Abstract

In this paper, we present a manual for the preparation of fully functional woodpile structures with partial photonic band gap (PBG) for applications in the visible (VIS) spectral range using an attractive polymer IP-Dip that is novel in photonic applications. In an experimental preparation of polymer-based woodpile structures using the IP-Dip polymer with partial PBG in VIS spectral range, a single-step laser lithography technique based on direct laser writing (DLW) was used. The woodpile structure preparation is based on a complex theoretical analysis of dispersion diagrams for the woodpile structure with fcc symmetry and IP-Dip polymer. We found partial PBGs in the Γ - X direction and dependence of PBG on the filling factor. Using a conventional DLW lithography system, we prepared a series of low-periodic woodpile structures with PBG in NIR and VIS spectral range attacking the yellow-green spectral range, which can be easily applied on different photonic components.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
UV to NIR optical properties of IP-Dip, IP-L, and IP-S after two-photon polymerization determined by spectroscopic ellipsometry

Y. Li, S. Park, M. McLamb, M. Lata, S. Schöche, D. Childers, I. D. Aggarwal, M. K. Poutous, G. Boreman, and T. Hofmann
Opt. Mater. Express 9(11) 4318-4328 (2019)

Three-dimensional woodpile photonic crystal templates for the infrared spectral range

Vygantas Mizeikis, Kock Khuen Seet, Saulius Juodkazis, and Hiroaki Misawa
Opt. Lett. 29(17) 2061-2063 (2004)

Evidence of near-infrared partial photonic bandgap in polymeric rod-connected diamond structures

Lifeng Chen, Mike P. C. Taverne, Xu Zheng, Jia-De Lin, Ruth Oulton, Martin Lopez-Garcia, Ying-Lung D. Ho, and John G. Rarity
Opt. Express 23(20) 26565-26575 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B 10(2), 283–295 (1993).
    [Crossref]
  2. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D Meade, Photonic Crystals: Molding the Flow of Light (Academic, 2008).
  3. R Kashyap, Fiber Bragg Gratings (Academic, 2009)
  4. J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, and G. Brambilla, “Mirofiber-Based Bragg Gratings for Sensing Applications: A Review,” Sensors 12(7), 8861–8876 (2012).
    [Crossref]
  5. M. Burla, L. R. Cortés, M. Li, X. Wang, L. Chrostowski, and J. Azańa, “Integrated waveguide Bragg gratings for microwave photonics signal processing,” Opt. Express 21(21), 25120–25147 (2013).
    [Crossref]
  6. Y. Sourani, A. Bekker, B. Levit, and B. Fischer, “Tuning, selecting and switching wavelengths in lasers with chirped and sampled fiber Bragg gratings by high-order mode-locking,” Opt. Commun. 431, 151–157 (2019).
    [Crossref]
  7. X. Jin, Z. Ouyang, Q. Wang, M. Lin, G. Wen, and J. Wang, “Highly Compact Circulators in Square-Lattice Photonic Crystal Waveguides,” PLoS One 9(11), e113508 (2014).
    [Crossref]
  8. G. Pitruzzello and T. F. Krauss, “Photonic crystal resonances for sensing and imaging,” J. Opt. 20(7), 073004 (2018).
    [Crossref]
  9. P. V. Braun, S. A. Rinne, and F. García-Santamaría, “Introducing Defects in 3D Photonic Crystals: State of the Art,” Adv. Mater. 18(20), 2665–2678 (2006).
    [Crossref]
  10. S. Dhuey, A. Testini, A. Koshelev, N. Borys, J. R. Piper, M. Melli, P. J. Schuck, C. Peroz, and S. Cabrini, “Three-dimensional woodpile photonic crystals for visible light applications,” J. Phys. Commun. 1(1), 015004 (2017).
    [Crossref]
  11. X. Zheng, M. P. C. Taverne, Y.-L. D. Ho, and J. G. Rarity, “Cavity Design in Woodpile Based 3D Photonic Crystals,” Appl. Sci. 8(7), 1087 (2018).
    [Crossref]
  12. S. Takahashi, T. Tajiri, K. Watanabe, Y. Ota, S. Iwamoto, and Y. Arakawa, “High-Q nanocavities in semiconductor-based three-dimensional photonic crystals,” Electron. Lett. 54(5), 305–307 (2018).
    [Crossref]
  13. L. Wang, S. Zhang, Q. Wang, J. Chen, W. Jiang, and R. T. Chen, “Fabrication of three-dimensional (3D) woodpile structure photonic crystal with layer by layer e-beam lithography,” Appl. Phys. A 95(2), 329–334 (2009).
    [Crossref]
  14. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
    [Crossref]
  15. S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282(5387), 274–276 (1998).
    [Crossref]
  16. M. V. Rybin, I. I. Shishkin, K. B. Samusev, P. A. Belov, Y. S. Kivshar, R. V. Kiyan, B. N. Chichkov, and M. F. Limonov, “Band Structure of Photonic Crystals Fabricated by Two-Photon Polymerization,” Crystals 5(1), 61–73 (2015).
    [Crossref]
  17. C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templated with titanium dioxide,” Sci. Rep. 6(1), 21818 (2016).
    [Crossref]
  18. B. Jia, J. Li, S. Wu, and M. Gu, “Near-infrared high refractive-index three-dimensional inverse woodpile photonic crystals generated by a sol-gel process,” J. Appl. Phys. 102(9), 096102 (2007).
    [Crossref]
  19. J. Li, B. Jia, G. Zhou, and M. Gu, “Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material,” Opt. Express 14(22), 10740–10745 (2006).
    [Crossref]
  20. J. Li, B. Jia, and M. Gu, “Engineering stop gaps of inorganic-organic polymeric 3D woodpile photonic crystals with post-thermal treatment,” Opt. Express 16(24), 20073–20080 (2008).
    [Crossref]
  21. M. P. C. Taverne, Y.-L. D. Ho, and J. G. Rarity, “Investigation of defect cavities formed in three-dimensional woodpile photonic crystals,” J. Opt. Soc. Am. B 32(4), 639–648 (2015).
    [Crossref]
  22. C. McGuinness, R. L. Byer, E. Colby, B. M. Cowan, R. J. England, R. J. Noble, T. Plettner, C. M. Sears, R. Siemann, J. Spencer, and D. Waltz, “Woodpile Structure Fabrication for Photonic Crystal Laser Acceleration,” AIP Conf. Proc. 1086, 544–549 (2009).
    [Crossref]
  23. I. Staude, C. McGuiness, A. Frölich, R. L. Byer, E. Colby, and M. Wagener, “Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures,” Opt. Express 20(5), 5607–5612 (2012).
    [Crossref]
  24. K. Gondaira, K. Ishizaki, K. Kitano, T. Asano, and S. Noda, “Control of radiation angle by introducing symmetric end structure to oblique in three-dimensional photonic crystal,” Opt. Express 24(12), 13518–13526 (2016).
    [Crossref]
  25. S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of Light Emission by 3D Photonic Crystals,” Science 305(5681), 227–229 (2004).
    [Crossref]
  26. J. Serbin and M. Gu, “Superprism phenomena in waveguide-coupled woodpile structures fabricated by two-photon polymerization,” Opt. Express 14(8), 3563–3568 (2006).
    [Crossref]
  27. J. Chen, W. Jiang, X. Chen, L. Wang, S. Zhang, and R. T. Chen, “3D holographic Polymer Photonic Crystal for Superprism Application,” Proc. SPIE 6480, 648013 (2007).
    [Crossref]
  28. G. Subramania, Y.-L. Lee, I. Brener, T. S. Luk, and P. G. Clem, “Nano-lithographically fabricated titanium dioxide based visible frequency three dimensional gap photonic crystal,” Opt. Express 15(20), 13049–13057 (2007).
    [Crossref]
  29. J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express 12(21), 5221–5228 (2004).
    [Crossref]
  30. M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12(12), 124001 (2010).
    [Crossref]
  31. L.-J. Chen, X.-Z. Dong, Y.-Y. Zhao, Y.-L. Zhang, J. Liu, M.-L. Zheng, X.-M. Duan, and Z.-S. Zhao, “Fabrication and optical transmission characteristics of polymers woodpile photonic crystal structures with different crystal planes,” Proc. SPIE 9671, 967127 (2015).
    [Crossref]
  32. J. Fischer and M. Wagener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy,” Opt. Mater. Express 1(4), 614–624 (2011).
    [Crossref]
  33. M. Goraus, D. Pudis, P. Urbancova, I. Martincek, and P. Gaso, “Surface-relief Bragg grating waveguides based on IP-Dip polymer for photonic applications,” Appl. Surf. Sci. 461, 113–116 (2018).
    [Crossref]
  34. M. Schmid, S. Thiele, A. Herkommer, and H. Giessen, “Three-dimensional direct laser written achromatic axicons and multi-component microlenses,” Opt. Lett. 43(23), 5837–5840 (2018).
    [Crossref]
  35. M. Kavaldzhiev, J. E. Perez, Y. Ivanov, A. Bertoncini, C. Liberale, and J. Kosel, “Biocompatible 3D printed magnetic micro needles,” Biomed. Phys. Eng. Express 3(2), 025005 (2017).
    [Crossref]
  36. Z.-L. Wu, Y.-N. Qi, X.-J. Yin, X. Yang, C.-M. Chen, J.-Y. Yu, J.-C. Yu, Y.-M. Lin, F. Hui, P.-L. Liu, Y.-X. Liang, Y. Zhang, and M.-S. Zhao, “Polymer-based device fabrication and applications using direct laser writing technology,” Polymers (Basel, Switz.) 11(3), 553 (2019).
    [Crossref]
  37. T. Gissibl, S. Wagner, J. Sykora, M. Schmid, and H. Giessen, “Refractive index measurements of photoresists for three-dimensional direct laser writing,” Opt. Mater. Express 7(7), 2293–2298 (2017).
    [Crossref]
  38. D. B. Fullager, G. D. Boreman, and T. Hofmann, “Infrared dielectric response of nanoscribe IP-dip and IP-L monomers after polymerization from 250 cm−1 to 6000 cm−1,” Opt. Mater. Express 7(3), 888–894 (2017).
    [Crossref]
  39. K. B. Samusev, M. V. Rybin, A. K. Samusev, and M. F. Limonov, “Optical Properties of Woodpile Photonic Crystals Produced by Three-Dimensional Laser Lithography,” Phys. Solid State 57(12), 2494–2501 (2015).
    [Crossref]
  40. G. Seniutinas, A. Weber, C. Padeste, I. Sakellari, M. Farsari, and C. David, “Beyond 100 nm Resolution in 3D Laser Lithography: Post Processing Solutions,” Microelectron. Eng. 191, 25–31 (2018).
    [Crossref]
  41. S. Dottermusch, D. Busko, M. Langenhorst, U. W. Paetzold, and B. S. Richards, “Exposure-dependent refractive index of Nanoscribe IP-Dip photoresist layers,” Opt. Lett. 44(1), 29–32 (2019).
    [Crossref]
  42. J. Purtov, A. Verch, P. Rogin, and R. Hensel, “Improved development procedure to enhance the stability of microstructures created by two-photon polymerization,” Microelectron. Eng. 194, 45–50 (2018).
    [Crossref]

