Abstract

Conducting polymers are widely researched in terms of both their electrical and optical properties. These optical properties are typically observed on the macroscopic (mm2- cm2) scale using techniques such as UV-Vis-NIR spectroscopy. To broaden their application, fabrication and characterization of conducting polymers on the microscale (μm2) are required. In this paper, microscale poly(3,4-ethylenedioxytiophene)-tosylate (PEDOT:Tos) layers were vapor deposited at the tip of a single mode optical fiber. This was done without the need for intermediate layers such as Indium Tin Oxide commonly used in electropolymerization. The optical properties and behavior of PEDOT:Tos below thicknesses of 500 nm were investigated. Laser-induced damage (LID) behavior of the PEDOT:Tos layer was observed for different intensities of CW or pulsed near infrared light (primarily at 1550 nm). A mathematical model based on energy deposition and the laser-induced damage threshold (LIDT) for low intensity light radiation was developed. It was shown that LID can be avoided by applying irradiance below 31.8 W/mm2 for both CW and pulsed laser. Understanding of LIDT has implications for the use of conducting polymers in new optical fiber sensing applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhancing electrochemical properties of an ITO-coated lossy-mode resonance optical fiber sensor by electrodeposition of PEDOT:PSS

Michał Sobaszek, Dariusz Burnat, Petr Sezemsky, Vitezslav Stranak, Robert Bogdanowicz, Marcin Koba, Katarzyna Siuzdak, and Mateusz Śmietana
Opt. Mater. Express 9(7) 3069-3078 (2019)

Study of conductive polymer PEDOT: PSS for infrared thermal detection

Jingwen Li, Zhenhua Li, Jicheng Wang, and Xuekang Chen
Opt. Mater. Express 9(11) 4474-4482 (2019)

Towards label-free distributed fiber hydrogen sensor with stimulated Raman spectroscopy

F. Yang, Y. Zhao, Y. Qi, Y. Z. Tan, H. L. Ho, and W. Jin
Opt. Express 27(9) 12869-12882 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Mueller, M. Fabretto, D. Evans, P. Hojati-Talemi, C. Gruber, and P. Murphy, “Vacuum vapour phase polymerization of high conductivity pedot: Role of PEG-PPG-PEG, the origin of water, and choice of oxidant,” Polymer 53(11), 2146–2151 (2012).
    [Crossref]
  2. K. Zuber, M. Fabretto, C. Hall, and P. Murphy, “Improved pedot conductivity via suppression of crystallite formation in fe (iii) tosylate during vapor phase polymerization,” Macromol. Rapid Commun. 29(18), 1503–1508 (2008).
    [Crossref]
  3. E. Nasybulin, W. Xu, M. H. Engelhard, X. S. Li, M. Gu, D. Hu, and J.-G. Zhang, “Electrocatalytic properties of poly(3,4-ethylenedioxythiophene) (pedot) in Li-O2 battery,” Electrochem. Commun. 29, 63–66 (2013).
    [Crossref]
  4. P. P. Cottis, D. Evans, M. Fabretto, S. Pering, P. Murphy, and P. Hojati-Talemi, “Metal-free oxygen reduction electrodes based on thin pedot films with high electrocatalytic activity,” RSC Adv. 4(19), 9819–9824 (2014).
    [Crossref]
  5. I. D. Norris, M. M. Shaker, F. K. Ko, and A. G. MacDiarmid, “Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends,” Synth. Met. 114(2), 109–114 (2000).
    [Crossref]
  6. C. Pozo-Gonzalo, D. Mecerreyes, J. A. Pomposo, M. Salsamendi, R. Marcilla, H. Grande, R. Vergaz, D. Barrios, and J. M. Sánchez-Pena, “All-plastic electrochromic devices based on pedot as switchable optical attenuator in the near ir,” Sol. Energy Mater. Sol. Cells 92(2), 101–106 (2008).
    [Crossref]
  7. E. Poverenov, M. Li, A. Bitler, and M. Bendikov, “Major effect of electropolymerization solvent on morphology and electrochromic properties of pedot films,” Chem. Mater. 22(13), 4019–4025 (2010).
    [Crossref]
  8. A. Kumar, D. M. Welsh, M. C. Morvant, F. Piroux, K. A. Abboud, and J. R. Reynolds, “Conducting poly(3,4-alkylenedioxythiophene) derivatives as fast electrochromics with high-contrast ratios,” Chem. Mater. 10(3), 896–902 (1998).
    [Crossref]
  9. O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, and X. Crispin, “Semi-metallic polymers,” Nat. Mater. 13(2), 190–194 (2014).
    [Crossref]
  10. C. Yi, L. Zhang, R. Hu, S. S. C. Chuang, J. Zheng, and X. Gong, “Highly electrically conductive polyethylenedioxythiophene thin films for thermoelectric applications,” J. Mater. Chem. A 4(33), 12730–12738 (2016).
    [Crossref]
  11. M. Kateb, V. Ahmadi, and M. Mohseni, “Fast switching and high contrast electrochromic device based on pedot nanotube grown on zno nanowires,” Sol. Energy Mater. Sol. Cells 112, 57–64 (2013).
    [Crossref]
  12. J. Kawahara, P. A. Ersman, I. Engquist, and M. Berggren, “Improving the color switch contrast in PEDOT:PSS-based electrochromic displays,” Org. Electron. 13(3), 469–474 (2012).
    [Crossref]
  13. V. S. Vasantha and S.-M. Chen, “Electrochemical preparation and electrocatalytic properties of pedot/ferricyanide film-modified electrodes,” Electrochim. Acta 51(2), 347–355 (2005).
    [Crossref]
  14. T. Nguyen, P. Le Rendu, P. Long, and S. De Vos, “Chemical and thermal treatment of PEDOT:PSS thin films for use in organic light emitting diodes,” Surf. Coat. Technol. 180-181, 646–649 (2004).
    [Crossref]
  15. Z. Hu, J. Zhang, and Y. Zhu, “Effects of solvent-treated PEDOT:PSS on organic photovoltaic devices,” Renewable Energy 62, 100–105 (2014).
    [Crossref]
  16. D. Bernards, D. Macaya, M. Nikolou, J. Defranco, S. Takamatsu, and G. Malliaras, “Enzymatic sensing with organic electrochemical transistors,” J. Mater. Chem. 18(1), 116–120 (2008).
    [Crossref]
  17. R. Brooke, P. Cottis, P. Talemi, M. Fabretto, P. Murphy, and D. Evans, “Recent advances in the synthesis of conducting polymers from the vapour phase,” Prog. Mater. Sci. 86, 127–146 (2017).
    [Crossref]
  18. R. Brooke, E. Mitraka, S. Sardar, M. Sandberg, A. Sawatdee, M. Berggren, X. Crispin, and M. P. Jonsson, “Infrared electrochromic conducting polymer devices,” J. Mater. Chem. C 5(23), 5824–5830 (2017).
    [Crossref]
  19. A. Weathers, Z. U. Khan, R. Brooke, D. Evans, M. T. Pettes, J. W. Andreasen, X. Crispin, and L. Shi, “Significant electronic thermal transport in the conducting polymer poly (3, 4-ethylenedioxythiophene),” Adv. Mater. 27(12), 2101–2106 (2015).
    [Crossref]
  20. B. Cho, K. S. Park, J. Baek, H. S. Oh, Y.-E. Koo Lee, and M. M. Sung, “Single-crystal poly (3, 4-ethylenedioxythiophene) nanowires with ultrahigh conductivity,” Nano Lett. 14(6), 3321–3327 (2014).
    [Crossref]
  21. R. Brooke, M. Fabretto, N. Vucaj, K. Zuber, E. Switalska, L. Reeks, P. Murphy, and D. Evans, “Effect of oxidant on the performance of conductive polymer films prepared by vacuum vapor phase polymerization for smart window applications,” Smart Mater. Struct. 24(3), 035016 (2015).
    [Crossref]
  22. J. R. Reynolds, A. Kumar, J. L. Reddinger, B. Sankaran, S. A. Sapp, and G. A. Sotzing, “Unique variable-gap polyheterocycles for high-contrast dual polymer electrochromic devices,” Synth. Met. 85(1-3), 1295–1298 (1997).
    [Crossref]
  23. J. O. Norris, “Current status and prospects for the use of optical fibres in chemical analysis. a review,” Analyst 114(11), 1359 (1989).
    [Crossref]
  24. S. Musolino, E. P. Schartner, G. Tsiminis, A. Salem, T. M. Monro, and M. R. Hutchinson, “Portable optical fiber probe for in vivo brain temperature measurements,” Biomed. Opt. Express 7(8), 3069–3077 (2016).
    [Crossref]
  25. M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators, B 56(1-2), 158–163 (1999).
    [Crossref]
  26. R. Kostecki, H. Ebendorff-Heidepriem, S. Afshar, G. McAdam, C. Davis, and T. M. Monro, “Novel polymer functionalization method for exposed-core optical fiber,” Opt. Mater. Express 4(8), 1515–1525 (2014).
    [Crossref]
  27. R. Brooke, D. Evans, M. Dienel, P. Hojati-Talemi, P. Murphy, and M. Fabretto, “Inkjet printing and vapor phase polymerization: patterned conductive pedot for electronic applications,” J. Mater. Chem. C 1(20), 3353–3358 (2013).
    [Crossref]
  28. C. D. O’Connell, M. J. Higgins, H. Nakashima, S. E. Moulton, and G. G. Wallace, “Vapor phase polymerization of edot from submicrometer scale oxidant patterned by dip-pen nanolithography,” Langmuir 28(26), 9953–9960 (2012).
    [Crossref]
  29. J. Edberg, D. Iandolo, R. Brooke, X. Liu, C. Musumeci, J. W. Andreasen, D. T. Simon, D. Evans, I. Engquist, and M. Berggren, “Patterning and conductivity modulation of conductive polymers by UV light exposure,” Adv. Funct. Mater. 26(38), 6950–6960 (2016).
    [Crossref]
  30. I. ozoulenko, A. Singh, S. K. Singh, V. Gueskine, X. Crispin, and M. Berggren, “Polarons, bipolarons, and absorption spectroscopy of PEDOT,” ACS Appl. Polym. Mater. 1(1), 83–94 (2019).
    [Crossref]
  31. N. Massonnet, A. Carella, O. Jaudouin, P. Rannou, G. Laval, C. Celle, and J.-P. Simonato, “Improvement of the seebeck coefficient of PEDOT:PSS by chemical reduction combined with a novel method for its transfer using free-standing thin films,” J. Mater. Chem. C 2(7), 1278–1283 (2014).
    [Crossref]
  32. L. A. Pettersson, F. Carlsson, O. Inganäs, and H. Arwin, “Spectroscopic ellipsometry studies of the optical properties of doped poly (3, 4-ethylenedioxythiophene): an anisotropic metal,” Thin Solid Films 313-314, 356–361 (1998).
    [Crossref]
  33. F. Y. Genin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, and J. Yoshiyama, “Rear-surface laser damage on 355-nm silica optics owing to fresnel diffraction on front-surface contamination particles,” Appl. Opt. 39(21), 3654–3663 (2000).
    [Crossref]
  34. C. Carr, M. Matthews, J. Bude, and M. Spaeth, “The effect of laser pulse duration on laser-induced damage in kdp and Si-O2,” in Laser-Induced Damage in Optical Materials: 2006, vol. 6403 (International Society for Optics and Photonics, 2007), p. 64030K.
  35. J.-Y. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Laser-induced damage of materials in bulk, thin-film, and liquid forms,” Appl. Opt. 41(16), 3156–3166 (2002).
    [Crossref]
  36. L. Stepien, A. Roch, R. Tkachov, B. Leupolt, L. Han, N. van Ngo, and C. Leyens, “Thermal operating window for pedot:pss films and its related thermoelectric properties,” Synth. Met. 225, 49–54 (2017).
    [Crossref]
  37. E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. Choulis, “Thermal degradation mechanisms of PEDOT:PSS,” Org. Electron. 10(1), 61–66 (2009).
    [Crossref]
  38. I. Winter, C. Reese, J. Hormes, G. Heywang, and F. Jonas, “The thermal ageing of poly(3,4-ethylenedioxythiophene). an investigation by X-ray absorption and X-ray photoelectron spectroscopy,” Chem. Phys. 194(1), 207–213 (1995).
    [Crossref]
  39. M. Hokazono, H. Anno, and N. Toshima, “Thermoelectric properties and thermal stability of PEDOT:PSS films on a polyimide substrate and application in flexible energy conversion devices,” J. Electron. Mater. 43(6), 2196–2201 (2014).
    [Crossref]
  40. R. Wood, “Laser induced damage thresholds and laser safety levels. Do the units of measurement matter?” Opt. Laser Technol. 29(8), 517–522 (1998).
    [Crossref]
  41. J. M. Palmer, “The measurement of transmission, absorption, emission, and reflection,” Handb. Optics 2, 25 (1995).
  42. R. M. Wood, Laser-induced Damage of Optical Materials (CRC Press, 2003).
  43. R. M. Wood, The Power-and Energy-handling Capability of Optical Materials, Components, and Systems, vol. 60 (Spie Press, 2003).

