifalian, “Toxicology and clinical potential of nanoparticles,” Nano Today 6(6), 585–607 (2011).
[Crossref]

Shan, L.

W. Tang, Z. Yang, S. Wang, Z. Wang, J. Song, G. Yu, W. Fan, Y. Dai, J. Wang, and L. Shan, “Organic semiconducting photoacoustic nanodroplets for laser-activatable ultrasound imaging and combinational cancer therapy,” ACS Nano 12(3), 2610–2622 (2018).
[Crossref]

Shea, J.

N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, and J. Shea, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Controlled Release 153(1), 4–15 (2011).
[Crossref]

Sheeran, P. S.

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging,” Ultrasound in Medicine & Biology 37(9), 1518–1530 (2011).
[Crossref]

Sivasubramanian, K.

P. K. Upputuri, K. Sivasubramanian, C. S. K. Mark, and M. Pramanik, “Recent developments in vascular imaging techniques in tissue engineering and regenerative medicine,” BioMed Res. Int. 2015, 1–9 (2015).
[Crossref]

Song, H.

J. Ruan, H. Song, C. Li, C. Bao, H. Fu, K. Wang, J. Ni, and D. Cui, “DiR-labeled embryonic stem cells for targeted imaging of in vivo gastric cancer cells,” Theranostics 2(6), 618–628 (2012).
[Crossref]

Song, J.

W. Tang, Z. Yang, S. Wang, Z. Wang, J. Song, G. Yu, W. Fan, Y. Dai, J. Wang, and L. Shan, “Organic semiconducting photoacoustic nanodroplets for laser-activatable ultrasound imaging and combinational cancer therapy,” ACS Nano 12(3), 2610–2622 (2018).
[Crossref]

Stabler, C. L.

C. A. Fraker, A. J. Mendez, L. Inverardi, C. Ricordi, and C. L. Stabler, “Optimization of perfluoro nano-scale emulsions: the importance of particle size for enhanced oxygen transfer in biomedical applications,” Colloids Surf., B 98, 26–35 (2012).
[Crossref]

Strohm, E.

Tang, W.

W. Tang, Z. Yang, S. Wang, Z. Wang, J. Song, G. Yu, W. Fan, Y. Dai, J. Wang, and L. Shan, “Organic semiconducting photoacoustic nanodroplets for laser-activatable ultrasound imaging and combinational cancer therapy,” ACS Nano 12(3), 2610–2622 (2018).
[Crossref]

Thanh, N. T.

L. Yildirimer, N. T. Thanh, M. Loizidou, and A. M. Seifalian, “Toxicology and clinical potential of nanoparticles,” Nano Today 6(6), 585–607 (2011).
[Crossref]

Todd, N.

N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, and J. Shea, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Controlled Release 153(1), 4–15 (2011).
[Crossref]

Tzoumas, S.

Upputuri, P. K.

P. K. Upputuri, K. Sivasubramanian, C. S. K. Mark, and M. Pramanik, “Recent developments in vascular imaging techniques in tissue engineering and regenerative medicine,” BioMed Res. Int. 2015, 1–9 (2015).
[Crossref]

Vogt, S.

M. T. Berninger, P. Mohajerani, M. Wildgruber, N. Beziere, M. A. Kimm, X. Ma, B. Haller, M. J. Fleming, S. Vogt, and M. Anton, “Detection of intramyocardially injected DiR-labeled mesenchymal stem cells by optical and optoacoustic tomography,” Photoacoustics 6, 37–47 (2017).
[Crossref]

Wang, J.

W. Tang, Z. Yang, S. Wang, Z. Wang, J. Song, G. Yu, W. Fan, Y. Dai, J. Wang, and L. Shan, “Organic semiconducting photoacoustic nanodroplets for laser-activatable ultrasound imaging and combinational cancer therapy,” ACS Nano 12(3), 2610–2622 (2018).
[Crossref]

Wang, K.

