Abstract

Multiple ultra-short laser irradiation enabling direct writing of high aspect ratio barriers is used for structuring of nanoporous glass. Shape and morphology of laser-modified regions are examined, and high aspect ratio laser-induced material densification is founded. Experimental results are analyzed by modeling describing laser propagation, non-linear ionization and thermal effects. The role of laser focusing, laser energy and pulse number are examined. Several regimes are distinguished. Particularly, high-aspect ratio densified zones are obtained for the numerical aperture of 0.25, whereas either more symmetric densified regions or spherical cavities are shown to be formed for numerical aperture of 0.4. The resulting laser irradiation conditions required for deep and prolonged densification are explained by a lower ionization rate, leading to the under-critical free electron plasma density, longer filamentation and pulse-to-pulse elongation effects. Furthermore, filling of the porous glass with water is demonstrated to particularly extend the length of the densified region in depth. The presented study provides insights facilitating laser-based fabrication of barriers, membrane and patterns suitable for the environmental gas-phase analysis.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Well-controlled femtosecond laser inscription of periodic void structures in porous glass for photonic applications

Hongfeng Ma, Roman A. Zakoldaev, Anton Rudenko, Maksim M. Sergeev, Vadim P. Veiko, and Tatiana E. Itina
Opt. Express 25(26) 33261-33270 (2017)

Excimer-laser-induced densification in binary silica glasses

N. F. Borrelli, C. M. Smith, and D. C. Allan
Opt. Lett. 24(20) 1401-1403 (1999)

Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect [Invited]