2019 (1)

I. ozoulenko, A. Singh, S. K. Singh, V. Gueskine, X. Crispin, and M. Berggren, “Polarons, bipolarons, and absorption spectroscopy of PEDOT,” ACS Appl. Polym. Mater. 1(1), 83–94 (2019).
[Crossref]

2017 (3)

L. Stepien, A. Roch, R. Tkachov, B. Leupolt, L. Han, N. van Ngo, and C. Leyens, “Thermal operating window for pedot:pss films and its related thermoelectric properties,” Synth. Met. 225, 49–54 (2017).
[Crossref]

R. Brooke, P. Cottis, P. Talemi, M. Fabretto, P. Murphy, and D. Evans, “Recent advances in the synthesis of conducting polymers from the vapour phase,” Prog. Mater. Sci. 86, 127–146 (2017).
[Crossref]

R. Brooke, E. Mitraka, S. Sardar, M. Sandberg, A. Sawatdee, M. Berggren, X. Crispin, and M. P. Jonsson, “Infrared electrochromic conducting polymer devices,” J. Mater. Chem. C 5(23), 5824–5830 (2017).
[Crossref]

2016 (3)

C. Yi, L. Zhang, R. Hu, S. S. C. Chuang, J. Zheng, and X. Gong, “Highly electrically conductive polyethylenedioxythiophene thin films for thermoelectric applications,” J. Mater. Chem. A 4(33), 12730–12738 (2016).
[Crossref]

J. Edberg, D. Iandolo, R. Brooke, X. Liu, C. Musumeci, J. W. Andreasen, D. T. Simon, D. Evans, I. Engquist, and M. Berggren, “Patterning and conductivity modulation of conductive polymers by UV light exposure,” Adv. Funct. Mater. 26(38), 6950–6960 (2016).
[Crossref]

S. Musolino, E. P. Schartner, G. Tsiminis, A. Salem, T. M. Monro, and M. R. Hutchinson, “Portable optical fiber probe for in vivo brain temperature measurements,” Biomed. Opt. Express 7(8), 3069–3077 (2016).
[Crossref]

2015 (2)

R. Brooke, M. Fabretto, N. Vucaj, K. Zuber, E. Switalska, L. Reeks, P. Murphy, and D. Evans, “Effect of oxidant on the performance of conductive polymer films prepared by vacuum vapor phase polymerization for smart window applications,” Smart Mater. Struct. 24(3), 035016 (2015).
[Crossref]

A. Weathers, Z. U. Khan, R. Brooke, D. Evans, M. T. Pettes, J. W. Andreasen, X. Crispin, and L. Shi, “Significant electronic thermal transport in the conducting polymer poly (3, 4-ethylenedioxythiophene),” Adv. Mater. 27(12), 2101–2106 (2015).
[Crossref]

2014 (7)

B. Cho, K. S. Park, J. Baek, H. S. Oh, Y.-E. Koo Lee, and M. M. Sung, “Single-crystal poly (3, 4-ethylenedioxythiophene) nanowires with ultrahigh conductivity,” Nano Lett. 14(6), 3321–3327 (2014).
[Crossref]

P. P. Cottis, D. Evans, M. Fabretto, S. Pering, P. Murphy, and P. Hojati-Talemi, “Metal-free oxygen reduction electrodes based on thin pedot films with high electrocatalytic activity,” RSC Adv. 4(19), 9819–9824 (2014).
[Crossref]

Z. Hu, J. Zhang, and Y. Zhu, “Effects of solvent-treated PEDOT:PSS on organic photovoltaic devices,” Renewable Energy 62, 100–105 (2014).
[Crossref]

O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, and X. Crispin, “Semi-metallic polymers,” Nat. Mater. 13(2), 190–194 (2014).
[Crossref]

N. Massonnet, A. Carella, O. Jaudouin, P. Rannou, G. Laval, C. Celle, and J.-P. Simonato, “Improvement of the seebeck coefficient of PEDOT:PSS by chemical reduction combined with a novel method for its transfer using free-standing thin films,” J. Mater. Chem. C 2(7), 1278–1283 (2014).
[Crossref]

M. Hokazono, H. Anno, and N. Toshima, “Thermoelectric properties and thermal stability of PEDOT:PSS films on a polyimide substrate and application in flexible energy conversion devices,” J. Electron. Mater. 43(6), 2196–2201 (2014).
[Crossref]

R. Kostecki, H. Ebendorff-Heidepriem, S. Afshar, G. McAdam, C. Davis, and T. M. Monro, “Novel polymer functionalization method for exposed-core optical fiber,” Opt. Mater. Express 4(8), 1515–1525 (2014).
[Crossref]

2013 (3)

R. Brooke, D. Evans, M. Dienel, P. Hojati-Talemi, P. Murphy, and M. Fabretto, “Inkjet printing and vapor phase polymerization: patterned conductive pedot for electronic applications,” J. Mater. Chem. C 1(20), 3353–3358 (2013).
[Crossref]

E. Nasybulin, W. Xu, M. H. Engelhard, X. S. Li, M. Gu, D. Hu, and J.-G. Zhang, “Electrocatalytic properties of poly(3,4-ethylenedioxythiophene) (pedot) in Li-O2 battery,” Electrochem. Commun. 29, 63–66 (2013).
[Crossref]

M. Kateb, V. Ahmadi, and M. Mohseni, “Fast switching and high contrast electrochromic device based on pedot nanotube grown on zno nanowires,” Sol. Energy Mater. Sol. Cells 112, 57–64 (2013).
[Crossref]

2012 (3)

J. Kawahara, P. A. Ersman, I. Engquist, and M. Berggren, “Improving the color switch contrast in PEDOT:PSS-based electrochromic displays,” Org. Electron. 13(3), 469–474 (2012).
[Crossref]

M. Mueller, M. Fabretto, D. Evans, P. Hojati-Talemi, C. Gruber, and P. Murphy, “Vacuum vapour phase polymerization of high conductivity pedot: Role of PEG-PPG-PEG, the origin of water, and choice of oxidant,” Polymer 53(11), 2146–2151 (2012).
[Crossref]

C. D. O’Connell, M. J. Higgins, H. Nakashima, S. E. Moulton, and G. G. Wallace, “Vapor phase polymerization of edot from submicrometer scale oxidant patterned by dip-pen nanolithography,” Langmuir 28(26), 9953–9960 (2012).
[Crossref]

2010 (1)

E. Poverenov, M. Li, A. Bitler, and M. Bendikov, “Major effect of electropolymerization solvent on morphology and electrochromic properties of pedot films,” Chem. Mater. 22(13), 4019–4025 (2010).
[Crossref]

2009 (1)

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. Choulis, “Thermal degradation mechanisms of PEDOT:PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

2008 (3)

D. Bernards, D. Macaya, M. Nikolou, J. Defranco, S. Takamatsu, and G. Malliaras, “Enzymatic sensing with organic electrochemical transistors,” J. Mater. Chem. 18(1), 116–120 (2008).
[Crossref]

C. Pozo-Gonzalo, D. Mecerreyes, J. A. Pomposo, M. Salsamendi, R. Marcilla, H. Grande, R. Vergaz, D. Barrios, and J. M. Sánchez-Pena, “All-plastic electrochromic devices based on pedot as switchable optical attenuator in the near ir,” Sol. Energy Mater. Sol. Cells 92(2), 101–106 (2008).
[Crossref]

K. Zuber, M. Fabretto, C. Hall, and P. Murphy, “Improved pedot conductivity via suppression of crystallite formation in fe (iii) tosylate during vapor phase polymerization,” Macromol. Rapid Commun. 29(18), 1503–1508 (2008).
[Crossref]

2005 (1)

V. S. Vasantha and S.-M. Chen, “Electrochemical preparation and electrocatalytic properties of pedot/ferricyanide film-modified electrodes,” Electrochim. Acta 51(2), 347–355 (2005).
[Crossref]

2004 (1)

T. Nguyen, P. Le Rendu, P. Long, and S. De Vos, “Chemical and thermal treatment of PEDOT:PSS thin films for use in organic light emitting diodes,” Surf. Coat. Technol. 180-181, 646–649 (2004).
[Crossref]

2002 (1)

2000 (2)

I. D. Norris, M. M. Shaker, F. K. Ko, and A. G. MacDiarmid, “Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends,” Synth. Met. 114(2), 109–114 (2000).
[Crossref]

F. Y. Genin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, and J. Yoshiyama, “Rear-surface laser damage on 355-nm silica optics owing to fresnel diffraction on front-surface contamination particles,” Appl. Opt. 39(21), 3654–3663 (2000).
[Crossref]

1999 (1)

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators, B 56(1-2), 158–163 (1999).
[Crossref]

1998 (3)

R. Wood, “Laser induced damage thresholds and laser safety levels. Do the units of measurement matter?” Opt. Laser Technol. 29(8), 517–522 (1998).
[Crossref]

L. A. Pettersson, F. Carlsson, O. Inganäs, and H. Arwin, “Spectroscopic ellipsometry studies of the optical properties of doped poly (3, 4-ethylenedioxythiophene): an anisotropic metal,” Thin Solid Films 313-314, 356–361 (1998).
[Crossref]

A. Kumar, D. M. Welsh, M. C. Morvant, F. Piroux, K. A. Abboud, and J. R. Reynolds, “Conducting poly(3,4-alkylenedioxythiophene) derivatives as fast electrochromics with high-contrast ratios,” Chem. Mater. 10(3), 896–902 (1998).
[Crossref]

1997 (1)

J. R. Reynolds, A. Kumar, J. L. Reddinger, B. Sankaran, S. A. Sapp, and G. A. Sotzing, “Unique variable-gap polyheterocycles for high-contrast dual polymer electrochromic devices,” Synth. Met. 85(1-3), 1295–1298 (1997).
[Crossref]

1995 (2)

I. Winter, C. Reese, J. Hormes, G. Heywang, and F. Jonas, “The thermal ageing of poly(3,4-ethylenedioxythiophene). an investigation by X-ray absorption and X-ray photoelectron spectroscopy,” Chem. Phys. 194(1), 207–213 (1995).
[Crossref]

J. M. Palmer, “The measurement of transmission, absorption, emission, and reflection,” Handb. Optics 2, 25 (1995).

1989 (1)

J. O. Norris, “Current status and prospects for the use of optical fibres in chemical analysis. a review,” Analyst 114(11), 1359 (1989).
[Crossref]

Abboud, K. A.

A. Kumar, D. M. Welsh, M. C. Morvant, F. Piroux, K. A. Abboud, and J. R. Reynolds, “Conducting poly(3,4-alkylenedioxythiophene) derivatives as fast electrochromics with high-contrast ratios,” Chem. Mater. 10(3), 896–902 (1998).
[Crossref]

Afshar, S.

Ahmadi, V.

M. Kateb, V. Ahmadi, and M. Mohseni, “Fast switching and high contrast electrochromic device based on pedot nanotube grown on zno nanowires,” Sol. Energy Mater. Sol. Cells 112, 57–64 (2013).
[Crossref]

Akhouayri, H.

Amra, C.

Andreasen, J. W.

J. Edberg, D. Iandolo, R. Brooke, X. Liu, C. Musumeci, J. W. Andreasen, D. T. Simon, D. Evans, I. Engquist, and M. Berggren, “Patterning and conductivity modulation of conductive polymers by UV light exposure,” Adv. Funct. Mater. 26(38), 6950–6960 (2016).
[Crossref]

A. Weathers, Z. U. Khan, R. Brooke, D. Evans, M. T. Pettes, J. W. Andreasen, X. Crispin, and L. Shi, “Significant electronic thermal transport in the conducting polymer poly (3, 4-ethylenedioxythiophene),” Adv. Mater. 27(12), 2101–2106 (2015).
[Crossref]

O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, and X. Crispin, “Semi-metallic polymers,” Nat. Mater. 13(2), 190–194 (2014).
[Crossref]

Anno, H.

