Abstract

We have obtained reduced graphene oxide (rGO) by reducing the graphene oxide (GO) polymer using a femtosecond (fs) pulse laser. A method for the fabrication and preparation of GO-polymer composite is first described. We then discuss the reduction of GO-polymer to rGO using direct laser writing technology. We have characterized a fabricated rGO binary phase grating and shown that the degree of the photoreduction of GO-polymer to rGO-polymer can be controlled by the laser power. Phase modulation has been found to be more than 2π/3. Finally, we have designed a computer-generated hologram to realize an rGO fork grating. Upon illumination of the grating, a vortex beam is generated through diffraction.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multiphoton fabrication of freeform polymer microstructures containing graphene oxide and reduced graphene oxide nanosheets

Chun-Yu Lin, Ke-Ming Hsu, Hsin-Chieh Huang, Te-Fu Yeh, Hsin-Yu Chang, Chi-Hsiang Lien, Hsisheng Teng, and Shean-Jen Chen
Opt. Mater. Express 5(2) 218-226 (2015)

Graphene Oxide vs. Reduced Graphene Oxide as saturable absorbers for Er-doped passively mode-locked fiber laser

Grzegorz Sobon, Jaroslaw Sotor, Joanna Jagiello, Rafal Kozinski, Mariusz Zdrojek, Marcin Holdynski, Piotr Paletko, Jakub Boguslawski, Ludwika Lipinska, and Krzysztof M. Abramski
Opt. Express 20(17) 19463-19473 (2012)

Water dispersion of reduced graphene oxide stabilized via fullerenol semiconductor for organic solar cells

Sehyun Lee, Jun-Suk Yeo, Jin-Mun Yun, and Dong-Yu Kim
Opt. Mater. Express 7(7) 2487-2495 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
    [Crossref]
  2. M. Sharon and M. Sharon, Graphene (An Introduction to the Fundamentals and Industrial Applications) (Scrivener Publishing, Wiley, 2015).
  3. Y. Chen and Y. Huang, Graphene: New two-dimensional carbon nanomaterials (Science Press, Beijing, 2013).
  4. S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, “Hydrazine-reduction of graphite-and graphene oxide,” Carbon 49(9), 3019–3023 (2011).
    [Crossref]
  5. L. Song, F. Khoerunnisa, W. Gao, W. Dou, T. Hayashi, K. Kaneko, M. Endo, and P. M. Ajayan, “Effect of high-temperature thermal treatment on the structure and adsorption properties of reduced graphene oxide,” Carbon 52, 608–612 (2013).
    [Crossref]
  6. M. Gu, Q. Zhang, and S. Lamon, “Nanomaterials for optical data storage,” Nat. Rev. Mater. 1(12), 16070 (2016).
    [Crossref]
  7. K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
    [Crossref]
  8. Sicong Wang, Xueying Ouyang, Ziwei Feng, Yaoyu Cao, Min Gu, and Xiangping Li, “Diffractive photonic applications mediated by laser reduced graphene oxides,” Opto-Electronic Adv. 1(2), 17000201–17000208 (2018).
    [Crossref]
  9. D. Li and R. B. Kaner, “Graphene-Based Materials,” Science 320(5880), 1170–1171 (2008).
    [Crossref]
  10. G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol. 3(5), 270–274 (2008).
    [Crossref]
  11. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
    [Crossref]
  12. Huibo Fan, Changquan Xia, Li Fan, Lichun Wang, and Mingya Shen, “Graphene-supported plasmonic whispering-gallery mode in a metal-coated microcavity for sensing application with ultrahigh sensitivity,” Opt. Commun. 410, 668–673 (2018).
    [Crossref]
  13. Huili Fan, Li Fan, Changquan Xia, and Huibo Fan, “Graphene-supported high-efficient modulation based on electromagnetically induced transparency in silica microcavity,” Opt. Commun. 420, 40–45 (2018).
    [Crossref]
  14. T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’Homme, and L. C. Brinson, “Functionalized graphene sheets for polymer nanocomposites,” Nat. Nanotechnol. 3(6), 327–331 (2008).
    [Crossref]
  15. Q. Bao, H. Zhang, J. X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene–polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20(5), 782–791 (2010).
    [Crossref]
  16. L. J. Cote, R. Cruz-Silva, and J. Huang, “Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite,” J. Am. Chem. Soc. 131(31), 11027–11032 (2009).
    [Crossref]
  17. G. Williams, B. Seger, and P. V. Kamat, “TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide,” ACS Nano 2(7), 1487–1491 (2008).
    [Crossref]
  18. Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan, and E. Riedo, “Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics,” Science 328(5984), 1373–1376 (2010).
    [Crossref]
  19. K. Zhang, Q. Fu, N. Pan, X. Yu, J. Liu, Y. Luo, X. Wang, J. Yang, and J. Hou, “Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography,” Nat. Commun. 3(1), 1194 (2012).
    [Crossref]
  20. W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, and P. M. Ajayan, “Direct laser writing of micro-supercapacitors on hydrated graphite oxide films,” Nat. Nanotechnol. 6(8), 496–500 (2011).
    [Crossref]
  21. M. F. El-Kady and R. B. Kaner, “Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage,” Nat. Commun. 4(1), 1475 (2013).
    [Crossref]
  22. S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White light generation and anisotropic damage in gold films near percolation threshold,” ACS Photonics 4(5), 1207–1215 (2017).
    [Crossref]
  23. Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, “Carbon-Based Supercapacitors Produced by Activation of Graphene,” Science 332(6037), 1537–1541 (2011).
    [Crossref]
  24. J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, and P. E. Sheehan, “Reduced Graphene Oxide Molecular Sensors,” Nano Lett. 8(10), 3137–3140 (2008).
    [Crossref]
  25. C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem., Int. Ed. 48(26), 4785–4787 (2009).
    [Crossref]
  26. A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold, “Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene,” Nat. Nanotechnol. 6(6), 339–342 (2011).
    [Crossref]
  27. J. T. Robinson, M. Zalalutdinov, J. W. Baldwin, E. S. Snow, Z. Wei, P. Sheehan, and B. H. Houston, “Wafer-scale Reduced Graphene Oxide Films for Nanomechanical Devices,” Nano Lett. 8(10), 3441–3445 (2008).
    [Crossref]
  28. H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors,” ACS Nano 2(3), 463–470 (2008).
    [Crossref]
  29. Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, and H. Zhang, “Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells,” Small 6(2), 307–312 (2010).
    [Crossref]
  30. X. Zheng, B. Jia, H. Lin, L. Qiu, D. Li, and M. Gu, “Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing,” Nat. Commun. 6(1), 8433 (2015).
    [Crossref]
  31. J. L. Li, H. C. Bao, X. L. Hou, L. Sun, X. G. Wang, and M. Gu, “Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy,” Angew. Chem., Int. Ed. 51(8), 1830–1834 (2012).
    [Crossref]
  32. Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(1), 2061 (2013).
    [Crossref]
  33. X. Li, T.-H. Lan, C.-H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3(1), 998 (2012).
    [Crossref]
  34. X. Li, Q. Zhang, X. Chen, and M. Gu, “Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording,” Sci. Rep. 3(1), 2819 (2013).
    [Crossref]
  35. Y. Kawata, H. Ishitobi, and S. Kawata, “Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory,” Opt. Lett. 23(10), 756–758 (1998).
    [Crossref]
  36. X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
    [Crossref]
  37. S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
    [Crossref]
  38. L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
    [Crossref]
  39. X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
    [Crossref]
  40. H. Butt, Y. Montelongo, T. Butler, R. Rajesekharan, Q. Dai, G. S. Shiva-Reddy, T. D. Wilkinson, and G. A. Amaratunga, “Carbon nanotube based high resolution holograms,” Adv. Mater. 24(44), OP331–OP336 (2012).
    [Crossref]
  41. J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “Graphene Oxide Dispersions in Organic Solvents,” Langmuir 24(19), 10560–10564 (2008).
    [Crossref]
  42. Y. Zhou, Q. Bao, B. Varghese, L. A. L. Tang, C. K. Tan, C. H. Sow, and K. P. Loh, “Microstructuring of graphene oxide nanosheets using direct laser writing,” Adv. Mater. 22(1), 67–71 (2010).
    [Crossref]
  43. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
    [Crossref]
  44. E. G. Loewen and E. Popov, Diffraction gratings and applications. (Marcel Dekker, 1997).
  45. A. Y. Bekshaev and A. Karamoch, “Spatial characteristics of vortex light beams produced by diffraction gratings with embedded phase singularity,” Opt. Commun. 281(6), 1366–1374 (2008).
    [Crossref]
  46. Z. Guo, S. Qu, and S. Liu, “Generating optical vortex with computer-generated hologram fabricated inside glass by femtosecond laser pulses,” Opt. Commun. 273(1), 286–289 (2007).
    [Crossref]
  47. G. Situ, G. Pedrini, and W. Osten, “Spiral phase filtering and orientation-selective edge detection/enhancement,” J. Opt. Soc. Am. A 26(8), 1788–1797 (2009).
    [Crossref]
  48. Y. Pan, W. Jia, J. Yu, K. Dobson, C. Zhou, Y. Wang, and T.-C. Poon, “Edge extraction using a time-varying vortex beam in incoherent digital holography,” Opt. Lett. 39(14), 4176–4179 (2014).
    [Crossref]