J. Ruan, H. Song, C. Li, C. Bao, H. Fu, K. Wang, J. Ni, and D. Cui, “DiR-labeled embryonic stem cells for targeted imaging of in vivo gastric cancer cells,” Theranostics 2(6), 618–628 (2012).
[Crossref]

Wang, L. V.

P. Lai, X. Xu, and L. V. Wang, “Dependence of optical scattering from Intralipid in gelatin-gel based tissue-mimicking phantoms on mixing temperature and time,” J. Biomed. Opt. 19(3), 035002 (2014).
[Crossref]

Wang, S.

W. Tang, Z. Yang, S. Wang, Z. Wang, J. Song, G. Yu, W. Fan, Y. Dai, J. Wang, and L. Shan, “Organic semiconducting photoacoustic nanodroplets for laser-activatable ultrasound imaging and combinational cancer therapy,” ACS Nano 12(3), 2610–2622 (2018).
[Crossref]

R. K. Manapuram, S. Aglyamov, F. Menodiado, M. Mashiatulla, S. Wang, S. Baranov, J. Li, S. Emelianov, and K. Larin, “Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT,” Laser Phys. 22(9), 1439–1444 (2012).
[Crossref]

Wang, Z.

W. Tang, Z. Yang, S. Wang, Z. Wang, J. Song, G. Yu, W. Fan, Y. Dai, J. Wang, and L. Shan, “Organic semiconducting photoacoustic nanodroplets for laser-activatable ultrasound imaging and combinational cancer therapy,” ACS Nano 12(3), 2610–2622 (2018).
[Crossref]

Wildgruber, M.

M. T. Berninger, P. Mohajerani, M. Wildgruber, N. Beziere, M. A. Kimm, X. Ma, B. Haller, M. J. Fleming, S. Vogt, and M. Anton, “Detection of intramyocardially injected DiR-labeled mesenchymal stem cells by optical and optoacoustic tomography,” Photoacoustics 6, 37–47 (2017).
[Crossref]

Williams, R.

R. Williams, C. Wright, E. Cherin, N. Reznik, M. Lee, I. Gorelikov, F. S. Foster, N. Matsuura, and P. N. Burns, “Characterization of submicron phase-change perfluorocarbon droplets for extravascular ultrasound imaging of cancer,” Ultrasound in Medicine & Biology 39(3), 475–489 (2013).
[Crossref]

Wong, V. P.

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging,” Ultrasound in Medicine & Biology 37(9), 1518–1530 (2011).
[Crossref]

Wright, C.

R. Williams, C. Wright, E. Cherin, N. Reznik, M. Lee, I. Gorelikov, F. S. Foster, N. Matsuura, and P. N. Burns, “Characterization of submicron phase-change perfluorocarbon droplets for extravascular ultrasound imaging of cancer,” Ultrasound in Medicine & Biology 39(3), 475–489 (2013).
[Crossref]

Xu, X.

P. Lai, X. Xu, and L. V. Wang, “Dependence of optical scattering from Intralipid in gelatin-gel based tissue-mimicking phantoms on mixing temperature and time,” J. Biomed. Opt. 19(3), 035002 (2014).
[Crossref]

Yang, Z.

W. Tang, Z. Yang, S. Wang, Z. Wang, J. Song, G. Yu, W. Fan, Y. Dai, J. Wang, and L. Shan, “Organic semiconducting photoacoustic nanodroplets for laser-activatable ultrasound imaging and combinational cancer therapy,” ACS Nano 12(3), 2610–2622 (2018).
[Crossref]

Yildirimer, L.

L. Yildirimer, N. T. Thanh, M. Loizidou, and A. M. Seifalian, “Toxicology and clinical potential of nanoparticles,” Nano Today 6(6), 585–607 (2011).
[Crossref]

Yu, G.

W. Tang, Z. Yang, S. Wang, Z. Wang, J. Song, G. Yu, W. Fan, Y. Dai, J. Wang, and L. Shan, “Organic semiconducting photoacoustic nanodroplets for laser-activatable ultrasound imaging and combinational cancer therapy,” ACS Nano 12(3), 2610–2622 (2018).
[Crossref]

Zaremba, A.