M. Hokazono, H. Anno, and N. Toshima, “Thermoelectric properties and thermal stability of PEDOT:PSS films on a polyimide substrate and application in flexible energy conversion devices,” J. Electron. Mater. 43(6), 2196–2201 (2014).
[Crossref]

Arlin, J.-B.

O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, and X. Crispin, “Semi-metallic polymers,” Nat. Mater. 13(2), 190–194 (2014).
[Crossref]

Arwin, H.

L. A. Pettersson, F. Carlsson, O. Inganäs, and H. Arwin, “Spectroscopic ellipsometry studies of the optical properties of doped poly (3, 4-ethylenedioxythiophene): an anisotropic metal,” Thin Solid Films 313-314, 356–361 (1998).
[Crossref]

Baek, J.

B. Cho, K. S. Park, J. Baek, H. S. Oh, Y.-E. Koo Lee, and M. M. Sung, “Single-crystal poly (3, 4-ethylenedioxythiophene) nanowires with ultrahigh conductivity,” Nano Lett. 14(6), 3321–3327 (2014).
[Crossref]

Barrios, D.

C. Pozo-Gonzalo, D. Mecerreyes, J. A. Pomposo, M. Salsamendi, R. Marcilla, H. Grande, R. Vergaz, D. Barrios, and J. M. Sánchez-Pena, “All-plastic electrochromic devices based on pedot as switchable optical attenuator in the near ir,” Sol. Energy Mater. Sol. Cells 92(2), 101–106 (2008).
[Crossref]

Bendikov, M.

E. Poverenov, M. Li, A. Bitler, and M. Bendikov, “Major effect of electropolymerization solvent on morphology and electrochromic properties of pedot films,” Chem. Mater. 22(13), 4019–4025 (2010).
[Crossref]

Berggren, M.

I. ozoulenko, A. Singh, S. K. Singh, V. Gueskine, X. Crispin, and M. Berggren, “Polarons, bipolarons, and absorption spectroscopy of PEDOT,” ACS Appl. Polym. Mater. 1(1), 83–94 (2019).
[Crossref]

R. Brooke, E. Mitraka, S. Sardar, M. Sandberg, A. Sawatdee, M. Berggren, X. Crispin, and M. P. Jonsson, “Infrared electrochromic conducting polymer devices,” J. Mater. Chem. C 5(23), 5824–5830 (2017).
[Crossref]

J. Edberg, D. Iandolo, R. Brooke, X. Liu, C. Musumeci, J. W. Andreasen, D. T. Simon, D. Evans, I. Engquist, and M. Berggren, “Patterning and conductivity modulation of conductive polymers by UV light exposure,” Adv. Funct. Mater. 26(38), 6950–6960 (2016).
[Crossref]

O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, and X. Crispin, “Semi-metallic polymers,” Nat. Mater. 13(2), 190–194 (2014).
[Crossref]

J. Kawahara, P. A. Ersman, I. Engquist, and M. Berggren, “Improving the color switch contrast in PEDOT:PSS-based electrochromic displays,” Org. Electron. 13(3), 469–474 (2012).
[Crossref]

Bernards, D.

D. Bernards, D. Macaya, M. Nikolou, J. Defranco, S. Takamatsu, and G. Malliaras, “Enzymatic sensing with organic electrochemical transistors,” J. Mater. Chem. 18(1), 116–120 (2008).
[Crossref]

Bitler, A.

E. Poverenov, M. Li, A. Bitler, and M. Bendikov, “Major effect of electropolymerization solvent on morphology and electrochromic properties of pedot films,” Chem. Mater. 22(13), 4019–4025 (2010).
[Crossref]

Braun, S.

O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, and X. Crispin, “Semi-metallic polymers,” Nat. Mater. 13(2), 190–194 (2014).
[Crossref]

Breiby, D. W.

O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, and X. Crispin, “Semi-metallic polymers,” Nat. Mater. 13(2), 190–194 (2014).
[Crossref]

Brooke, R.

R. Brooke, P. Cottis, P. Talemi, M. Fabretto, P. Murphy, and D. Evans, “Recent advances in the synthesis of conducting polymers from the vapour phase,” Prog. Mater. Sci. 86, 127–146 (2017).
[Crossref]

R. Brooke, E. Mitraka, S. Sardar, M. Sandberg, A. Sawatdee, M. Berggren, X. Crispin, and M. P. Jonsson, “Infrared electrochromic conducting polymer devices,” J. Mater. Chem. C 5(23), 5824–5830 (2017).
[Crossref]

J. Edberg, D. Iandolo, R. Brooke, X. Liu, C. Musumeci, J. W. Andreasen, D. T. Simon, D. Evans, I. Engquist, and M. Berggren, “Patterning and conductivity modulation of conductive polymers by UV light exposure,” Adv. Funct. Mater. 26(38), 6950–6960 (2016).
[Crossref]

R. Brooke, M. Fabretto, N. Vucaj, K. Zuber, E. Switalska, L. Reeks, P. Murphy, and D. Evans, “Effect of oxidant on the performance of conductive polymer films prepared by vacuum vapor phase polymerization for smart window applications,” Smart Mater. Struct. 24(3), 035016 (2015).
[Crossref]

A. Weathers, Z. U. Khan, R. Brooke, D. Evans, M. T. Pettes, J. W. Andreasen, X. Crispin, and L. Shi, “Significant electronic thermal transport in the conducting polymer poly (3, 4-ethylenedioxythiophene),” Adv. Mater. 27(12), 2101–2106 (2015).
[Crossref]

R. Brooke, D. Evans, M. Dienel, P. Hojati-Talemi, P. Murphy, and M. Fabretto, “Inkjet printing and vapor phase polymerization: patterned conductive pedot for electronic applications,” J. Mater. Chem. C 1(20), 3353–3358 (2013).
[Crossref]

Bubnova, O.

O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, and X. Crispin, “Semi-metallic polymers,” Nat. Mater. 13(2), 190–194 (2014).
[Crossref]

Bude, J.

C. Carr, M. Matthews, J. Bude, and M. Spaeth, “The effect of laser pulse duration on laser-induced damage in kdp and Si-O2,” in Laser-Induced Damage in Optical Materials: 2006, vol. 6403 (International Society for Optics and Photonics, 2007), p. 64030K.

Carella, A.

N. Massonnet, A. Carella, O. Jaudouin, P. Rannou, G. Laval, C. Celle, and J.-P. Simonato, “Improvement of the seebeck coefficient of PEDOT:PSS by chemical reduction combined with a novel method for its transfer using free-standing thin films,” J. Mater. Chem. C 2(7), 1278–1283 (2014).
[Crossref]

Carlsson, F.

L. A. Pettersson, F. Carlsson, O. Inganäs, and H. Arwin, “Spectroscopic ellipsometry studies of the optical properties of doped poly (3, 4-ethylenedioxythiophene): an anisotropic metal,” Thin Solid Films 313-314, 356–361 (1998).
[Crossref]

Carr, C.

C. Carr, M. Matthews, J. Bude, and M. Spaeth, “The effect of laser pulse duration on laser-induced damage in kdp and Si-O2,” in Laser-Induced Damage in Optical Materials: 2006, vol. 6403 (International Society for Optics and Photonics, 2007), p. 64030K.

Celle, C.

N. Massonnet, A. Carella, O. Jaudouin, P. Rannou, G. Laval, C. Celle, and J.-P. Simonato, “Improvement of the seebeck coefficient of PEDOT:PSS by chemical reduction combined with a novel method for its transfer using free-standing thin films,” J. Mater. Chem. C 2(7), 1278–1283 (2014).
[Crossref]

Chen, S.-M.

V. S. Vasantha and S.-M. Chen, “Electrochemical preparation and electrocatalytic properties of pedot/ferricyanide film-modified electrodes,” Electrochim. Acta 51(2), 347–355 (2005).
[Crossref]

Chen, W. M.

O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, and X. Crispin, “Semi-metallic polymers,” Nat. Mater. 13(2), 190–194 (2014).
[Crossref]

Cho, B.

B. Cho, K. S. Park, J. Baek, H. S. Oh, Y.-E. Koo Lee, and M. M. Sung, “Single-crystal poly (3, 4-ethylenedioxythiophene) nanowires with ultrahigh conductivity,” Nano Lett. 14(6), 3321–3327 (2014).
[Crossref]

Choulis, S.

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. Choulis, “Thermal degradation mechanisms of PEDOT:PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

Chuang, S. S. C.

C. Yi, L. Zhang, R. Hu, S. S. C. Chuang, J. Zheng, and X. Gong, “Highly electrically conductive polyethylenedioxythiophene thin films for thermoelectric applications,” J. Mater. Chem. A 4(33), 12730–12738 (2016).
[Crossref]

Cottis, P.

R. Brooke, P. Cottis, P. Talemi, M. Fabretto, P. Murphy, and D. Evans, “Recent advances in the synthesis of conducting polymers from the vapour phase,” Prog. Mater. Sci. 86, 127–146 (2017).
[Crossref]

Cottis, P. P.

P. P. Cottis, D. Evans, M. Fabretto, S. Pering, P. Murphy, and P. Hojati-Talemi, “Metal-free oxygen reduction electrodes based on thin pedot films with high electrocatalytic activity,” RSC Adv. 4(19), 9819–9824 (2014).
[Crossref]

Crispin, X.

I. ozoulenko, A. Singh, S. K. Singh, V. Gueskine, X. Crispin, and M. Berggren, “Polarons, bipolarons, and absorption spectroscopy of PEDOT,” ACS Appl. Polym. Mater. 1(1), 83–94 (2019).
[Crossref]

R. Brooke, E. Mitraka, S. Sardar, M. Sandberg, A. Sawatdee, M. Berggren, X. Crispin, and M. P. Jonsson, “Infrared electrochromic conducting polymer devices,” J. Mater. Chem. C 5(23), 5824–5830 (2017).
[Crossref]

A. Weathers, Z. U. Khan, R. Brooke, D. Evans, M. T. Pettes, J. W. Andreasen, X. Crispin, and L. Shi, “Significant electronic thermal transport in the conducting polymer poly (3, 4-ethylenedioxythiophene),” Adv. Mater. 27(12), 2101–2106 (2015).
[Crossref]

O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, and X. Crispin, “Semi-metallic polymers,” Nat. Mater. 13(2), 190–194 (2014).
[Crossref]

Dagnelund, D.

O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, and X. Crispin, “Semi-metallic polymers,” Nat. Mater. 13(2), 190–194 (2014).
[Crossref]

Dalas, E.

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. Choulis, “Thermal degradation mechanisms of PEDOT:PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

Davis, C.

De Vos, S.

T. Nguyen, P. Le Rendu, P. Long, and S. De Vos, “Chemical and thermal treatment of PEDOT:PSS thin films for use in organic light emitting diodes,” Surf. Coat. Technol. 180-181, 646–649 (2004).
[Crossref]

Defranco, J.

D. Bernards, D. Macaya, M. Nikolou, J. Defranco, S. Takamatsu, and G. Malliaras, “Enzymatic sensing with organic electrochemical transistors,” J. Mater. Chem. 18(1), 116–120 (2008).
[Crossref]

Desbief, S.

O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, and X. Crispin, “Semi-metallic polymers,” Nat. Mater. 13(2), 190–194 (2014).
[Crossref]

Dienel, M.

R. Brooke, D. Evans, M. Dienel, P. Hojati-Talemi, P. Murphy, and M. Fabretto, “Inkjet printing and vapor phase polymerization: patterned conductive pedot for electronic applications,” J. Mater. Chem. C 1(20), 3353–3358 (2013).
[Crossref]

Ebendorff-Heidepriem, H.

Edberg, J.

J. Edberg, D. Iandolo, R. Brooke, X. Liu, C. Musumeci, J. W. Andreasen, D. T. Simon, D. Evans, I. Engquist, and M. Berggren, “Patterning and conductivity modulation of conductive polymers by UV light exposure,” Adv. Funct. Mater. 26(38), 6950–6960 (2016).
[Crossref]

Engelhard, M. H.

