Abstract

The polymers IP-Dip, IP-L, and IP-S are among the most commonly used photo-resists employed for the rapid prototyping of optical components using two-photon polymerization. Despite the widespread use of these polymers, measured data on their optical properties is scarce. Recently, the refractive index $n$ of these polymers has been determined in the visible and near-infrared spectral range. However, the accurate optical properties including extinction coefficient $\kappa$ in the ultraviolet spectral range have not been reported yet. Here we report on accurate, ellipsometric measurements of the complex dielectric functions of two-photon polymerized IP-Dip, IP-L, and IP-S in the spectral range from 210 nm to 1500 nm. Model dielectric functions composed of oscillators with Lorentz, Gaussian, and Tauc-Lorentz broadenings are presented for all investigated polymers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Infrared dielectric response of nanoscribe IP-dip and IP-L monomers after polymerization from 250 cm−1 to 6000 cm−1

Daniel B. Fullager, Glenn D. Boreman, and Tino Hofmann
Opt. Mater. Express 7(3) 888-894 (2017)

Optical dielectric function of Si(2,6-bis(benzimidazol-2’-yl)pyridine)2 determined by spectroscopic ellipsometry

Yanzeng Li, Margaret Kocherga, Serang Park, Marc Lata, Micheal McLamb, Glenn Boreman, Thomas A. Schmedake, and Tino Hofmann
Opt. Mater. Express 9(8) 3469-3475 (2019)

IP-Dip-based woodpile structures for VIS and NIR spectral range: complex PBG analysis

Petra Urbancová, Dušan Pudiš, Anton Kuzma, Matej Goraus, Peter Gašo, and Daniel Jandura
Opt. Mater. Express 9(11) 4307-4317 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
    [Crossref]
  2. M. Deubel, M. Wegener, A. Kaso, and S. John, “Direct laser writing and characterization of “slanted pore” photonic crystals,” Appl. Phys. Lett. 85(11), 1895–1897 (2004).
    [Crossref]
  3. M. Nawrot, Ł. Zinkiewicz, B. Włodarczyk, and P. Wasylczyk, “Transmission phase gratings fabricated with direct laser writing as color filters in the visible,” Opt. Express 21(26), 31919–31924 (2013).
    [Crossref]
  4. P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
    [Crossref]
  5. A. E. Goodling, S. Nagelberg, B. Kaehr, C. H. Meredith, S. I. Cheon, A. P. Saunders, M. Kolle, and L. D. Zarzar, “Colouration by total internal reflection and interference at microscale concave interfaces,” Nature 566(7745), 523–527 (2019).
    [Crossref]
  6. Y. Li, H. Zhao, S.-F. Feng, J.-S. Ye, X.-K. Wang, W.-F. Sun, P. Han, and Y. Zhang, “New design model for high efficiency cylindrical diffractive microlenses,” Sci. Rep. 7(1), 16334 (2017).
    [Crossref]
  7. T. P. Xiao, O. S. Cifci, S. Bhargava, H. Chen, T. Gissibl, W. Zhou, H. Giessen, K. C. Toussaint, E. Yablonovitch, and P. V. Braun, “Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing,” ACS Photonics 3(5), 886–894 (2016).
    [Crossref]
  8. Ł. Zinkiewicz, J. Haberko, and P. Wasylczyk, “Highly asymmetric near infrared light transmission in an all-dielectric grating-on-mirror photonic structure,” Opt. Express 23(4), 4206–4211 (2015).
    [Crossref]
  9. I. Sakellari, X. Yin, M. L. Nesterov, K. Terzaki, A. Xomalis, and M. Farsari, “3D chiral plasmonic metamaterials fabricated by direct laser writing: The twisted omega particle,” Adv. Opt. Mater. 5(16), 1700200 (2017).
    [Crossref]
  10. J. Moughames, S. Jradi, T. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6(1), 33627 (2016).
    [Crossref]
  11. V. Caligiuri, R. Dhama, K. Sreekanth, G. Strangi, and A. De Luca, “Dielectric singularity in hyperbolic metamaterials: the inversion point of coexisting anisotropies,” Sci. Rep. 6(1), 20002 (2016).
    [Crossref]
  12. B. Wang, Z. Xie, S. Feng, B. Zhang, and Y. Zhang, “Ultrahigh Q-factor and figure of merit fano metamaterial based on dark ring magnetic mode,” Opt. Commun. 335, 60–64 (2015).
    [Crossref]
  13. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
    [Crossref]
  14. M. Schmid, S. Thiele, A. Herkommer, and H. Giessen, “Three-dimensional direct laser written achromatic axicons and multi-component microlenses,” Opt. Lett. 43(23), 5837–5840 (2018).
    [Crossref]
  15. M. Schumann, H. Bűckmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D-3D optical devices for integrated optics by direct laser writing,” Light Sci. Appl. 3, e175 (2014).
    [Crossref]
  16. Y. Li, D. Fullager, S. Park, D. Childers, R. Fesperman, G. Boreman, and T. Hofmann, “High-contrast infrared polymer photonic crystals fabricated by direct laser writing,” Opt. Lett. 43(19), 4711–4714 (2018).
    [Crossref]
  17. C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide,” Sci. Rep. 6(1), 21818 (2016).
    [Crossref]
  18. M. Kowalczyk, J. Haberko, and P. Wasylczyk, “Microstructured gradient-index antireflective coating fabricated on a fiber tip with direct laser writing,” Opt. Express 22(10), 12545–12550 (2014).
    [Crossref]
  19. Y. Li, D. Fullager, E. Angelbello, D. Childers, G. Boreman, and T. Hofmann, “Broadband near-infrared antireflection coatings fabricated by three-dimensional direct laser writing,” Opt. Lett. 43(2), 239–242 (2018).
    [Crossref]
  20. X. Xiong, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25(29), 3994–4000 (2013).
    [Crossref]
  21. B. Jose, R. K. Vijayaraghavan, L. Kent, S. O’Toole, J. O’Leary, and R. J. Forster, “Tunable metallic nanostructures using 3D printed nanosphere templates,” Electrochem. Commun. 98, 106–109 (2019).
    [Crossref]
  22. T. Gissibl, S. Wagner, J. Sykora, M. Schmid, and H. Giessen, “Refractive index measurements of photo-resists for three-dimensional direct laser writing,” Opt. Mater. Express 7(7), 2293–2298 (2017).
    [Crossref]
  23. D. B. Fullager, G. D. Boreman, and T. Hofmann, “Infrared dielectric response of Nanoscribe IP-Dip and IP-l monomers after polymerization from 250 cm$^{- 1}$−1 to 6000 cm$^{- 1}$−1,” Opt. Mater. Express 7(3), 888–894 (2017).
    [Crossref]
  24. S. Dottermusch, D. Busko, M. Langenhorst, U. W. Paetzold, and B. S. Richards, “Exposure-dependent refractive index of nanoscribe IP-Dip photoresist layers,” Opt. Lett. 44(1), 29–32 (2019).
    [Crossref]
  25. I. Faniayeu and V. Mizeikis, “Realization of a helix-based perfect absorber for ir spectral range using the direct laser write technique,” Opt. Mater. Express 7(5), 1453–1462 (2017).
    [Crossref]
  26. X. Xiong, Z.-H. Xue, C. Meng, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, “Polarization-dependent perfect absorbers/reflectors based on a three-dimensional metamaterial,” Phys. Rev. B 88(11), 115105 (2013).
    [Crossref]
  27. J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener,, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27(43), 1702425 (2017).
    [Crossref]
  28. H. Fujiwara, Spectroscopic Ellipsometry Principles and Applications (John Wiley & Sons Inc., 2007).
  29. C. Herzinger, B. Johs, W. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
    [Crossref]
  30. The measured experimental values for all off-diagonal Mueller matrix elements are 0$\pm$±0.01, as would be expected for an isotropic sample response. Therefore, only the non-trivial on-diagonal Mueller matrix elements are reported here for brevity.
  31. R. Synowicki and T. E. Tiwald, “Optical properties of bulk c-ZrO$_2$2, c-MgO and a-As$_2$2S$_3$3 determined by variable angle spectroscopic ellipsometry,” Thin Solid Films 455-456, 248–255 (2004).
    [Crossref]
  32. G. Jellison and F. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
    [Crossref]
  33. J. G. E. Jellison and F. A. Modine, “Erratum: “Parameterization of the optical functions of amorphous materials in the interband region” [Appl. Phys. Lett. 69, 371 (1996)],” Appl. Phys. Lett. 69(14), 2137 (1996).
    [Crossref]