2019 (3)

Y. Sourani, A. Bekker, B. Levit, and B. Fischer, “Tuning, selecting and switching wavelengths in lasers with chirped and sampled fiber Bragg gratings by high-order mode-locking,” Opt. Commun. 431, 151–157 (2019).
[Crossref]

Z.-L. Wu, Y.-N. Qi, X.-J. Yin, X. Yang, C.-M. Chen, J.-Y. Yu, J.-C. Yu, Y.-M. Lin, F. Hui, P.-L. Liu, Y.-X. Liang, Y. Zhang, and M.-S. Zhao, “Polymer-based device fabrication and applications using direct laser writing technology,” Polymers (Basel, Switz.) 11(3), 553 (2019).
[Crossref]

S. Dottermusch, D. Busko, M. Langenhorst, U. W. Paetzold, and B. S. Richards, “Exposure-dependent refractive index of Nanoscribe IP-Dip photoresist layers,” Opt. Lett. 44(1), 29–32 (2019).
[Crossref]

2018 (7)

J. Purtov, A. Verch, P. Rogin, and R. Hensel, “Improved development procedure to enhance the stability of microstructures created by two-photon polymerization,” Microelectron. Eng. 194, 45–50 (2018).
[Crossref]

M. Goraus, D. Pudis, P. Urbancova, I. Martincek, and P. Gaso, “Surface-relief Bragg grating waveguides based on IP-Dip polymer for photonic applications,” Appl. Surf. Sci. 461, 113–116 (2018).
[Crossref]

M. Schmid, S. Thiele, A. Herkommer, and H. Giessen, “Three-dimensional direct laser written achromatic axicons and multi-component microlenses,” Opt. Lett. 43(23), 5837–5840 (2018).
[Crossref]

G. Seniutinas, A. Weber, C. Padeste, I. Sakellari, M. Farsari, and C. David, “Beyond 100 nm Resolution in 3D Laser Lithography: Post Processing Solutions,” Microelectron. Eng. 191, 25–31 (2018).
[Crossref]

G. Pitruzzello and T. F. Krauss, “Photonic crystal resonances for sensing and imaging,” J. Opt. 20(7), 073004 (2018).
[Crossref]

X. Zheng, M. P. C. Taverne, Y.-L. D. Ho, and J. G. Rarity, “Cavity Design in Woodpile Based 3D Photonic Crystals,” Appl. Sci. 8(7), 1087 (2018).
[Crossref]

S. Takahashi, T. Tajiri, K. Watanabe, Y. Ota, S. Iwamoto, and Y. Arakawa, “High-Q nanocavities in semiconductor-based three-dimensional photonic crystals,” Electron. Lett. 54(5), 305–307 (2018).
[Crossref]

2017 (4)

S. Dhuey, A. Testini, A. Koshelev, N. Borys, J. R. Piper, M. Melli, P. J. Schuck, C. Peroz, and S. Cabrini, “Three-dimensional woodpile photonic crystals for visible light applications,” J. Phys. Commun. 1(1), 015004 (2017).
[Crossref]

T. Gissibl, S. Wagner, J. Sykora, M. Schmid, and H. Giessen, “Refractive index measurements of photoresists for three-dimensional direct laser writing,” Opt. Mater. Express 7(7), 2293–2298 (2017).
[Crossref]

D. B. Fullager, G. D. Boreman, and T. Hofmann, “Infrared dielectric response of nanoscribe IP-dip and IP-L monomers after polymerization from 250 cm−1 to 6000 cm−1,” Opt. Mater. Express 7(3), 888–894 (2017).
[Crossref]

M. Kavaldzhiev, J. E. Perez, Y. Ivanov, A. Bertoncini, C. Liberale, and J. Kosel, “Biocompatible 3D printed magnetic micro needles,” Biomed. Phys. Eng. Express 3(2), 025005 (2017).
[Crossref]

2016 (2)

K. Gondaira, K. Ishizaki, K. Kitano, T. Asano, and S. Noda, “Control of radiation angle by introducing symmetric end structure to oblique in three-dimensional photonic crystal,” Opt. Express 24(12), 13518–13526 (2016).
[Crossref]

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templated with titanium dioxide,” Sci. Rep. 6(1), 21818 (2016).
[Crossref]

2015 (4)

M. V. Rybin, I. I. Shishkin, K. B. Samusev, P. A. Belov, Y. S. Kivshar, R. V. Kiyan, B. N. Chichkov, and M. F. Limonov, “Band Structure of Photonic Crystals Fabricated by Two-Photon Polymerization,” Crystals 5(1), 61–73 (2015).
[Crossref]

M. P. C. Taverne, Y.-L. D. Ho, and J. G. Rarity, “Investigation of defect cavities formed in three-dimensional woodpile photonic crystals,” J. Opt. Soc. Am. B 32(4), 639–648 (2015).
[Crossref]

K. B. Samusev, M. V. Rybin, A. K. Samusev, and M. F. Limonov, “Optical Properties of Woodpile Photonic Crystals Produced by Three-Dimensional Laser Lithography,” Phys. Solid State 57(12), 2494–2501 (2015).
[Crossref]

L.-J. Chen, X.-Z. Dong, Y.-Y. Zhao, Y.-L. Zhang, J. Liu, M.-L. Zheng, X.-M. Duan, and Z.-S. Zhao, “Fabrication and optical transmission characteristics of polymers woodpile photonic crystal structures with different crystal planes,” Proc. SPIE 9671, 967127 (2015).
[Crossref]

2014 (1)

X. Jin, Z. Ouyang, Q. Wang, M. Lin, G. Wen, and J. Wang, “Highly Compact Circulators in Square-Lattice Photonic Crystal Waveguides,” PLoS One 9(11), e113508 (2014).
[Crossref]

2013 (1)

2012 (2)

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, and G. Brambilla, “Mirofiber-Based Bragg Gratings for Sensing Applications: A Review,” Sensors 12(7), 8861–8876 (2012).
[Crossref]

I. Staude, C. McGuiness, A. Frölich, R. L. Byer, E. Colby, and M. Wagener, “Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures,” Opt. Express 20(5), 5607–5612 (2012).
[Crossref]

2011 (1)

2010 (1)

M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12(12), 124001 (2010).
[Crossref]

2009 (2)

C. McGuinness, R. L. Byer, E. Colby, B. M. Cowan, R. J. England, R. J. Noble, T. Plettner, C. M. Sears, R. Siemann, J. Spencer, and D. Waltz, “Woodpile Structure Fabrication for Photonic Crystal Laser Acceleration,” AIP Conf. Proc. 1086, 544–549 (2009).
[Crossref]