2018 (3)

Sicong Wang, Xueying Ouyang, Ziwei Feng, Yaoyu Cao, Min Gu, and Xiangping Li, “Diffractive photonic applications mediated by laser reduced graphene oxides,” Opto-Electronic Adv. 1(2), 17000201–17000208 (2018).
[Crossref]

Huibo Fan, Changquan Xia, Li Fan, Lichun Wang, and Mingya Shen, “Graphene-supported plasmonic whispering-gallery mode in a metal-coated microcavity for sensing application with ultrahigh sensitivity,” Opt. Commun. 410, 668–673 (2018).
[Crossref]

Huili Fan, Li Fan, Changquan Xia, and Huibo Fan, “Graphene-supported high-efficient modulation based on electromagnetically induced transparency in silica microcavity,” Opt. Commun. 420, 40–45 (2018).
[Crossref]

2017 (1)

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White light generation and anisotropic damage in gold films near percolation threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

2016 (1)

M. Gu, Q. Zhang, and S. Lamon, “Nanomaterials for optical data storage,” Nat. Rev. Mater. 1(12), 16070 (2016).
[Crossref]

2015 (2)

X. Zheng, B. Jia, H. Lin, L. Qiu, D. Li, and M. Gu, “Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing,” Nat. Commun. 6(1), 8433 (2015).
[Crossref]

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref]

2014 (1)

2013 (6)

X. Li, Q. Zhang, X. Chen, and M. Gu, “Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording,” Sci. Rep. 3(1), 2819 (2013).
[Crossref]

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(1), 2061 (2013).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

L. Song, F. Khoerunnisa, W. Gao, W. Dou, T. Hayashi, K. Kaneko, M. Endo, and P. M. Ajayan, “Effect of high-temperature thermal treatment on the structure and adsorption properties of reduced graphene oxide,” Carbon 52, 608–612 (2013).
[Crossref]

M. F. El-Kady and R. B. Kaner, “Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage,” Nat. Commun. 4(1), 1475 (2013).
[Crossref]

2012 (5)

K. Zhang, Q. Fu, N. Pan, X. Yu, J. Liu, Y. Luo, X. Wang, J. Yang, and J. Hou, “Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography,” Nat. Commun. 3(1), 1194 (2012).
[Crossref]

H. Butt, Y. Montelongo, T. Butler, R. Rajesekharan, Q. Dai, G. S. Shiva-Reddy, T. D. Wilkinson, and G. A. Amaratunga, “Carbon nanotube based high resolution holograms,” Adv. Mater. 24(44), OP331–OP336 (2012).
[Crossref]

X. Li, T.-H. Lan, C.-H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3(1), 998 (2012).
[Crossref]

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
[Crossref]

J. L. Li, H. C. Bao, X. L. Hou, L. Sun, X. G. Wang, and M. Gu, “Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy,” Angew. Chem., Int. Ed. 51(8), 1830–1834 (2012).
[Crossref]

2011 (4)

Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, “Carbon-Based Supercapacitors Produced by Activation of Graphene,” Science 332(6037), 1537–1541 (2011).
[Crossref]

A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold, “Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene,” Nat. Nanotechnol. 6(6), 339–342 (2011).
[Crossref]

W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, and P. M. Ajayan, “Direct laser writing of micro-supercapacitors on hydrated graphite oxide films,” Nat. Nanotechnol. 6(8), 496–500 (2011).
[Crossref]

S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, “Hydrazine-reduction of graphite-and graphene oxide,” Carbon 49(9), 3019–3023 (2011).
[Crossref]

2010 (6)

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref]

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref]

Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan, and E. Riedo, “Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics,” Science 328(5984), 1373–1376 (2010).
[Crossref]

Q. Bao, H. Zhang, J. X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene–polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20(5), 782–791 (2010).
[Crossref]

Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, and H. Zhang, “Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells,” Small 6(2), 307–312 (2010).
[Crossref]

Y. Zhou, Q. Bao, B. Varghese, L. A. L. Tang, C. K. Tan, C. H. Sow, and K. P. Loh, “Microstructuring of graphene oxide nanosheets using direct laser writing,” Adv. Mater. 22(1), 67–71 (2010).
[Crossref]

2009 (3)

G. Situ, G. Pedrini, and W. Osten, “Spiral phase filtering and orientation-selective edge detection/enhancement,” J. Opt. Soc. Am. A 26(8), 1788–1797 (2009).
[Crossref]

C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem., Int. Ed. 48(26), 4785–4787 (2009).
[Crossref]

L. J. Cote, R. Cruz-Silva, and J. Huang, “Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite,” J. Am. Chem. Soc. 131(31), 11027–11032 (2009).
[Crossref]

2008 (9)

G. Williams, B. Seger, and P. V. Kamat, “TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide,” ACS Nano 2(7), 1487–1491 (2008).
[Crossref]

T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’Homme, and L. C. Brinson, “Functionalized graphene sheets for polymer nanocomposites,” Nat. Nanotechnol. 3(6), 327–331 (2008).
[Crossref]

D. Li and R. B. Kaner, “Graphene-Based Materials,” Science 320(5880), 1170–1171 (2008).
[Crossref]

G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol. 3(5), 270–274 (2008).
[Crossref]

J. T. Robinson, M. Zalalutdinov, J. W. Baldwin, E. S. Snow, Z. Wei, P. Sheehan, and B. H. Houston, “Wafer-scale Reduced Graphene Oxide Films for Nanomechanical Devices,” Nano Lett. 8(10), 3441–3445 (2008).
[Crossref]

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors,” ACS Nano 2(3), 463–470 (2008).
[Crossref]

J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, and P. E. Sheehan, “Reduced Graphene Oxide Molecular Sensors,” Nano Lett. 8(10), 3137–3140 (2008).
[Crossref]

J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “Graphene Oxide Dispersions in Organic Solvents,” Langmuir 24(19), 10560–10564 (2008).
[Crossref]

A. Y. Bekshaev and A. Karamoch, “Spatial characteristics of vortex light beams produced by diffraction gratings with embedded phase singularity,” Opt. Commun. 281(6), 1366–1374 (2008).
[Crossref]

2007 (2)

Z. Guo, S. Qu, and S. Liu, “Generating optical vortex with computer-generated hologram fabricated inside glass by femtosecond laser pulses,” Opt. Commun. 273(1), 286–289 (2007).
[Crossref]

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

2005 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref]

1998 (1)

Abdala, A. A.

T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’Homme, and L. C. Brinson, “Functionalized graphene sheets for polymer nanocomposites,” Nat. Nanotechnol. 3(6), 327–331 (2008).
[Crossref]

Adamson, D. H.

T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’Homme, and L. C. Brinson, “Functionalized graphene sheets for polymer nanocomposites,” Nat. Nanotechnol. 3(6), 327–331 (2008).
[Crossref]

Ajayan, P. M.

L. Song, F. Khoerunnisa, W. Gao, W. Dou, T. Hayashi, K. Kaneko, M. Endo, and P. M. Ajayan, “Effect of high-temperature thermal treatment on the structure and adsorption properties of reduced graphene oxide,” Carbon 52, 608–612 (2013).
[Crossref]

W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, and P. M. Ajayan, “Direct laser writing of micro-supercapacitors on hydrated graphite oxide films,” Nat. Nanotechnol. 6(8), 496–500 (2011).
[Crossref]

Aksay, I. A.