2019 (3)

A. E. Goodling, S. Nagelberg, B. Kaehr, C. H. Meredith, S. I. Cheon, A. P. Saunders, M. Kolle, and L. D. Zarzar, “Colouration by total internal reflection and interference at microscale concave interfaces,” Nature 566(7745), 523–527 (2019).
[Crossref]

B. Jose, R. K. Vijayaraghavan, L. Kent, S. O’Toole, J. O’Leary, and R. J. Forster, “Tunable metallic nanostructures using 3D printed nanosphere templates,” Electrochem. Commun. 98, 106–109 (2019).
[Crossref]

S. Dottermusch, D. Busko, M. Langenhorst, U. W. Paetzold, and B. S. Richards, “Exposure-dependent refractive index of nanoscribe IP-Dip photoresist layers,” Opt. Lett. 44(1), 29–32 (2019).
[Crossref]

2018 (4)

2017 (6)

I. Sakellari, X. Yin, M. L. Nesterov, K. Terzaki, A. Xomalis, and M. Farsari, “3D chiral plasmonic metamaterials fabricated by direct laser writing: The twisted omega particle,” Adv. Opt. Mater. 5(16), 1700200 (2017).
[Crossref]

Y. Li, H. Zhao, S.-F. Feng, J.-S. Ye, X.-K. Wang, W.-F. Sun, P. Han, and Y. Zhang, “New design model for high efficiency cylindrical diffractive microlenses,” Sci. Rep. 7(1), 16334 (2017).
[Crossref]

T. Gissibl, S. Wagner, J. Sykora, M. Schmid, and H. Giessen, “Refractive index measurements of photo-resists for three-dimensional direct laser writing,” Opt. Mater. Express 7(7), 2293–2298 (2017).
[Crossref]

D. B. Fullager, G. D. Boreman, and T. Hofmann, “Infrared dielectric response of Nanoscribe IP-Dip and IP-l monomers after polymerization from 250 cm$^{- 1}$−1 to 6000 cm$^{- 1}$−1,” Opt. Mater. Express 7(3), 888–894 (2017).
[Crossref]

I. Faniayeu and V. Mizeikis, “Realization of a helix-based perfect absorber for ir spectral range using the direct laser write technique,” Opt. Mater. Express 7(5), 1453–1462 (2017).
[Crossref]

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener,, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27(43), 1702425 (2017).
[Crossref]

2016 (5)

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

T. P. Xiao, O. S. Cifci, S. Bhargava, H. Chen, T. Gissibl, W. Zhou, H. Giessen, K. C. Toussaint, E. Yablonovitch, and P. V. Braun, “Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing,” ACS Photonics 3(5), 886–894 (2016).
[Crossref]

J. Moughames, S. Jradi, T. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6(1), 33627 (2016).
[Crossref]

V. Caligiuri, R. Dhama, K. Sreekanth, G. Strangi, and A. De Luca, “Dielectric singularity in hyperbolic metamaterials: the inversion point of coexisting anisotropies,” Sci. Rep. 6(1), 20002 (2016).
[Crossref]

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide,” Sci. Rep. 6(1), 21818 (2016).
[Crossref]

2015 (2)

B. Wang, Z. Xie, S. Feng, B. Zhang, and Y. Zhang, “Ultrahigh Q-factor and figure of merit fano metamaterial based on dark ring magnetic mode,” Opt. Commun. 335, 60–64 (2015).
[Crossref]

Ł. Zinkiewicz, J. Haberko, and P. Wasylczyk, “Highly asymmetric near infrared light transmission in an all-dielectric grating-on-mirror photonic structure,” Opt. Express 23(4), 4206–4211 (2015).
[Crossref]