Zhu, T. C.

J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11–12), 773–787 (2011).
[Crossref]

ACS Nano (1)

W. Tang, Z. Yang, S. Wang, Z. Wang, J. Song, G. Yu, W. Fan, Y. Dai, J. Wang, and L. Shan, “Organic semiconducting photoacoustic nanodroplets for laser-activatable ultrasound imaging and combinational cancer therapy,” ACS Nano 12(3), 2610–2622 (2018).
[Crossref]

Annu. Rev. Biomed. Eng. (1)

K. Ferrara, R. Pollard, and M. Borden, “Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery,” Annu. Rev. Biomed. Eng. 9(1), 415–447 (2007).
[Crossref]

Biomater. Sci. (1)

M. Maturi, E. Locatelli, I. Monaco, and M. C. Franchini, “Current concepts in nanostructured contrast media development for in vivo photoacoustic imaging,” Biomater. Sci. 7(5), 1746–1775 (2019).
[Crossref]

BioMed Res. Int. (1)

P. K. Upputuri, K. Sivasubramanian, C. S. K. Mark, and M. Pramanik, “Recent developments in vascular imaging techniques in tissue engineering and regenerative medicine,” BioMed Res. Int. 2015, 1–9 (2015).
[Crossref]

Biomed. Opt. Express (2)

Chem. Mater. (1)

V. J. Pansare, S. Hejazi, W. J. Faenza, and R. K. Prud’homme, “Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers,” Chem. Mater. 24(5), 812–827 (2012).
[Crossref]

Colloids Surf., B (1)

C. A. Fraker, A. J. Mendez, L. Inverardi, C. Ricordi, and C. L. Stabler, “Optimization of perfluoro nano-scale emulsions: the importance of particle size for enhanced oxygen transfer in biomedical applications,” Colloids Surf., B 98, 26–35 (2012).
[Crossref]

J. Biomed. Opt. (1)

P. Lai, X. Xu, and L. V. Wang, “Dependence of optical scattering from Intralipid in gelatin-gel based tissue-mimicking phantoms on mixing temperature and time,” J. Biomed. Opt. 19(3), 035002 (2014).
[Crossref]

J. Biophotonics (1)

J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11–12), 773–787 (2011).
[Crossref]

J. Controlled Release (2)

H. Dewitte, B. Geers, S. Liang, U. Himmelreich, J. Demeester, S. C. De Smedt, and I. Lentacker, “Design and evaluation of theranostic perfluorocarbon particles for simultaneous antigen-loading and 19F-MRI tracking of dendritic cells,” J. Controlled Release 169(1–2), 141–149 (2013).
[Crossref]

N. Rapoport, K.-H. Nam, R. Gupta, Z. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, and J. Shea, “Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions,” J. Controlled Release 153(1), 4–15 (2011).
[Crossref]

J. Mol. Liq. (1)

D. A. Fernandes and M. C. Kolios, “Near-infrared absorbing nanoemulsions as nonlinear ultrasound contrast agents for cancer theranostics,” J. Mol. Liq. 287, 110848 (2019).
[Crossref]

Laser Phys. (1)

R. K. Manapuram, S. Aglyamov, F. Menodiado, M. Mashiatulla, S. Wang, S. Baranov, J. Li, S. Emelianov, and K. Larin, “Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT,” Laser Phys. 22(9), 1439–1444 (2012).
[Crossref]

Med. Biol. Eng. Comput. (1)

L. Landini and R. Sarnelli, “Evaluation of the attenuation coefficients in normal and pathological breast tissue,” Med. Biol. Eng. Comput. 24(3), 243–247 (1986).
[Crossref]

Nano Today (1)

L. Yildirimer, N. T. Thanh, M. Loizidou, and A. M. Seifalian, “Toxicology and clinical potential of nanoparticles,” Nano Today 6(6), 585–607 (2011).
[Crossref]