Lena Bressel, Dominique de Ligny, Camille Sonneville, Valérie Martinez, Vygantas Mizeikis, Ričardas Buividas, and Saulius Juodkazis
Opt. Mater. Express 1(4) 605-613 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, vol. 123 (Springer Science & Business Media, 2012).
  2. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  3. F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. Chichkov, “Towards nanostructuring with femtosecond laser pulses,” Appl. Phys. A: Mater. Sci. Process. 77, 229–235 (2003).
    [Crossref]
  4. K. Sugioka, Y. Hanada, and K. Midorikawa, “Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips,” Laser Photonics Rev. 4(3), 386–400 (2010).
    [Crossref]
  5. J. Serbin, A. Egbert, A. Ostendorf, B. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
    [Crossref]
  6. Z. Chaboyer, T. Meany, L. Helt, M. J. Withford, and M. Steel, “Tunable quantum interference in a 3D integrated circuit,” Sci. Rep. 5(1), 9601 (2015).
    [Crossref]
  7. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
    [Crossref]
  8. K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
    [Crossref]
  9. A. Rudenko, J.-P. Colombier, and T. E. Itina, “Nanopore-mediated ultrashort laser-induced formation and erasure of volume nanogratings in glass,” Phys. Chem. Chem. Phys. 20(8), 5887–5899 (2018).
    [Crossref]
  10. M. Ams, P. Dekker, S. Gross, and M. J. Withford, “Fabricating waveguide bragg gratings (WBGS) in bulk materials using ultrashort laser pulses,” Nanophotonics 6(5), 743–763 (2017).
    [Crossref]
  11. W. Watanabe, T. Toma, K. Yamada, J. Nishii, K.-i. Hayashi, and K. Itoh, “Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses,” Opt. Lett. 25(22), 1669–1671 (2000).
    [Crossref]
  12. C. Liu, Y. Liao, F. He, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of three-dimensional microfluidic channels inside glass using nanosecond laser direct writing,” Opt. Express 20(4), 4291–4296 (2012).
    [Crossref]
  13. Y. Bellouard, A. Champion, B. McMillen, S. Mukherjee, R. R. Thomson, C. Pépin, P. Gillet, and Y. Cheng, “Stress-state manipulation in fused silica via femtosecond laser irradiation,” Optica 3(12), 1285–1293 (2016).
    [Crossref]
  14. F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses,” Opt. Lett. 35(7), 1106–1108 (2010).
    [Crossref]
  15. V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
    [Crossref]
  16. H. Ma, R. A. Zakoldaev, A. Rudenko, M. M. Sergeev, V. P. Veiko, and T. E. Itina, “Well-controlled femtosecond laser inscription of periodic void structures in porous glass for photonic applications,” Opt. Express 25(26), 33261–33270 (2017).
    [Crossref]
  17. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
    [Crossref]
  18. T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes,” Appl. Phys. A 117(1), 77–81 (2014).
    [Crossref]
  19. B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. G. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102 (2005).
    [Crossref]
  20. O. Uteza, B. Bussiere, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254(4), 799–803 (2007).
    [Crossref]
  21. C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76(3), 351–354 (2003).
    [Crossref]
  22. N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?” J. Appl. Phys. 118(23), 233108 (2015).
    [Crossref]
  23. I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys. A 114(1), 187–208 (2014).
    [Crossref]
  24. C. Momma, S. Nolte, B. N. Chichkov, F. V. Alvensleben, and A. Tünnermann, “Precise laser ablation with ultrashort pulses,” Appl. Surf. Sci. 109-110, 15–19 (1997).
    [Crossref]
  25. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, and Y. Jiang, “Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses,” Opt. Lett. 26(23), 1912–1914 (2001).
    [Crossref]
  26. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
    [Crossref]
  27. S. Richter, S. Döring, F. Burmeister, F. Zimmermann, A. Tünnermann, and S. Nolte, “Formation of periodic disruptions induced by heat accumulation of femtosecond laser pulses,” Opt. Express 21(13), 15452–15463 (2013).
    [Crossref]
  28. P. S. Salter, M. Baum, I. Alexeev, M. Schmidt, and M. J. Booth, “Exploring the depth range for three-dimensional laser machining with aberration correction,” Opt. Express 22(15), 17644–17656 (2014).
    [Crossref]
  29. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
    [Crossref]
  30. T. Tanaka, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “Coloration reactions between NO2 and organic compounds in porous glass for cumulative gas sensor,” Sens. Actuators, B 47(1-3), 65–69 (1998).
    [Crossref]
  31. Y. Y. Maruo and J. Nakamura, “Portable formaldehyde monitoring device using porous glass sensor and its applications in indoor air quality studies,” Anal. Chim. Acta 702(2), 247–253 (2011).
    [Crossref]
  32. S. Ding, C. Gao, and L.-Q. Gu, “Capturing single molecules of immunoglobulin and ricin with an aptamer-encoded glass nanopore,” Anal. Chem. 81(16), 6649–6655 (2009).
    [Crossref]
  33. J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” in Laser-based Micro-and Nanoprocessing X, vol. 9736 (International Society for Optics and Photonics, 2016), p. 97360U.
  34. V. P. Veiko, R. A. Zakoldaev, M. M. Sergeev, P. A. Danilov, S. I. Kudryashov, G. K. Kostiuk, A. N. Sivers, A. A. Ionin, T. V. Antropova, and O. S. Medvedev, “Direct laser writing of barriers with controllable permeability in porous glass,” Opt. Express 26(21), 28150–28160 (2018).
    [Crossref]
  35. V. Kreisberg and T. Antropova, “Changing the relation between micro-and mesoporosity in porous glasses: The effect of different factors,” Microporous Mesoporous Mater. 190, 128–138 (2014).
    [Crossref]
  36. J. Cimek, N. Liaros, S. Couris, R. Stepień, M. Klimczak, and R. Buczyński, “Experimental investigation of the nonlinear refractive index of various soft glasses dedicated for development of nonlinear photonic crystal fibers,” Opt. Mater. Express 7(10), 3471–3483 (2017).
    [Crossref]
  37. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
    [Crossref]
  38. Z. Xu, W. Liu, N. Zhang, M. Wang, and X. Zhu, “Effect of intensity clamping on laser ablation by intense femtosecond laser pulses,” Opt. Express 16(6), 3604–3609 (2008).
    [Crossref]
  39. A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4(5), 572–576 (2008).
    [Crossref]
  40. M. Rasedujjaman and L. Gallais, “Polarization dependent laser damage growth of optical coatings at sub-picosecond regime,” Opt. Express 26(19), 24444–24460 (2018).
    [Crossref]
  41. A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
    [Crossref]
  42. E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
    [Crossref]
  43. F. A. Umran, Y. Liao, M. M. Elias, K. Sugioka, R. Stoian, G. Cheng, and Y. Cheng, “Formation of nanogratings in a transparent material with tunable ionization property by femtosecond laser irradiation,” Opt. Express 21(13), 15259–15267 (2013).
    [Crossref]
  44. Y. Cheng, Y. Liao, and K. Sugioka, “Laser-induced damage in porous glass: a pathway to 3D fabrication of micro-/nanofluidics,” in Pacific Rim Laser Damage 2013: Optical Materials for High Power Lasers, vol. 8786 (International Society for Optics and Photonics, 2013), p. 87860C.

2018 (3)

2017 (3)

2016 (4)

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
[Crossref]

A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
[Crossref]

Y. Bellouard, A. Champion, B. McMillen, S. Mukherjee, R. R. Thomson, C. Pépin, P. Gillet, and Y. Cheng, “Stress-state manipulation in fused silica via femtosecond laser irradiation,” Optica 3(12), 1285–1293 (2016).
[Crossref]

2015 (2)

Z. Chaboyer, T. Meany, L. Helt, M. J. Withford, and M. Steel, “Tunable quantum interference in a 3D integrated circuit,” Sci. Rep. 5(1), 9601 (2015).
[Crossref]

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?” J. Appl. Phys. 118(23), 233108 (2015).
[Crossref]

2014 (5)

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys. A 114(1), 187–208 (2014).
[Crossref]

K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes,” Appl. Phys. A 117(1), 77–81 (2014).
[Crossref]

V. Kreisberg and T. Antropova, “Changing the relation between micro-and mesoporosity in porous glasses: The effect of different factors,” Microporous Mesoporous Mater. 190, 128–138 (2014).
[Crossref]

