Abstract

We propose a new and dynamically focusable subwavelength focusing system, consisting of a negatively refracting photonic crystal and a single silicon lens. The system can adjust the focal length in the range of 370 nm to 4610 nm. We set directional light with a wavelength of 1612nm to incident on the whole system. Numerical simulation through RSOFT shows the smallest focus spot with the half-width of 0.116 λ at a distance of 0.44 λ and calculates focusing efficiency of 45%. In addition, a good result is found that the half-width of the spot is less than 1/2 wavelength at a distance of 2.85 λ from the surface of the structure.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Aberration reduction and unique light focusing in a photonic crystal negative refractive lens

Tomohiko Asatsuma and Toshihiko Baba
Opt. Express 16(12) 8711-8719 (2008)

Focus modulation of cylindrical vector beams by using 1D photonic crystal lens with negative refraction effect

Ji Xu, Yi Zhong, Shengming Wang, Yunqing Lu, Hongdan Wan, Jian Jiang, and Jin Wang
Opt. Express 23(21) 26978-26985 (2015)

Negative refraction without negative index in metallic photonic crystals

Chiyan Luo, Steven G. Johnson, J. D. Joannopoulos, and J. B. Pendry
Opt. Express 11(7) 746-754 (2003)

References

  • View by:
  • |
  • |
  • |

  1. B. D. Terris, H. J. Mamin, and D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68(2), 141–143 (1996).
    [Crossref]
  2. X. G. Lou and T. Ishihara, “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12(14), 3055–3065 (2004).
    [Crossref]
  3. Y. X. Mao, S. D. Chang, S. Sherif, and C. Flueraru, “Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging,” Appl. Opt. 46(23), 5887–5894 (2007).
    [Crossref]
  4. K. Lindfors, T. Kalkbremer, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93(3), 037401 (2004).
    [Crossref]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref]
  6. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Sov . Phys.-Usp. 10(4), 509–514 (1968).
    [Crossref]
  7. N. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62(16), 10696–10705 (2000).
    [Crossref]
  8. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65(20), 201104 (2002).
    [Crossref]
  9. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68(4), 045115 (2003).
    [Crossref]
  10. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens,” Phys. Rev. Lett. 91(20), 207401 (2003).
    [Crossref]
  11. X. Y. Ao and S. L. He, “Subwavelength focusing and imaging by a multimode optical waveguide,” Opt. Lett. 29(24), 2864–2866 (2004).
    [Crossref]
  12. H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
    [Crossref]
  13. Y. Q. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91(6), 061124 (2007).
    [Crossref]
  14. C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam focusing by metallic nano-slit array containing nonlinear material,” Appl. Phys. B: Lasers Opt. 90(1), 97–99 (2008).
    [Crossref]
  15. R. Gordon, “Proposal for Superfocusing at Visible Wavelengths Using Radiationless Interference of a Plasmonic Array,” Phys. Rev. Lett. 102(20), 207402 (2009).
    [Crossref]
  16. B. H. Jia, H. F. Shi, J. F. Li, Y. Q. Fu, C. L. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94(15), 151912 (2009).
    [Crossref]
  17. S. S. Hong, B. K. P. Horn, D. M. Freeman, and M. S. Mermelstein, “Lensless focusing with subwavelength resolution by direct synthesis of the angular spectrum,” Appl. Phys. Lett. 88(26), 261107 (2006).
    [Crossref]
  18. X. Wang, J. Fu, X. Liu, and L. M. Tong, “Subwavelength focusing by a micro/nanofiber array,” J. Opt. Soc. Am. A 26(8), 1827–1833 (2009).
    [Crossref]
  19. J. Fu, H. T. Dong, and W. Fang, “Subwavelength focusing of light by a tapered microtube,” Appl. Phys. Lett. 97(4), 041114 (2010).
    [Crossref]
  20. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, and Y. k. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
    [Crossref]
  21. T. S. Kao, E. T. F. Rogers, J. Y. Ou, and N. I. Zheludev, “Digitally addressable focusing of light into a subwavelength hot spot,” Nano Lett. 12(6), 2728–2731 (2012).
    [Crossref]
  22. X. Hao, X. Liu, C. Kuang, and Y. Li, “Far-field super-resolution imaging using near-field illumination by micro-fiber,” Appl. Phys. Lett. 102(1), 013104 (2013).
    [Crossref]
  23. H. M. Guo, Y. X. Han, X. Y. Weng, Y. H. Zhao, G. R. Sui, Y. Wang, and S. L. Zhuang, “Near-field focusing of the dielectric microsphere with wavelength scale radius,” Opt. Express 21(2), 2434–2443 (2013).
    [Crossref]
  24. M. L. Tseng, H. H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A. Q. Liu, and D. P. Tsai, “Metalenses: Advances and applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
    [Crossref]
  25. B. R. Singh, S. Rawal, and R. K. Sinha, “Chirped photonic crystal with different symmetries for asymmetric light propagation,” Appl. Phys. A: Mater. Sci. Process. 122(6), 605 (2016).
    [Crossref]
  26. H. L. Ma, B. M. Liang, S. L. Zhuang, J. B. Chen, and J. K. Niu, “Subwavelength imaging of a point source based on two-dimensional photonic crystals,” Opt. Lett. 41(16), 3833–3835 (2016).
    [Crossref]
  27. G. Altena, M. Dijkstra, G. V. Elzakker, G. Venhorst, H. J. W. M. Hoekstra, and P. V. Lambeck, “A Novel MOENS device: detection of MEMS movements using free-standing Si3N4 suspended optical waveguides,” presented at 8th Annual Symposium IEEE/LEOS Benelux Chapter 2003, Enschede, Netherlands, 25–28 Nov. 2003.