E. Nasybulin, W. Xu, M. H. Engelhard, X. S. Li, M. Gu, D. Hu, and J.-G. Zhang, “Electrocatalytic properties of poly(3,4-ethylenedioxythiophene) (pedot) in Li-O2 battery,” Electrochem. Commun. 29, 63–66 (2013).
[Crossref]

Engquist, I.

J. Edberg, D. Iandolo, R. Brooke, X. Liu, C. Musumeci, J. W. Andreasen, D. T. Simon, D. Evans, I. Engquist, and M. Berggren, “Patterning and conductivity modulation of conductive polymers by UV light exposure,” Adv. Funct. Mater. 26(38), 6950–6960 (2016).
[Crossref]

J. Kawahara, P. A. Ersman, I. Engquist, and M. Berggren, “Improving the color switch contrast in PEDOT:PSS-based electrochromic displays,” Org. Electron. 13(3), 469–474 (2012).
[Crossref]

Ersman, P. A.

J. Kawahara, P. A. Ersman, I. Engquist, and M. Berggren, “Improving the color switch contrast in PEDOT:PSS-based electrochromic displays,” Org. Electron. 13(3), 469–474 (2012).
[Crossref]

Evans, D.

R. Brooke, P. Cottis, P. Talemi, M. Fabretto, P. Murphy, and D. Evans, “Recent advances in the synthesis of conducting polymers from the vapour phase,” Prog. Mater. Sci. 86, 127–146 (2017).
[Crossref]

J. Edberg, D. Iandolo, R. Brooke, X. Liu, C. Musumeci, J. W. Andreasen, D. T. Simon, D. Evans, I. Engquist, and M. Berggren, “Patterning and conductivity modulation of conductive polymers by UV light exposure,” Adv. Funct. Mater. 26(38), 6950–6960 (2016).
[Crossref]

R. Brooke, M. Fabretto, N. Vucaj, K. Zuber, E. Switalska, L. Reeks, P. Murphy, and D. Evans, “Effect of oxidant on the performance of conductive polymer films prepared by vacuum vapor phase polymerization for smart window applications,” Smart Mater. Struct. 24(3), 035016 (2015).
[Crossref]

A. Weathers, Z. U. Khan, R. Brooke, D. Evans, M. T. Pettes, J. W. Andreasen, X. Crispin, and L. Shi, “Significant electronic thermal transport in the conducting polymer poly (3, 4-ethylenedioxythiophene),” Adv. Mater. 27(12), 2101–2106 (2015).
[Crossref]

P. P. Cottis, D. Evans, M. Fabretto, S. Pering, P. Murphy, and P. Hojati-Talemi, “Metal-free oxygen reduction electrodes based on thin pedot films with high electrocatalytic activity,” RSC Adv. 4(19), 9819–9824 (2014).
[Crossref]

R. Brooke, D. Evans, M. Dienel, P. Hojati-Talemi, P. Murphy, and M. Fabretto, “Inkjet printing and vapor phase polymerization: patterned conductive pedot for electronic applications,” J. Mater. Chem. C 1(20), 3353–3358 (2013).
[Crossref]

M. Mueller, M. Fabretto, D. Evans, P. Hojati-Talemi, C. Gruber, and P. Murphy, “Vacuum vapour phase polymerization of high conductivity pedot: Role of PEG-PPG-PEG, the origin of water, and choice of oxidant,” Polymer 53(11), 2146–2151 (2012).
[Crossref]

Evans, D. R.

O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, and X. Crispin, “Semi-metallic polymers,” Nat. Mater. 13(2), 190–194 (2014).
[Crossref]

Fabretto, M.

R. Brooke, P. Cottis, P. Talemi, M. Fabretto, P. Murphy, and D. Evans, “Recent advances in the synthesis of conducting polymers from the vapour phase,” Prog. Mater. Sci. 86, 127–146 (2017).
[Crossref]

R. Brooke, M. Fabretto, N. Vucaj, K. Zuber, E. Switalska, L. Reeks, P. Murphy, and D. Evans, “Effect of oxidant on the performance of conductive polymer films prepared by vacuum vapor phase polymerization for smart window applications,” Smart Mater. Struct. 24(3), 035016 (2015).
[Crossref]

O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, and X. Crispin, “Semi-metallic polymers,” Nat. Mater. 13(2), 190–194 (2014).
[Crossref]

P. P. Cottis, D. Evans, M. Fabretto, S. Pering, P. Murphy, and P. Hojati-Talemi, “Metal-free oxygen reduction electrodes based on thin pedot films with high electrocatalytic activity,” RSC Adv. 4(19), 9819–9824 (2014).
[Crossref]

R. Brooke, D. Evans, M. Dienel, P. Hojati-Talemi, P. Murphy, and M. Fabretto, “Inkjet printing and vapor phase polymerization: patterned conductive pedot for electronic applications,” J. Mater. Chem. C 1(20), 3353–3358 (2013).
[Crossref]

M. Mueller, M. Fabretto, D. Evans, P. Hojati-Talemi, C. Gruber, and P. Murphy, “Vacuum vapour phase polymerization of high conductivity pedot: Role of PEG-PPG-PEG, the origin of water, and choice of oxidant,” Polymer 53(11), 2146–2151 (2012).
[Crossref]

K. Zuber, M. Fabretto, C. Hall, and P. Murphy, “Improved pedot conductivity via suppression of crystallite formation in fe (iii) tosylate during vapor phase polymerization,” Macromol. Rapid Commun. 29(18), 1503–1508 (2008).
[Crossref]

Fahlman, M.

O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, and X. Crispin, “Semi-metallic polymers,” Nat. Mater. 13(2), 190–194 (2014).
[Crossref]

Feit, M. D.

Gallais, L.

Geerts, Y. H.

O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, and X. Crispin, “Semi-metallic polymers,” Nat. Mater. 13(2), 190–194 (2014).
[Crossref]

Genin, F. Y.

Gong, X.

C. Yi, L. Zhang, R. Hu, S. S. C. Chuang, J. Zheng, and X. Gong, “Highly electrically conductive polyethylenedioxythiophene thin films for thermoelectric applications,” J. Mater. Chem. A 4(33), 12730–12738 (2016).
[Crossref]

Grande, H.

C. Pozo-Gonzalo, D. Mecerreyes, J. A. Pomposo, M. Salsamendi, R. Marcilla, H. Grande, R. Vergaz, D. Barrios, and J. M. Sánchez-Pena, “All-plastic electrochromic devices based on pedot as switchable optical attenuator in the near ir,” Sol. Energy Mater. Sol. Cells 92(2), 101–106 (2008).
[Crossref]

Gruber, C.

M. Mueller, M. Fabretto, D. Evans, P. Hojati-Talemi, C. Gruber, and P. Murphy, “Vacuum vapour phase polymerization of high conductivity pedot: Role of PEG-PPG-PEG, the origin of water, and choice of oxidant,” Polymer 53(11), 2146–2151 (2012).
[Crossref]

Gu, M.

E. Nasybulin, W. Xu, M. H. Engelhard, X. S. Li, M. Gu, D. Hu, and J.-G. Zhang, “Electrocatalytic properties of poly(3,4-ethylenedioxythiophene) (pedot) in Li-O2 battery,” Electrochem. Commun. 29, 63–66 (2013).
[Crossref]

Gueskine, V.

I. ozoulenko, A. Singh, S. K. Singh, V. Gueskine, X. Crispin, and M. Berggren, “Polarons, bipolarons, and absorption spectroscopy of PEDOT,” ACS Appl. Polym. Mater. 1(1), 83–94 (2019).
[Crossref]

Hall, C.

K. Zuber, M. Fabretto, C. Hall, and P. Murphy, “Improved pedot conductivity via suppression of crystallite formation in fe (iii) tosylate during vapor phase polymerization,” Macromol. Rapid Commun. 29(18), 1503–1508 (2008).
[Crossref]

Han, L.

L. Stepien, A. Roch, R. Tkachov, B. Leupolt, L. Han, N. van Ngo, and C. Leyens, “Thermal operating window for pedot:pss films and its related thermoelectric properties,” Synth. Met. 225, 49–54 (2017).
[Crossref]

Heywang, G.

I. Winter, C. Reese, J. Hormes, G. Heywang, and F. Jonas, “The thermal ageing of poly(3,4-ethylenedioxythiophene). an investigation by X-ray absorption and X-ray photoelectron spectroscopy,” Chem. Phys. 194(1), 207–213 (1995).
[Crossref]

Higgins, M. J.

C. D. O’Connell, M. J. Higgins, H. Nakashima, S. E. Moulton, and G. G. Wallace, “Vapor phase polymerization of edot from submicrometer scale oxidant patterned by dip-pen nanolithography,” Langmuir 28(26), 9953–9960 (2012).
[Crossref]

Hojati-Talemi, P.

P. P. Cottis, D. Evans, M. Fabretto, S. Pering, P. Murphy, and P. Hojati-Talemi, “Metal-free oxygen reduction electrodes based on thin pedot films with high electrocatalytic activity,” RSC Adv. 4(19), 9819–9824 (2014).
[Crossref]

O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, and X. Crispin, “Semi-metallic polymers,” Nat. Mater. 13(2), 190–194 (2014).
[Crossref]

R. Brooke, D. Evans, M. Dienel, P. Hojati-Talemi, P. Murphy, and M. Fabretto, “Inkjet printing and vapor phase polymerization: patterned conductive pedot for electronic applications,” J. Mater. Chem. C 1(20), 3353–3358 (2013).
[Crossref]

M. Mueller, M. Fabretto, D. Evans, P. Hojati-Talemi, C. Gruber, and P. Murphy, “Vacuum vapour phase polymerization of high conductivity pedot: Role of PEG-PPG-PEG, the origin of water, and choice of oxidant,” Polymer 53(11), 2146–2151 (2012).
[Crossref]

Hokazono, M.

M. Hokazono, H. Anno, and N. Toshima, “Thermoelectric properties and thermal stability of PEDOT:PSS films on a polyimide substrate and application in flexible energy conversion devices,” J. Electron. Mater. 43(6), 2196–2201 (2014).
[Crossref]

Hormes, J.

I. Winter, C. Reese, J. Hormes, G. Heywang, and F. Jonas, “The thermal ageing of poly(3,4-ethylenedioxythiophene). an investigation by X-ray absorption and X-ray photoelectron spectroscopy,” Chem. Phys. 194(1), 207–213 (1995).
[Crossref]

Hu, D.

E. Nasybulin, W. Xu, M. H. Engelhard, X. S. Li, M. Gu, D. Hu, and J.-G. Zhang, “Electrocatalytic properties of poly(3,4-ethylenedioxythiophene) (pedot) in Li-O2 battery,” Electrochem. Commun. 29, 63–66 (2013).
[Crossref]

Hu, R.

C. Yi, L. Zhang, R. Hu, S. S. C. Chuang, J. Zheng, and X. Gong, “Highly electrically conductive polyethylenedioxythiophene thin films for thermoelectric applications,” J. Mater. Chem. A 4(33), 12730–12738 (2016).
[Crossref]

Hu, Z.

Z. Hu, J. Zhang, and Y. Zhu, “Effects of solvent-treated PEDOT:PSS on organic photovoltaic devices,” Renewable Energy 62, 100–105 (2014).
[Crossref]

Hutchinson, M. R.

Iandolo, D.

J. Edberg, D. Iandolo, R. Brooke, X. Liu, C. Musumeci, J. W. Andreasen, D. T. Simon, D. Evans, I. Engquist, and M. Berggren, “Patterning and conductivity modulation of conductive polymers by UV light exposure,” Adv. Funct. Mater. 26(38), 6950–6960 (2016).
[Crossref]

Inganäs, O.

L. A. Pettersson, F. Carlsson, O. Inganäs, and H. Arwin, “Spectroscopic ellipsometry studies of the optical properties of doped poly (3, 4-ethylenedioxythiophene): an anisotropic metal,” Thin Solid Films 313-314, 356–361 (1998).
[Crossref]

Jaudouin, O.

N. Massonnet, A. Carella, O. Jaudouin, P. Rannou, G. Laval, C. Celle, and J.-P. Simonato, “Improvement of the seebeck coefficient of PEDOT:PSS by chemical reduction combined with a novel method for its transfer using free-standing thin films,” J. Mater. Chem. C 2(7), 1278–1283 (2014).
[Crossref]

Jonas, F.