T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’Homme, and L. C. Brinson, “Functionalized graphene sheets for polymer nanocomposites,” Nat. Nanotechnol. 3(6), 327–331 (2008).
[Crossref]

Amaratunga, G. A.

H. Butt, Y. Montelongo, T. Butler, R. Rajesekharan, Q. Dai, G. S. Shiva-Reddy, T. D. Wilkinson, and G. A. Amaratunga, “Carbon nanotube based high resolution holograms,” Adv. Mater. 24(44), OP331–OP336 (2012).
[Crossref]

An, J.

S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, “Hydrazine-reduction of graphite-and graphene oxide,” Carbon 49(9), 3019–3023 (2011).
[Crossref]

Bachtold, A.

A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold, “Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene,” Nat. Nanotechnol. 6(6), 339–342 (2011).
[Crossref]

Bai, B.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Baldwin, J. W.

J. T. Robinson, M. Zalalutdinov, J. W. Baldwin, E. S. Snow, Z. Wei, P. Sheehan, and B. H. Houston, “Wafer-scale Reduced Graphene Oxide Films for Nanomechanical Devices,” Nano Lett. 8(10), 3441–3445 (2008).
[Crossref]

Bao, H. C.

J. L. Li, H. C. Bao, X. L. Hou, L. Sun, X. G. Wang, and M. Gu, “Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy,” Angew. Chem., Int. Ed. 51(8), 1830–1834 (2012).
[Crossref]

Bao, Q.

Y. Zhou, Q. Bao, B. Varghese, L. A. L. Tang, C. K. Tan, C. H. Sow, and K. P. Loh, “Microstructuring of graphene oxide nanosheets using direct laser writing,” Adv. Mater. 22(1), 67–71 (2010).
[Crossref]

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref]

Q. Bao, H. Zhang, J. X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene–polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20(5), 782–791 (2010).
[Crossref]

Bao, Z.

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors,” ACS Nano 2(3), 463–470 (2008).
[Crossref]

Becerril, H. A.

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors,” ACS Nano 2(3), 463–470 (2008).
[Crossref]

Beermann, J.

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White light generation and anisotropic damage in gold films near percolation threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

Bekshaev, A. Y.

A. Y. Bekshaev and A. Karamoch, “Spatial characteristics of vortex light beams produced by diffraction gratings with embedded phase singularity,” Opt. Commun. 281(6), 1366–1374 (2008).
[Crossref]

Berger, C.

Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan, and E. Riedo, “Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics,” Science 328(5984), 1373–1376 (2010).
[Crossref]

Boey, F.

Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, and H. Zhang, “Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells,” Small 6(2), 307–312 (2010).
[Crossref]

Bozhevolnyi, S. I.

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White light generation and anisotropic damage in gold films near percolation threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

Brinson, L. C.

T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’Homme, and L. C. Brinson, “Functionalized graphene sheets for polymer nanocomposites,” Nat. Nanotechnol. 3(6), 327–331 (2008).
[Crossref]

Butler, T.

H. Butt, Y. Montelongo, T. Butler, R. Rajesekharan, Q. Dai, G. S. Shiva-Reddy, T. D. Wilkinson, and G. A. Amaratunga, “Carbon nanotube based high resolution holograms,” Adv. Mater. 24(44), OP331–OP336 (2012).
[Crossref]

Butt, H.

H. Butt, Y. Montelongo, T. Butler, R. Rajesekharan, Q. Dai, G. S. Shiva-Reddy, T. D. Wilkinson, and G. A. Amaratunga, “Carbon nanotube based high resolution holograms,” Adv. Mater. 24(44), OP331–OP336 (2012).
[Crossref]

Cai, W.

Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, “Carbon-Based Supercapacitors Produced by Activation of Graphene,” Science 332(6037), 1537–1541 (2011).
[Crossref]

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref]

Cao, L.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref]

Cao, Y.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(1), 2061 (2013).
[Crossref]

Cao, Yaoyu

Sicong Wang, Xueying Ouyang, Ziwei Feng, Yaoyu Cao, Min Gu, and Xiangping Li, “Diffractive photonic applications mediated by laser reduced graphene oxides,” Opto-Electronic Adv. 1(2), 17000201–17000208 (2018).
[Crossref]

Chaste, J.

A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold, “Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene,” Nat. Nanotechnol. 6(6), 339–342 (2011).
[Crossref]

Cheah, K.-W.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Chen, G. N.

C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem., Int. Ed. 48(26), 4785–4787 (2009).
[Crossref]

Chen, S.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Chen, X.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref]

X. Li, Q. Zhang, X. Chen, and M. Gu, “Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording,” Sci. Rep. 3(1), 2819 (2013).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem., Int. Ed. 48(26), 4785–4787 (2009).
[Crossref]

T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’Homme, and L. C. Brinson, “Functionalized graphene sheets for polymer nanocomposites,” Nat. Nanotechnol. 3(6), 327–331 (2008).
[Crossref]

Chen, Y.

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors,” ACS Nano 2(3), 463–470 (2008).
[Crossref]

Y. Chen and Y. Huang, Graphene: New two-dimensional carbon nanomaterials (Science Press, Beijing, 2013).

Chhowalla, M.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref]

G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol. 3(5), 270–274 (2008).
[Crossref]

Ci, L.

W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, and P. M. Ajayan, “Direct laser writing of micro-supercapacitors on hydrated graphite oxide films,” Nat. Nanotechnol. 6(8), 496–500 (2011).
[Crossref]

Coello, V.

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White light generation and anisotropic damage in gold films near percolation threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

Cote, L. J.

L. J. Cote, R. Cruz-Silva, and J. Huang, “Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite,” J. Am. Chem. Soc. 131(31), 11027–11032 (2009).
[Crossref]

Cruz-Silva, R.

L. J. Cote, R. Cruz-Silva, and J. Huang, “Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite,” J. Am. Chem. Soc. 131(31), 11027–11032 (2009).
[Crossref]

Cychosz, K. A.

Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, “Carbon-Based Supercapacitors Produced by Activation of Graphene,” Science 332(6037), 1537–1541 (2011).
[Crossref]

Dai, Q.

H. Butt, Y. Montelongo, T. Butler, R. Rajesekharan, Q. Dai, G. S. Shiva-Reddy, T. D. Wilkinson, and G. A. Amaratunga, “Carbon nanotube based high resolution holograms,” Adv. Mater. 24(44), OP331–OP336 (2012).
[Crossref]

Dai, Z.

Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan, and E. Riedo, “Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics,” Science 328(5984), 1373–1376 (2010).
[Crossref]

de Heer, W. A.

Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan, and E. Riedo, “Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics,” Science 328(5984), 1373–1376 (2010).
[Crossref]

Dikin, D. A.

T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’Homme, and L. C. Brinson, “Functionalized graphene sheets for polymer nanocomposites,” Nat. Nanotechnol. 3(6), 327–331 (2008).
[Crossref]

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Dobson, K.

Dou, W.

L. Song, F. Khoerunnisa, W. Gao, W. Dou, T. Hayashi, K. Kaneko, M. Endo, and P. M. Ajayan, “Effect of high-temperature thermal treatment on the structure and adsorption properties of reduced graphene oxide,” Carbon 52, 608–612 (2013).
[Crossref]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref]

Eda, G.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref]

G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol. 3(5), 270–274 (2008).
[Crossref]

Eichler, A.

A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold, “Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene,” Nat. Nanotechnol. 6(6), 339–342 (2011).
[Crossref]

El-Kady, M. F.

M. F. El-Kady and R. B. Kaner, “Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage,” Nat. Commun. 4(1), 1475 (2013).
[Crossref]

Endo, M.