P. S. Salter, M. Baum, I. Alexeev, M. Schmidt, and M. J. Booth, “Exploring the depth range for three-dimensional laser machining with aberration correction,” Opt. Express 22(15), 17644–17656 (2014).
[Crossref]

2013 (2)

2012 (1)

2011 (1)

Y. Y. Maruo and J. Nakamura, “Portable formaldehyde monitoring device using porous glass sensor and its applications in indoor air quality studies,” Anal. Chim. Acta 702(2), 247–253 (2011).
[Crossref]

2010 (2)

F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses,” Opt. Lett. 35(7), 1106–1108 (2010).
[Crossref]

K. Sugioka, Y. Hanada, and K. Midorikawa, “Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips,” Laser Photonics Rev. 4(3), 386–400 (2010).
[Crossref]

2009 (1)

S. Ding, C. Gao, and L.-Q. Gu, “Capturing single molecules of immunoglobulin and ricin with an aptamer-encoded glass nanopore,” Anal. Chem. 81(16), 6649–6655 (2009).
[Crossref]

2008 (5)

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref]

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4(5), 572–576 (2008).
[Crossref]

Z. Xu, W. Liu, N. Zhang, M. Wang, and X. Zhu, “Effect of intensity clamping on laser ablation by intense femtosecond laser pulses,” Opt. Express 16(6), 3604–3609 (2008).
[Crossref]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2007 (2)

O. Uteza, B. Bussiere, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254(4), 799–803 (2007).
[Crossref]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

2005 (2)

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[Crossref]

B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. G. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102 (2005).
[Crossref]

2003 (3)

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76(3), 351–354 (2003).
[Crossref]

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. Chichkov, “Towards nanostructuring with femtosecond laser pulses,” Appl. Phys. A: Mater. Sci. Process. 77, 229–235 (2003).
[Crossref]

J. Serbin, A. Egbert, A. Ostendorf, B. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
[Crossref]

2002 (1)

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
[Crossref]

2001 (1)

2000 (1)

1998 (1)

T. Tanaka, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “Coloration reactions between NO2 and organic compounds in porous glass for cumulative gas sensor,” Sens. Actuators, B 47(1-3), 65–69 (1998).
[Crossref]

1997 (1)

C. Momma, S. Nolte, B. N. Chichkov, F. V. Alvensleben, and A. Tünnermann, “Precise laser ablation with ultrashort pulses,” Appl. Surf. Sci. 109-110, 15–19 (1997).
[Crossref]

Alexeev, I.

Alvensleben, F. V.

C. Momma, S. Nolte, B. N. Chichkov, F. V. Alvensleben, and A. Tünnermann, “Precise laser ablation with ultrashort pulses,” Appl. Surf. Sci. 109-110, 15–19 (1997).
[Crossref]

Ams, M.

M. Ams, P. Dekker, S. Gross, and M. J. Withford, “Fabricating waveguide bragg gratings (WBGS) in bulk materials using ultrashort laser pulses,” Nanophotonics 6(5), 743–763 (2017).
[Crossref]

Anfimova, I. N.

V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
[Crossref]

Antropova, T.

V. Kreisberg and T. Antropova, “Changing the relation between micro-and mesoporosity in porous glasses: The effect of different factors,” Microporous Mesoporous Mater. 190, 128–138 (2014).
[Crossref]

Antropova, T. V.

V. P. Veiko, R. A. Zakoldaev, M. M. Sergeev, P. A. Danilov, S. I. Kudryashov, G. K. Kostiuk, A. N. Sivers, A. A. Ionin, T. V. Antropova, and O. S. Medvedev, “Direct laser writing of barriers with controllable permeability in porous glass,” Opt. Express 26(21), 28150–28160 (2018).
[Crossref]

V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
[Crossref]

Arai, A. Y.

Arnold, C. B.

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref]

Baudach, S.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
[Crossref]

Baum, M.

Bellouard, Y.

Beresna, M.

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” in Laser-based Micro-and Nanoprocessing X, vol. 9736 (International Society for Optics and Photonics, 2016), p. 97360U.

Bonse, J.

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes,” Appl. Phys. A 117(1), 77–81 (2014).
[Crossref]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
[Crossref]

Booth, M. J.

Bovatsek, J.

Buczynski, R.

Buividas, R.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Bulgakova, N. M.

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?” J. Appl. Phys. 118(23), 233108 (2015).
[Crossref]

Burmeister, F.

Bussiere, B.

O. Uteza, B. Bussiere, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254(4), 799–803 (2007).
[Crossref]

Canova, F.

O. Uteza, B. Bussiere, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254(4), 799–803 (2007).
[Crossref]

Cerkauskaite, A.

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” in Laser-based Micro-and Nanoprocessing X, vol. 9736 (International Society for Optics and Photonics, 2016), p. 97360U.

Cerullo, G.

R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, vol. 123 (Springer Science & Business Media, 2012).

Chaboyer, Z.