L. Wang, S. Zhang, Q. Wang, J. Chen, W. Jiang, and R. T. Chen, “Fabrication of three-dimensional (3D) woodpile structure photonic crystal with layer by layer e-beam lithography,” Appl. Phys. A 95(2), 329–334 (2009).
[Crossref]

2008 (1)

2007 (3)

J. Chen, W. Jiang, X. Chen, L. Wang, S. Zhang, and R. T. Chen, “3D holographic Polymer Photonic Crystal for Superprism Application,” Proc. SPIE 6480, 648013 (2007).
[Crossref]

G. Subramania, Y.-L. Lee, I. Brener, T. S. Luk, and P. G. Clem, “Nano-lithographically fabricated titanium dioxide based visible frequency three dimensional gap photonic crystal,” Opt. Express 15(20), 13049–13057 (2007).
[Crossref]

B. Jia, J. Li, S. Wu, and M. Gu, “Near-infrared high refractive-index three-dimensional inverse woodpile photonic crystals generated by a sol-gel process,” J. Appl. Phys. 102(9), 096102 (2007).
[Crossref]

2006 (3)

2004 (2)

J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express 12(21), 5221–5228 (2004).
[Crossref]

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of Light Emission by 3D Photonic Crystals,” Science 305(5681), 227–229 (2004).
[Crossref]

1998 (1)

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282(5387), 274–276 (1998).
[Crossref]

1994 (1)

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
[Crossref]

1993 (1)

Arakawa, Y.

S. Takahashi, T. Tajiri, K. Watanabe, Y. Ota, S. Iwamoto, and Y. Arakawa, “High-Q nanocavities in semiconductor-based three-dimensional photonic crystals,” Electron. Lett. 54(5), 305–307 (2018).
[Crossref]

Asano, T.

Azana, J.

Bekker, A.

Y. Sourani, A. Bekker, B. Levit, and B. Fischer, “Tuning, selecting and switching wavelengths in lasers with chirped and sampled fiber Bragg gratings by high-order mode-locking,” Opt. Commun. 431, 151–157 (2019).
[Crossref]

Belov, P. A.

M. V. Rybin, I. I. Shishkin, K. B. Samusev, P. A. Belov, Y. S. Kivshar, R. V. Kiyan, B. N. Chichkov, and M. F. Limonov, “Band Structure of Photonic Crystals Fabricated by Two-Photon Polymerization,” Crystals 5(1), 61–73 (2015).
[Crossref]

Bertoncini, A.

M. Kavaldzhiev, J. E. Perez, Y. Ivanov, A. Bertoncini, C. Liberale, and J. Kosel, “Biocompatible 3D printed magnetic micro needles,” Biomed. Phys. Eng. Express 3(2), 025005 (2017).
[Crossref]

Biswas, R.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
[Crossref]

Boreman, G. D.

Borys, N.

S. Dhuey, A. Testini, A. Koshelev, N. Borys, J. R. Piper, M. Melli, P. J. Schuck, C. Peroz, and S. Cabrini, “Three-dimensional woodpile photonic crystals for visible light applications,” J. Phys. Commun. 1(1), 015004 (2017).
[Crossref]

Brambilla, G.

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, and G. Brambilla, “Mirofiber-Based Bragg Gratings for Sensing Applications: A Review,” Sensors 12(7), 8861–8876 (2012).
[Crossref]

Braun, P. V.

P. V. Braun, S. A. Rinne, and F. García-Santamaría, “Introducing Defects in 3D Photonic Crystals: State of the Art,” Adv. Mater. 18(20), 2665–2678 (2006).
[Crossref]

Brener, I.

Burla, M.

Busko, D.

Byer, R. L.

I. Staude, C. McGuiness, A. Frölich, R. L. Byer, E. Colby, and M. Wagener, “Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures,” Opt. Express 20(5), 5607–5612 (2012).
[Crossref]

C. McGuinness, R. L. Byer, E. Colby, B. M. Cowan, R. J. England, R. J. Noble, T. Plettner, C. M. Sears, R. Siemann, J. Spencer, and D. Waltz, “Woodpile Structure Fabrication for Photonic Crystal Laser Acceleration,” AIP Conf. Proc. 1086, 544–549 (2009).
[Crossref]

Cabrini, S.

S. Dhuey, A. Testini, A. Koshelev, N. Borys, J. R. Piper, M. Melli, P. J. Schuck, C. Peroz, and S. Cabrini, “Three-dimensional woodpile photonic crystals for visible light applications,” J. Phys. Commun. 1(1), 015004 (2017).
[Crossref]

Chan, C. T.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
[Crossref]

Chen, C.-M.

Z.-L. Wu, Y.-N. Qi, X.-J. Yin, X. Yang, C.-M. Chen, J.-Y. Yu, J.-C. Yu, Y.-M. Lin, F. Hui, P.-L. Liu, Y.-X. Liang, Y. Zhang, and M.-S. Zhao, “Polymer-based device fabrication and applications using direct laser writing technology,” Polymers (Basel, Switz.) 11(3), 553 (2019).
[Crossref]

Chen, J.

L. Wang, S. Zhang, Q. Wang, J. Chen, W. Jiang, and R. T. Chen, “Fabrication of three-dimensional (3D) woodpile structure photonic crystal with layer by layer e-beam lithography,” Appl. Phys. A 95(2), 329–334 (2009).
[Crossref]

J. Chen, W. Jiang, X. Chen, L. Wang, S. Zhang, and R. T. Chen, “3D holographic Polymer Photonic Crystal for Superprism Application,” Proc. SPIE 6480, 648013 (2007).
[Crossref]

Chen, L.-J.

L.-J. Chen, X.-Z. Dong, Y.-Y. Zhao, Y.-L. Zhang, J. Liu, M.-L. Zheng, X.-M. Duan, and Z.-S. Zhao, “Fabrication and optical transmission characteristics of polymers woodpile photonic crystal structures with different crystal planes,” Proc. SPIE 9671, 967127 (2015).
[Crossref]

Chen, R. T.

L. Wang, S. Zhang, Q. Wang, J. Chen, W. Jiang, and R. T. Chen, “Fabrication of three-dimensional (3D) woodpile structure photonic crystal with layer by layer e-beam lithography,” Appl. Phys. A 95(2), 329–334 (2009).
[Crossref]

J. Chen, W. Jiang, X. Chen, L. Wang, S. Zhang, and R. T. Chen, “3D holographic Polymer Photonic Crystal for Superprism Application,” Proc. SPIE 6480, 648013 (2007).
[Crossref]

Chen, X.

J. Chen, W. Jiang, X. Chen, L. Wang, S. Zhang, and R. T. Chen, “3D holographic Polymer Photonic Crystal for Superprism Application,” Proc. SPIE 6480, 648013 (2007).
[Crossref]

Chichkov, B.

Chichkov, B. N.

M. V. Rybin, I. I. Shishkin, K. B. Samusev, P. A. Belov, Y. S. Kivshar, R. V. Kiyan, B. N. Chichkov, and M. F. Limonov, “Band Structure of Photonic Crystals Fabricated by Two-Photon Polymerization,” Crystals 5(1), 61–73 (2015).
[Crossref]

M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12(12), 124001 (2010).
[Crossref]

Chow, E.

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282(5387), 274–276 (1998).
[Crossref]

Chrostowski, L.

Clem, P. G.

Colby, E.

I. Staude, C. McGuiness, A. Frölich, R. L. Byer, E. Colby, and M. Wagener, “Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures,” Opt. Express 20(5), 5607–5612 (2012).
[Crossref]

C. McGuinness, R. L. Byer, E. Colby, B. M. Cowan, R. J. England, R. J. Noble, T. Plettner, C. M. Sears, R. Siemann, J. Spencer, and D. Waltz, “Woodpile Structure Fabrication for Photonic Crystal Laser Acceleration,” AIP Conf. Proc. 1086, 544–549 (2009).
[Crossref]

Cortés, L. R.

Cowan, B. M.

C. McGuinness, R. L. Byer, E. Colby, B. M. Cowan, R. J. England, R. J. Noble, T. Plettner, C. M. Sears, R. Siemann, J. Spencer, and D. Waltz, “Woodpile Structure Fabrication for Photonic Crystal Laser Acceleration,” AIP Conf. Proc. 1086, 544–549 (2009).
[Crossref]

David, C.

G. Seniutinas, A. Weber, C. Padeste, I. Sakellari, M. Farsari, and C. David, “Beyond 100 nm Resolution in 3D Laser Lithography: Post Processing Solutions,” Microelectron. Eng. 191, 25–31 (2018).
[Crossref]

Dhuey, S.

S. Dhuey, A. Testini, A. Koshelev, N. Borys, J. R. Piper, M. Melli, P. J. Schuck, C. Peroz, and S. Cabrini, “Three-dimensional woodpile photonic crystals for visible light applications,” J. Phys. Commun. 1(1), 015004 (2017).
[Crossref]

Ding, M.