I. Winter, C. Reese, J. Hormes, G. Heywang, and F. Jonas, “The thermal ageing of poly(3,4-ethylenedioxythiophene). an investigation by X-ray absorption and X-ray photoelectron spectroscopy,” Chem. Phys. 194(1), 207–213 (1995).
[Crossref]

Jonsson, M. P.

R. Brooke, E. Mitraka, S. Sardar, M. Sandberg, A. Sawatdee, M. Berggren, X. Crispin, and M. P. Jonsson, “Infrared electrochromic conducting polymer devices,” J. Mater. Chem. C 5(23), 5824–5830 (2017).
[Crossref]

Karageorgopoulos, D.

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. Choulis, “Thermal degradation mechanisms of PEDOT:PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

Kateb, M.

M. Kateb, V. Ahmadi, and M. Mohseni, “Fast switching and high contrast electrochromic device based on pedot nanotube grown on zno nanowires,” Sol. Energy Mater. Sol. Cells 112, 57–64 (2013).
[Crossref]

Kawahara, J.

J. Kawahara, P. A. Ersman, I. Engquist, and M. Berggren, “Improving the color switch contrast in PEDOT:PSS-based electrochromic displays,” Org. Electron. 13(3), 469–474 (2012).
[Crossref]

Kazemi, A.

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators, B 56(1-2), 158–163 (1999).
[Crossref]

Kennou, S.

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. Choulis, “Thermal degradation mechanisms of PEDOT:PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

Khan, Z. U.

A. Weathers, Z. U. Khan, R. Brooke, D. Evans, M. T. Pettes, J. W. Andreasen, X. Crispin, and L. Shi, “Significant electronic thermal transport in the conducting polymer poly (3, 4-ethylenedioxythiophene),” Adv. Mater. 27(12), 2101–2106 (2015).
[Crossref]

O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, and X. Crispin, “Semi-metallic polymers,” Nat. Mater. 13(2), 190–194 (2014).
[Crossref]

Ko, F. K.

I. D. Norris, M. M. Shaker, F. K. Ko, and A. G. MacDiarmid, “Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends,” Synth. Met. 114(2), 109–114 (2000).
[Crossref]

Koo Lee, Y.-E.

B. Cho, K. S. Park, J. Baek, H. S. Oh, Y.-E. Koo Lee, and M. M. Sung, “Single-crystal poly (3, 4-ethylenedioxythiophene) nanowires with ultrahigh conductivity,” Nano Lett. 14(6), 3321–3327 (2014).
[Crossref]

Kostecki, R.

Kozlowski, M. R.

Kumar, A.

A. Kumar, D. M. Welsh, M. C. Morvant, F. Piroux, K. A. Abboud, and J. R. Reynolds, “Conducting poly(3,4-alkylenedioxythiophene) derivatives as fast electrochromics with high-contrast ratios,” Chem. Mater. 10(3), 896–902 (1998).
[Crossref]

J. R. Reynolds, A. Kumar, J. L. Reddinger, B. Sankaran, S. A. Sapp, and G. A. Sotzing, “Unique variable-gap polyheterocycles for high-contrast dual polymer electrochromic devices,” Synth. Met. 85(1-3), 1295–1298 (1997).
[Crossref]

Laval, G.

N. Massonnet, A. Carella, O. Jaudouin, P. Rannou, G. Laval, C. Celle, and J.-P. Simonato, “Improvement of the seebeck coefficient of PEDOT:PSS by chemical reduction combined with a novel method for its transfer using free-standing thin films,” J. Mater. Chem. C 2(7), 1278–1283 (2014).
[Crossref]

Lazzaroni, R.

O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, and X. Crispin, “Semi-metallic polymers,” Nat. Mater. 13(2), 190–194 (2014).
[Crossref]

Le Rendu, P.

T. Nguyen, P. Le Rendu, P. Long, and S. De Vos, “Chemical and thermal treatment of PEDOT:PSS thin films for use in organic light emitting diodes,” Surf. Coat. Technol. 180-181, 646–649 (2004).
[Crossref]

Leupolt, B.

L. Stepien, A. Roch, R. Tkachov, B. Leupolt, L. Han, N. van Ngo, and C. Leyens, “Thermal operating window for pedot:pss films and its related thermoelectric properties,” Synth. Met. 225, 49–54 (2017).
[Crossref]

Leyens, C.

L. Stepien, A. Roch, R. Tkachov, B. Leupolt, L. Han, N. van Ngo, and C. Leyens, “Thermal operating window for pedot:pss films and its related thermoelectric properties,” Synth. Met. 225, 49–54 (2017).
[Crossref]

Li, M.

E. Poverenov, M. Li, A. Bitler, and M. Bendikov, “Major effect of electropolymerization solvent on morphology and electrochromic properties of pedot films,” Chem. Mater. 22(13), 4019–4025 (2010).
[Crossref]

Li, X. S.

E. Nasybulin, W. Xu, M. H. Engelhard, X. S. Li, M. Gu, D. Hu, and J.-G. Zhang, “Electrocatalytic properties of poly(3,4-ethylenedioxythiophene) (pedot) in Li-O2 battery,” Electrochem. Commun. 29, 63–66 (2013).
[Crossref]

Liu, X.

J. Edberg, D. Iandolo, R. Brooke, X. Liu, C. Musumeci, J. W. Andreasen, D. T. Simon, D. Evans, I. Engquist, and M. Berggren, “Patterning and conductivity modulation of conductive polymers by UV light exposure,” Adv. Funct. Mater. 26(38), 6950–6960 (2016).
[Crossref]

Long, P.

T. Nguyen, P. Le Rendu, P. Long, and S. De Vos, “Chemical and thermal treatment of PEDOT:PSS thin films for use in organic light emitting diodes,” Surf. Coat. Technol. 180-181, 646–649 (2004).
[Crossref]

Macaya, D.

D. Bernards, D. Macaya, M. Nikolou, J. Defranco, S. Takamatsu, and G. Malliaras, “Enzymatic sensing with organic electrochemical transistors,” J. Mater. Chem. 18(1), 116–120 (2008).
[Crossref]

MacDiarmid, A. G.

I. D. Norris, M. M. Shaker, F. K. Ko, and A. G. MacDiarmid, “Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends,” Synth. Met. 114(2), 109–114 (2000).
[Crossref]

Malliaras, G.

D. Bernards, D. Macaya, M. Nikolou, J. Defranco, S. Takamatsu, and G. Malliaras, “Enzymatic sensing with organic electrochemical transistors,” J. Mater. Chem. 18(1), 116–120 (2008).
[Crossref]

Marcilla, R.

C. Pozo-Gonzalo, D. Mecerreyes, J. A. Pomposo, M. Salsamendi, R. Marcilla, H. Grande, R. Vergaz, D. Barrios, and J. M. Sánchez-Pena, “All-plastic electrochromic devices based on pedot as switchable optical attenuator in the near ir,” Sol. Energy Mater. Sol. Cells 92(2), 101–106 (2008).
[Crossref]

Massonnet, N.

N. Massonnet, A. Carella, O. Jaudouin, P. Rannou, G. Laval, C. Celle, and J.-P. Simonato, “Improvement of the seebeck coefficient of PEDOT:PSS by chemical reduction combined with a novel method for its transfer using free-standing thin films,” J. Mater. Chem. C 2(7), 1278–1283 (2014).
[Crossref]

Matthews, M.

C. Carr, M. Matthews, J. Bude, and M. Spaeth, “The effect of laser pulse duration on laser-induced damage in kdp and Si-O2,” in Laser-Induced Damage in Optical Materials: 2006, vol. 6403 (International Society for Optics and Photonics, 2007), p. 64030K.

McAdam, G.

Mecerreyes, D.

C. Pozo-Gonzalo, D. Mecerreyes, J. A. Pomposo, M. Salsamendi, R. Marcilla, H. Grande, R. Vergaz, D. Barrios, and J. M. Sánchez-Pena, “All-plastic electrochromic devices based on pedot as switchable optical attenuator in the near ir,” Sol. Energy Mater. Sol. Cells 92(2), 101–106 (2008).
[Crossref]

Mitraka, E.

R. Brooke, E. Mitraka, S. Sardar, M. Sandberg, A. Sawatdee, M. Berggren, X. Crispin, and M. P. Jonsson, “Infrared electrochromic conducting polymer devices,” J. Mater. Chem. C 5(23), 5824–5830 (2017).
[Crossref]

Mohseni, M.

M. Kateb, V. Ahmadi, and M. Mohseni, “Fast switching and high contrast electrochromic device based on pedot nanotube grown on zno nanowires,” Sol. Energy Mater. Sol. Cells 112, 57–64 (2013).
[Crossref]

Monro, T. M.

Morvant, M. C.

A. Kumar, D. M. Welsh, M. C. Morvant, F. Piroux, K. A. Abboud, and J. R. Reynolds, “Conducting poly(3,4-alkylenedioxythiophene) derivatives as fast electrochromics with high-contrast ratios,” Chem. Mater. 10(3), 896–902 (1998).
[Crossref]

Moulton, S. E.

C. D. O’Connell, M. J. Higgins, H. Nakashima, S. E. Moulton, and G. G. Wallace, “Vapor phase polymerization of edot from submicrometer scale oxidant patterned by dip-pen nanolithography,” Langmuir 28(26), 9953–9960 (2012).
[Crossref]

Mueller, M.

M. Mueller, M. Fabretto, D. Evans, P. Hojati-Talemi, C. Gruber, and P. Murphy, “Vacuum vapour phase polymerization of high conductivity pedot: Role of PEG-PPG-PEG, the origin of water, and choice of oxidant,” Polymer 53(11), 2146–2151 (2012).
[Crossref]

Murphy, P.

R. Brooke, P. Cottis, P. Talemi, M. Fabretto, P. Murphy, and D. Evans, “Recent advances in the synthesis of conducting polymers from the vapour phase,” Prog. Mater. Sci. 86, 127–146 (2017).
[Crossref]

R. Brooke, M. Fabretto, N. Vucaj, K. Zuber, E. Switalska, L. Reeks, P. Murphy, and D. Evans, “Effect of oxidant on the performance of conductive polymer films prepared by vacuum vapor phase polymerization for smart window applications,” Smart Mater. Struct. 24(3), 035016 (2015).
[Crossref]

P. P. Cottis, D. Evans, M. Fabretto, S. Pering, P. Murphy, and P. Hojati-Talemi, “Metal-free oxygen reduction electrodes based on thin pedot films with high electrocatalytic activity,” RSC Adv. 4(19), 9819–9824 (2014).
[Crossref]

R. Brooke, D. Evans, M. Dienel, P. Hojati-Talemi, P. Murphy, and M. Fabretto, “Inkjet printing and vapor phase polymerization: patterned conductive pedot for electronic applications,” J. Mater. Chem. C 1(20), 3353–3358 (2013).
[Crossref]

M. Mueller, M. Fabretto, D. Evans, P. Hojati-Talemi, C. Gruber, and P. Murphy, “Vacuum vapour phase polymerization of high conductivity pedot: Role of PEG-PPG-PEG, the origin of water, and choice of oxidant,” Polymer 53(11), 2146–2151 (2012).
[Crossref]

K. Zuber, M. Fabretto, C. Hall, and P. Murphy, “Improved pedot conductivity via suppression of crystallite formation in fe (iii) tosylate during vapor phase polymerization,” Macromol. Rapid Commun. 29(18), 1503–1508 (2008).
[Crossref]

Murphy, P. J.

O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, and X. Crispin, “Semi-metallic polymers,” Nat. Mater. 13(2), 190–194 (2014).
[Crossref]

Musolino, S.

Musumeci, C.

J. Edberg, D. Iandolo, R. Brooke, X. Liu, C. Musumeci, J. W. Andreasen, D. T. Simon, D. Evans, I. Engquist, and M. Berggren, “Patterning and conductivity modulation of conductive polymers by UV light exposure,” Adv. Funct. Mater. 26(38), 6950–6960 (2016).
[Crossref]

Nakashima, H.

C. D. O’Connell, M. J. Higgins, H. Nakashima, S. E. Moulton, and G. G. Wallace, “Vapor phase polymerization of edot from submicrometer scale oxidant patterned by dip-pen nanolithography,” Langmuir 28(26), 9953–9960 (2012).
[Crossref]

Nasybulin, E.