Z. Chaboyer, T. Meany, L. Helt, M. J. Withford, and M. Steel, “Tunable quantum interference in a 3D integrated circuit,” Sci. Rep. 5(1), 9601 (2015).
[Crossref]

Chaker, M.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4(5), 572–576 (2008).
[Crossref]

Chambaret, J.-P.

O. Uteza, B. Bussiere, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254(4), 799–803 (2007).
[Crossref]

Champion, A.

Chen, D.

Chen, W.-J.

Cheng, G.

Cheng, Y.

Chichkov, B.

Chichkov, B. N.

C. Momma, S. Nolte, B. N. Chichkov, F. V. Alvensleben, and A. Tünnermann, “Precise laser ablation with ultrashort pulses,” Appl. Surf. Sci. 109-110, 15–19 (1997).
[Crossref]

Cimek, J.

Colombier, J.-P.

A. Rudenko, J.-P. Colombier, and T. E. Itina, “Nanopore-mediated ultrashort laser-induced formation and erasure of volume nanogratings in glass,” Phys. Chem. Chem. Phys. 20(8), 5887–5899 (2018).
[Crossref]

A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
[Crossref]

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

Couris, S.

Cronauer, C.

Cvecek, K.

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys. A 114(1), 187–208 (2014).
[Crossref]

Danilov, P. A.

V. P. Veiko, R. A. Zakoldaev, M. M. Sergeev, P. A. Danilov, S. I. Kudryashov, G. K. Kostiuk, A. N. Sivers, A. A. Ionin, T. V. Antropova, and O. S. Medvedev, “Direct laser writing of barriers with controllable permeability in porous glass,” Opt. Express 26(21), 28150–28160 (2018).
[Crossref]

V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
[Crossref]

Dekker, P.

M. Ams, P. Dekker, S. Gross, and M. J. Withford, “Fabricating waveguide bragg gratings (WBGS) in bulk materials using ultrashort laser pulses,” Nanophotonics 6(5), 743–763 (2017).
[Crossref]

Delaporte, P.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4(5), 572–576 (2008).
[Crossref]

O. Uteza, B. Bussiere, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254(4), 799–803 (2007).
[Crossref]

Derrien, T. J.-Y.

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes,” Appl. Phys. A 117(1), 77–81 (2014).
[Crossref]

Ding, S.

S. Ding, C. Gao, and L.-Q. Gu, “Capturing single molecules of immunoglobulin and ricin with an aptamer-encoded glass nanopore,” Anal. Chem. 81(16), 6649–6655 (2009).
[Crossref]

Domann, G.

Döring, S.

Drevinskas, R.

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” in Laser-based Micro-and Nanoprocessing X, vol. 9736 (International Society for Optics and Photonics, 2016), p. 97360U.

Eaton, S. M.

Egbert, A.

Elias, M. M.

Fallnich, C.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. Chichkov, “Towards nanostructuring with femtosecond laser pulses,” Appl. Phys. A: Mater. Sci. Process. 77, 229–235 (2003).
[Crossref]

Fröhlich, L.

Gallais, L.

Gamaly, E. G.

B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. G. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102 (2005).
[Crossref]

Gao, C.

S. Ding, C. Gao, and L.-Q. Gu, “Capturing single molecules of immunoglobulin and ricin with an aptamer-encoded glass nanopore,” Anal. Chem. 81(16), 6649–6655 (2009).
[Crossref]

García, J. F.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76(3), 351–354 (2003).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gillet, P.

Grojo, D.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4(5), 572–576 (2008).
[Crossref]

Gross, S.

M. Ams, P. Dekker, S. Gross, and M. J. Withford, “Fabricating waveguide bragg gratings (WBGS) in bulk materials using ultrashort laser pulses,” Nanophotonics 6(5), 743–763 (2017).
[Crossref]

Gu, L.-Q.

S. Ding, C. Gao, and L.-Q. Gu, “Capturing single molecules of immunoglobulin and ricin with an aptamer-encoded glass nanopore,” Anal. Chem. 81(16), 6649–6655 (2009).
[Crossref]

Guay, D.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4(5), 572–576 (2008).
[Crossref]

Hanada, Y.

K. Sugioka, Y. Hanada, and K. Midorikawa, “Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips,” Laser Photonics Rev. 4(3), 386–400 (2010).
[Crossref]

Hasegawa, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Hayasaki, Y.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Hayashi, K.-i.

Hayashi, T.

T. Tanaka, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “Coloration reactions between NO2 and organic compounds in porous glass for cumulative gas sensor,” Sens. Actuators, B 47(1-3), 65–69 (1998).
[Crossref]

He, F.

Helt, L.

Z. Chaboyer, T. Meany, L. Helt, M. J. Withford, and M. Steel, “Tunable quantum interference in a 3D integrated circuit,” Sci. Rep. 5(1), 9601 (2015).
[Crossref]

Herman, P. R.

Ho, S.

Höhm, S.

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes,” Appl. Phys. A 117(1), 77–81 (2014).
[Crossref]

Houbertz, R.

Ionin, A. A.