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, and G. Brambilla, “Mirofiber-Based Bragg Gratings for Sensing Applications: A Review,” Sensors 12(7), 8861–8876 (2012).
[Crossref]

Dong, X.-Z.

L.-J. Chen, X.-Z. Dong, Y.-Y. Zhao, Y.-L. Zhang, J. Liu, M.-L. Zheng, X.-M. Duan, and Z.-S. Zhao, “Fabrication and optical transmission characteristics of polymers woodpile photonic crystal structures with different crystal planes,” Proc. SPIE 9671, 967127 (2015).
[Crossref]

Dottermusch, S.

Duan, X.-M.

L.-J. Chen, X.-Z. Dong, Y.-Y. Zhao, Y.-L. Zhang, J. Liu, M.-L. Zheng, X.-M. Duan, and Z.-S. Zhao, “Fabrication and optical transmission characteristics of polymers woodpile photonic crystal structures with different crystal planes,” Proc. SPIE 9671, 967127 (2015).
[Crossref]

England, R. J.

C. McGuinness, R. L. Byer, E. Colby, B. M. Cowan, R. J. England, R. J. Noble, T. Plettner, C. M. Sears, R. Siemann, J. Spencer, and D. Waltz, “Woodpile Structure Fabrication for Photonic Crystal Laser Acceleration,” AIP Conf. Proc. 1086, 544–549 (2009).
[Crossref]

Farsari, M.

G. Seniutinas, A. Weber, C. Padeste, I. Sakellari, M. Farsari, and C. David, “Beyond 100 nm Resolution in 3D Laser Lithography: Post Processing Solutions,” Microelectron. Eng. 191, 25–31 (2018).
[Crossref]

M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12(12), 124001 (2010).
[Crossref]

Feng, J.

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, and G. Brambilla, “Mirofiber-Based Bragg Gratings for Sensing Applications: A Review,” Sensors 12(7), 8861–8876 (2012).
[Crossref]

Fischer, B.

Y. Sourani, A. Bekker, B. Levit, and B. Fischer, “Tuning, selecting and switching wavelengths in lasers with chirped and sampled fiber Bragg gratings by high-order mode-locking,” Opt. Commun. 431, 151–157 (2019).
[Crossref]

Fischer, J.

Frölich, A.

Froufe-Pérez, L. S.

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templated with titanium dioxide,” Sci. Rep. 6(1), 21818 (2016).
[Crossref]

Fullager, D. B.

García-Santamaría, F.

P. V. Braun, S. A. Rinne, and F. García-Santamaría, “Introducing Defects in 3D Photonic Crystals: State of the Art,” Adv. Mater. 18(20), 2665–2678 (2006).
[Crossref]

Gaso, P.

M. Goraus, D. Pudis, P. Urbancova, I. Martincek, and P. Gaso, “Surface-relief Bragg grating waveguides based on IP-Dip polymer for photonic applications,” Appl. Surf. Sci. 461, 113–116 (2018).
[Crossref]

Giessen, H.

Gissibl, T.

Gondaira, K.

Goraus, M.

M. Goraus, D. Pudis, P. Urbancova, I. Martincek, and P. Gaso, “Surface-relief Bragg grating waveguides based on IP-Dip polymer for photonic applications,” Appl. Surf. Sci. 461, 113–116 (2018).
[Crossref]

Gu, M.

Hensel, R.

J. Purtov, A. Verch, P. Rogin, and R. Hensel, “Improved development procedure to enhance the stability of microstructures created by two-photon polymerization,” Microelectron. Eng. 194, 45–50 (2018).
[Crossref]

Herkommer, A.

Hietala, V.

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282(5387), 274–276 (1998).
[Crossref]

Ho, K. M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
[Crossref]

Ho, Y.-L. D.

X. Zheng, M. P. C. Taverne, Y.-L. D. Ho, and J. G. Rarity, “Cavity Design in Woodpile Based 3D Photonic Crystals,” Appl. Sci. 8(7), 1087 (2018).
[Crossref]

M. P. C. Taverne, Y.-L. D. Ho, and J. G. Rarity, “Investigation of defect cavities formed in three-dimensional woodpile photonic crystals,” J. Opt. Soc. Am. B 32(4), 639–648 (2015).
[Crossref]

Hofmann, T.

Hui, F.

Z.-L. Wu, Y.-N. Qi, X.-J. Yin, X. Yang, C.-M. Chen, J.-Y. Yu, J.-C. Yu, Y.-M. Lin, F. Hui, P.-L. Liu, Y.-X. Liang, Y. Zhang, and M.-S. Zhao, “Polymer-based device fabrication and applications using direct laser writing technology,” Polymers (Basel, Switz.) 11(3), 553 (2019).
[Crossref]

Imada, M.

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of Light Emission by 3D Photonic Crystals,” Science 305(5681), 227–229 (2004).
[Crossref]

Ishizaki, K.

Ivanov, Y.

M. Kavaldzhiev, J. E. Perez, Y. Ivanov, A. Bertoncini, C. Liberale, and J. Kosel, “Biocompatible 3D printed magnetic micro needles,” Biomed. Phys. Eng. Express 3(2), 025005 (2017).
[Crossref]

Iwamoto, S.

S. Takahashi, T. Tajiri, K. Watanabe, Y. Ota, S. Iwamoto, and Y. Arakawa, “High-Q nanocavities in semiconductor-based three-dimensional photonic crystals,” Electron. Lett. 54(5), 305–307 (2018).
[Crossref]

Jia, B.

Jiang, W.

L. Wang, S. Zhang, Q. Wang, J. Chen, W. Jiang, and R. T. Chen, “Fabrication of three-dimensional (3D) woodpile structure photonic crystal with layer by layer e-beam lithography,” Appl. Phys. A 95(2), 329–334 (2009).
[Crossref]

J. Chen, W. Jiang, X. Chen, L. Wang, S. Zhang, and R. T. Chen, “3D holographic Polymer Photonic Crystal for Superprism Application,” Proc. SPIE 6480, 648013 (2007).
[Crossref]

Jin, X.

X. Jin, Z. Ouyang, Q. Wang, M. Lin, G. Wen, and J. Wang, “Highly Compact Circulators in Square-Lattice Photonic Crystal Waveguides,” PLoS One 9(11), e113508 (2014).
[Crossref]

Joannopoulos, J. D.

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282(5387), 274–276 (1998).
[Crossref]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D Meade, Photonic Crystals: Molding the Flow of Light (Academic, 2008).

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D Meade, Photonic Crystals: Molding the Flow of Light (Academic, 2008).

Kashyap, R

R Kashyap, Fiber Bragg Gratings (Academic, 2009)

Kavaldzhiev, M.

M. Kavaldzhiev, J. E. Perez, Y. Ivanov, A. Bertoncini, C. Liberale, and J. Kosel, “Biocompatible 3D printed magnetic micro needles,” Biomed. Phys. Eng. Express 3(2), 025005 (2017).
[Crossref]

Kitano, K.

Kivshar, Y. S.

M. V. Rybin, I. I. Shishkin, K. B. Samusev, P. A. Belov, Y. S. Kivshar, R. V. Kiyan, B. N. Chichkov, and M. F. Limonov, “Band Structure of Photonic Crystals Fabricated by Two-Photon Polymerization,” Crystals 5(1), 61–73 (2015).
[Crossref]

Kiyan, R. V.

M. V. Rybin, I. I. Shishkin, K. B. Samusev, P. A. Belov, Y. S. Kivshar, R. V. Kiyan, B. N. Chichkov, and M. F. Limonov, “Band Structure of Photonic Crystals Fabricated by Two-Photon Polymerization,” Crystals 5(1), 61–73 (2015).
[Crossref]

Kosel, J.

M. Kavaldzhiev, J. E. Perez, Y. Ivanov, A. Bertoncini, C. Liberale, and J. Kosel, “Biocompatible 3D printed magnetic micro needles,” Biomed. Phys. Eng. Express 3(2), 025005 (2017).
[Crossref]

Koshelev, A.

S. Dhuey, A. Testini, A. Koshelev, N. Borys, J. R. Piper, M. Melli, P. J. Schuck, C. Peroz, and S. Cabrini, “Three-dimensional woodpile photonic crystals for visible light applications,” J. Phys. Commun. 1(1), 015004 (2017).
[Crossref]

Kou, J.-L.

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, and G. Brambilla, “Mirofiber-Based Bragg Gratings for Sensing Applications: A Review,” Sensors 12(7), 8861–8876 (2012).
[Crossref]

Krauss, T. F.

G. Pitruzzello and T. F. Krauss, “Photonic crystal resonances for sensing and imaging,” J. Opt. 20(7), 073004 (2018).
[Crossref]

Langenhorst, M.

Lee, Y.-L.

Levit, B.

Y. Sourani, A. Bekker, B. Levit, and B. Fischer, “Tuning, selecting and switching wavelengths in lasers with chirped and sampled fiber Bragg gratings by high-order mode-locking,” Opt. Commun. 431, 151–157 (2019).
[Crossref]

Li, J.