Nanotechnology (1)

D. A. Fernandes and M. C. Kolios, “Intrinsically absorbing photoacoustic and ultrasound contrast agents for cancer therapy and imaging,” Nanotechnology 29(50), 505103 (2018).
[Crossref]

Nat. Rev. Immunol. (1)

E. T. Ahrens and J. W. Bulte, “Tracking immune cells in vivo using magnetic resonance imaging,” Nat. Rev. Immunol. 13(10), 755–763 (2013).
[Crossref]

Opt. Lett. (1)

Photoacoustics (1)

M. T. Berninger, P. Mohajerani, M. Wildgruber, N. Beziere, M. A. Kimm, X. Ma, B. Haller, M. J. Fleming, S. Vogt, and M. Anton, “Detection of intramyocardially injected DiR-labeled mesenchymal stem cells by optical and optoacoustic tomography,” Photoacoustics 6, 37–47 (2017).
[Crossref]

Theranostics (1)

J. Ruan, H. Song, C. Li, C. Bao, H. Fu, K. Wang, J. Ni, and D. Cui, “DiR-labeled embryonic stem cells for targeted imaging of in vivo gastric cancer cells,” Theranostics 2(6), 618–628 (2012).
[Crossref]

Ultrasound in Medicine & Biology (2)

P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging,” Ultrasound in Medicine & Biology 37(9), 1518–1530 (2011).
[Crossref]