V. P. Veiko, R. A. Zakoldaev, M. M. Sergeev, P. A. Danilov, S. I. Kudryashov, G. K. Kostiuk, A. N. Sivers, A. A. Ionin, T. V. Antropova, and O. S. Medvedev, “Direct laser writing of barriers with controllable permeability in porous glass,” Opt. Express 26(21), 28150–28160 (2018).
[Crossref]

V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
[Crossref]

Itina, T.

O. Uteza, B. Bussiere, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254(4), 799–803 (2007).
[Crossref]

Itina, T. E.

A. Rudenko, J.-P. Colombier, and T. E. Itina, “Nanopore-mediated ultrashort laser-induced formation and erasure of volume nanogratings in glass,” Phys. Chem. Chem. Phys. 20(8), 5887–5899 (2018).
[Crossref]

H. Ma, R. A. Zakoldaev, A. Rudenko, M. M. Sergeev, V. P. Veiko, and T. E. Itina, “Well-controlled femtosecond laser inscription of periodic void structures in porous glass for photonic applications,” Opt. Express 25(26), 33261–33270 (2017).
[Crossref]

A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
[Crossref]

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes,” Appl. Phys. A 117(1), 77–81 (2014).
[Crossref]

Itoh, K.

Jiang, Y.

Juodkazis, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Kautek, W.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
[Crossref]

Kazansky, P. G.

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” in Laser-based Micro-and Nanoprocessing X, vol. 9736 (International Society for Optics and Photonics, 2016), p. 97360U.

Klimczak, M.

Koch, J.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. Chichkov, “Towards nanostructuring with femtosecond laser pulses,” Appl. Phys. A: Mater. Sci. Process. 77, 229–235 (2003).
[Crossref]

Korte, F.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. Chichkov, “Towards nanostructuring with femtosecond laser pulses,” Appl. Phys. A: Mater. Sci. Process. 77, 229–235 (2003).
[Crossref]

Kostiuk, G. K.

Kreisberg, V.

V. Kreisberg and T. Antropova, “Changing the relation between micro-and mesoporosity in porous glasses: The effect of different factors,” Microporous Mesoporous Mater. 190, 128–138 (2014).
[Crossref]

Krüger, J.

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes,” Appl. Phys. A 117(1), 77–81 (2014).
[Crossref]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
[Crossref]

Kudryashov, S. I.

V. P. Veiko, R. A. Zakoldaev, M. M. Sergeev, P. A. Danilov, S. I. Kudryashov, G. K. Kostiuk, A. N. Sivers, A. A. Ionin, T. V. Antropova, and O. S. Medvedev, “Direct laser writing of barriers with controllable permeability in porous glass,” Opt. Express 26(21), 28150–28160 (2018).
[Crossref]

V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
[Crossref]

Kuroda, D.

Lenzner, M.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
[Crossref]

Li, J.

Li, Y.

Liao, Y.

Liaros, N.

Liu, C.

Liu, W.

Luther-Davies, B.

B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. G. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102 (2005).
[Crossref]

Ma, H.

Madsen, N. R.

B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. G. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102 (2005).
[Crossref]

Malinauskas, M.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Maruo, Y. Y.

Y. Y. Maruo and J. Nakamura, “Portable formaldehyde monitoring device using porous glass sensor and its applications in indoor air quality studies,” Anal. Chim. Acta 702(2), 247–253 (2011).
[Crossref]

T. Tanaka, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “Coloration reactions between NO2 and organic compounds in porous glass for cumulative gas sensor,” Sens. Actuators, B 47(1-3), 65–69 (1998).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76(3), 351–354 (2003).
[Crossref]

Mcleod, E.

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref]

McMillen, B.

Meany, T.

Z. Chaboyer, T. Meany, L. Helt, M. J. Withford, and M. Steel, “Tunable quantum interference in a 3D integrated circuit,” Sci. Rep. 5(1), 9601 (2015).
[Crossref]

Medvedev, O. S.

Meshcheryakov, Y. P.

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?” J. Appl. Phys. 118(23), 233108 (2015).
[Crossref]

Midorikawa, K.

Miyamoto, I.

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys. A 114(1), 187–208 (2014).
[Crossref]

Mizeikis, V.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Momma, C.

C. Momma, S. Nolte, B. N. Chichkov, F. V. Alvensleben, and A. Tünnermann, “Precise laser ablation with ultrashort pulses,” Appl. Surf. Sci. 109-110, 15–19 (1997).
[Crossref]

Mukherjee, S.

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

Nakamura, J.

Y. Y. Maruo and J. Nakamura, “Portable formaldehyde monitoring device using porous glass sensor and its applications in indoor air quality studies,” Anal. Chim. Acta 702(2), 247–253 (2011).
[Crossref]

Ng, M. L.

Ni, J.

Nishii, J.

Nolte, S.