Li, M.

Liang, Y.-X.

Z.-L. Wu, Y.-N. Qi, X.-J. Yin, X. Yang, C.-M. Chen, J.-Y. Yu, J.-C. Yu, Y.-M. Lin, F. Hui, P.-L. Liu, Y.-X. Liang, Y. Zhang, and M.-S. Zhao, “Polymer-based device fabrication and applications using direct laser writing technology,” Polymers (Basel, Switz.) 11(3), 553 (2019).
[Crossref]

Liberale, C.

M. Kavaldzhiev, J. E. Perez, Y. Ivanov, A. Bertoncini, C. Liberale, and J. Kosel, “Biocompatible 3D printed magnetic micro needles,” Biomed. Phys. Eng. Express 3(2), 025005 (2017).
[Crossref]

Limonov, M. F.

K. B. Samusev, M. V. Rybin, A. K. Samusev, and M. F. Limonov, “Optical Properties of Woodpile Photonic Crystals Produced by Three-Dimensional Laser Lithography,” Phys. Solid State 57(12), 2494–2501 (2015).
[Crossref]

M. V. Rybin, I. I. Shishkin, K. B. Samusev, P. A. Belov, Y. S. Kivshar, R. V. Kiyan, B. N. Chichkov, and M. F. Limonov, “Band Structure of Photonic Crystals Fabricated by Two-Photon Polymerization,” Crystals 5(1), 61–73 (2015).
[Crossref]

Lin, M.

X. Jin, Z. Ouyang, Q. Wang, M. Lin, G. Wen, and J. Wang, “Highly Compact Circulators in Square-Lattice Photonic Crystal Waveguides,” PLoS One 9(11), e113508 (2014).
[Crossref]

Lin, S. Y.

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282(5387), 274–276 (1998).
[Crossref]

Lin, Y.-M.

Z.-L. Wu, Y.-N. Qi, X.-J. Yin, X. Yang, C.-M. Chen, J.-Y. Yu, J.-C. Yu, Y.-M. Lin, F. Hui, P.-L. Liu, Y.-X. Liang, Y. Zhang, and M.-S. Zhao, “Polymer-based device fabrication and applications using direct laser writing technology,” Polymers (Basel, Switz.) 11(3), 553 (2019).
[Crossref]

Liu, J.

L.-J. Chen, X.-Z. Dong, Y.-Y. Zhao, Y.-L. Zhang, J. Liu, M.-L. Zheng, X.-M. Duan, and Z.-S. Zhao, “Fabrication and optical transmission characteristics of polymers woodpile photonic crystal structures with different crystal planes,” Proc. SPIE 9671, 967127 (2015).
[Crossref]

Liu, P.-L.

Z.-L. Wu, Y.-N. Qi, X.-J. Yin, X. Yang, C.-M. Chen, J.-Y. Yu, J.-C. Yu, Y.-M. Lin, F. Hui, P.-L. Liu, Y.-X. Liang, Y. Zhang, and M.-S. Zhao, “Polymer-based device fabrication and applications using direct laser writing technology,” Polymers (Basel, Switz.) 11(3), 553 (2019).
[Crossref]

Lu, Y.-Q.

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, and G. Brambilla, “Mirofiber-Based Bragg Gratings for Sensing Applications: A Review,” Sensors 12(7), 8861–8876 (2012).
[Crossref]

Luk, T. S.

Marichy, C.

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templated with titanium dioxide,” Sci. Rep. 6(1), 21818 (2016).
[Crossref]

Martincek, I.

M. Goraus, D. Pudis, P. Urbancova, I. Martincek, and P. Gaso, “Surface-relief Bragg grating waveguides based on IP-Dip polymer for photonic applications,” Appl. Surf. Sci. 461, 113–116 (2018).
[Crossref]

McGuiness, C.

McGuinness, C.

C. McGuinness, R. L. Byer, E. Colby, B. M. Cowan, R. J. England, R. J. Noble, T. Plettner, C. M. Sears, R. Siemann, J. Spencer, and D. Waltz, “Woodpile Structure Fabrication for Photonic Crystal Laser Acceleration,” AIP Conf. Proc. 1086, 544–549 (2009).
[Crossref]

Meade, R. D

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D Meade, Photonic Crystals: Molding the Flow of Light (Academic, 2008).

Melli, M.

S. Dhuey, A. Testini, A. Koshelev, N. Borys, J. R. Piper, M. Melli, P. J. Schuck, C. Peroz, and S. Cabrini, “Three-dimensional woodpile photonic crystals for visible light applications,” J. Phys. Commun. 1(1), 015004 (2017).
[Crossref]

Muller, N.

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templated with titanium dioxide,” Sci. Rep. 6(1), 21818 (2016).
[Crossref]

Noble, R. J.

C. McGuinness, R. L. Byer, E. Colby, B. M. Cowan, R. J. England, R. J. Noble, T. Plettner, C. M. Sears, R. Siemann, J. Spencer, and D. Waltz, “Woodpile Structure Fabrication for Photonic Crystal Laser Acceleration,” AIP Conf. Proc. 1086, 544–549 (2009).
[Crossref]

Noda, S.

Ogawa, S.

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of Light Emission by 3D Photonic Crystals,” Science 305(5681), 227–229 (2004).
[Crossref]

Okano, M.

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of Light Emission by 3D Photonic Crystals,” Science 305(5681), 227–229 (2004).
[Crossref]

Ota, Y.

S. Takahashi, T. Tajiri, K. Watanabe, Y. Ota, S. Iwamoto, and Y. Arakawa, “High-Q nanocavities in semiconductor-based three-dimensional photonic crystals,” Electron. Lett. 54(5), 305–307 (2018).
[Crossref]

Ouyang, Z.

X. Jin, Z. Ouyang, Q. Wang, M. Lin, G. Wen, and J. Wang, “Highly Compact Circulators in Square-Lattice Photonic Crystal Waveguides,” PLoS One 9(11), e113508 (2014).
[Crossref]

Ovsianikov, A.

Padeste, C.

G. Seniutinas, A. Weber, C. Padeste, I. Sakellari, M. Farsari, and C. David, “Beyond 100 nm Resolution in 3D Laser Lithography: Post Processing Solutions,” Microelectron. Eng. 191, 25–31 (2018).
[Crossref]

Paetzold, U. W.

Perez, J. E.

M. Kavaldzhiev, J. E. Perez, Y. Ivanov, A. Bertoncini, C. Liberale, and J. Kosel, “Biocompatible 3D printed magnetic micro needles,” Biomed. Phys. Eng. Express 3(2), 025005 (2017).
[Crossref]

Peroz, C.

S. Dhuey, A. Testini, A. Koshelev, N. Borys, J. R. Piper, M. Melli, P. J. Schuck, C. Peroz, and S. Cabrini, “Three-dimensional woodpile photonic crystals for visible light applications,” J. Phys. Commun. 1(1), 015004 (2017).
[Crossref]

Piper, J. R.

S. Dhuey, A. Testini, A. Koshelev, N. Borys, J. R. Piper, M. Melli, P. J. Schuck, C. Peroz, and S. Cabrini, “Three-dimensional woodpile photonic crystals for visible light applications,” J. Phys. Commun. 1(1), 015004 (2017).
[Crossref]

Pitruzzello, G.

G. Pitruzzello and T. F. Krauss, “Photonic crystal resonances for sensing and imaging,” J. Opt. 20(7), 073004 (2018).
[Crossref]

Plettner, T.

C. McGuinness, R. L. Byer, E. Colby, B. M. Cowan, R. J. England, R. J. Noble, T. Plettner, C. M. Sears, R. Siemann, J. Spencer, and D. Waltz, “Woodpile Structure Fabrication for Photonic Crystal Laser Acceleration,” AIP Conf. Proc. 1086, 544–549 (2009).
[Crossref]

Pudis, D.

M. Goraus, D. Pudis, P. Urbancova, I. Martincek, and P. Gaso, “Surface-relief Bragg grating waveguides based on IP-Dip polymer for photonic applications,” Appl. Surf. Sci. 461, 113–116 (2018).
[Crossref]

Purtov, J.

J. Purtov, A. Verch, P. Rogin, and R. Hensel, “Improved development procedure to enhance the stability of microstructures created by two-photon polymerization,” Microelectron. Eng. 194, 45–50 (2018).
[Crossref]

Qi, Y.-N.

Z.-L. Wu, Y.-N. Qi, X.-J. Yin, X. Yang, C.-M. Chen, J.-Y. Yu, J.-C. Yu, Y.-M. Lin, F. Hui, P.-L. Liu, Y.-X. Liang, Y. Zhang, and M.-S. Zhao, “Polymer-based device fabrication and applications using direct laser writing technology,” Polymers (Basel, Switz.) 11(3), 553 (2019).
[Crossref]

Rarity, J. G.