2014 (2)

M. Kowalczyk, J. Haberko, and P. Wasylczyk, “Microstructured gradient-index antireflective coating fabricated on a fiber tip with direct laser writing,” Opt. Express 22(10), 12545–12550 (2014).
[Crossref]

M. Schumann, H. Bűckmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D-3D optical devices for integrated optics by direct laser writing,” Light Sci. Appl. 3, e175 (2014).
[Crossref]

2013 (3)

M. Nawrot, Ł. Zinkiewicz, B. Włodarczyk, and P. Wasylczyk, “Transmission phase gratings fabricated with direct laser writing as color filters in the visible,” Opt. Express 21(26), 31919–31924 (2013).
[Crossref]

X. Xiong, Z.-H. Xue, C. Meng, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, “Polarization-dependent perfect absorbers/reflectors based on a three-dimensional metamaterial,” Phys. Rev. B 88(11), 115105 (2013).
[Crossref]

X. Xiong, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25(29), 3994–4000 (2013).
[Crossref]

2004 (3)

R. Synowicki and T. E. Tiwald, “Optical properties of bulk c-ZrO$_2$2, c-MgO and a-As$_2$2S$_3$3 determined by variable angle spectroscopic ellipsometry,” Thin Solid Films 455-456, 248–255 (2004).
[Crossref]

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref]

M. Deubel, M. Wegener, A. Kaso, and S. John, “Direct laser writing and characterization of “slanted pore” photonic crystals,” Appl. Phys. Lett. 85(11), 1895–1897 (2004).
[Crossref]

1998 (1)

C. Herzinger, B. Johs, W. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

1996 (2)

G. Jellison and F. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
[Crossref]

J. G. E. Jellison and F. A. Modine, “Erratum: “Parameterization of the optical functions of amorphous materials in the interband region” [Appl. Phys. Lett. 69, 371 (1996)],” Appl. Phys. Lett. 69(14), 2137 (1996).
[Crossref]

Akil, S.

J. Moughames, S. Jradi, T. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6(1), 33627 (2016).
[Crossref]

Ali, S. J.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener,, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27(43), 1702425 (2017).
[Crossref]

Amendt, P. A.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener,, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27(43), 1702425 (2017).
[Crossref]

Angelbello, E.

Battie, Y.

J. Moughames, S. Jradi, T. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6(1), 33627 (2016).
[Crossref]

Baumann, T. F.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener,, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27(43), 1702425 (2017).
[Crossref]

Bayu Aji, L. B.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener,, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27(43), 1702425 (2017).
[Crossref]

Bhargava, S.

T. P. Xiao, O. S. Cifci, S. Bhargava, H. Chen, T. Gissibl, W. Zhou, H. Giessen, K. C. Toussaint, E. Yablonovitch, and P. V. Braun, “Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing,” ACS Photonics 3(5), 886–894 (2016).
[Crossref]

Biener, J.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener,, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27(43), 1702425 (2017).
[Crossref]

Billah, M.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Blaicher, M.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Boreman, G.

Boreman, G. D.

Braun, P. V.

T. P. Xiao, O. S. Cifci, S. Bhargava, H. Chen, T. Gissibl, W. Zhou, H. Giessen, K. C. Toussaint, E. Yablonovitch, and P. V. Braun, “Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing,” ACS Photonics 3(5), 886–894 (2016).
[Crossref]

Bruyant, A.

J. Moughames, S. Jradi, T. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6(1), 33627 (2016).
[Crossref]

Buckmann, H.

M. Schumann, H. Bűckmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D-3D optical devices for integrated optics by direct laser writing,” Light Sci. Appl. 3, e175 (2014).
[Crossref]

Busch, K.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref]

Busko, D.

Caer, C.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Caligiuri, V.

V. Caligiuri, R. Dhama, K. Sreekanth, G. Strangi, and A. De Luca, “Dielectric singularity in hyperbolic metamaterials: the inversion point of coexisting anisotropies,” Sci. Rep. 6(1), 20002 (2016).
[Crossref]

Chan, T.

J. Moughames, S. Jradi, T. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6(1), 33627 (2016).
[Crossref]

Chen, H.

T. P. Xiao, O. S. Cifci, S. Bhargava, H. Chen, T. Gissibl, W. Zhou, H. Giessen, K. C. Toussaint, E. Yablonovitch, and P. V. Braun, “Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing,” ACS Photonics 3(5), 886–894 (2016).
[Crossref]

Cheon, S. I.

A. E. Goodling, S. Nagelberg, B. Kaehr, C. H. Meredith, S. I. Cheon, A. P. Saunders, M. Kolle, and L. D. Zarzar, “Colouration by total internal reflection and interference at microscale concave interfaces,” Nature 566(7745), 523–527 (2019).
[Crossref]

Childers, D.

Cifci, O. S.

T. P. Xiao, O. S. Cifci, S. Bhargava, H. Chen, T. Gissibl, W. Zhou, H. Giessen, K. C. Toussaint, E. Yablonovitch, and P. V. Braun, “Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing,” ACS Photonics 3(5), 886–894 (2016).
[Crossref]

Cousin, J.

J. Moughames, S. Jradi, T. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6(1), 33627 (2016).
[Crossref]

Dangel, R.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

De Luca, A.

V. Caligiuri, R. Dhama, K. Sreekanth, G. Strangi, and A. De Luca, “Dielectric singularity in hyperbolic metamaterials: the inversion point of coexisting anisotropies,” Sci. Rep. 6(1), 20002 (2016).
[Crossref]

Deubel, M.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref]

M. Deubel, M. Wegener, A. Kaso, and S. John, “Direct laser writing and characterization of “slanted pore” photonic crystals,” Appl. Phys. Lett. 85(11), 1895–1897 (2004).
[Crossref]

Dhama, R.

V. Caligiuri, R. Dhama, K. Sreekanth, G. Strangi, and A. De Luca, “Dielectric singularity in hyperbolic metamaterials: the inversion point of coexisting anisotropies,” Sci. Rep. 6(1), 20002 (2016).
[Crossref]

Dietrich, P.-I.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Dottermusch, S.