E. Nasybulin, W. Xu, M. H. Engelhard, X. S. Li, M. Gu, D. Hu, and J.-G. Zhang, “Electrocatalytic properties of poly(3,4-ethylenedioxythiophene) (pedot) in Li-O2 battery,” Electrochem. Commun. 29, 63–66 (2013).
[Crossref]

Natoli, J.-Y.

Nguyen, T.

T. Nguyen, P. Le Rendu, P. Long, and S. De Vos, “Chemical and thermal treatment of PEDOT:PSS thin films for use in organic light emitting diodes,” Surf. Coat. Technol. 180-181, 646–649 (2004).
[Crossref]

Nikolou, M.

D. Bernards, D. Macaya, M. Nikolou, J. Defranco, S. Takamatsu, and G. Malliaras, “Enzymatic sensing with organic electrochemical transistors,” J. Mater. Chem. 18(1), 116–120 (2008).
[Crossref]

Norris, I. D.

I. D. Norris, M. M. Shaker, F. K. Ko, and A. G. MacDiarmid, “Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends,” Synth. Met. 114(2), 109–114 (2000).
[Crossref]

Norris, J. O.

J. O. Norris, “Current status and prospects for the use of optical fibres in chemical analysis. a review,” Analyst 114(11), 1359 (1989).
[Crossref]

O’Connell, C. D.

C. D. O’Connell, M. J. Higgins, H. Nakashima, S. E. Moulton, and G. G. Wallace, “Vapor phase polymerization of edot from submicrometer scale oxidant patterned by dip-pen nanolithography,” Langmuir 28(26), 9953–9960 (2012).
[Crossref]

Oh, H. S.

B. Cho, K. S. Park, J. Baek, H. S. Oh, Y.-E. Koo Lee, and M. M. Sung, “Single-crystal poly (3, 4-ethylenedioxythiophene) nanowires with ultrahigh conductivity,” Nano Lett. 14(6), 3321–3327 (2014).
[Crossref]

ozoulenko, I.

I. ozoulenko, A. Singh, S. K. Singh, V. Gueskine, X. Crispin, and M. Berggren, “Polarons, bipolarons, and absorption spectroscopy of PEDOT,” ACS Appl. Polym. Mater. 1(1), 83–94 (2019).
[Crossref]

Paliatsas, N.

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. Choulis, “Thermal degradation mechanisms of PEDOT:PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

Palmer, J. M.

J. M. Palmer, “The measurement of transmission, absorption, emission, and reflection,” Handb. Optics 2, 25 (1995).

Park, K. S.

B. Cho, K. S. Park, J. Baek, H. S. Oh, Y.-E. Koo Lee, and M. M. Sung, “Single-crystal poly (3, 4-ethylenedioxythiophene) nanowires with ultrahigh conductivity,” Nano Lett. 14(6), 3321–3327 (2014).
[Crossref]

Pering, S.

P. P. Cottis, D. Evans, M. Fabretto, S. Pering, P. Murphy, and P. Hojati-Talemi, “Metal-free oxygen reduction electrodes based on thin pedot films with high electrocatalytic activity,” RSC Adv. 4(19), 9819–9824 (2014).
[Crossref]

Petraki, F.

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. Choulis, “Thermal degradation mechanisms of PEDOT:PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

Petrick, R.

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators, B 56(1-2), 158–163 (1999).
[Crossref]

Pettersson, L. A.

L. A. Pettersson, F. Carlsson, O. Inganäs, and H. Arwin, “Spectroscopic ellipsometry studies of the optical properties of doped poly (3, 4-ethylenedioxythiophene): an anisotropic metal,” Thin Solid Films 313-314, 356–361 (1998).
[Crossref]

Pettes, M. T.

A. Weathers, Z. U. Khan, R. Brooke, D. Evans, M. T. Pettes, J. W. Andreasen, X. Crispin, and L. Shi, “Significant electronic thermal transport in the conducting polymer poly (3, 4-ethylenedioxythiophene),” Adv. Mater. 27(12), 2101–2106 (2015).
[Crossref]

Piroux, F.

A. Kumar, D. M. Welsh, M. C. Morvant, F. Piroux, K. A. Abboud, and J. R. Reynolds, “Conducting poly(3,4-alkylenedioxythiophene) derivatives as fast electrochromics with high-contrast ratios,” Chem. Mater. 10(3), 896–902 (1998).
[Crossref]

Pomposo, J. A.

C. Pozo-Gonzalo, D. Mecerreyes, J. A. Pomposo, M. Salsamendi, R. Marcilla, H. Grande, R. Vergaz, D. Barrios, and J. M. Sánchez-Pena, “All-plastic electrochromic devices based on pedot as switchable optical attenuator in the near ir,” Sol. Energy Mater. Sol. Cells 92(2), 101–106 (2008).
[Crossref]

Poverenov, E.

E. Poverenov, M. Li, A. Bitler, and M. Bendikov, “Major effect of electropolymerization solvent on morphology and electrochromic properties of pedot films,” Chem. Mater. 22(13), 4019–4025 (2010).
[Crossref]

Pozo-Gonzalo, C.

C. Pozo-Gonzalo, D. Mecerreyes, J. A. Pomposo, M. Salsamendi, R. Marcilla, H. Grande, R. Vergaz, D. Barrios, and J. M. Sánchez-Pena, “All-plastic electrochromic devices based on pedot as switchable optical attenuator in the near ir,” Sol. Energy Mater. Sol. Cells 92(2), 101–106 (2008).
[Crossref]

Rannou, P.

N. Massonnet, A. Carella, O. Jaudouin, P. Rannou, G. Laval, C. Celle, and J.-P. Simonato, “Improvement of the seebeck coefficient of PEDOT:PSS by chemical reduction combined with a novel method for its transfer using free-standing thin films,” J. Mater. Chem. C 2(7), 1278–1283 (2014).
[Crossref]

Reddinger, J. L.

J. R. Reynolds, A. Kumar, J. L. Reddinger, B. Sankaran, S. A. Sapp, and G. A. Sotzing, “Unique variable-gap polyheterocycles for high-contrast dual polymer electrochromic devices,” Synth. Met. 85(1-3), 1295–1298 (1997).
[Crossref]

Reeks, L.

R. Brooke, M. Fabretto, N. Vucaj, K. Zuber, E. Switalska, L. Reeks, P. Murphy, and D. Evans, “Effect of oxidant on the performance of conductive polymer films prepared by vacuum vapor phase polymerization for smart window applications,” Smart Mater. Struct. 24(3), 035016 (2015).
[Crossref]

Reese, C.

I. Winter, C. Reese, J. Hormes, G. Heywang, and F. Jonas, “The thermal ageing of poly(3,4-ethylenedioxythiophene). an investigation by X-ray absorption and X-ray photoelectron spectroscopy,” Chem. Phys. 194(1), 207–213 (1995).
[Crossref]

Reynolds, J. R.

A. Kumar, D. M. Welsh, M. C. Morvant, F. Piroux, K. A. Abboud, and J. R. Reynolds, “Conducting poly(3,4-alkylenedioxythiophene) derivatives as fast electrochromics with high-contrast ratios,” Chem. Mater. 10(3), 896–902 (1998).
[Crossref]

J. R. Reynolds, A. Kumar, J. L. Reddinger, B. Sankaran, S. A. Sapp, and G. A. Sotzing, “Unique variable-gap polyheterocycles for high-contrast dual polymer electrochromic devices,” Synth. Met. 85(1-3), 1295–1298 (1997).
[Crossref]

Roch, A.

L. Stepien, A. Roch, R. Tkachov, B. Leupolt, L. Han, N. van Ngo, and C. Leyens, “Thermal operating window for pedot:pss films and its related thermoelectric properties,” Synth. Met. 225, 49–54 (2017).
[Crossref]

Rubenchik, A. M.

Sakkopoulos, S.

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. Choulis, “Thermal degradation mechanisms of PEDOT:PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

Salem, A.

Salleo, A.

Salsamendi, M.

C. Pozo-Gonzalo, D. Mecerreyes, J. A. Pomposo, M. Salsamendi, R. Marcilla, H. Grande, R. Vergaz, D. Barrios, and J. M. Sánchez-Pena, “All-plastic electrochromic devices based on pedot as switchable optical attenuator in the near ir,” Sol. Energy Mater. Sol. Cells 92(2), 101–106 (2008).
[Crossref]

Sánchez-Pena, J. M.

C. Pozo-Gonzalo, D. Mecerreyes, J. A. Pomposo, M. Salsamendi, R. Marcilla, H. Grande, R. Vergaz, D. Barrios, and J. M. Sánchez-Pena, “All-plastic electrochromic devices based on pedot as switchable optical attenuator in the near ir,” Sol. Energy Mater. Sol. Cells 92(2), 101–106 (2008).
[Crossref]

Sandberg, M.

R. Brooke, E. Mitraka, S. Sardar, M. Sandberg, A. Sawatdee, M. Berggren, X. Crispin, and M. P. Jonsson, “Infrared electrochromic conducting polymer devices,” J. Mater. Chem. C 5(23), 5824–5830 (2017).
[Crossref]

Sankaran, B.

J. R. Reynolds, A. Kumar, J. L. Reddinger, B. Sankaran, S. A. Sapp, and G. A. Sotzing, “Unique variable-gap polyheterocycles for high-contrast dual polymer electrochromic devices,” Synth. Met. 85(1-3), 1295–1298 (1997).
[Crossref]

Sapp, S. A.

J. R. Reynolds, A. Kumar, J. L. Reddinger, B. Sankaran, S. A. Sapp, and G. A. Sotzing, “Unique variable-gap polyheterocycles for high-contrast dual polymer electrochromic devices,” Synth. Met. 85(1-3), 1295–1298 (1997).
[Crossref]

Sardar, S.

R. Brooke, E. Mitraka, S. Sardar, M. Sandberg, A. Sawatdee, M. Berggren, X. Crispin, and M. P. Jonsson, “Infrared electrochromic conducting polymer devices,” J. Mater. Chem. C 5(23), 5824–5830 (2017).
[Crossref]

Sawatdee, A.

R. Brooke, E. Mitraka, S. Sardar, M. Sandberg, A. Sawatdee, M. Berggren, X. Crispin, and M. P. Jonsson, “Infrared electrochromic conducting polymer devices,” J. Mater. Chem. C 5(23), 5824–5830 (2017).
[Crossref]

Schartner, E. P.

Shaker, M. M.

I. D. Norris, M. M. Shaker, F. K. Ko, and A. G. MacDiarmid, “Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends,” Synth. Met. 114(2), 109–114 (2000).
[Crossref]

Shi, L.

A. Weathers, Z. U. Khan, R. Brooke, D. Evans, M. T. Pettes, J. W. Andreasen, X. Crispin, and L. Shi, “Significant electronic thermal transport in the conducting polymer poly (3, 4-ethylenedioxythiophene),” Adv. Mater. 27(12), 2101–2106 (2015).
[Crossref]

Simon, D. T.

J. Edberg, D. Iandolo, R. Brooke, X. Liu, C. Musumeci, J. W. Andreasen, D. T. Simon, D. Evans, I. Engquist, and M. Berggren, “Patterning and conductivity modulation of conductive polymers by UV light exposure,” Adv. Funct. Mater. 26(38), 6950–6960 (2016).
[Crossref]

Simonato, J.-P.

N. Massonnet, A. Carella, O. Jaudouin, P. Rannou, G. Laval, C. Celle, and J.-P. Simonato, “Improvement of the seebeck coefficient of PEDOT:PSS by chemical reduction combined with a novel method for its transfer using free-standing thin films,” J. Mater. Chem. C 2(7), 1278–1283 (2014).
[Crossref]

Singh, A.

I. ozoulenko, A. Singh, S. K. Singh, V. Gueskine, X. Crispin, and M. Berggren, “Polarons, bipolarons, and absorption spectroscopy of PEDOT,” ACS Appl. Polym. Mater. 1(1), 83–94 (2019).
[Crossref]

Singh, S. K.

I. ozoulenko, A. Singh, S. K. Singh, V. Gueskine, X. Crispin, and M. Berggren, “Polarons, bipolarons, and absorption spectroscopy of PEDOT,” ACS Appl. Polym. Mater. 1(1), 83–94 (2019).
[Crossref]

Sotzing, G. A.

J. R. Reynolds, A. Kumar, J. L. Reddinger, B. Sankaran, S. A. Sapp, and G. A. Sotzing, “Unique variable-gap polyheterocycles for high-contrast dual polymer electrochromic devices,” Synth. Met. 85(1-3), 1295–1298 (1997).
[Crossref]

Spaeth, M.