X. Zheng, M. P. C. Taverne, Y.-L. D. Ho, and J. G. Rarity, “Cavity Design in Woodpile Based 3D Photonic Crystals,” Appl. Sci. 8(7), 1087 (2018).
[Crossref]

M. P. C. Taverne, Y.-L. D. Ho, and J. G. Rarity, “Investigation of defect cavities formed in three-dimensional woodpile photonic crystals,” J. Opt. Soc. Am. B 32(4), 639–648 (2015).
[Crossref]

Richards, B. S.

Rinne, S. A.

P. V. Braun, S. A. Rinne, and F. García-Santamaría, “Introducing Defects in 3D Photonic Crystals: State of the Art,” Adv. Mater. 18(20), 2665–2678 (2006).
[Crossref]

Rogin, P.

J. Purtov, A. Verch, P. Rogin, and R. Hensel, “Improved development procedure to enhance the stability of microstructures created by two-photon polymerization,” Microelectron. Eng. 194, 45–50 (2018).
[Crossref]

Rybin, M. V.

M. V. Rybin, I. I. Shishkin, K. B. Samusev, P. A. Belov, Y. S. Kivshar, R. V. Kiyan, B. N. Chichkov, and M. F. Limonov, “Band Structure of Photonic Crystals Fabricated by Two-Photon Polymerization,” Crystals 5(1), 61–73 (2015).
[Crossref]

K. B. Samusev, M. V. Rybin, A. K. Samusev, and M. F. Limonov, “Optical Properties of Woodpile Photonic Crystals Produced by Three-Dimensional Laser Lithography,” Phys. Solid State 57(12), 2494–2501 (2015).
[Crossref]

Sakellari, I.

G. Seniutinas, A. Weber, C. Padeste, I. Sakellari, M. Farsari, and C. David, “Beyond 100 nm Resolution in 3D Laser Lithography: Post Processing Solutions,” Microelectron. Eng. 191, 25–31 (2018).
[Crossref]

Samusev, A. K.

K. B. Samusev, M. V. Rybin, A. K. Samusev, and M. F. Limonov, “Optical Properties of Woodpile Photonic Crystals Produced by Three-Dimensional Laser Lithography,” Phys. Solid State 57(12), 2494–2501 (2015).
[Crossref]

Samusev, K. B.

K. B. Samusev, M. V. Rybin, A. K. Samusev, and M. F. Limonov, “Optical Properties of Woodpile Photonic Crystals Produced by Three-Dimensional Laser Lithography,” Phys. Solid State 57(12), 2494–2501 (2015).
[Crossref]

M. V. Rybin, I. I. Shishkin, K. B. Samusev, P. A. Belov, Y. S. Kivshar, R. V. Kiyan, B. N. Chichkov, and M. F. Limonov, “Band Structure of Photonic Crystals Fabricated by Two-Photon Polymerization,” Crystals 5(1), 61–73 (2015).
[Crossref]

Scheffold, F.

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templated with titanium dioxide,” Sci. Rep. 6(1), 21818 (2016).
[Crossref]

Schmid, M.

Schuck, P. J.

S. Dhuey, A. Testini, A. Koshelev, N. Borys, J. R. Piper, M. Melli, P. J. Schuck, C. Peroz, and S. Cabrini, “Three-dimensional woodpile photonic crystals for visible light applications,” J. Phys. Commun. 1(1), 015004 (2017).
[Crossref]

Sears, C. M.

C. McGuinness, R. L. Byer, E. Colby, B. M. Cowan, R. J. England, R. J. Noble, T. Plettner, C. M. Sears, R. Siemann, J. Spencer, and D. Waltz, “Woodpile Structure Fabrication for Photonic Crystal Laser Acceleration,” AIP Conf. Proc. 1086, 544–549 (2009).
[Crossref]

Seniutinas, G.

G. Seniutinas, A. Weber, C. Padeste, I. Sakellari, M. Farsari, and C. David, “Beyond 100 nm Resolution in 3D Laser Lithography: Post Processing Solutions,” Microelectron. Eng. 191, 25–31 (2018).
[Crossref]

Serbin, J.

Shishkin, I. I.

M. V. Rybin, I. I. Shishkin, K. B. Samusev, P. A. Belov, Y. S. Kivshar, R. V. Kiyan, B. N. Chichkov, and M. F. Limonov, “Band Structure of Photonic Crystals Fabricated by Two-Photon Polymerization,” Crystals 5(1), 61–73 (2015).
[Crossref]

Siemann, R.

C. McGuinness, R. L. Byer, E. Colby, B. M. Cowan, R. J. England, R. J. Noble, T. Plettner, C. M. Sears, R. Siemann, J. Spencer, and D. Waltz, “Woodpile Structure Fabrication for Photonic Crystal Laser Acceleration,” AIP Conf. Proc. 1086, 544–549 (2009).
[Crossref]

Sigalas, M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
[Crossref]

Soukoulis, C. M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
[Crossref]

Sourani, Y.

Y. Sourani, A. Bekker, B. Levit, and B. Fischer, “Tuning, selecting and switching wavelengths in lasers with chirped and sampled fiber Bragg gratings by high-order mode-locking,” Opt. Commun. 431, 151–157 (2019).
[Crossref]

Spencer, J.

C. McGuinness, R. L. Byer, E. Colby, B. M. Cowan, R. J. England, R. J. Noble, T. Plettner, C. M. Sears, R. Siemann, J. Spencer, and D. Waltz, “Woodpile Structure Fabrication for Photonic Crystal Laser Acceleration,” AIP Conf. Proc. 1086, 544–549 (2009).
[Crossref]

Staude, I.

Subramania, G.

Sykora, J.

Tajiri, T.

S. Takahashi, T. Tajiri, K. Watanabe, Y. Ota, S. Iwamoto, and Y. Arakawa, “High-Q nanocavities in semiconductor-based three-dimensional photonic crystals,” Electron. Lett. 54(5), 305–307 (2018).
[Crossref]

Takahashi, S.

S. Takahashi, T. Tajiri, K. Watanabe, Y. Ota, S. Iwamoto, and Y. Arakawa, “High-Q nanocavities in semiconductor-based three-dimensional photonic crystals,” Electron. Lett. 54(5), 305–307 (2018).
[Crossref]

Taverne, M. P. C.

X. Zheng, M. P. C. Taverne, Y.-L. D. Ho, and J. G. Rarity, “Cavity Design in Woodpile Based 3D Photonic Crystals,” Appl. Sci. 8(7), 1087 (2018).
[Crossref]

M. P. C. Taverne, Y.-L. D. Ho, and J. G. Rarity, “Investigation of defect cavities formed in three-dimensional woodpile photonic crystals,” J. Opt. Soc. Am. B 32(4), 639–648 (2015).
[Crossref]

Testini, A.

S. Dhuey, A. Testini, A. Koshelev, N. Borys, J. R. Piper, M. Melli, P. J. Schuck, C. Peroz, and S. Cabrini, “Three-dimensional woodpile photonic crystals for visible light applications,” J. Phys. Commun. 1(1), 015004 (2017).
[Crossref]

Thiele, S.

Urbancova, P.

M. Goraus, D. Pudis, P. Urbancova, I. Martincek, and P. Gaso, “Surface-relief Bragg grating waveguides based on IP-Dip polymer for photonic applications,” Appl. Surf. Sci. 461, 113–116 (2018).
[Crossref]

Vamvakaki, M.

M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12(12), 124001 (2010).
[Crossref]

Verch, A.

J. Purtov, A. Verch, P. Rogin, and R. Hensel, “Improved development procedure to enhance the stability of microstructures created by two-photon polymerization,” Microelectron. Eng. 194, 45–50 (2018).
[Crossref]

Villeneuve, P. R.

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282(5387), 274–276 (1998).
[Crossref]

Wagener, M.

Wagner, S.

Waltz, D.

C. McGuinness, R. L. Byer, E. Colby, B. M. Cowan, R. J. England, R. J. Noble, T. Plettner, C. M. Sears, R. Siemann, J. Spencer, and D. Waltz, “Woodpile Structure Fabrication for Photonic Crystal Laser Acceleration,” AIP Conf. Proc. 1086, 544–549 (2009).
[Crossref]

Wang, J.

X. Jin, Z. Ouyang, Q. Wang, M. Lin, G. Wen, and J. Wang, “Highly Compact Circulators in Square-Lattice Photonic Crystal Waveguides,” PLoS One 9(11), e113508 (2014).
[Crossref]

Wang, L.

L. Wang, S. Zhang, Q. Wang, J. Chen, W. Jiang, and R. T. Chen, “Fabrication of three-dimensional (3D) woodpile structure photonic crystal with layer by layer e-beam lithography,” Appl. Phys. A 95(2), 329–334 (2009).
[Crossref]

J. Chen, W. Jiang, X. Chen, L. Wang, S. Zhang, and R. T. Chen, “3D holographic Polymer Photonic Crystal for Superprism Application,” Proc. SPIE 6480, 648013 (2007).
[Crossref]

Wang, Q.