S. Richter, S. Döring, F. Burmeister, F. Zimmermann, A. Tünnermann, and S. Nolte, “Formation of periodic disruptions induced by heat accumulation of femtosecond laser pulses,” Opt. Express 21(13), 15452–15463 (2013).
[Crossref]

C. Momma, S. Nolte, B. N. Chichkov, F. V. Alvensleben, and A. Tünnermann, “Precise laser ablation with ultrashort pulses,” Appl. Surf. Sci. 109-110, 15–19 (1997).
[Crossref]

Ohyama, T.

T. Tanaka, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “Coloration reactions between NO2 and organic compounds in porous glass for cumulative gas sensor,” Sens. Actuators, B 47(1-3), 65–69 (1998).
[Crossref]

Okamoto, Y.

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys. A 114(1), 187–208 (2014).
[Crossref]

Osellame, R.

R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, vol. 123 (Springer Science & Business Media, 2012).

Ostendorf, A.

Patel, A.

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” in Laser-based Micro-and Nanoprocessing X, vol. 9736 (International Society for Optics and Photonics, 2016), p. 97360U.

Pépin, C.

Pereira, A.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4(5), 572–576 (2008).
[Crossref]

Popall, M.

Ramponi, R.

R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, vol. 123 (Springer Science & Business Media, 2012).

Rasedujjaman, M.

Richter, S.

Rode, A. V.

B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. G. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102 (2005).
[Crossref]

Rosenfeld, A.

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes,” Appl. Phys. A 117(1), 77–81 (2014).
[Crossref]

Rudenko, A.

A. Rudenko, J.-P. Colombier, and T. E. Itina, “Nanopore-mediated ultrashort laser-induced formation and erasure of volume nanogratings in glass,” Phys. Chem. Chem. Phys. 20(8), 5887–5899 (2018).
[Crossref]

H. Ma, R. A. Zakoldaev, A. Rudenko, M. M. Sergeev, V. P. Veiko, and T. E. Itina, “Well-controlled femtosecond laser inscription of periodic void structures in porous glass for photonic applications,” Opt. Express 25(26), 33261–33270 (2017).
[Crossref]

A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
[Crossref]

Salter, P. S.

Schaffer, C. B.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76(3), 351–354 (2003).
[Crossref]

Schmidt, M.

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys. A 114(1), 187–208 (2014).
[Crossref]

P. S. Salter, M. Baum, I. Alexeev, M. Schmidt, and M. J. Booth, “Exploring the depth range for three-dimensional laser machining with aberration correction,” Opt. Express 22(15), 17644–17656 (2014).
[Crossref]

Schulz, J.

Sentis, M.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4(5), 572–576 (2008).
[Crossref]

O. Uteza, B. Bussiere, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254(4), 799–803 (2007).
[Crossref]

Serbin, J.

Sergeev, M. M.

Shah, L.

Shen, Y.

Sivers, A. N.

Sonina, S. V.

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?” J. Appl. Phys. 118(23), 233108 (2015).
[Crossref]

Steel, M.

Z. Chaboyer, T. Meany, L. Helt, M. J. Withford, and M. Steel, “Tunable quantum interference in a 3D integrated circuit,” Sci. Rep. 5(1), 9601 (2015).
[Crossref]

Stepien, R.

Stoian, R.

Sugioka, K.

K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

F. A. Umran, Y. Liao, M. M. Elias, K. Sugioka, R. Stoian, G. Cheng, and Y. Cheng, “Formation of nanogratings in a transparent material with tunable ionization property by femtosecond laser irradiation,” Opt. Express 21(13), 15259–15267 (2013).
[Crossref]

C. Liu, Y. Liao, F. He, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of three-dimensional microfluidic channels inside glass using nanosecond laser direct writing,” Opt. Express 20(4), 4291–4296 (2012).
[Crossref]

K. Sugioka, Y. Hanada, and K. Midorikawa, “Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips,” Laser Photonics Rev. 4(3), 386–400 (2010).
[Crossref]

F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses,” Opt. Lett. 35(7), 1106–1108 (2010).
[Crossref]

Y. Cheng, Y. Liao, and K. Sugioka, “Laser-induced damage in porous glass: a pathway to 3D fabrication of micro-/nanofluidics,” in Pacific Rim Laser Damage 2013: Optical Materials for High Power Lasers, vol. 8786 (International Society for Optics and Photonics, 2013), p. 87860C.

Tanaka, T.

T. Tanaka, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “Coloration reactions between NO2 and organic compounds in porous glass for cumulative gas sensor,” Sens. Actuators, B 47(1-3), 65–69 (1998).
[Crossref]

Thomson, R. R.

Toma, T.

Tünnermann, A.

S. Richter, S. Döring, F. Burmeister, F. Zimmermann, A. Tünnermann, and S. Nolte, “Formation of periodic disruptions induced by heat accumulation of femtosecond laser pulses,” Opt. Express 21(13), 15452–15463 (2013).
[Crossref]

C. Momma, S. Nolte, B. N. Chichkov, F. V. Alvensleben, and A. Tünnermann, “Precise laser ablation with ultrashort pulses,” Appl. Surf. Sci. 109-110, 15–19 (1997).
[Crossref]

Umran, F. A.