Enoch, S.

J. Moughames, S. Jradi, T. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6(1), 33627 (2016).
[Crossref]

Faniayeu, I.

Farsari, M.

I. Sakellari, X. Yin, M. L. Nesterov, K. Terzaki, A. Xomalis, and M. Farsari, “3D chiral plasmonic metamaterials fabricated by direct laser writing: The twisted omega particle,” Adv. Opt. Mater. 5(16), 1700200 (2017).
[Crossref]

Feng, S.

B. Wang, Z. Xie, S. Feng, B. Zhang, and Y. Zhang, “Ultrahigh Q-factor and figure of merit fano metamaterial based on dark ring magnetic mode,” Opt. Commun. 335, 60–64 (2015).
[Crossref]

Feng, S.-F.

Y. Li, H. Zhao, S.-F. Feng, J.-S. Ye, X.-K. Wang, W.-F. Sun, P. Han, and Y. Zhang, “New design model for high efficiency cylindrical diffractive microlenses,” Sci. Rep. 7(1), 16334 (2017).
[Crossref]

Fesperman, R.

Forien, J.-B.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener,, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27(43), 1702425 (2017).
[Crossref]

Forster, R. J.

B. Jose, R. K. Vijayaraghavan, L. Kent, S. O’Toole, J. O’Leary, and R. J. Forster, “Tunable metallic nanostructures using 3D printed nanosphere templates,” Electrochem. Commun. 98, 106–109 (2019).
[Crossref]

Freude, W.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Froufe-Pérez, L. S.

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide,” Sci. Rep. 6(1), 21818 (2016).
[Crossref]

Fujiwara, H.

H. Fujiwara, Spectroscopic Ellipsometry Principles and Applications (John Wiley & Sons Inc., 2007).

Fullager, D.

Fullager, D. B.

Giessen, H.

M. Schmid, S. Thiele, A. Herkommer, and H. Giessen, “Three-dimensional direct laser written achromatic axicons and multi-component microlenses,” Opt. Lett. 43(23), 5837–5840 (2018).
[Crossref]

T. Gissibl, S. Wagner, J. Sykora, M. Schmid, and H. Giessen, “Refractive index measurements of photo-resists for three-dimensional direct laser writing,” Opt. Mater. Express 7(7), 2293–2298 (2017).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

T. P. Xiao, O. S. Cifci, S. Bhargava, H. Chen, T. Gissibl, W. Zhou, H. Giessen, K. C. Toussaint, E. Yablonovitch, and P. V. Braun, “Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing,” ACS Photonics 3(5), 886–894 (2016).
[Crossref]

Gissibl, T.

T. Gissibl, S. Wagner, J. Sykora, M. Schmid, and H. Giessen, “Refractive index measurements of photo-resists for three-dimensional direct laser writing,” Opt. Mater. Express 7(7), 2293–2298 (2017).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

T. P. Xiao, O. S. Cifci, S. Bhargava, H. Chen, T. Gissibl, W. Zhou, H. Giessen, K. C. Toussaint, E. Yablonovitch, and P. V. Braun, “Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing,” ACS Photonics 3(5), 886–894 (2016).
[Crossref]

Goodling, A. E.

A. E. Goodling, S. Nagelberg, B. Kaehr, C. H. Meredith, S. I. Cheon, A. P. Saunders, M. Kolle, and L. D. Zarzar, “Colouration by total internal reflection and interference at microscale concave interfaces,” Nature 566(7745), 523–527 (2019).
[Crossref]

Gruhler, N.

M. Schumann, H. Bűckmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D-3D optical devices for integrated optics by direct laser writing,” Light Sci. Appl. 3, e175 (2014).
[Crossref]

Guenneau, S.

J. Moughames, S. Jradi, T. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6(1), 33627 (2016).
[Crossref]

Haberko, J.

Han, P.

Y. Li, H. Zhao, S.-F. Feng, J.-S. Ye, X.-K. Wang, W.-F. Sun, P. Han, and Y. Zhang, “New design model for high efficiency cylindrical diffractive microlenses,” Sci. Rep. 7(1), 16334 (2017).
[Crossref]

Herkommer, A.

M. Schmid, S. Thiele, A. Herkommer, and H. Giessen, “Three-dimensional direct laser written achromatic axicons and multi-component microlenses,” Opt. Lett. 43(23), 5837–5840 (2018).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Herro, Z.

J. Moughames, S. Jradi, T. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6(1), 33627 (2016).
[Crossref]

Herzinger, C.

C. Herzinger, B. Johs, W. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

Hofmann, A.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Hofmann, T.

Hoose, T.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Hu, Y.-H.

X. Xiong, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25(29), 3994–4000 (2013).
[Crossref]

X. Xiong, Z.-H. Xue, C. Meng, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, “Polarization-dependent perfect absorbers/reflectors based on a three-dimensional metamaterial,” Phys. Rev. B 88(11), 115105 (2013).
[Crossref]

Jellison, G.

G. Jellison and F. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
[Crossref]

Jellison, J. G. E.

J. G. E. Jellison and F. A. Modine, “Erratum: “Parameterization of the optical functions of amorphous materials in the interband region” [Appl. Phys. Lett. 69, 371 (1996)],” Appl. Phys. Lett. 69(14), 2137 (1996).
[Crossref]

Jiang, S.-C.

X. Xiong, Z.-H. Xue, C. Meng, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, “Polarization-dependent perfect absorbers/reflectors based on a three-dimensional metamaterial,” Phys. Rev. B 88(11), 115105 (2013).
[Crossref]

X. Xiong, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25(29), 3994–4000 (2013).
[Crossref]

John, S.

M. Deubel, M. Wegener, A. Kaso, and S. John, “Direct laser writing and characterization of “slanted pore” photonic crystals,” Appl. Phys. Lett. 85(11), 1895–1897 (2004).
[Crossref]

Johs, B.

C. Herzinger, B. Johs, W. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

Joly, L.

J. Moughames, S. Jradi, T. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6(1), 33627 (2016).
[Crossref]

Jose, B.