X. Jin, Z. Ouyang, Q. Wang, M. Lin, G. Wen, and J. Wang, “Highly Compact Circulators in Square-Lattice Photonic Crystal Waveguides,” PLoS One 9(11), e113508 (2014).
[Crossref]

L. Wang, S. Zhang, Q. Wang, J. Chen, W. Jiang, and R. T. Chen, “Fabrication of three-dimensional (3D) woodpile structure photonic crystal with layer by layer e-beam lithography,” Appl. Phys. A 95(2), 329–334 (2009).
[Crossref]

Wang, X.

Watanabe, K.

S. Takahashi, T. Tajiri, K. Watanabe, Y. Ota, S. Iwamoto, and Y. Arakawa, “High-Q nanocavities in semiconductor-based three-dimensional photonic crystals,” Electron. Lett. 54(5), 305–307 (2018).
[Crossref]

Weber, A.

G. Seniutinas, A. Weber, C. Padeste, I. Sakellari, M. Farsari, and C. David, “Beyond 100 nm Resolution in 3D Laser Lithography: Post Processing Solutions,” Microelectron. Eng. 191, 25–31 (2018).
[Crossref]

Wen, G.

X. Jin, Z. Ouyang, Q. Wang, M. Lin, G. Wen, and J. Wang, “Highly Compact Circulators in Square-Lattice Photonic Crystal Waveguides,” PLoS One 9(11), e113508 (2014).
[Crossref]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D Meade, Photonic Crystals: Molding the Flow of Light (Academic, 2008).

Wu, S.

B. Jia, J. Li, S. Wu, and M. Gu, “Near-infrared high refractive-index three-dimensional inverse woodpile photonic crystals generated by a sol-gel process,” J. Appl. Phys. 102(9), 096102 (2007).
[Crossref]

Wu, Z.-L.

Z.-L. Wu, Y.-N. Qi, X.-J. Yin, X. Yang, C.-M. Chen, J.-Y. Yu, J.-C. Yu, Y.-M. Lin, F. Hui, P.-L. Liu, Y.-X. Liang, Y. Zhang, and M.-S. Zhao, “Polymer-based device fabrication and applications using direct laser writing technology,” Polymers (Basel, Switz.) 11(3), 553 (2019).
[Crossref]

Xu, F.

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, and G. Brambilla, “Mirofiber-Based Bragg Gratings for Sensing Applications: A Review,” Sensors 12(7), 8861–8876 (2012).
[Crossref]

Yablonovitch, E.

Yang, X.

Z.-L. Wu, Y.-N. Qi, X.-J. Yin, X. Yang, C.-M. Chen, J.-Y. Yu, J.-C. Yu, Y.-M. Lin, F. Hui, P.-L. Liu, Y.-X. Liang, Y. Zhang, and M.-S. Zhao, “Polymer-based device fabrication and applications using direct laser writing technology,” Polymers (Basel, Switz.) 11(3), 553 (2019).
[Crossref]

Yin, X.-J.

Z.-L. Wu, Y.-N. Qi, X.-J. Yin, X. Yang, C.-M. Chen, J.-Y. Yu, J.-C. Yu, Y.-M. Lin, F. Hui, P.-L. Liu, Y.-X. Liang, Y. Zhang, and M.-S. Zhao, “Polymer-based device fabrication and applications using direct laser writing technology,” Polymers (Basel, Switz.) 11(3), 553 (2019).
[Crossref]

Yoshimoto, S.

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of Light Emission by 3D Photonic Crystals,” Science 305(5681), 227–229 (2004).
[Crossref]

Yu, J.-C.

Z.-L. Wu, Y.-N. Qi, X.-J. Yin, X. Yang, C.-M. Chen, J.-Y. Yu, J.-C. Yu, Y.-M. Lin, F. Hui, P.-L. Liu, Y.-X. Liang, Y. Zhang, and M.-S. Zhao, “Polymer-based device fabrication and applications using direct laser writing technology,” Polymers (Basel, Switz.) 11(3), 553 (2019).
[Crossref]

Yu, J.-Y.

Z.-L. Wu, Y.-N. Qi, X.-J. Yin, X. Yang, C.-M. Chen, J.-Y. Yu, J.-C. Yu, Y.-M. Lin, F. Hui, P.-L. Liu, Y.-X. Liang, Y. Zhang, and M.-S. Zhao, “Polymer-based device fabrication and applications using direct laser writing technology,” Polymers (Basel, Switz.) 11(3), 553 (2019).
[Crossref]

Zhang, S.

L. Wang, S. Zhang, Q. Wang, J. Chen, W. Jiang, and R. T. Chen, “Fabrication of three-dimensional (3D) woodpile structure photonic crystal with layer by layer e-beam lithography,” Appl. Phys. A 95(2), 329–334 (2009).
[Crossref]

J. Chen, W. Jiang, X. Chen, L. Wang, S. Zhang, and R. T. Chen, “3D holographic Polymer Photonic Crystal for Superprism Application,” Proc. SPIE 6480, 648013 (2007).
[Crossref]

Zhang, Y.

Z.-L. Wu, Y.-N. Qi, X.-J. Yin, X. Yang, C.-M. Chen, J.-Y. Yu, J.-C. Yu, Y.-M. Lin, F. Hui, P.-L. Liu, Y.-X. Liang, Y. Zhang, and M.-S. Zhao, “Polymer-based device fabrication and applications using direct laser writing technology,” Polymers (Basel, Switz.) 11(3), 553 (2019).
[Crossref]

Zhang, Y.-L.

L.-J. Chen, X.-Z. Dong, Y.-Y. Zhao, Y.-L. Zhang, J. Liu, M.-L. Zheng, X.-M. Duan, and Z.-S. Zhao, “Fabrication and optical transmission characteristics of polymers woodpile photonic crystal structures with different crystal planes,” Proc. SPIE 9671, 967127 (2015).
[Crossref]

Zhao, M.-S.

Z.-L. Wu, Y.-N. Qi, X.-J. Yin, X. Yang, C.-M. Chen, J.-Y. Yu, J.-C. Yu, Y.-M. Lin, F. Hui, P.-L. Liu, Y.-X. Liang, Y. Zhang, and M.-S. Zhao, “Polymer-based device fabrication and applications using direct laser writing technology,” Polymers (Basel, Switz.) 11(3), 553 (2019).
[Crossref]

Zhao, Y.-Y.

L.-J. Chen, X.-Z. Dong, Y.-Y. Zhao, Y.-L. Zhang, J. Liu, M.-L. Zheng, X.-M. Duan, and Z.-S. Zhao, “Fabrication and optical transmission characteristics of polymers woodpile photonic crystal structures with different crystal planes,” Proc. SPIE 9671, 967127 (2015).
[Crossref]

Zhao, Z.-S.

L.-J. Chen, X.-Z. Dong, Y.-Y. Zhao, Y.-L. Zhang, J. Liu, M.-L. Zheng, X.-M. Duan, and Z.-S. Zhao, “Fabrication and optical transmission characteristics of polymers woodpile photonic crystal structures with different crystal planes,” Proc. SPIE 9671, 967127 (2015).
[Crossref]

Zheng, M.-L.

L.-J. Chen, X.-Z. Dong, Y.-Y. Zhao, Y.-L. Zhang, J. Liu, M.-L. Zheng, X.-M. Duan, and Z.-S. Zhao, “Fabrication and optical transmission characteristics of polymers woodpile photonic crystal structures with different crystal planes,” Proc. SPIE 9671, 967127 (2015).
[Crossref]

Zheng, X.

X. Zheng, M. P. C. Taverne, Y.-L. D. Ho, and J. G. Rarity, “Cavity Design in Woodpile Based 3D Photonic Crystals,” Appl. Sci. 8(7), 1087 (2018).
[Crossref]

Zhou, G.