L. Song, F. Khoerunnisa, W. Gao, W. Dou, T. Hayashi, K. Kaneko, M. Endo, and P. M. Ajayan, “Effect of high-temperature thermal treatment on the structure and adsorption properties of reduced graphene oxide,” Carbon 52, 608–612 (2013).
[Crossref]

Evans, R. A.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(1), 2061 (2013).
[Crossref]

Fan, Huibo

Huibo Fan, Changquan Xia, Li Fan, Lichun Wang, and Mingya Shen, “Graphene-supported plasmonic whispering-gallery mode in a metal-coated microcavity for sensing application with ultrahigh sensitivity,” Opt. Commun. 410, 668–673 (2018).
[Crossref]

Huili Fan, Li Fan, Changquan Xia, and Huibo Fan, “Graphene-supported high-efficient modulation based on electromagnetically induced transparency in silica microcavity,” Opt. Commun. 420, 40–45 (2018).
[Crossref]

Fan, Huili

Huili Fan, Li Fan, Changquan Xia, and Huibo Fan, “Graphene-supported high-efficient modulation based on electromagnetically induced transparency in silica microcavity,” Opt. Commun. 420, 40–45 (2018).
[Crossref]

Fan, Li

Huili Fan, Li Fan, Changquan Xia, and Huibo Fan, “Graphene-supported high-efficient modulation based on electromagnetically induced transparency in silica microcavity,” Opt. Commun. 420, 40–45 (2018).
[Crossref]

Huibo Fan, Changquan Xia, Li Fan, Lichun Wang, and Mingya Shen, “Graphene-supported plasmonic whispering-gallery mode in a metal-coated microcavity for sensing application with ultrahigh sensitivity,” Opt. Commun. 410, 668–673 (2018).
[Crossref]

Fanchini, G.

G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol. 3(5), 270–274 (2008).
[Crossref]

Feng, Ziwei

Sicong Wang, Xueying Ouyang, Ziwei Feng, Yaoyu Cao, Min Gu, and Xiangping Li, “Diffractive photonic applications mediated by laser reduced graphene oxides,” Opto-Electronic Adv. 1(2), 17000201–17000208 (2018).
[Crossref]

Ferreira, P. J.

Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, “Carbon-Based Supercapacitors Produced by Activation of Graphene,” Science 332(6037), 1537–1541 (2011).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref]

Frydendahl, C.

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White light generation and anisotropic damage in gold films near percolation threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

Fu, Q.

K. Zhang, Q. Fu, N. Pan, X. Yu, J. Liu, Y. Luo, X. Wang, J. Yang, and J. Hou, “Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography,” Nat. Commun. 3(1), 1194 (2012).
[Crossref]

Gan, Z.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(1), 2061 (2013).
[Crossref]

Ganesh, K. J.

Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, “Carbon-Based Supercapacitors Produced by Activation of Graphene,” Science 332(6037), 1537–1541 (2011).
[Crossref]

Gao, W.

L. Song, F. Khoerunnisa, W. Gao, W. Dou, T. Hayashi, K. Kaneko, M. Endo, and P. M. Ajayan, “Effect of high-temperature thermal treatment on the structure and adsorption properties of reduced graphene oxide,” Carbon 52, 608–612 (2013).
[Crossref]

W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, and P. M. Ajayan, “Direct laser writing of micro-supercapacitors on hydrated graphite oxide films,” Nat. Nanotechnol. 6(8), 496–500 (2011).
[Crossref]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref]

Gu, M.

M. Gu, Q. Zhang, and S. Lamon, “Nanomaterials for optical data storage,” Nat. Rev. Mater. 1(12), 16070 (2016).
[Crossref]

X. Zheng, B. Jia, H. Lin, L. Qiu, D. Li, and M. Gu, “Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing,” Nat. Commun. 6(1), 8433 (2015).
[Crossref]

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref]

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(1), 2061 (2013).
[Crossref]

X. Li, Q. Zhang, X. Chen, and M. Gu, “Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording,” Sci. Rep. 3(1), 2819 (2013).
[Crossref]

J. L. Li, H. C. Bao, X. L. Hou, L. Sun, X. G. Wang, and M. Gu, “Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy,” Angew. Chem., Int. Ed. 51(8), 1830–1834 (2012).
[Crossref]

X. Li, T.-H. Lan, C.-H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3(1), 998 (2012).
[Crossref]

Gu, Min

Sicong Wang, Xueying Ouyang, Ziwei Feng, Yaoyu Cao, Min Gu, and Xiangping Li, “Diffractive photonic applications mediated by laser reduced graphene oxides,” Opto-Electronic Adv. 1(2), 17000201–17000208 (2018).
[Crossref]

Guo, Z.

Z. Guo, S. Qu, and S. Liu, “Generating optical vortex with computer-generated hologram fabricated inside glass by femtosecond laser pulses,” Opt. Commun. 273(1), 286–289 (2007).
[Crossref]

Hayashi, T.

L. Song, F. Khoerunnisa, W. Gao, W. Dou, T. Hayashi, K. Kaneko, M. Endo, and P. M. Ajayan, “Effect of high-temperature thermal treatment on the structure and adsorption properties of reduced graphene oxide,” Carbon 52, 608–612 (2013).
[Crossref]

Herrera-Alonso, M.

T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’Homme, and L. C. Brinson, “Functionalized graphene sheets for polymer nanocomposites,” Nat. Nanotechnol. 3(6), 327–331 (2008).
[Crossref]

Hou, J.

K. Zhang, Q. Fu, N. Pan, X. Yu, J. Liu, Y. Luo, X. Wang, J. Yang, and J. Hou, “Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography,” Nat. Commun. 3(1), 1194 (2012).
[Crossref]

Hou, X. L.

J. L. Li, H. C. Bao, X. L. Hou, L. Sun, X. G. Wang, and M. Gu, “Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy,” Angew. Chem., Int. Ed. 51(8), 1830–1834 (2012).
[Crossref]

Houston, B. H.

J. T. Robinson, M. Zalalutdinov, J. W. Baldwin, E. S. Snow, Z. Wei, P. Sheehan, and B. H. Houston, “Wafer-scale Reduced Graphene Oxide Films for Nanomechanical Devices,” Nano Lett. 8(10), 3441–3445 (2008).
[Crossref]

Hu, B.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref]

Hu, Y.

Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan, and E. Riedo, “Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics,” Science 328(5984), 1373–1376 (2010).
[Crossref]

Huang, J.

L. J. Cote, R. Cruz-Silva, and J. Huang, “Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite,” J. Am. Chem. Soc. 131(31), 11027–11032 (2009).
[Crossref]

Huang, L.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Huang, X.

Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, and H. Zhang, “Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells,” Small 6(2), 307–312 (2010).
[Crossref]

Huang, Y.

Y. Chen and Y. Huang, Graphene: New two-dimensional carbon nanomaterials (Science Press, Beijing, 2013).

Ishitobi, H.

Jia, B.

X. Zheng, B. Jia, H. Lin, L. Qiu, D. Li, and M. Gu, “Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing,” Nat. Commun. 6(1), 8433 (2015).
[Crossref]

Jia, J.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref]

Jia, W.

Jia, Y.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref]

Jin, G.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Jokerst, N. M.

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
[Crossref]

Jose, R.

Q. Bao, H. Zhang, J. X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene–polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20(5), 782–791 (2010).
[Crossref]

Kamat, P. V.

G. Williams, B. Seger, and P. V. Kamat, “TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide,” ACS Nano 2(7), 1487–1491 (2008).
[Crossref]

Kaneko, K.

L. Song, F. Khoerunnisa, W. Gao, W. Dou, T. Hayashi, K. Kaneko, M. Endo, and P. M. Ajayan, “Effect of high-temperature thermal treatment on the structure and adsorption properties of reduced graphene oxide,” Carbon 52, 608–612 (2013).
[Crossref]

Kaner, R. B.

M. F. El-Kady and R. B. Kaner, “Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage,” Nat. Commun. 4(1), 1475 (2013).
[Crossref]

D. Li and R. B. Kaner, “Graphene-Based Materials,” Science 320(5880), 1170–1171 (2008).
[Crossref]

Karamoch, A.

A. Y. Bekshaev and A. Karamoch, “Spatial characteristics of vortex light beams produced by diffraction gratings with embedded phase singularity,” Opt. Commun. 281(6), 1366–1374 (2008).
[Crossref]

Katsnelson, M. I.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref]

Kawata, S.

Kawata, Y.

Khoerunnisa, F.

L. Song, F. Khoerunnisa, W. Gao, W. Dou, T. Hayashi, K. Kaneko, M. Endo, and P. M. Ajayan, “Effect of high-temperature thermal treatment on the structure and adsorption properties of reduced graphene oxide,” Carbon 52, 608–612 (2013).
[Crossref]

Kildishev, A. V.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

Kim, S.

Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan, and E. Riedo, “Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics,” Science 328(5984), 1373–1376 (2010).
[Crossref]

Kim, S.-Y.

Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan, and E. Riedo, “Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics,” Science 328(5984), 1373–1376 (2010).
[Crossref]

King, W. P.

Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan, and E. Riedo, “Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics,” Science 328(5984), 1373–1376 (2010).
[Crossref]

Kleinhammes, A.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Kohlhaas, K. A.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Lamon, S.

M. Gu, Q. Zhang, and S. Lamon, “Nanomaterials for optical data storage,” Nat. Rev. Mater. 1(12), 16070 (2016).
[Crossref]

Lan, T.-H.

X. Li, T.-H. Lan, C.-H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3(1), 998 (2012).
[Crossref]

Laracuente, A. R.

Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan, and E. Riedo, “Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics,” Science 328(5984), 1373–1376 (2010).
[Crossref]

Larouche, S.

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
[Crossref]

Li, C.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref]

Li, D.

X. Zheng, B. Jia, H. Lin, L. Qiu, D. Li, and M. Gu, “Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing,” Nat. Commun. 6(1), 8433 (2015).
[Crossref]

D. Li and R. B. Kaner, “Graphene-Based Materials,” Science 320(5880), 1170–1171 (2008).
[Crossref]

Li, J.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Li, J. L.

J. L. Li, H. C. Bao, X. L. Hou, L. Sun, X. G. Wang, and M. Gu, “Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy,” Angew. Chem., Int. Ed. 51(8), 1830–1834 (2012).
[Crossref]

Li, Q.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref]

Li, X.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref]

X. Li, Q. Zhang, X. Chen, and M. Gu, “Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording,” Sci. Rep. 3(1), 2819 (2013).
[Crossref]

X. Li, T.-H. Lan, C.-H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3(1), 998 (2012).
[Crossref]

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref]

Li, Xiangping

Sicong Wang, Xueying Ouyang, Ziwei Feng, Yaoyu Cao, Min Gu, and Xiangping Li, “Diffractive photonic applications mediated by laser reduced graphene oxides,” Opto-Electronic Adv. 1(2), 17000201–17000208 (2018).
[Crossref]

Lim, C. T.

Q. Bao, H. Zhang, J. X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene–polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20(5), 782–791 (2010).
[Crossref]

Lin, H.

X. Zheng, B. Jia, H. Lin, L. Qiu, D. Li, and M. Gu, “Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing,” Nat. Commun. 6(1), 8433 (2015).
[Crossref]

Liu, J.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref]

K. Zhang, Q. Fu, N. Pan, X. Yu, J. Liu, Y. Luo, X. Wang, J. Yang, and J. Hou, “Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography,” Nat. Commun. 3(1), 1194 (2012).
[Crossref]

Liu, S.

Z. Guo, S. Qu, and S. Liu, “Generating optical vortex with computer-generated hologram fabricated inside glass by femtosecond laser pulses,” Opt. Commun. 273(1), 286–289 (2007).
[Crossref]

Liu, Z.

W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, and P. M. Ajayan, “Direct laser writing of micro-supercapacitors on hydrated graphite oxide films,” Nat. Nanotechnol. 6(8), 496–500 (2011).
[Crossref]

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors,” ACS Nano 2(3), 463–470 (2008).
[Crossref]

Loewen, E. G.

E. G. Loewen and E. Popov, Diffraction gratings and applications. (Marcel Dekker, 1997).

Loh, K. P.

Y. Zhou, Q. Bao, B. Varghese, L. A. L. Tang, C. K. Tan, C. H. Sow, and K. P. Loh, “Microstructuring of graphene oxide nanosheets using direct laser writing,” Adv. Mater. 22(1), 67–71 (2010).
[Crossref]

Q. Bao, H. Zhang, J. X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene–polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20(5), 782–791 (2010).
[Crossref]

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref]

Lu, C. H.

C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem., Int. Ed. 48(26), 4785–4787 (2009).
[Crossref]

Luo, Y.

K. Zhang, Q. Fu, N. Pan, X. Yu, J. Liu, Y. Luo, X. Wang, J. Yang, and J. Hou, “Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography,” Nat. Commun. 3(1), 1194 (2012).
[Crossref]

Mao, J.

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors,” ACS Nano 2(3), 463–470 (2008).
[Crossref]

Marder, S. R.

Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan, and E. Riedo, “Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics,” Science 328(5984), 1373–1376 (2010).
[Crossref]

Martínez-Alonso, A.

J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “Graphene Oxide Dispersions in Organic Solvents,” Langmuir 24(19), 10560–10564 (2008).
[Crossref]

Montelongo, Y.

H. Butt, Y. Montelongo, T. Butler, R. Rajesekharan, Q. Dai, G. S. Shiva-Reddy, T. D. Wilkinson, and G. A. Amaratunga, “Carbon nanotube based high resolution holograms,” Adv. Mater. 24(44), OP331–OP336 (2012).
[Crossref]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref]

Mortensen, N. A.

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White light generation and anisotropic damage in gold films near percolation threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

Moser, J.

A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold, “Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene,” Nat. Nanotechnol. 6(6), 339–342 (2011).
[Crossref]

Mühlenbernd, H.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Murali, S.

Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, “Carbon-Based Supercapacitors Produced by Activation of Graphene,” Science 332(6037), 1537–1541 (2011).
[Crossref]

S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, “Hydrazine-reduction of graphite-and graphene oxide,” Carbon 49(9), 3019–3023 (2011).
[Crossref]

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref]

Nguyen, S. T.

T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’Homme, and L. C. Brinson, “Functionalized graphene sheets for polymer nanocomposites,” Nat. Nanotechnol. 3(6), 327–331 (2008).
[Crossref]

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Ni, X.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

Novikov, S. M.

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White light generation and anisotropic damage in gold films near percolation threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref]

Osten, W.

Ouyang, Xueying

Sicong Wang, Xueying Ouyang, Ziwei Feng, Yaoyu Cao, Min Gu, and Xiangping Li, “Diffractive photonic applications mediated by laser reduced graphene oxides,” Opto-Electronic Adv. 1(2), 17000201–17000208 (2018).
[Crossref]

Pan, N.

K. Zhang, Q. Fu, N. Pan, X. Yu, J. Liu, Y. Luo, X. Wang, J. Yang, and J. Hou, “Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography,” Nat. Commun. 3(1), 1194 (2012).
[Crossref]

Pan, Y.

Paredes, J. I.

J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “Graphene Oxide Dispersions in Organic Solvents,” Langmuir 24(19), 10560–10564 (2008).
[Crossref]

Park, S.

S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, “Hydrazine-reduction of graphite-and graphene oxide,” Carbon 49(9), 3019–3023 (2011).
[Crossref]

Pedrini, G.

Perkins, F. K.

J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, and P. E. Sheehan, “Reduced Graphene Oxide Molecular Sensors,” Nano Lett. 8(10), 3137–3140 (2008).
[Crossref]

Piner, R. D.

T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’Homme, and L. C. Brinson, “Functionalized graphene sheets for polymer nanocomposites,” Nat. Nanotechnol. 3(6), 327–331 (2008).
[Crossref]

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Pirkle, A.

Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, “Carbon-Based Supercapacitors Produced by Activation of Graphene,” Science 332(6037), 1537–1541 (2011).
[Crossref]

Poon, T.-C.

Popov, E.

E. G. Loewen and E. Popov, Diffraction gratings and applications. (Marcel Dekker, 1997).

Potts, J. R.

S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, “Hydrazine-reduction of graphite-and graphene oxide,” Carbon 49(9), 3019–3023 (2011).
[Crossref]

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref]

Prud’Homme, R. K.

T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’Homme, and L. C. Brinson, “Functionalized graphene sheets for polymer nanocomposites,” Nat. Nanotechnol. 3(6), 327–331 (2008).
[Crossref]

Qiu, C.-W.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Qiu, L.

X. Zheng, B. Jia, H. Lin, L. Qiu, D. Li, and M. Gu, “Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing,” Nat. Commun. 6(1), 8433 (2015).
[Crossref]

Qu, S.

Z. Guo, S. Qu, and S. Liu, “Generating optical vortex with computer-generated hologram fabricated inside glass by femtosecond laser pulses,” Opt. Commun. 273(1), 286–289 (2007).
[Crossref]

Rajesekharan, R.