B. Jose, R. K. Vijayaraghavan, L. Kent, S. O’Toole, J. O’Leary, and R. J. Forster, “Tunable metallic nanostructures using 3D printed nanosphere templates,” Electrochem. Commun. 98, 106–109 (2019).
[Crossref]

Jradi, S.

J. Moughames, S. Jradi, T. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6(1), 33627 (2016).
[Crossref]

Kaehr, B.

A. E. Goodling, S. Nagelberg, B. Kaehr, C. H. Meredith, S. I. Cheon, A. P. Saunders, M. Kolle, and L. D. Zarzar, “Colouration by total internal reflection and interference at microscale concave interfaces,” Nature 566(7745), 523–527 (2019).
[Crossref]

Kaso, A.

M. Deubel, M. Wegener, A. Kaso, and S. John, “Direct laser writing and characterization of “slanted pore” photonic crystals,” Appl. Phys. Lett. 85(11), 1895–1897 (2004).
[Crossref]

Kent, L.

B. Jose, R. K. Vijayaraghavan, L. Kent, S. O’Toole, J. O’Leary, and R. J. Forster, “Tunable metallic nanostructures using 3D printed nanosphere templates,” Electrochem. Commun. 98, 106–109 (2019).
[Crossref]

Kolle, M.

A. E. Goodling, S. Nagelberg, B. Kaehr, C. H. Meredith, S. I. Cheon, A. P. Saunders, M. Kolle, and L. D. Zarzar, “Colouration by total internal reflection and interference at microscale concave interfaces,” Nature 566(7745), 523–527 (2019).
[Crossref]

Koos, C.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Kowalczyk, M.

Langenhorst, M.

Li, Y.

Marichy, C.

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide,” Sci. Rep. 6(1), 21818 (2016).
[Crossref]

McGahan, W.

C. Herzinger, B. Johs, W. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

Meng, C.

X. Xiong, Z.-H. Xue, C. Meng, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, “Polarization-dependent perfect absorbers/reflectors based on a three-dimensional metamaterial,” Phys. Rev. B 88(11), 115105 (2013).
[Crossref]

Meredith, C. H.

A. E. Goodling, S. Nagelberg, B. Kaehr, C. H. Meredith, S. I. Cheon, A. P. Saunders, M. Kolle, and L. D. Zarzar, “Colouration by total internal reflection and interference at microscale concave interfaces,” Nature 566(7745), 523–527 (2019).
[Crossref]

Mizeikis, V.

Modine, F.

G. Jellison and F. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
[Crossref]

Modine, F. A.

J. G. E. Jellison and F. A. Modine, “Erratum: “Parameterization of the optical functions of amorphous materials in the interband region” [Appl. Phys. Lett. 69, 371 (1996)],” Appl. Phys. Lett. 69(14), 2137 (1996).
[Crossref]

Moehrle, M.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Moughames, J.

J. Moughames, S. Jradi, T. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6(1), 33627 (2016).
[Crossref]

Muller, N.

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide,” Sci. Rep. 6(1), 21818 (2016).
[Crossref]

Naciri, A. E.

J. Moughames, S. Jradi, T. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6(1), 33627 (2016).
[Crossref]

Nagelberg, S.

A. E. Goodling, S. Nagelberg, B. Kaehr, C. H. Meredith, S. I. Cheon, A. P. Saunders, M. Kolle, and L. D. Zarzar, “Colouration by total internal reflection and interference at microscale concave interfaces,” Nature 566(7745), 523–527 (2019).
[Crossref]

Nawrot, M.

Nesterov, M. L.

I. Sakellari, X. Yin, M. L. Nesterov, K. Terzaki, A. Xomalis, and M. Farsari, “3D chiral plasmonic metamaterials fabricated by direct laser writing: The twisted omega particle,” Adv. Opt. Mater. 5(16), 1700200 (2017).
[Crossref]

O’Leary, J.

B. Jose, R. K. Vijayaraghavan, L. Kent, S. O’Toole, J. O’Leary, and R. J. Forster, “Tunable metallic nanostructures using 3D printed nanosphere templates,” Electrochem. Commun. 98, 106–109 (2019).
[Crossref]

O’Toole, S.

B. Jose, R. K. Vijayaraghavan, L. Kent, S. O’Toole, J. O’Leary, and R. J. Forster, “Tunable metallic nanostructures using 3D printed nanosphere templates,” Electrochem. Commun. 98, 106–109 (2019).
[Crossref]

Oakdale, J. S.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener,, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27(43), 1702425 (2017).
[Crossref]

Offrein, B.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Paetzold, U. W.

Park, H. S.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener,, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27(43), 1702425 (2017).
[Crossref]

Park, S.

Paulson, W.

C. Herzinger, B. Johs, W. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

Peng, R.-W.

X. Xiong, Z.-H. Xue, C. Meng, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, “Polarization-dependent perfect absorbers/reflectors based on a three-dimensional metamaterial,” Phys. Rev. B 88(11), 115105 (2013).
[Crossref]

X. Xiong, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25(29), 3994–4000 (2013).
[Crossref]

Pereira, S.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref]

Pernice, W.

M. Schumann, H. Bűckmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D-3D optical devices for integrated optics by direct laser writing,” Light Sci. Appl. 3, e175 (2014).
[Crossref]

Prisbrey, S. T.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener,, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27(43), 1702425 (2017).
[Crossref]

Reuter, I.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Richards, B. S.

Sakellari, I.

I. Sakellari, X. Yin, M. L. Nesterov, K. Terzaki, A. Xomalis, and M. Farsari, “3D chiral plasmonic metamaterials fabricated by direct laser writing: The twisted omega particle,” Adv. Opt. Mater. 5(16), 1700200 (2017).
[Crossref]

Saunders, A. P.

A. E. Goodling, S. Nagelberg, B. Kaehr, C. H. Meredith, S. I. Cheon, A. P. Saunders, M. Kolle, and L. D. Zarzar, “Colouration by total internal reflection and interference at microscale concave interfaces,” Nature 566(7745), 523–527 (2019).
[Crossref]

Scheffold, F.

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide,” Sci. Rep. 6(1), 21818 (2016).
[Crossref]

Schmid, M.