Adv. Mater. (1)

P. V. Braun, S. A. Rinne, and F. García-Santamaría, “Introducing Defects in 3D Photonic Crystals: State of the Art,” Adv. Mater. 18(20), 2665–2678 (2006).
[Crossref]

AIP Conf. Proc. (1)

C. McGuinness, R. L. Byer, E. Colby, B. M. Cowan, R. J. England, R. J. Noble, T. Plettner, C. M. Sears, R. Siemann, J. Spencer, and D. Waltz, “Woodpile Structure Fabrication for Photonic Crystal Laser Acceleration,” AIP Conf. Proc. 1086, 544–549 (2009).
[Crossref]

Appl. Phys. A (1)

L. Wang, S. Zhang, Q. Wang, J. Chen, W. Jiang, and R. T. Chen, “Fabrication of three-dimensional (3D) woodpile structure photonic crystal with layer by layer e-beam lithography,” Appl. Phys. A 95(2), 329–334 (2009).
[Crossref]

Appl. Sci. (1)

X. Zheng, M. P. C. Taverne, Y.-L. D. Ho, and J. G. Rarity, “Cavity Design in Woodpile Based 3D Photonic Crystals,” Appl. Sci. 8(7), 1087 (2018).
[Crossref]

Appl. Surf. Sci. (1)

M. Goraus, D. Pudis, P. Urbancova, I. Martincek, and P. Gaso, “Surface-relief Bragg grating waveguides based on IP-Dip polymer for photonic applications,” Appl. Surf. Sci. 461, 113–116 (2018).
[Crossref]

Biomed. Phys. Eng. Express (1)

M. Kavaldzhiev, J. E. Perez, Y. Ivanov, A. Bertoncini, C. Liberale, and J. Kosel, “Biocompatible 3D printed magnetic micro needles,” Biomed. Phys. Eng. Express 3(2), 025005 (2017).
[Crossref]

Crystals (1)

M. V. Rybin, I. I. Shishkin, K. B. Samusev, P. A. Belov, Y. S. Kivshar, R. V. Kiyan, B. N. Chichkov, and M. F. Limonov, “Band Structure of Photonic Crystals Fabricated by Two-Photon Polymerization,” Crystals 5(1), 61–73 (2015).
[Crossref]

Electron. Lett. (1)

S. Takahashi, T. Tajiri, K. Watanabe, Y. Ota, S. Iwamoto, and Y. Arakawa, “High-Q nanocavities in semiconductor-based three-dimensional photonic crystals,” Electron. Lett. 54(5), 305–307 (2018).
[Crossref]

J. Appl. Phys. (1)

B. Jia, J. Li, S. Wu, and M. Gu, “Near-infrared high refractive-index three-dimensional inverse woodpile photonic crystals generated by a sol-gel process,” J. Appl. Phys. 102(9), 096102 (2007).
[Crossref]

J. Opt. (2)

G. Pitruzzello and T. F. Krauss, “Photonic crystal resonances for sensing and imaging,” J. Opt. 20(7), 073004 (2018).
[Crossref]

M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12(12), 124001 (2010).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Commun. (1)

S. Dhuey, A. Testini, A. Koshelev, N. Borys, J. R. Piper, M. Melli, P. J. Schuck, C. Peroz, and S. Cabrini, “Three-dimensional woodpile photonic crystals for visible light applications,” J. Phys. Commun. 1(1), 015004 (2017).
[Crossref]

Microelectron. Eng. (2)

G. Seniutinas, A. Weber, C. Padeste, I. Sakellari, M. Farsari, and C. David, “Beyond 100 nm Resolution in 3D Laser Lithography: Post Processing Solutions,” Microelectron. Eng. 191, 25–31 (2018).
[Crossref]

J. Purtov, A. Verch, P. Rogin, and R. Hensel, “Improved development procedure to enhance the stability of microstructures created by two-photon polymerization,” Microelectron. Eng. 194, 45–50 (2018).
[Crossref]

Opt. Commun. (1)

Y. Sourani, A. Bekker, B. Levit, and B. Fischer, “Tuning, selecting and switching wavelengths in lasers with chirped and sampled fiber Bragg gratings by high-order mode-locking,” Opt. Commun. 431, 151–157 (2019).
[Crossref]

Opt. Express (8)

K. Gondaira, K. Ishizaki, K. Kitano, T. Asano, and S. Noda, “Control of radiation angle by introducing symmetric end structure to oblique in three-dimensional photonic crystal,” Opt. Express 24(12), 13518–13526 (2016).
[Crossref]

J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express 12(21), 5221–5228 (2004).
[Crossref]

J. Serbin and M. Gu, “Superprism phenomena in waveguide-coupled woodpile structures fabricated by two-photon polymerization,” Opt. Express 14(8), 3563–3568 (2006).
[Crossref]

J. Li, B. Jia, G. Zhou, and M. Gu, “Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material,” Opt. Express 14(22), 10740–10745 (2006).
[Crossref]

G. Subramania, Y.-L. Lee, I. Brener, T. S. Luk, and P. G. Clem, “Nano-lithographically fabricated titanium dioxide based visible frequency three dimensional gap photonic crystal,” Opt. Express 15(20), 13049–13057 (2007).
[Crossref]

J. Li, B. Jia, and M. Gu, “Engineering stop gaps of inorganic-organic polymeric 3D woodpile photonic crystals with post-thermal treatment,” Opt. Express 16(24), 20073–20080 (2008).
[Crossref]

I. Staude, C. McGuiness, A. Frölich, R. L. Byer, E. Colby, and M. Wagener, “Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures,” Opt. Express 20(5), 5607–5612 (2012).
[Crossref]

M. Burla, L. R. Cortés, M. Li, X. Wang, L. Chrostowski, and J. Azańa, “Integrated waveguide Bragg gratings for microwave photonics signal processing,” Opt. Express 21(21), 25120–25147 (2013).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (3)

Phys. Solid State (1)

K. B. Samusev, M. V. Rybin, A. K. Samusev, and M. F. Limonov, “Optical Properties of Woodpile Photonic Crystals Produced by Three-Dimensional Laser Lithography,” Phys. Solid State 57(12), 2494–2501 (2015).
[Crossref]

PLoS One (1)

X. Jin, Z. Ouyang, Q. Wang, M. Lin, G. Wen, and J. Wang, “Highly Compact Circulators in Square-Lattice Photonic Crystal Waveguides,” PLoS One 9(11), e113508 (2014).
[Crossref]

Polymers (Basel, Switz.) (1)

Z.-L. Wu, Y.-N. Qi, X.-J. Yin, X. Yang, C.-M. Chen, J.-Y. Yu, J.-C. Yu, Y.-M. Lin, F. Hui, P.-L. Liu, Y.-X. Liang, Y. Zhang, and M.-S. Zhao, “Polymer-based device fabrication and applications using direct laser writing technology,” Polymers (Basel, Switz.) 11(3), 553 (2019).
[Crossref]

Proc. SPIE (2)

L.-J. Chen, X.-Z. Dong, Y.-Y. Zhao, Y.-L. Zhang, J. Liu, M.-L. Zheng, X.-M. Duan, and Z.-S. Zhao, “Fabrication and optical transmission characteristics of polymers woodpile photonic crystal structures with different crystal planes,” Proc. SPIE 9671, 967127 (2015).
[Crossref]

J. Chen, W. Jiang, X. Chen, L. Wang, S. Zhang, and R. T. Chen, “3D holographic Polymer Photonic Crystal for Superprism Application,” Proc. SPIE 6480, 648013 (2007).
[Crossref]

Sci. Rep. (1)

C. Marichy, N. Muller, L. S. Froufe-Pérez, and F. Scheffold, “High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templated with titanium dioxide,” Sci. Rep. 6(1), 21818 (2016).
[Crossref]

Science (2)

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282(5387), 274–276 (1998).
[Crossref]

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of Light Emission by 3D Photonic Crystals,” Science 305(5681), 227–229 (2004).
[Crossref]

Sensors (1)

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, and G. Brambilla, “Mirofiber-Based Bragg Gratings for Sensing Applications: A Review,” Sensors 12(7), 8861–8876 (2012).
[Crossref]

Solid State Commun. (1)

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
[Crossref]

Other (2)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D Meade, Photonic Crystals: Molding the Flow of Light (Academic, 2008).

R Kashyap, Fiber Bragg Gratings (Academic, 2009)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Layer arrangement of woodpile structure with unit cell top/side view (right).
Fig. 2.
Fig. 2. (a) The first Brillouin zone of fcc lattice and (b) orientation of the woodpile structure relative to the directions in reciprocal space during the simulation.
Fig. 3.
Fig. 3. Dispersion diagram with partial PBG in Γ - X direction for the woodpile structure with fcc lattice symmetry and ff = 50%.
Fig. 4.
Fig. 4. Dispersion diagrams with partial PBGs in Γ - X direction for the woodpile structure with horizontal period a = 0.500 µm and (a) ff = 20% and (b) ff = 70% with inset pictures showing the detail of columns width relative to horizontal period a.
Fig. 5.
Fig. 5. Dependence of position and width of partial PBG on filling factor for Γ - X direction.
Fig. 6.
Fig. 6. (a) SEM image of the fabricated woodpile structure with the dimensions a = 0.720 µm and w = 0.170 µm and (b) transmission spectrum of the woodpile structure designed for NIR spectral range with expected position of partial PBG from simulations.
Fig. 7.
Fig. 7. (a) SEM image of the fabricated woodpile structure with the real dimensions of horizontal period a = 0.476 µm and column width w = 0.171 µm and (b) transmission spectrum of the woodpile structure with expected positions of partial PBGs for different filling factors of ff = 35 and 50%.
Fig. 8.
Fig. 8. Transmission spectrum of the woodpile structures with different horizontal periods a (0.300, 0.350, 0.400, 0.450 and 0.500 µm). Spectra were vertically shifted by step of 20% with respect to nominal 0.400 µm spectrum.
Fig. 9.
Fig. 9. PGB intervals determined as a function of horizontal periods calculated for different column widths (dark grey w = 0.230 µm, light grey w = 0.170 µm) and comparison with the measured PBGs of prepared woodpile structures (solid lines).