H. Butt, Y. Montelongo, T. Butler, R. Rajesekharan, Q. Dai, G. S. Shiva-Reddy, T. D. Wilkinson, and G. A. Amaratunga, “Carbon nanotube based high resolution holograms,” Adv. Mater. 24(44), OP331–OP336 (2012).
[Crossref]

Ramakrishna, S.

Q. Bao, H. Zhang, J. X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene–polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20(5), 782–791 (2010).
[Crossref]

Ramanathan, T.

T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’Homme, and L. C. Brinson, “Functionalized graphene sheets for polymer nanocomposites,” Nat. Nanotechnol. 3(6), 327–331 (2008).
[Crossref]

Reddy, A. L. M.

W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, and P. M. Ajayan, “Direct laser writing of micro-supercapacitors on hydrated graphite oxide films,” Nat. Nanotechnol. 6(8), 496–500 (2011).
[Crossref]

Ren, H.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref]

Riedo, E.

Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan, and E. Riedo, “Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics,” Science 328(5984), 1373–1376 (2010).
[Crossref]

Robinson, J. T.

J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, and P. E. Sheehan, “Reduced Graphene Oxide Molecular Sensors,” Nano Lett. 8(10), 3137–3140 (2008).
[Crossref]

J. T. Robinson, M. Zalalutdinov, J. W. Baldwin, E. S. Snow, Z. Wei, P. Sheehan, and B. H. Houston, “Wafer-scale Reduced Graphene Oxide Films for Nanomechanical Devices,” Nano Lett. 8(10), 3441–3445 (2008).
[Crossref]

Ruoff, R. S.

Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, “Carbon-Based Supercapacitors Produced by Activation of Graphene,” Science 332(6037), 1537–1541 (2011).
[Crossref]

S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, “Hydrazine-reduction of graphite-and graphene oxide,” Carbon 49(9), 3019–3023 (2011).
[Crossref]

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref]

T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’Homme, and L. C. Brinson, “Functionalized graphene sheets for polymer nanocomposites,” Nat. Nanotechnol. 3(6), 327–331 (2008).
[Crossref]

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Sahu, A.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref]

Schniepp, H. C.

T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’Homme, and L. C. Brinson, “Functionalized graphene sheets for polymer nanocomposites,” Nat. Nanotechnol. 3(6), 327–331 (2008).
[Crossref]

Seger, B.

G. Williams, B. Seger, and P. V. Kamat, “TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide,” ACS Nano 2(7), 1487–1491 (2008).
[Crossref]

Shalaev, V. M.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

Sharon, M.

M. Sharon and M. Sharon, Graphene (An Introduction to the Fundamentals and Industrial Applications) (Scrivener Publishing, Wiley, 2015).

M. Sharon and M. Sharon, Graphene (An Introduction to the Fundamentals and Industrial Applications) (Scrivener Publishing, Wiley, 2015).

Sheehan, P.

J. T. Robinson, M. Zalalutdinov, J. W. Baldwin, E. S. Snow, Z. Wei, P. Sheehan, and B. H. Houston, “Wafer-scale Reduced Graphene Oxide Films for Nanomechanical Devices,” Nano Lett. 8(10), 3441–3445 (2008).
[Crossref]

Sheehan, P. E.

Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan, and E. Riedo, “Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics,” Science 328(5984), 1373–1376 (2010).
[Crossref]

J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, and P. E. Sheehan, “Reduced Graphene Oxide Molecular Sensors,” Nano Lett. 8(10), 3137–3140 (2008).
[Crossref]

Shen, Mingya

Huibo Fan, Changquan Xia, Li Fan, Lichun Wang, and Mingya Shen, “Graphene-supported plasmonic whispering-gallery mode in a metal-coated microcavity for sensing application with ultrahigh sensitivity,” Opt. Commun. 410, 668–673 (2018).
[Crossref]

Shiva-Reddy, G. S.

H. Butt, Y. Montelongo, T. Butler, R. Rajesekharan, Q. Dai, G. S. Shiva-Reddy, T. D. Wilkinson, and G. A. Amaratunga, “Carbon nanotube based high resolution holograms,” Adv. Mater. 24(44), OP331–OP336 (2012).
[Crossref]

Singh, N.

W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, and P. M. Ajayan, “Direct laser writing of micro-supercapacitors on hydrated graphite oxide films,” Nat. Nanotechnol. 6(8), 496–500 (2011).
[Crossref]

Situ, G.

Smith, D. R.

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
[Crossref]

Snow, E. S.

J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, and P. E. Sheehan, “Reduced Graphene Oxide Molecular Sensors,” Nano Lett. 8(10), 3137–3140 (2008).
[Crossref]

J. T. Robinson, M. Zalalutdinov, J. W. Baldwin, E. S. Snow, Z. Wei, P. Sheehan, and B. H. Houston, “Wafer-scale Reduced Graphene Oxide Films for Nanomechanical Devices,” Nano Lett. 8(10), 3441–3445 (2008).
[Crossref]

Song, L.

L. Song, F. Khoerunnisa, W. Gao, W. Dou, T. Hayashi, K. Kaneko, M. Endo, and P. M. Ajayan, “Effect of high-temperature thermal treatment on the structure and adsorption properties of reduced graphene oxide,” Carbon 52, 608–612 (2013).
[Crossref]

W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, and P. M. Ajayan, “Direct laser writing of micro-supercapacitors on hydrated graphite oxide films,” Nat. Nanotechnol. 6(8), 496–500 (2011).
[Crossref]

Sow, C. H.

Y. Zhou, Q. Bao, B. Varghese, L. A. L. Tang, C. K. Tan, C. H. Sow, and K. P. Loh, “Microstructuring of graphene oxide nanosheets using direct laser writing,” Adv. Mater. 22(1), 67–71 (2010).
[Crossref]

Stach, E. A.

Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, “Carbon-Based Supercapacitors Produced by Activation of Graphene,” Science 332(6037), 1537–1541 (2011).
[Crossref]

Stankovich, S.

T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’Homme, and L. C. Brinson, “Functionalized graphene sheets for polymer nanocomposites,” Nat. Nanotechnol. 3(6), 327–331 (2008).
[Crossref]

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Stenger, N.

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White light generation and anisotropic damage in gold films near percolation threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

Stoller, M. D.

Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, “Carbon-Based Supercapacitors Produced by Activation of Graphene,” Science 332(6037), 1537–1541 (2011).
[Crossref]

Stoltenberg, R. M.

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors,” ACS Nano 2(3), 463–470 (2008).
[Crossref]

Su, D.

Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, “Carbon-Based Supercapacitors Produced by Activation of Graphene,” Science 332(6037), 1537–1541 (2011).
[Crossref]

Suk, J. W.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref]

Sun, L.

J. L. Li, H. C. Bao, X. L. Hou, L. Sun, X. G. Wang, and M. Gu, “Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy,” Angew. Chem., Int. Ed. 51(8), 1830–1834 (2012).
[Crossref]

Tan, C. K.

Y. Zhou, Q. Bao, B. Varghese, L. A. L. Tang, C. K. Tan, C. H. Sow, and K. P. Loh, “Microstructuring of graphene oxide nanosheets using direct laser writing,” Adv. Mater. 22(1), 67–71 (2010).
[Crossref]

Tan, Q.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Tang, D. Y.

Q. Bao, H. Zhang, J. X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene–polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20(5), 782–791 (2010).
[Crossref]

Tang, L. A. L.

Y. Zhou, Q. Bao, B. Varghese, L. A. L. Tang, C. K. Tan, C. H. Sow, and K. P. Loh, “Microstructuring of graphene oxide nanosheets using direct laser writing,” Adv. Mater. 22(1), 67–71 (2010).
[Crossref]

Tascón, J. M. D.

J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “Graphene Oxide Dispersions in Organic Solvents,” Langmuir 24(19), 10560–10564 (2008).
[Crossref]

Thommes, M.

Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, “Carbon-Based Supercapacitors Produced by Activation of Graphene,” Science 332(6037), 1537–1541 (2011).
[Crossref]

Tien, C.-H.

X. Li, T.-H. Lan, C.-H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3(1), 998 (2012).
[Crossref]

Tsai, Y.-J.

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
[Crossref]

Tyler, T.

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
[Crossref]

Vajtai, R.

W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, and P. M. Ajayan, “Direct laser writing of micro-supercapacitors on hydrated graphite oxide films,” Nat. Nanotechnol. 6(8), 496–500 (2011).
[Crossref]

Varghese, B.