Schumann, M.

M. Schumann, H. Bűckmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D-3D optical devices for integrated optics by direct laser writing,” Light Sci. Appl. 3, e175 (2014).
[Crossref]

Smith, R. F.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener,, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27(43), 1702425 (2017).
[Crossref]

Smith, W. L.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener,, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27(43), 1702425 (2017).
[Crossref]

Soukoulis, C. M.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref]

Sreekanth, K.

V. Caligiuri, R. Dhama, K. Sreekanth, G. Strangi, and A. De Luca, “Dielectric singularity in hyperbolic metamaterials: the inversion point of coexisting anisotropies,” Sci. Rep. 6(1), 20002 (2016).
[Crossref]

Strangi, G.

V. Caligiuri, R. Dhama, K. Sreekanth, G. Strangi, and A. De Luca, “Dielectric singularity in hyperbolic metamaterials: the inversion point of coexisting anisotropies,” Sci. Rep. 6(1), 20002 (2016).
[Crossref]

Sun, W.-F.

Y. Li, H. Zhao, S.-F. Feng, J.-S. Ye, X.-K. Wang, W.-F. Sun, P. Han, and Y. Zhang, “New design model for high efficiency cylindrical diffractive microlenses,” Sci. Rep. 7(1), 16334 (2017).
[Crossref]

Sykora, J.

Synowicki, R.

R. Synowicki and T. E. Tiwald, “Optical properties of bulk c-ZrO$_2$2, c-MgO and a-As$_2$2S$_3$3 determined by variable angle spectroscopic ellipsometry,” Thin Solid Films 455-456, 248–255 (2004).
[Crossref]

Terzaki, K.

I. Sakellari, X. Yin, M. L. Nesterov, K. Terzaki, A. Xomalis, and M. Farsari, “3D chiral plasmonic metamaterials fabricated by direct laser writing: The twisted omega particle,” Adv. Opt. Mater. 5(16), 1700200 (2017).
[Crossref]

Thiele, S.

M. Schmid, S. Thiele, A. Herkommer, and H. Giessen, “Three-dimensional direct laser written achromatic axicons and multi-component microlenses,” Opt. Lett. 43(23), 5837–5840 (2018).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Tiwald, T. E.

R. Synowicki and T. E. Tiwald, “Optical properties of bulk c-ZrO$_2$2, c-MgO and a-As$_2$2S$_3$3 determined by variable angle spectroscopic ellipsometry,” Thin Solid Films 455-456, 248–255 (2004).
[Crossref]

Toussaint, K. C.

T. P. Xiao, O. S. Cifci, S. Bhargava, H. Chen, T. Gissibl, W. Zhou, H. Giessen, K. C. Toussaint, E. Yablonovitch, and P. V. Braun, “Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing,” ACS Photonics 3(5), 886–894 (2016).
[Crossref]

Troppenz, U.

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

van Buuren, A. W.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener,, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27(43), 1702425 (2017).
[Crossref]

Vijayaraghavan, R. K.

B. Jose, R. K. Vijayaraghavan, L. Kent, S. O’Toole, J. O’Leary, and R. J. Forster, “Tunable metallic nanostructures using 3D printed nanosphere templates,” Electrochem. Commun. 98, 106–109 (2019).
[Crossref]

Von Freymann, G.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref]

Wagner, S.

Wang, B.

B. Wang, Z. Xie, S. Feng, B. Zhang, and Y. Zhang, “Ultrahigh Q-factor and figure of merit fano metamaterial based on dark ring magnetic mode,” Opt. Commun. 335, 60–64 (2015).
[Crossref]

Wang, M.

X. Xiong, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25(29), 3994–4000 (2013).
[Crossref]

X. Xiong, Z.-H. Xue, C. Meng, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, “Polarization-dependent perfect absorbers/reflectors based on a three-dimensional metamaterial,” Phys. Rev. B 88(11), 115105 (2013).
[Crossref]

Wang, X.-K.

Y. Li, H. Zhao, S.-F. Feng, J.-S. Ye, X.-K. Wang, W.-F. Sun, P. Han, and Y. Zhang, “New design model for high efficiency cylindrical diffractive microlenses,” Sci. Rep. 7(1), 16334 (2017).
[Crossref]

Wasylczyk, P.

Wegener, M.

M. Schumann, H. Bűckmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D-3D optical devices for integrated optics by direct laser writing,” Light Sci. Appl. 3, e175 (2014).
[Crossref]

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref]

M. Deubel, M. Wegener, A. Kaso, and S. John, “Direct laser writing and characterization of “slanted pore” photonic crystals,” Appl. Phys. Lett. 85(11), 1895–1897 (2004).
[Crossref]

Willey, T. M.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener,, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27(43), 1702425 (2017).
[Crossref]

Wlodarczyk, B.

Woollam, J. A.

C. Herzinger, B. Johs, W. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

Worthington, M. A.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener,, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27(43), 1702425 (2017).
[Crossref]

Xiao, T. P.

T. P. Xiao, O. S. Cifci, S. Bhargava, H. Chen, T. Gissibl, W. Zhou, H. Giessen, K. C. Toussaint, E. Yablonovitch, and P. V. Braun, “Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing,” ACS Photonics 3(5), 886–894 (2016).
[Crossref]

Xie, Z.

B. Wang, Z. Xie, S. Feng, B. Zhang, and Y. Zhang, “Ultrahigh Q-factor and figure of merit fano metamaterial based on dark ring magnetic mode,” Opt. Commun. 335, 60–64 (2015).
[Crossref]

Xiong, X.

X. Xiong, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25(29), 3994–4000 (2013).
[Crossref]

X. Xiong, Z.-H. Xue, C. Meng, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, “Polarization-dependent perfect absorbers/reflectors based on a three-dimensional metamaterial,” Phys. Rev. B 88(11), 115105 (2013).
[Crossref]

Xomalis, A.

I. Sakellari, X. Yin, M. L. Nesterov, K. Terzaki, A. Xomalis, and M. Farsari, “3D chiral plasmonic metamaterials fabricated by direct laser writing: The twisted omega particle,” Adv. Opt. Mater. 5(16), 1700200 (2017).
[Crossref]

Xue, Z.-H.