C. Carr, M. Matthews, J. Bude, and M. Spaeth, “The effect of laser pulse duration on laser-induced damage in kdp and Si-O2,” in Laser-Induced Damage in Optical Materials: 2006, vol. 6403 (International Society for Optics and Photonics, 2007), p. 64030K.

Stepien, L.

L. Stepien, A. Roch, R. Tkachov, B. Leupolt, L. Han, N. van Ngo, and C. Leyens, “Thermal operating window for pedot:pss films and its related thermoelectric properties,” Synth. Met. 225, 49–54 (2017).
[Crossref]

Sung, M. M.

B. Cho, K. S. Park, J. Baek, H. S. Oh, Y.-E. Koo Lee, and M. M. Sung, “Single-crystal poly (3, 4-ethylenedioxythiophene) nanowires with ultrahigh conductivity,” Nano Lett. 14(6), 3321–3327 (2014).
[Crossref]

Sutapun, B.

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators, B 56(1-2), 158–163 (1999).
[Crossref]

Switalska, E.

R. Brooke, M. Fabretto, N. Vucaj, K. Zuber, E. Switalska, L. Reeks, P. Murphy, and D. Evans, “Effect of oxidant on the performance of conductive polymer films prepared by vacuum vapor phase polymerization for smart window applications,” Smart Mater. Struct. 24(3), 035016 (2015).
[Crossref]

Tabib-Azar, M.

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators, B 56(1-2), 158–163 (1999).
[Crossref]

Takamatsu, S.

D. Bernards, D. Macaya, M. Nikolou, J. Defranco, S. Takamatsu, and G. Malliaras, “Enzymatic sensing with organic electrochemical transistors,” J. Mater. Chem. 18(1), 116–120 (2008).
[Crossref]

Talemi, P.

R. Brooke, P. Cottis, P. Talemi, M. Fabretto, P. Murphy, and D. Evans, “Recent advances in the synthesis of conducting polymers from the vapour phase,” Prog. Mater. Sci. 86, 127–146 (2017).
[Crossref]

Tkachov, R.

L. Stepien, A. Roch, R. Tkachov, B. Leupolt, L. Han, N. van Ngo, and C. Leyens, “Thermal operating window for pedot:pss films and its related thermoelectric properties,” Synth. Met. 225, 49–54 (2017).
[Crossref]

Toshima, N.

M. Hokazono, H. Anno, and N. Toshima, “Thermoelectric properties and thermal stability of PEDOT:PSS films on a polyimide substrate and application in flexible energy conversion devices,” J. Electron. Mater. 43(6), 2196–2201 (2014).
[Crossref]

Tsiminis, G.

van Ngo, N.

L. Stepien, A. Roch, R. Tkachov, B. Leupolt, L. Han, N. van Ngo, and C. Leyens, “Thermal operating window for pedot:pss films and its related thermoelectric properties,” Synth. Met. 225, 49–54 (2017).
[Crossref]

Vasantha, V. S.

V. S. Vasantha and S.-M. Chen, “Electrochemical preparation and electrocatalytic properties of pedot/ferricyanide film-modified electrodes,” Electrochim. Acta 51(2), 347–355 (2005).
[Crossref]

Vergaz, R.

C. Pozo-Gonzalo, D. Mecerreyes, J. A. Pomposo, M. Salsamendi, R. Marcilla, H. Grande, R. Vergaz, D. Barrios, and J. M. Sánchez-Pena, “All-plastic electrochromic devices based on pedot as switchable optical attenuator in the near ir,” Sol. Energy Mater. Sol. Cells 92(2), 101–106 (2008).
[Crossref]

Vitoratos, E.

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. Choulis, “Thermal degradation mechanisms of PEDOT:PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

Vucaj, N.

R. Brooke, M. Fabretto, N. Vucaj, K. Zuber, E. Switalska, L. Reeks, P. Murphy, and D. Evans, “Effect of oxidant on the performance of conductive polymer films prepared by vacuum vapor phase polymerization for smart window applications,” Smart Mater. Struct. 24(3), 035016 (2015).
[Crossref]

Wallace, G. G.

C. D. O’Connell, M. J. Higgins, H. Nakashima, S. E. Moulton, and G. G. Wallace, “Vapor phase polymerization of edot from submicrometer scale oxidant patterned by dip-pen nanolithography,” Langmuir 28(26), 9953–9960 (2012).
[Crossref]

Wang, H.

O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, and X. Crispin, “Semi-metallic polymers,” Nat. Mater. 13(2), 190–194 (2014).
[Crossref]

Weathers, A.

A. Weathers, Z. U. Khan, R. Brooke, D. Evans, M. T. Pettes, J. W. Andreasen, X. Crispin, and L. Shi, “Significant electronic thermal transport in the conducting polymer poly (3, 4-ethylenedioxythiophene),” Adv. Mater. 27(12), 2101–2106 (2015).
[Crossref]

Welsh, D. M.

A. Kumar, D. M. Welsh, M. C. Morvant, F. Piroux, K. A. Abboud, and J. R. Reynolds, “Conducting poly(3,4-alkylenedioxythiophene) derivatives as fast electrochromics with high-contrast ratios,” Chem. Mater. 10(3), 896–902 (1998).
[Crossref]

Winter, I.

I. Winter, C. Reese, J. Hormes, G. Heywang, and F. Jonas, “The thermal ageing of poly(3,4-ethylenedioxythiophene). an investigation by X-ray absorption and X-ray photoelectron spectroscopy,” Chem. Phys. 194(1), 207–213 (1995).
[Crossref]

Wood, R.

R. Wood, “Laser induced damage thresholds and laser safety levels. Do the units of measurement matter?” Opt. Laser Technol. 29(8), 517–522 (1998).
[Crossref]

Wood, R. M.

R. M. Wood, Laser-induced Damage of Optical Materials (CRC Press, 2003).

R. M. Wood, The Power-and Energy-handling Capability of Optical Materials, Components, and Systems, vol. 60 (Spie Press, 2003).

Xu, W.

E. Nasybulin, W. Xu, M. H. Engelhard, X. S. Li, M. Gu, D. Hu, and J.-G. Zhang, “Electrocatalytic properties of poly(3,4-ethylenedioxythiophene) (pedot) in Li-O2 battery,” Electrochem. Commun. 29, 63–66 (2013).
[Crossref]

Yi, C.

C. Yi, L. Zhang, R. Hu, S. S. C. Chuang, J. Zheng, and X. Gong, “Highly electrically conductive polyethylenedioxythiophene thin films for thermoelectric applications,” J. Mater. Chem. A 4(33), 12730–12738 (2016).
[Crossref]

Yoshiyama, J.

Zhang, J.

Z. Hu, J. Zhang, and Y. Zhu, “Effects of solvent-treated PEDOT:PSS on organic photovoltaic devices,” Renewable Energy 62, 100–105 (2014).
[Crossref]

Zhang, J.-G.

E. Nasybulin, W. Xu, M. H. Engelhard, X. S. Li, M. Gu, D. Hu, and J.-G. Zhang, “Electrocatalytic properties of poly(3,4-ethylenedioxythiophene) (pedot) in Li-O2 battery,” Electrochem. Commun. 29, 63–66 (2013).
[Crossref]

Zhang, L.

C. Yi, L. Zhang, R. Hu, S. S. C. Chuang, J. Zheng, and X. Gong, “Highly electrically conductive polyethylenedioxythiophene thin films for thermoelectric applications,” J. Mater. Chem. A 4(33), 12730–12738 (2016).
[Crossref]

Zheng, J.

C. Yi, L. Zhang, R. Hu, S. S. C. Chuang, J. Zheng, and X. Gong, “Highly electrically conductive polyethylenedioxythiophene thin films for thermoelectric applications,” J. Mater. Chem. A 4(33), 12730–12738 (2016).
[Crossref]

Zhu, Y.

Z. Hu, J. Zhang, and Y. Zhu, “Effects of solvent-treated PEDOT:PSS on organic photovoltaic devices,” Renewable Energy 62, 100–105 (2014).
[Crossref]

Zozoulenko, I.

O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, and X. Crispin, “Semi-metallic polymers,” Nat. Mater. 13(2), 190–194 (2014).
[Crossref]

Zuber, K.

R. Brooke, M. Fabretto, N. Vucaj, K. Zuber, E. Switalska, L. Reeks, P. Murphy, and D. Evans, “Effect of oxidant on the performance of conductive polymer films prepared by vacuum vapor phase polymerization for smart window applications,” Smart Mater. Struct. 24(3), 035016 (2015).
[Crossref]

K. Zuber, M. Fabretto, C. Hall, and P. Murphy, “Improved pedot conductivity via suppression of crystallite formation in fe (iii) tosylate during vapor phase polymerization,” Macromol. Rapid Commun. 29(18), 1503–1508 (2008).
[Crossref]

ACS Appl. Polym. Mater. (1)

I. ozoulenko, A. Singh, S. K. Singh, V. Gueskine, X. Crispin, and M. Berggren, “Polarons, bipolarons, and absorption spectroscopy of PEDOT,” ACS Appl. Polym. Mater. 1(1), 83–94 (2019).
[Crossref]

Adv. Funct. Mater. (1)

J. Edberg, D. Iandolo, R. Brooke, X. Liu, C. Musumeci, J. W. Andreasen, D. T. Simon, D. Evans, I. Engquist, and M. Berggren, “Patterning and conductivity modulation of conductive polymers by UV light exposure,” Adv. Funct. Mater. 26(38), 6950–6960 (2016).
[Crossref]

Adv. Mater. (1)

A. Weathers, Z. U. Khan, R. Brooke, D. Evans, M. T. Pettes, J. W. Andreasen, X. Crispin, and L. Shi, “Significant electronic thermal transport in the conducting polymer poly (3, 4-ethylenedioxythiophene),” Adv. Mater. 27(12), 2101–2106 (2015).
[Crossref]

Analyst (1)

J. O. Norris, “Current status and prospects for the use of optical fibres in chemical analysis. a review,” Analyst 114(11), 1359 (1989).
[Crossref]

Appl. Opt. (2)

Biomed. Opt. Express (1)

Chem. Mater. (2)

E. Poverenov, M. Li, A. Bitler, and M. Bendikov, “Major effect of electropolymerization solvent on morphology and electrochromic properties of pedot films,” Chem. Mater. 22(13), 4019–4025 (2010).
[Crossref]

A. Kumar, D. M. Welsh, M. C. Morvant, F. Piroux, K. A. Abboud, and J. R. Reynolds, “Conducting poly(3,4-alkylenedioxythiophene) derivatives as fast electrochromics with high-contrast ratios,” Chem. Mater. 10(3), 896–902 (1998).
[Crossref]

Chem. Phys. (1)

I. Winter, C. Reese, J. Hormes, G. Heywang, and F. Jonas, “The thermal ageing of poly(3,4-ethylenedioxythiophene). an investigation by X-ray absorption and X-ray photoelectron spectroscopy,” Chem. Phys. 194(1), 207–213 (1995).
[Crossref]

Electrochem. Commun. (1)

E. Nasybulin, W. Xu, M. H. Engelhard, X. S. Li, M. Gu, D. Hu, and J.-G. Zhang, “Electrocatalytic properties of poly(3,4-ethylenedioxythiophene) (pedot) in Li-O2 battery,” Electrochem. Commun. 29, 63–66 (2013).
[Crossref]

Electrochim. Acta (1)

V. S. Vasantha and S.-M. Chen, “Electrochemical preparation and electrocatalytic properties of pedot/ferricyanide film-modified electrodes,” Electrochim. Acta 51(2), 347–355 (2005).
[Crossref]

Handb. Optics (1)

J. M. Palmer, “The measurement of transmission, absorption, emission, and reflection,” Handb. Optics 2, 25 (1995).

J. Electron. Mater. (1)

M. Hokazono, H. Anno, and N. Toshima, “Thermoelectric properties and thermal stability of PEDOT:PSS films on a polyimide substrate and application in flexible energy conversion devices,” J. Electron. Mater. 43(6), 2196–2201 (2014).
[Crossref]

J. Mater. Chem. (1)

D. Bernards, D. Macaya, M. Nikolou, J. Defranco, S. Takamatsu, and G. Malliaras, “Enzymatic sensing with organic electrochemical transistors,” J. Mater. Chem. 18(1), 116–120 (2008).
[Crossref]