R. Williams, C. Wright, E. Cherin, N. Reznik, M. Lee, I. Gorelikov, F. S. Foster, N. Matsuura, and P. N. Burns, “Characterization of submicron phase-change perfluorocarbon droplets for extravascular ultrasound imaging of cancer,” Ultrasound in Medicine & Biology 39(3), 475–489 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Characterization of PFH-NEs and bubbles. TEM images of PFH-NEs alone (a) (scale bar: 100 nm) and absorption spectra of PFH-NEs (b) and that of whole blood for comparison (c) (absorption coefficients in units of cm−1). Vaporization at 700 nm of PFH-NEs (d) (scale bar: 20 µm) resulted in the generation of PFH bubbles (e) (scale bar: 25 µm) seen under optical microscope.
Fig. 2.
Fig. 2. Photoacoustic and ultrasound imaging after vaporization of PFH-NEs. Ultrasound (US) (a) and photoacoustic images (PA) (b) (from a 20 mg/mL PFH-NEs solution) (scale bars: 1 mm) after vaporization of PFH-NEs into bubbles (at 700 nm) with US (c) and PA signals (d) from different concentrations of PFH-NEs. All measurements were performed at 37°C in ∼ 1 mm inclusions (outlined region of interest indicating where PFH-NEs were placed). Signals represent averaged gray scale values from three replicates measured from a rectangular region 3 mm x 1 mm in the channel in the pure gelatin phantom.
Fig. 3.
Fig. 3. Photoacoustic and ultrasound imaging of MCF-7 cells immediately after vaporization of PFH-NEs. Ultrasound (US) (a) and photoacoustic images (PA) (after 48 hours incubation with NEs) (scale bars: 1 mm) (b) of MCF-7 cells after vaporization (at 700 nm) of PFH-NEs with US (c) and PA signals (d) after different times of incubation with NEs. All measurements were performed at 37°C with signals representing averaged gray scale values from three replicates measured from a rectangular region 3 mm x 1 mm at the center of the inclusion.
Fig. 4.
Fig. 4. Photoacoustic and ultrasound imaging of MCF-7 cells after vaporization of PFH-NEs in tissue mimicking layer. Depiction of how samples were made for imaging inclusions (a). Ultrasound (US) (b) and photoacoustic images (PA) (scale bars: 1 mm) (c) from PFH-NEs loaded in MCF-7 cells after vaporization (at 700 nm) of NEs. US and PA signals from inclusions and relative to background signal from mimicking layer (with optical and acoustic properties of tissue) are quantified (after 24 hours incubation of PFH-NEs with cells) in (d) and (e), respectively. All measurements were performed at 37°C with signals representing averaged gray scale values from three replicates measured from a rectangular region 3 mm x 1 mm at the center of the inclusion and background tissue mimicking layer.
Fig. 5.
Fig. 5. Stability of PFH-NEs and PFH bubbles for theranostics. Ultrasound (a,c) and photoacoustic (PA) (b,d) images from NEs (using a concentration of 20 mg/mL of PFH-NEs) immediately after vaporization into PFH bubbles (at 700 nm) at day 0 (a,b) and at day 1 (c,d) (after 24 hours incubation) (scale bars : 1 mm). US (e) and PA signal strength also shown (f) for two time points (error bars representing standard deviations of signals from three replicates). All measurements were performed at 37°C with signals representing averaged gray scale values from three replicates measured from a rectangular region 3 mm x 1 mm at the center of the inclusion.
Fig. 6.
Fig. 6. Illustration of vaporization of PFH bubbles for PA amplification. Depiction showing PFH-NEs (blue) and PFH bubbles (gray) and how bubbles were used for photoacoustic amplification. Each vaporization event shown occurred during the same day for experiments (day 0 and 1). The signal amplification is a result of much greater acoustic scattering and signal detection due to the presence of bigger sized PFH bubbles.
Fig. 7.
Fig. 7. MCF-7 cells after vaporization of PFH-NEs and treatment using DOX loaded PFH-NEs. Brightfield (a,c) and fluorescence images from nonviable MCF-7 cells after vaporization of NEs at 700 nm (labelled with propidium iodide shown in red showing the location of nuclear content (DNA and RNA) in cells) (b) (scale bar : 100 µm) and those treated with doxorubicin (DOX) loaded NEs (fluorescence shown in green) after 24 hours incubation (d) (scale bar : 50 µm).
Fig. 8.
Fig. 8. Characterization of perfluorohexane. Absorption spectrum of perfluorohexane liquid only (1 mm path length) using a Shimadzu UV-3600 UV-VIS-NIR spectrophotometer.
Fig. 9.
Fig. 9. Photoacoustic and ultrasound imaging after laser excitation from Milli-Q water only. Ultrasound (US) (a) and photoacoustic images (PA) (b) after 700 nm laser excitation from no nanoparticles (Milli-Q water only) with US and PA signals represented in (c). All measurements were performed at 37°C in ∼ 1 mm inclusions (outlined region of interest indicating where Milli-Q water placed). Signals represent averaged gray scale values from three replicates measured from a rectangular region 3 mm x 1 mm in the channel in the pure gelatin phantom (scale bars: 1 mm).
Fig. 10.
Fig. 10. Photoacoustic and ultrasound imaging of MCF-7 cells only. Ultrasound (US) (a) and photoacoustic images (PA) (scale bars: 1 mm) (b) from MCF-7 cells only (after 48 hours incubation of cells) (at 700 nm) with US (c) and PA signals (d) for different incubation times. All measurements were performed at 37°C with signals representing averaged gray scale values from three replicates measured from a rectangular region 3 mm x 1 mm at the center of the inclusion. For comparison US (e) and PA (f) signals are shown from MCF-7 cells after vaporization at 700 nm of PFH-NEs after different incubation times with NEs. Note the difference in scales in the ultrasound and photoacoustic data between both (c),(e) and (d),(f). Signals from the gelatin only from the layer created below inclusions (below dotted line in (a)) were minimal with average signal of 12.07 ± 0.80 for US and no signal for PA.
Fig. 11.
Fig. 11. Photoacoustic signal stability of DiR labelled MCF-7 cells. Photoacoustic signal decay of DiR labelled cells after 2 seconds. All measurements were performed at 37°C with signals representing averaged gray scale values from three replicates measured from a rectangular region 3 mm x 1 mm at the center of the inclusion.

Metrics