Uteza, O.

O. Uteza, B. Bussiere, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254(4), 799–803 (2007).
[Crossref]

Veiko, V. P.

Wang, M.

Watanabe, W.

Withford, M. J.

M. Ams, P. Dekker, S. Gross, and M. J. Withford, “Fabricating waveguide bragg gratings (WBGS) in bulk materials using ultrashort laser pulses,” Nanophotonics 6(5), 743–763 (2017).
[Crossref]

Z. Chaboyer, T. Meany, L. Helt, M. J. Withford, and M. Steel, “Tunable quantum interference in a 3D integrated circuit,” Sci. Rep. 5(1), 9601 (2015).
[Crossref]

Xiong, H.

Xu, H.

Xu, Z.

Yamada, K.

Yoshino, F.

Zakoldaev, R. A.

Zhang, H.

Zhang, J.

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” in Laser-based Micro-and Nanoprocessing X, vol. 9736 (International Society for Optics and Photonics, 2016), p. 97360U.

Zhang, N.

Zhu, X.

Zhukov, V. P.

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?” J. Appl. Phys. 118(23), 233108 (2015).
[Crossref]

Zimmermann, F.

Žukauskas, A.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Anal. Chem. (1)

S. Ding, C. Gao, and L.-Q. Gu, “Capturing single molecules of immunoglobulin and ricin with an aptamer-encoded glass nanopore,” Anal. Chem. 81(16), 6649–6655 (2009).
[Crossref]

Anal. Chim. Acta (1)

Y. Y. Maruo and J. Nakamura, “Portable formaldehyde monitoring device using porous glass sensor and its applications in indoor air quality studies,” Anal. Chim. Acta 702(2), 247–253 (2011).
[Crossref]

Appl. Phys. A (4)

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
[Crossref]

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes,” Appl. Phys. A 117(1), 77–81 (2014).
[Crossref]

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76(3), 351–354 (2003).
[Crossref]

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys. A 114(1), 187–208 (2014).
[Crossref]

Appl. Phys. A: Mater. Sci. Process. (1)

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. Chichkov, “Towards nanostructuring with femtosecond laser pulses,” Appl. Phys. A: Mater. Sci. Process. 77, 229–235 (2003).
[Crossref]

Appl. Surf. Sci. (2)

C. Momma, S. Nolte, B. N. Chichkov, F. V. Alvensleben, and A. Tünnermann, “Precise laser ablation with ultrashort pulses,” Appl. Surf. Sci. 109-110, 15–19 (1997).
[Crossref]

O. Uteza, B. Bussiere, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254(4), 799–803 (2007).
[Crossref]

J. Appl. Phys. (1)

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?” J. Appl. Phys. 118(23), 233108 (2015).
[Crossref]

Laser Photonics Rev. (1)

K. Sugioka, Y. Hanada, and K. Midorikawa, “Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips,” Laser Photonics Rev. 4(3), 386–400 (2010).
[Crossref]

Laser Phys. Lett. (1)

V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
[Crossref]

Light: Sci. Appl. (2)

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

Microporous Mesoporous Mater. (1)

V. Kreisberg and T. Antropova, “Changing the relation between micro-and mesoporosity in porous glasses: The effect of different factors,” Microporous Mesoporous Mater. 190, 128–138 (2014).
[Crossref]

Nanophotonics (1)

M. Ams, P. Dekker, S. Gross, and M. J. Withford, “Fabricating waveguide bragg gratings (WBGS) in bulk materials using ultrashort laser pulses,” Nanophotonics 6(5), 743–763 (2017).
[Crossref]

Nat. Nanotechnol. (1)

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Eng. (1)

B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. G. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102 (2005).
[Crossref]

Opt. Express (10)

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[Crossref]

Z. Xu, W. Liu, N. Zhang, M. Wang, and X. Zhu, “Effect of intensity clamping on laser ablation by intense femtosecond laser pulses,” Opt. Express 16(6), 3604–3609 (2008).
[Crossref]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
[Crossref]

C. Liu, Y. Liao, F. He, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of three-dimensional microfluidic channels inside glass using nanosecond laser direct writing,” Opt. Express 20(4), 4291–4296 (2012).
[Crossref]

F. A. Umran, Y. Liao, M. M. Elias, K. Sugioka, R. Stoian, G. Cheng, and Y. Cheng, “Formation of nanogratings in a transparent material with tunable ionization property by femtosecond laser irradiation,” Opt. Express 21(13), 15259–15267 (2013).
[Crossref]

S. Richter, S. Döring, F. Burmeister, F. Zimmermann, A. Tünnermann, and S. Nolte, “Formation of periodic disruptions induced by heat accumulation of femtosecond laser pulses,” Opt. Express 21(13), 15452–15463 (2013).
[Crossref]

P. S. Salter, M. Baum, I. Alexeev, M. Schmidt, and M. J. Booth, “Exploring the depth range for three-dimensional laser machining with aberration correction,” Opt. Express 22(15), 17644–17656 (2014).
[Crossref]