X. Xiong, Z.-H. Xue, C. Meng, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, “Polarization-dependent perfect absorbers/reflectors based on a three-dimensional metamaterial,” Phys. Rev. B 88(11), 115105 (2013).
[Crossref]

Yablonovitch, E.

T. P. Xiao, O. S. Cifci, S. Bhargava, H. Chen, T. Gissibl, W. Zhou, H. Giessen, K. C. Toussaint, E. Yablonovitch, and P. V. Braun, “Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing,” ACS Photonics 3(5), 886–894 (2016).
[Crossref]

Ye, J.

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener,, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27(43), 1702425 (2017).
[Crossref]

Ye, J.-S.

Y. Li, H. Zhao, S.-F. Feng, J.-S. Ye, X.-K. Wang, W.-F. Sun, P. Han, and Y. Zhang, “New design model for high efficiency cylindrical diffractive microlenses,” Sci. Rep. 7(1), 16334 (2017).
[Crossref]

Yin, X.

I. Sakellari, X. Yin, M. L. Nesterov, K. Terzaki, A. Xomalis, and M. Farsari, “3D chiral plasmonic metamaterials fabricated by direct laser writing: The twisted omega particle,” Adv. Opt. Mater. 5(16), 1700200 (2017).
[Crossref]

Zarzar, L. D.

A. E. Goodling, S. Nagelberg, B. Kaehr, C. H. Meredith, S. I. Cheon, A. P. Saunders, M. Kolle, and L. D. Zarzar, “Colouration by total internal reflection and interference at microscale concave interfaces,” Nature 566(7745), 523–527 (2019).
[Crossref]

Zhang, B.

B. Wang, Z. Xie, S. Feng, B. Zhang, and Y. Zhang, “Ultrahigh Q-factor and figure of merit fano metamaterial based on dark ring magnetic mode,” Opt. Commun. 335, 60–64 (2015).
[Crossref]

Zhang, Y.

Y. Li, H. Zhao, S.-F. Feng, J.-S. Ye, X.-K. Wang, W.-F. Sun, P. Han, and Y. Zhang, “New design model for high efficiency cylindrical diffractive microlenses,” Sci. Rep. 7(1), 16334 (2017).
[Crossref]

B. Wang, Z. Xie, S. Feng, B. Zhang, and Y. Zhang, “Ultrahigh Q-factor and figure of merit fano metamaterial based on dark ring magnetic mode,” Opt. Commun. 335, 60–64 (2015).
[Crossref]

Zhao, H.

Y. Li, H. Zhao, S.-F. Feng, J.-S. Ye, X.-K. Wang, W.-F. Sun, P. Han, and Y. Zhang, “New design model for high efficiency cylindrical diffractive microlenses,” Sci. Rep. 7(1), 16334 (2017).
[Crossref]

Zhou, W.

T. P. Xiao, O. S. Cifci, S. Bhargava, H. Chen, T. Gissibl, W. Zhou, H. Giessen, K. C. Toussaint, E. Yablonovitch, and P. V. Braun, “Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing,” ACS Photonics 3(5), 886–894 (2016).
[Crossref]

Zinkiewicz, L.

ACS Photonics (1)

T. P. Xiao, O. S. Cifci, S. Bhargava, H. Chen, T. Gissibl, W. Zhou, H. Giessen, K. C. Toussaint, E. Yablonovitch, and P. V. Braun, “Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing,” ACS Photonics 3(5), 886–894 (2016).
[Crossref]

Adv. Funct. Mater. (1)

J. S. Oakdale, R. F. Smith, J.-B. Forien, W. L. Smith, S. J. Ali, L. B. Bayu Aji, T. M. Willey, J. Ye, A. W. van Buuren, M. A. Worthington, S. T. Prisbrey, H. S. Park, P. A. Amendt, T. F. Baumann, and J. Biener,, “Direct laser writing of low-density interdigitated foams for plasma drive shaping,” Adv. Funct. Mater. 27(43), 1702425 (2017).
[Crossref]

Adv. Mater. (1)

X. Xiong, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25(29), 3994–4000 (2013).
[Crossref]

Adv. Opt. Mater. (1)

I. Sakellari, X. Yin, M. L. Nesterov, K. Terzaki, A. Xomalis, and M. Farsari, “3D chiral plasmonic metamaterials fabricated by direct laser writing: The twisted omega particle,” Adv. Opt. Mater. 5(16), 1700200 (2017).
[Crossref]

Appl. Phys. Lett. (3)

M. Deubel, M. Wegener, A. Kaso, and S. John, “Direct laser writing and characterization of “slanted pore” photonic crystals,” Appl. Phys. Lett. 85(11), 1895–1897 (2004).
[Crossref]

G. Jellison and F. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
[Crossref]

J. G. E. Jellison and F. A. Modine, “Erratum: “Parameterization of the optical functions of amorphous materials in the interband region” [Appl. Phys. Lett. 69, 371 (1996)],” Appl. Phys. Lett. 69(14), 2137 (1996).
[Crossref]

Electrochem. Commun. (1)

B. Jose, R. K. Vijayaraghavan, L. Kent, S. O’Toole, J. O’Leary, and R. J. Forster, “Tunable metallic nanostructures using 3D printed nanosphere templates,” Electrochem. Commun. 98, 106–109 (2019).
[Crossref]

J. Appl. Phys. (1)

C. Herzinger, B. Johs, W. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

Light Sci. Appl. (1)

M. Schumann, H. Bűckmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D-3D optical devices for integrated optics by direct laser writing,” Light Sci. Appl. 3, e175 (2014).
[Crossref]

Nat. Mater. (1)

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref]

Nat. Photonics (2)

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Nature (1)

A. E. Goodling, S. Nagelberg, B. Kaehr, C. H. Meredith, S. I. Cheon, A. P. Saunders, M. Kolle, and L. D. Zarzar, “Colouration by total internal reflection and interference at microscale concave interfaces,” Nature 566(7745), 523–527 (2019).
[Crossref]