Y. Zhou, Q. Bao, B. Varghese, L. A. L. Tang, C. K. Tan, C. H. Sow, and K. P. Loh, “Microstructuring of graphene oxide nanosheets using direct laser writing,” Adv. Mater. 22(1), 67–71 (2010).
[Crossref]

Velamakanni, A.

S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, “Hydrazine-reduction of graphite-and graphene oxide,” Carbon 49(9), 3019–3023 (2011).
[Crossref]

Villar-Rodil, S.

J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “Graphene Oxide Dispersions in Organic Solvents,” Langmuir 24(19), 10560–10564 (2008).
[Crossref]

Wallace, R. M.

Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, “Carbon-Based Supercapacitors Produced by Activation of Graphene,” Science 332(6037), 1537–1541 (2011).
[Crossref]

Wang, D.

Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan, and E. Riedo, “Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics,” Science 328(5984), 1373–1376 (2010).
[Crossref]

Wang, Lichun

Huibo Fan, Changquan Xia, Li Fan, Lichun Wang, and Mingya Shen, “Graphene-supported plasmonic whispering-gallery mode in a metal-coated microcavity for sensing application with ultrahigh sensitivity,” Opt. Commun. 410, 668–673 (2018).
[Crossref]

Wang, S.

Q. Bao, H. Zhang, J. X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene–polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20(5), 782–791 (2010).
[Crossref]

Wang, Sicong

Sicong Wang, Xueying Ouyang, Ziwei Feng, Yaoyu Cao, Min Gu, and Xiangping Li, “Diffractive photonic applications mediated by laser reduced graphene oxides,” Opto-Electronic Adv. 1(2), 17000201–17000208 (2018).
[Crossref]

Wang, X.

K. Zhang, Q. Fu, N. Pan, X. Yu, J. Liu, Y. Luo, X. Wang, J. Yang, and J. Hou, “Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography,” Nat. Commun. 3(1), 1194 (2012).
[Crossref]

Wang, X. G.

J. L. Li, H. C. Bao, X. L. Hou, L. Sun, X. G. Wang, and M. Gu, “Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy,” Angew. Chem., Int. Ed. 51(8), 1830–1834 (2012).
[Crossref]

Wang, Y.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref]

Y. Pan, W. Jia, J. Yu, K. Dobson, C. Zhou, Y. Wang, and T.-C. Poon, “Edge extraction using a time-varying vortex beam in incoherent digital holography,” Opt. Lett. 39(14), 4176–4179 (2014).
[Crossref]

Wei, B.

W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, and P. M. Ajayan, “Direct laser writing of micro-supercapacitors on hydrated graphite oxide films,” Nat. Nanotechnol. 6(8), 496–500 (2011).
[Crossref]

Wei, Z.

Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan, and E. Riedo, “Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics,” Science 328(5984), 1373–1376 (2010).
[Crossref]

J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, and P. E. Sheehan, “Reduced Graphene Oxide Molecular Sensors,” Nano Lett. 8(10), 3137–3140 (2008).
[Crossref]

J. T. Robinson, M. Zalalutdinov, J. W. Baldwin, E. S. Snow, Z. Wei, P. Sheehan, and B. H. Houston, “Wafer-scale Reduced Graphene Oxide Films for Nanomechanical Devices,” Nano Lett. 8(10), 3441–3445 (2008).
[Crossref]

Wilkinson, T. D.

H. Butt, Y. Montelongo, T. Butler, R. Rajesekharan, Q. Dai, G. S. Shiva-Reddy, T. D. Wilkinson, and G. A. Amaratunga, “Carbon nanotube based high resolution holograms,” Adv. Mater. 24(44), OP331–OP336 (2012).
[Crossref]

Williams, G.

G. Williams, B. Seger, and P. V. Kamat, “TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide,” ACS Nano 2(7), 1487–1491 (2008).
[Crossref]

Wilson-Rae, I.

A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold, “Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene,” Nat. Nanotechnol. 6(6), 339–342 (2011).
[Crossref]

Wu, S.

Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, and H. Zhang, “Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells,” Small 6(2), 307–312 (2010).
[Crossref]

Wu, Y.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Xia, Changquan

Huibo Fan, Changquan Xia, Li Fan, Lichun Wang, and Mingya Shen, “Graphene-supported plasmonic whispering-gallery mode in a metal-coated microcavity for sensing application with ultrahigh sensitivity,” Opt. Commun. 410, 668–673 (2018).
[Crossref]

Huili Fan, Li Fan, Changquan Xia, and Huibo Fan, “Graphene-supported high-efficient modulation based on electromagnetically induced transparency in silica microcavity,” Opt. Commun. 420, 40–45 (2018).
[Crossref]

Xue, G.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref]

Yakes, M. K.

Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan, and E. Riedo, “Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics,” Science 328(5984), 1373–1376 (2010).
[Crossref]

Yang, H. H.

C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem., Int. Ed. 48(26), 4785–4787 (2009).
[Crossref]

Yang, J.

K. Zhang, Q. Fu, N. Pan, X. Yu, J. Liu, Y. Luo, X. Wang, J. Yang, and J. Hou, “Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography,” Nat. Commun. 3(1), 1194 (2012).
[Crossref]

Yang, J. X.

Q. Bao, H. Zhang, J. X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene–polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20(5), 782–791 (2010).
[Crossref]

Yin, Z.

Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, and H. Zhang, “Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells,” Small 6(2), 307–312 (2010).
[Crossref]

Yu, J.

Yu, X.

K. Zhang, Q. Fu, N. Pan, X. Yu, J. Liu, Y. Luo, X. Wang, J. Yang, and J. Hou, “Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography,” Nat. Commun. 3(1), 1194 (2012).
[Crossref]

Zalalutdinov, M.

J. T. Robinson, M. Zalalutdinov, J. W. Baldwin, E. S. Snow, Z. Wei, P. Sheehan, and B. H. Houston, “Wafer-scale Reduced Graphene Oxide Films for Nanomechanical Devices,” Nano Lett. 8(10), 3441–3445 (2008).
[Crossref]

Zdrojek, M.

A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold, “Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene,” Nat. Nanotechnol. 6(6), 339–342 (2011).
[Crossref]

Zenin, V. A.

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White light generation and anisotropic damage in gold films near percolation threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

Zentgraf, T.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Zhang, H.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, and H. Zhang, “Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells,” Small 6(2), 307–312 (2010).
[Crossref]

Q. Bao, H. Zhang, J. X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene–polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20(5), 782–791 (2010).
[Crossref]

Zhang, K.

K. Zhang, Q. Fu, N. Pan, X. Yu, J. Liu, Y. Luo, X. Wang, J. Yang, and J. Hou, “Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography,” Nat. Commun. 3(1), 1194 (2012).
[Crossref]

Zhang, Q.

M. Gu, Q. Zhang, and S. Lamon, “Nanomaterials for optical data storage,” Nat. Rev. Mater. 1(12), 16070 (2016).
[Crossref]

X. Li, Q. Zhang, X. Chen, and M. Gu, “Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording,” Sci. Rep. 3(1), 2819 (2013).
[Crossref]

W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, and P. M. Ajayan, “Direct laser writing of micro-supercapacitors on hydrated graphite oxide films,” Nat. Nanotechnol. 6(8), 496–500 (2011).
[Crossref]

Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, and H. Zhang, “Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells,” Small 6(2), 307–312 (2010).
[Crossref]

Zhang, S.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Zheng, X.

X. Zheng, B. Jia, H. Lin, L. Qiu, D. Li, and M. Gu, “Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing,” Nat. Commun. 6(1), 8433 (2015).
[Crossref]

Zhou, C.

Zhou, X.

Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, and H. Zhang, “Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells,” Small 6(2), 307–312 (2010).
[Crossref]

Zhou, Y.

Y. Zhou, Q. Bao, B. Varghese, L. A. L. Tang, C. K. Tan, C. H. Sow, and K. P. Loh, “Microstructuring of graphene oxide nanosheets using direct laser writing,” Adv. Mater. 22(1), 67–71 (2010).
[Crossref]

Zhu, C. L.

C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem., Int. Ed. 48(26), 4785–4787 (2009).
[Crossref]

Zhu, Y.

Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, “Carbon-Based Supercapacitors Produced by Activation of Graphene,” Science 332(6037), 1537–1541 (2011).
[Crossref]

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref]

ACS Nano (2)

G. Williams, B. Seger, and P. V. Kamat, “TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide,” ACS Nano 2(7), 1487–1491 (2008).
[Crossref]

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors,” ACS Nano 2(3), 463–470 (2008).
[Crossref]

ACS Photonics (1)

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White light generation and anisotropic damage in gold films near percolation threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

Adv. Funct. Mater. (1)

Q. Bao, H. Zhang, J. X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene–polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater. 20(5), 782–791 (2010).
[Crossref]

Adv. Mater. (3)

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref]

H. Butt, Y. Montelongo, T. Butler, R. Rajesekharan, Q. Dai, G. S. Shiva-Reddy, T. D. Wilkinson, and G. A. Amaratunga, “Carbon nanotube based high resolution holograms,” Adv. Mater. 24(44), OP331–OP336 (2012).
[Crossref]

Y. Zhou, Q. Bao, B. Varghese, L. A. L. Tang, C. K. Tan, C. H. Sow, and K. P. Loh, “Microstructuring of graphene oxide nanosheets using direct laser writing,” Adv. Mater. 22(1), 67–71 (2010).
[Crossref]

Angew. Chem., Int. Ed. (2)

C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem., Int. Ed. 48(26), 4785–4787 (2009).
[Crossref]

J. L. Li, H. C. Bao, X. L. Hou, L. Sun, X. G. Wang, and M. Gu, “Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy,” Angew. Chem., Int. Ed. 51(8), 1830–1834 (2012).
[Crossref]

Carbon (3)

S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, “Hydrazine-reduction of graphite-and graphene oxide,” Carbon 49(9), 3019–3023 (2011).
[Crossref]

L. Song, F. Khoerunnisa, W. Gao, W. Dou, T. Hayashi, K. Kaneko, M. Endo, and P. M. Ajayan, “Effect of high-temperature thermal treatment on the structure and adsorption properties of reduced graphene oxide,” Carbon 52, 608–612 (2013).
[Crossref]

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

J. Am. Chem. Soc. (1)

L. J. Cote, R. Cruz-Silva, and J. Huang, “Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite,” J. Am. Chem. Soc. 131(31), 11027–11032 (2009).
[Crossref]

J. Opt. Soc. Am. A (1)

Langmuir (1)

J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “Graphene Oxide Dispersions in Organic Solvents,” Langmuir 24(19), 10560–10564 (2008).
[Crossref]

Nano Lett. (2)

J. T. Robinson, M. Zalalutdinov, J. W. Baldwin, E. S. Snow, Z. Wei, P. Sheehan, and B. H. Houston, “Wafer-scale Reduced Graphene Oxide Films for Nanomechanical Devices,” Nano Lett. 8(10), 3441–3445 (2008).
[Crossref]

J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, and P. E. Sheehan, “Reduced Graphene Oxide Molecular Sensors,” Nano Lett. 8(10), 3137–3140 (2008).
[Crossref]

Nat. Chem. (1)

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref]

Nat. Commun. (8)

K. Zhang, Q. Fu, N. Pan, X. Yu, J. Liu, Y. Luo, X. Wang, J. Yang, and J. Hou, “Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography,” Nat. Commun. 3(1), 1194 (2012).
[Crossref]

M. F. El-Kady and R. B. Kaner, “Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage,” Nat. Commun. 4(1), 1475 (2013).
[Crossref]

X. Zheng, B. Jia, H. Lin, L. Qiu, D. Li, and M. Gu, “Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing,” Nat. Commun. 6(1), 8433 (2015).
[Crossref]

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref]

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(1), 2061 (2013).
[Crossref]

X. Li, T.-H. Lan, C.-H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3(1), 998 (2012).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

Nat. Mater. (1)

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
[Crossref]

Nat. Nanotechnol. (4)

A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold, “Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene,” Nat. Nanotechnol. 6(6), 339–342 (2011).
[Crossref]

W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, and P. M. Ajayan, “Direct laser writing of micro-supercapacitors on hydrated graphite oxide films,” Nat. Nanotechnol. 6(8), 496–500 (2011).
[Crossref]

G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol. 3(5), 270–274 (2008).
[Crossref]

T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’Homme, and L. C. Brinson, “Functionalized graphene sheets for polymer nanocomposites,” Nat. Nanotechnol. 3(6), 327–331 (2008).
[Crossref]

Nat. Rev. Mater. (1)

M. Gu, Q. Zhang, and S. Lamon, “Nanomaterials for optical data storage,” Nat. Rev. Mater. 1(12), 16070 (2016).
[Crossref]

Nature (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref]

Opt. Commun. (4)

Huibo Fan, Changquan Xia, Li Fan, Lichun Wang, and Mingya Shen, “Graphene-supported plasmonic whispering-gallery mode in a metal-coated microcavity for sensing application with ultrahigh sensitivity,” Opt. Commun. 410, 668–673 (2018).
[Crossref]

Huili Fan, Li Fan, Changquan Xia, and Huibo Fan, “Graphene-supported high-efficient modulation based on electromagnetically induced transparency in silica microcavity,” Opt. Commun. 420, 40–45 (2018).
[Crossref]

A. Y. Bekshaev and A. Karamoch, “Spatial characteristics of vortex light beams produced by diffraction gratings with embedded phase singularity,” Opt. Commun. 281(6), 1366–1374 (2008).
[Crossref]

Z. Guo, S. Qu, and S. Liu, “Generating optical vortex with computer-generated hologram fabricated inside glass by femtosecond laser pulses,” Opt. Commun. 273(1), 286–289 (2007).
[Crossref]

Opt. Lett. (2)

Opto-Electronic Adv. (1)

Sicong Wang, Xueying Ouyang, Ziwei Feng, Yaoyu Cao, Min Gu, and Xiangping Li, “Diffractive photonic applications mediated by laser reduced graphene oxides,” Opto-Electronic Adv. 1(2), 17000201–17000208 (2018).
[Crossref]

Sci. Rep. (1)

X. Li, Q. Zhang, X. Chen, and M. Gu, “Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording,” Sci. Rep. 3(1), 2819 (2013).
[Crossref]

Science (3)

Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, “Carbon-Based Supercapacitors Produced by Activation of Graphene,” Science 332(6037), 1537–1541 (2011).
[Crossref]

D. Li and R. B. Kaner, “Graphene-Based Materials,” Science 320(5880), 1170–1171 (2008).
[Crossref]

Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan, and E. Riedo, “Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics,” Science 328(5984), 1373–1376 (2010).
[Crossref]

Small (1)

Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, and H. Zhang, “Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells,” Small 6(2), 307–312 (2010).
[Crossref]

Other (3)

M. Sharon and M. Sharon, Graphene (An Introduction to the Fundamentals and Industrial Applications) (Scrivener Publishing, Wiley, 2015).

Y. Chen and Y. Huang, Graphene: New two-dimensional carbon nanomaterials (Science Press, Beijing, 2013).

E. G. Loewen and E. Popov, Diffraction gratings and applications. (Marcel Dekker, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic illustration of photo-reduced GO-polymer through a direct laser writing technique. (b) Optical microscopic image of the rGO grating by fs pulses.
Fig. 2.
Fig. 2. (a) AFM image of rGO grating at the power of 1.6 mW. (b) Line trace along the blue line in (a). (c) Raman spectra of the GO-polymer and rGO-polymer.
Fig. 3.
Fig. 3. Intensity ratio R varies with the fs laser power. The inset shows a typical diffracted images of $ \pm 1$st and 0th orders from the grating.
Fig. 4.
Fig. 4. (a) Phase modulation as a function of the fs laser power. (b) Laser-induced height change as a function of the fs laser power
Fig. 5.
Fig. 5. (a) Reduced GO-polymer vortex grating. (b) Vortex beam produced by vortex grating using rGO-polymer. The diffraction distance is 25 cm, and the size of the vortex beam is 1440 µm*1080 µm. (c) Computer-generated hologram used to generate the vortex beam. (d) Generated vortex beam in simulation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

dwell time = focal spot size scan speed = 0.65 µm 100 µm/s = 6.5 millisecond .
R = I d I t ,
R  =  F 4 / π 2 sin 2 ( Δ φ / 2 ) ( 1 F )  +  F cos 2 ( Δ φ / 2 ) ,