H. Ma, R. A. Zakoldaev, A. Rudenko, M. M. Sergeev, V. P. Veiko, and T. E. Itina, “Well-controlled femtosecond laser inscription of periodic void structures in porous glass for photonic applications,” Opt. Express 25(26), 33261–33270 (2017).
[Crossref]

M. Rasedujjaman and L. Gallais, “Polarization dependent laser damage growth of optical coatings at sub-picosecond regime,” Opt. Express 26(19), 24444–24460 (2018).
[Crossref]

V. P. Veiko, R. A. Zakoldaev, M. M. Sergeev, P. A. Danilov, S. I. Kudryashov, G. K. Kostiuk, A. N. Sivers, A. A. Ionin, T. V. Antropova, and O. S. Medvedev, “Direct laser writing of barriers with controllable permeability in porous glass,” Opt. Express 26(21), 28150–28160 (2018).
[Crossref]

Opt. Lett. (4)

Opt. Mater. Express (1)

Optica (1)

Phys. Chem. Chem. Phys. (1)

A. Rudenko, J.-P. Colombier, and T. E. Itina, “Nanopore-mediated ultrashort laser-induced formation and erasure of volume nanogratings in glass,” Phys. Chem. Chem. Phys. 20(8), 5887–5899 (2018).
[Crossref]

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

Phys. Rev. B (1)

A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
[Crossref]

Sci. Rep. (1)

Z. Chaboyer, T. Meany, L. Helt, M. J. Withford, and M. Steel, “Tunable quantum interference in a 3D integrated circuit,” Sci. Rep. 5(1), 9601 (2015).
[Crossref]

Sens. Actuators, B (1)

T. Tanaka, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “Coloration reactions between NO2 and organic compounds in porous glass for cumulative gas sensor,” Sens. Actuators, B 47(1-3), 65–69 (1998).
[Crossref]

Small (1)

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small 4(5), 572–576 (2008).
[Crossref]

Other (3)

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” in Laser-based Micro-and Nanoprocessing X, vol. 9736 (International Society for Optics and Photonics, 2016), p. 97360U.

Y. Cheng, Y. Liao, and K. Sugioka, “Laser-induced damage in porous glass: a pathway to 3D fabrication of micro-/nanofluidics,” in Pacific Rim Laser Damage 2013: Optical Materials for High Power Lasers, vol. 8786 (International Society for Optics and Photonics, 2013), p. 87860C.

R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, vol. 123 (Springer Science & Business Media, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Geometrically and morphologically changeable modified regions produced by femtosecond laser pulses: molecular barriers, waveguides, isolated nanoporous cells (a). Schematic representation of the PG plate as a base for inscription of integrated multi-purpose sensors and functional elements (b).
Fig. 2.
Fig. 2. Top view and cross-section microphotos of fabricated structures in PG: densification region (a,b) obtained by $E_L$ = 2 mJ and 10X, NA = 0.25 lens, and voids (c,d) by $E_L$ = 2 mJ and 20X, NA = 0.4 lens. Measured ratio of $w$ to the laser beam waist diameter (e) for two lenses and $h$ to the Rayleigh length ($2 z_0$) (f) as a function of $E_L$. Experimental dependencies obtained for different NA: width (g) and height (h) of the modified region as a function of $E_L$. The scale bar is 10 $\mu$m.
Fig. 3.
Fig. 3. Illustration of the difference in the application of two lenses: with NA = 0.25 (a-c) and 0.4 (d-f). Micro-images of laser-modified regions formed at constant $E_p = 1.8 \mu$J and different $N$, where $E_L$ = 1.4, 1.8, 2.7 mJ (a). Cross-section of the track formed at 1.4 mJ (b). Optical image of the densified tracks array in a linearly polarized light with a crossed polarizer/analyzer pair (c, f). SEM image of the track formed with NA=0.4 at $E_L = 0.5$ mJ (e).
Fig. 4.
Fig. 4. Calculated maximum electron density (a) and light transmission (b) for single ultra-short laser pulse. The model parameters are given in [16].
Fig. 5.
Fig. 5. Heat accumulation by an ultra-fast laser of high repetition-rate (500 kHz $\mathrm {NA} = 0.25$) at various pulse energies and scanning speeds (a). Laser moves in the positive X direction (from left to right). Dimension of the densified area: width (b) and elongation (c). Here, these dimensions are estimated based on the temperature of $1000^\circ \textrm {C}$ [15].
Fig. 6.
Fig. 6. Cross-section schematic view of the barrier fabrication in PG: multi-step densification by 3 scans with the track height of $15\mu m$ provides the barrier height of $45 \mu m$ (a) and its micro-photo (b); the $500 \mu m$-barrier fabricated by 1 femtosecond laser track inside of water doped PG plate with thickness of $500 \mu m$ (c). Micro-photo of thought barrier inside of PG (d).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

z f = 0.367 k ω 0 2 [ ( P 0 / P c r ) 1 / 2 0.852 ] 2 0.0219

Metrics