J. Mater. Chem. A (1)

C. Yi, L. Zhang, R. Hu, S. S. C. Chuang, J. Zheng, and X. Gong, “Highly electrically conductive polyethylenedioxythiophene thin films for thermoelectric applications,” J. Mater. Chem. A 4(33), 12730–12738 (2016).
[Crossref]

J. Mater. Chem. C (3)

R. Brooke, E. Mitraka, S. Sardar, M. Sandberg, A. Sawatdee, M. Berggren, X. Crispin, and M. P. Jonsson, “Infrared electrochromic conducting polymer devices,” J. Mater. Chem. C 5(23), 5824–5830 (2017).
[Crossref]

R. Brooke, D. Evans, M. Dienel, P. Hojati-Talemi, P. Murphy, and M. Fabretto, “Inkjet printing and vapor phase polymerization: patterned conductive pedot for electronic applications,” J. Mater. Chem. C 1(20), 3353–3358 (2013).
[Crossref]

N. Massonnet, A. Carella, O. Jaudouin, P. Rannou, G. Laval, C. Celle, and J.-P. Simonato, “Improvement of the seebeck coefficient of PEDOT:PSS by chemical reduction combined with a novel method for its transfer using free-standing thin films,” J. Mater. Chem. C 2(7), 1278–1283 (2014).
[Crossref]

Langmuir (1)

C. D. O’Connell, M. J. Higgins, H. Nakashima, S. E. Moulton, and G. G. Wallace, “Vapor phase polymerization of edot from submicrometer scale oxidant patterned by dip-pen nanolithography,” Langmuir 28(26), 9953–9960 (2012).
[Crossref]

Macromol. Rapid Commun. (1)

K. Zuber, M. Fabretto, C. Hall, and P. Murphy, “Improved pedot conductivity via suppression of crystallite formation in fe (iii) tosylate during vapor phase polymerization,” Macromol. Rapid Commun. 29(18), 1503–1508 (2008).
[Crossref]

Nano Lett. (1)

B. Cho, K. S. Park, J. Baek, H. S. Oh, Y.-E. Koo Lee, and M. M. Sung, “Single-crystal poly (3, 4-ethylenedioxythiophene) nanowires with ultrahigh conductivity,” Nano Lett. 14(6), 3321–3327 (2014).
[Crossref]

Nat. Mater. (1)

O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, and X. Crispin, “Semi-metallic polymers,” Nat. Mater. 13(2), 190–194 (2014).
[Crossref]

Opt. Laser Technol. (1)

R. Wood, “Laser induced damage thresholds and laser safety levels. Do the units of measurement matter?” Opt. Laser Technol. 29(8), 517–522 (1998).
[Crossref]

Opt. Mater. Express (1)

Org. Electron. (2)

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. Choulis, “Thermal degradation mechanisms of PEDOT:PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

J. Kawahara, P. A. Ersman, I. Engquist, and M. Berggren, “Improving the color switch contrast in PEDOT:PSS-based electrochromic displays,” Org. Electron. 13(3), 469–474 (2012).
[Crossref]

Polymer (1)

M. Mueller, M. Fabretto, D. Evans, P. Hojati-Talemi, C. Gruber, and P. Murphy, “Vacuum vapour phase polymerization of high conductivity pedot: Role of PEG-PPG-PEG, the origin of water, and choice of oxidant,” Polymer 53(11), 2146–2151 (2012).
[Crossref]

Prog. Mater. Sci. (1)

R. Brooke, P. Cottis, P. Talemi, M. Fabretto, P. Murphy, and D. Evans, “Recent advances in the synthesis of conducting polymers from the vapour phase,” Prog. Mater. Sci. 86, 127–146 (2017).
[Crossref]

Renewable Energy (1)

Z. Hu, J. Zhang, and Y. Zhu, “Effects of solvent-treated PEDOT:PSS on organic photovoltaic devices,” Renewable Energy 62, 100–105 (2014).
[Crossref]

RSC Adv. (1)

P. P. Cottis, D. Evans, M. Fabretto, S. Pering, P. Murphy, and P. Hojati-Talemi, “Metal-free oxygen reduction electrodes based on thin pedot films with high electrocatalytic activity,” RSC Adv. 4(19), 9819–9824 (2014).
[Crossref]

Sens. Actuators, B (1)

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators, B 56(1-2), 158–163 (1999).
[Crossref]

Smart Mater. Struct. (1)

R. Brooke, M. Fabretto, N. Vucaj, K. Zuber, E. Switalska, L. Reeks, P. Murphy, and D. Evans, “Effect of oxidant on the performance of conductive polymer films prepared by vacuum vapor phase polymerization for smart window applications,” Smart Mater. Struct. 24(3), 035016 (2015).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

M. Kateb, V. Ahmadi, and M. Mohseni, “Fast switching and high contrast electrochromic device based on pedot nanotube grown on zno nanowires,” Sol. Energy Mater. Sol. Cells 112, 57–64 (2013).
[Crossref]

C. Pozo-Gonzalo, D. Mecerreyes, J. A. Pomposo, M. Salsamendi, R. Marcilla, H. Grande, R. Vergaz, D. Barrios, and J. M. Sánchez-Pena, “All-plastic electrochromic devices based on pedot as switchable optical attenuator in the near ir,” Sol. Energy Mater. Sol. Cells 92(2), 101–106 (2008).
[Crossref]

Surf. Coat. Technol. (1)

T. Nguyen, P. Le Rendu, P. Long, and S. De Vos, “Chemical and thermal treatment of PEDOT:PSS thin films for use in organic light emitting diodes,” Surf. Coat. Technol. 180-181, 646–649 (2004).
[Crossref]

Synth. Met. (3)

I. D. Norris, M. M. Shaker, F. K. Ko, and A. G. MacDiarmid, “Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends,” Synth. Met. 114(2), 109–114 (2000).
[Crossref]

J. R. Reynolds, A. Kumar, J. L. Reddinger, B. Sankaran, S. A. Sapp, and G. A. Sotzing, “Unique variable-gap polyheterocycles for high-contrast dual polymer electrochromic devices,” Synth. Met. 85(1-3), 1295–1298 (1997).
[Crossref]

L. Stepien, A. Roch, R. Tkachov, B. Leupolt, L. Han, N. van Ngo, and C. Leyens, “Thermal operating window for pedot:pss films and its related thermoelectric properties,” Synth. Met. 225, 49–54 (2017).
[Crossref]

Thin Solid Films (1)

L. A. Pettersson, F. Carlsson, O. Inganäs, and H. Arwin, “Spectroscopic ellipsometry studies of the optical properties of doped poly (3, 4-ethylenedioxythiophene): an anisotropic metal,” Thin Solid Films 313-314, 356–361 (1998).
[Crossref]

Other (3)

C. Carr, M. Matthews, J. Bude, and M. Spaeth, “The effect of laser pulse duration on laser-induced damage in kdp and Si-O2,” in Laser-Induced Damage in Optical Materials: 2006, vol. 6403 (International Society for Optics and Photonics, 2007), p. 64030K.

R. M. Wood, Laser-induced Damage of Optical Materials (CRC Press, 2003).

R. M. Wood, The Power-and Energy-handling Capability of Optical Materials, Components, and Systems, vol. 60 (Spie Press, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. SEM images of (a) PEDOT coated optical fiber milled using Focused Ion Beam with both milling and camera angle are 52$^{\circ }$, (b) Cross-sectional image of the milled section of fiber, (c) thickness measured along the magnified cross-section with 50 nm uncertainty. Scale bars represent 50 $\mu$m, 2 $\mu$m and 500 nm for a, b and c respectively.
Fig. 2.
Fig. 2. (a) Experimental setup for measuring PEDOT:Tos degradation time based on optical transmission and back-reflection, (b) Experimental setup for PEDOT:Tos reflection broadband spectrum measurement.
Fig. 3.
Fig. 3. Splitting method, (a) Optical fiber 1 dipped in oxidant solution, (b) transferring the oxidant onto optical fiber 2, (c) splitting the oxidant between two optical fibers, (d) oxidant successfully transferred onto the end of the optical fiber 2. Scale bars represent 50 $\mu$m (red line).
Fig. 4.
Fig. 4. Optical microscopic images (reflection mode) of PEDOT:Tos synthesised on various optical fibers (a) before, (b) after the introduction of smart fixtures for 3 dimensional alignment of fibers, (c) SEM image of PEDOT:Tos coated at the tip of an optical fiber, and (d) Micromachined fixtures designed for this project, the red oval display the location of fiber under test. Scale bars represent 15 $\mu$m (red line a-c).
Fig. 5.
Fig. 5. ToF-SIMS results for VPP PEDOT:Tos coated fiber tip after fabrication: (a) -SIMS total ion, (b) S-, (c) Tosylate (C$_7$H$_7$O$_3$S-), (d) fragments of the PEDOT (C$_6$H$_6$O$_4$S-), (e) +SIMS total ion, (f) Fe2+, (g) microscope image. Scale bars represent 100 $\mu$m (white line a-f).
Fig. 6.
Fig. 6. Comparison of absorbance of thin layer (170 nm - blue line) of macroscopic area ($\sim$ 4 cm$^2$) VPP PEDOT:Tos and microscale ($\sim$ 100 $\mu$m$^2$) VPP PEDOT:Tos at the tip of the optical fiber. Red dashed line measured with ANDO Optical Spectrum Analyzer, and green dashed line measured with Ocean Optic linear array spectrometer. For reference, the electrical conductivity of the macroscopic area thin film was measured to be ca. 1800 S/cm.
Fig. 7.
Fig. 7. (a) Optical circulator response: Blue line is the input broadband light intensity to the terminal 1. Red dashed line represents circulator response $C_{12}$ and $C_{23}$. Green dashed line is the circulator response $C_{13}$ and $C_{31}$ , (b) PEDOT:Tos reflection spectrum.
Fig. 8.
Fig. 8. (a) Measured transmitted power through the PEDOT:Tos (transmission) coated fiber at different CW powers normalized to the input power as a function of time, (b) Measured average transmitted power as the function of time for CW and pulsed laser with constant peak power. The plot shows the effect of different pulse duration at 1550 nm on degradation time. The degradation time increase as the off time period increases. This is demonstrated for pulse widths of 6.8$\mu$s (50% duty cycle), 5.58$\mu$s (41% duty cycle) and 4.35$\mu$s (32% duty cycle) with 7.53 mW peak power and 13.6 $\mu$s period (pulse repetition rate of 73.529 kHz) as fixed parameters. (c) Comparison of degradation time with average transmitted power for CW and pulsed laser obtained from part a and b.
Fig. 9.
Fig. 9. ToF-SIMS results after exposure to 1550 nm for 8 hr (a) -SIMS Total ion, (b) S-, (c) Tosylate (C$-7$H$-7$O$-3$S-), (d) +SIMS Total ion, (e) Fe2+, (f) microscopic image shows LID features in the core of 8.2 $\mu$m (red circle) and surrounding area on an $\sim$300 nm thickness PEDOT:Tos sample at the core of the fiber irradiated at 88.6$\pm 0.2$ W/mm$^2$ over irradiation time of 8 hr. Scale bars represent 100 $\mu$m (white line a-e).
Fig. 10.
Fig. 10. Degradation time as a function of laser CW power. Red dots with error bars represent the experimental data and the blue line represents the model fit to CW experimental data using Eq. 4.
Fig. 11.
Fig. 11. Energy deposited into the layer as a function of pulsed laser irradiation based on the mathematical model for pulse peak power 7.53 mW, the model reach the 1.44 mJ/s LIDT for B = 1.33. $A_N$ threshold for laser pulse simulation obtained by putting lower and upper value of B threshold (1.24 - 1.69 hr). $t_{deg1}$ = 1.868 (hr) and $t_{deg2}$ = 3.491 (hr) obtained from brown and yellow dotted line in Fig. 8(b) respectively. The inset figure demonstrate the simulation of the first 5 pulses of the simulation. The blue line illustrates energy deposition and energy dissipation by letting $\beta$ = 500 (1/s) into Eq. (3).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P3(λ)=P1(λ)C12RPEDOTC23+P1(λ)C13,
dEdt=αPkβEk,
E=αβP(1exp[βtk])+E0exp[βtk].
tdeg=B(ln[1AαP]),
AN=αP(1exp(t0B))exp(ΔtB)[1exp(NTB)1exp(TB)],