Opt. Commun. (1)

B. Wang, Z. Xie, S. Feng, B. Zhang, and Y. Zhang, “Ultrahigh Q-factor and figure of merit fano metamaterial based on dark ring magnetic mode,” Opt. Commun. 335, 60–64 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Opt. Mater. Express (3)

Phys. Rev. B (1)

X. Xiong, Z.-H. Xue, C. Meng, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, “Polarization-dependent perfect absorbers/reflectors based on a three-dimensional metamaterial,” Phys. Rev. B 88(11), 115105 (2013).
[Crossref]

Sci. Rep. (4)

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide,” Sci. Rep. 6(1), 21818 (2016).
[Crossref]

J. Moughames, S. Jradi, T. Chan, S. Akil, Y. Battie, A. E. Naciri, Z. Herro, S. Guenneau, S. Enoch, L. Joly, J. Cousin, and A. Bruyant, “Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials,” Sci. Rep. 6(1), 33627 (2016).
[Crossref]

V. Caligiuri, R. Dhama, K. Sreekanth, G. Strangi, and A. De Luca, “Dielectric singularity in hyperbolic metamaterials: the inversion point of coexisting anisotropies,” Sci. Rep. 6(1), 20002 (2016).
[Crossref]

Y. Li, H. Zhao, S.-F. Feng, J.-S. Ye, X.-K. Wang, W.-F. Sun, P. Han, and Y. Zhang, “New design model for high efficiency cylindrical diffractive microlenses,” Sci. Rep. 7(1), 16334 (2017).
[Crossref]

Thin Solid Films (1)

R. Synowicki and T. E. Tiwald, “Optical properties of bulk c-ZrO$_2$2, c-MgO and a-As$_2$2S$_3$3 determined by variable angle spectroscopic ellipsometry,” Thin Solid Films 455-456, 248–255 (2004).
[Crossref]

Other (2)

The measured experimental values for all off-diagonal Mueller matrix elements are 0$\pm$±0.01, as would be expected for an isotropic sample response. Therefore, only the non-trivial on-diagonal Mueller matrix elements are reported here for brevity.

H. Fujiwara, Spectroscopic Ellipsometry Principles and Applications (John Wiley & Sons Inc., 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Experimental (green dashed lines) and best-model calculated (red solid lines) Mueller matrix spectra of the two-photon polymerized IP-Dip sample with a nominal thickness of 2100 nm for the spectral range from 210 nm to 1500 nm. The angle of incidence was $\Phi _a=65^{\circ }$. The data for the sample with a nominal thickness of 3500 nm is omitted here for clarity, but shows also excellent agreement between experimental and best-model calculated line shapes.
Fig. 2.
Fig. 2. Experimental (green dashed lines) and best-model calculated (red solid lines) Mueller matrix spectra of the two-photon polymerized IP-L sample with a nominal thickness of 2900 nm for the spectral range from 210 nm to 1500 nm. The angle of incidence was $\Phi _a=65^{\circ }$. The data for the sample with a nominal thickness of 4300 nm is omitted here for clarity, but shows also an excellent agreement between experimental and best-model calculated line shapes.
Fig. 3.
Fig. 3. Experimental (green dashed lines) and best-model calculated (red solid lines) Mueller matrix spectra of the two-photon polymerized IP-S sample with a nominal thickness of 3500 nm for the spectral range from 210 nm to 1500 nm. The angle of incidence was $\Phi _a=65^{\circ }$. As for the IP-Dip and IP-L data shown in Figs. 1 and 2, respectively, the data for the sample with a nominal thickness of 4500 nm is omitted here for clarity, but shows also an excellent agreement between the experimental and best-model calculated line shapes.
Fig. 4.
Fig. 4. The best-fit model refractive index $n$ (red solid line) and extinction coefficient $\kappa$ (green dashed line) for two-photon polymerized IP-Dip in the spectral range from 210 nm to 1500 nm. The spectrum below 400 nm is dominated by absorption bands, which are described by two oscillators with Tauc-Lorentz and Gaussian broadening. The best-model parameters are summarized in Table 1. The refractive index of two-photon polymerized (black dashed line) and single-photon polymerized (black dotted line) IP-Dip reported by S. Dottermusch et al. and T. Gissibl et al., respectively, are reproduced for comparison [22,24].
Fig. 5.
Fig. 5. Same as Fig. 4 but for IP-L. IP-L is characterized by a sharp absorption onset which can be described by a single Lorentz oscillator. The best-model parameters are summarized in Table 1. The refractive index of single-photon polymerized IP-L (black dotted line) reported by T. Gissibl et al. is shown for comparison [22].
Fig. 6.
Fig. 6. Same as Fig. 4 but for IP-S, which can be described using two oscillators with Lorentz and Gaussian broadening. The best-model parameters are summarized in Table 1. In addition to the sharp absorption onset below 300 nm, a small absorption band at 358 nm can be observed. The refractive index of single-photon, UV-cured IP-S (black dotted line) reported by T. Gissibl et al. is shown for comparison [22].
Fig. 7.
Fig. 7. The best-fit model refractive indices $n$ and extinction coefficients $\kappa$ for the two-photon polymerized IP-Dip, IP-L, and IP-S are reproduced in panel (a) and (b), respectively, for a direct comparison.

Tables (1)

Tables Icon

Table 1. All Polymers best-model oscillator parameters, with errors representing the 90% confidence limits of the model parameters

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε ( E ) = ε 1 ( E ) + i ε 2 ( E )   , = ε + A E 0 2 E 2 + l Gau ( A , E 0 , Γ , E ) + m Lor ( A , E 0 , Γ , E ) + n TL ( A , E 0 , Γ , E g , E ) .
ε 2 Gau ( E ) = A e ( E E 0 f Γ ) 2 A e ( E + E 0 f Γ ) 2 ,
ε 2 Lor ( E ) = A E 0 Γ E 0 2 E 2 i Γ E   ,
ε 2 TL ( E ) = { A E 0 Γ ( E E g ) 2 ( E 2 E 0 2 ) 2 + Γ 2 E 2 1 E E > E g 0 E E g   ,