2018 (1)

M. L. Tseng, H. H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A. Q. Liu, and D. P. Tsai, “Metalenses: Advances and applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
[Crossref]

2016 (2)

B. R. Singh, S. Rawal, and R. K. Sinha, “Chirped photonic crystal with different symmetries for asymmetric light propagation,” Appl. Phys. A: Mater. Sci. Process. 122(6), 605 (2016).
[Crossref]

H. L. Ma, B. M. Liang, S. L. Zhuang, J. B. Chen, and J. K. Niu, “Subwavelength imaging of a point source based on two-dimensional photonic crystals,” Opt. Lett. 41(16), 3833–3835 (2016).
[Crossref]

2013 (2)

H. M. Guo, Y. X. Han, X. Y. Weng, Y. H. Zhao, G. R. Sui, Y. Wang, and S. L. Zhuang, “Near-field focusing of the dielectric microsphere with wavelength scale radius,” Opt. Express 21(2), 2434–2443 (2013).
[Crossref]

X. Hao, X. Liu, C. Kuang, and Y. Li, “Far-field super-resolution imaging using near-field illumination by micro-fiber,” Appl. Phys. Lett. 102(1), 013104 (2013).
[Crossref]

2012 (1)

T. S. Kao, E. T. F. Rogers, J. Y. Ou, and N. I. Zheludev, “Digitally addressable focusing of light into a subwavelength hot spot,” Nano Lett. 12(6), 2728–2731 (2012).
[Crossref]

2010 (1)

J. Fu, H. T. Dong, and W. Fang, “Subwavelength focusing of light by a tapered microtube,” Appl. Phys. Lett. 97(4), 041114 (2010).
[Crossref]

2009 (4)

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, and Y. k. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

R. Gordon, “Proposal for Superfocusing at Visible Wavelengths Using Radiationless Interference of a Plasmonic Array,” Phys. Rev. Lett. 102(20), 207402 (2009).
[Crossref]

B. H. Jia, H. F. Shi, J. F. Li, Y. Q. Fu, C. L. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94(15), 151912 (2009).
[Crossref]

X. Wang, J. Fu, X. Liu, and L. M. Tong, “Subwavelength focusing by a micro/nanofiber array,” J. Opt. Soc. Am. A 26(8), 1827–1833 (2009).
[Crossref]

2008 (1)

C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam focusing by metallic nano-slit array containing nonlinear material,” Appl. Phys. B: Lasers Opt. 90(1), 97–99 (2008).
[Crossref]

2007 (2)

Y. Q. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91(6), 061124 (2007).
[Crossref]

Y. X. Mao, S. D. Chang, S. Sherif, and C. Flueraru, “Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging,” Appl. Opt. 46(23), 5887–5894 (2007).
[Crossref]

2006 (1)

S. S. Hong, B. K. P. Horn, D. M. Freeman, and M. S. Mermelstein, “Lensless focusing with subwavelength resolution by direct synthesis of the angular spectrum,” Appl. Phys. Lett. 88(26), 261107 (2006).
[Crossref]

2005 (1)

2004 (3)

2003 (2)

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68(4), 045115 (2003).
[Crossref]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens,” Phys. Rev. Lett. 91(20), 207401 (2003).
[Crossref]

2002 (1)

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65(20), 201104 (2002).
[Crossref]

2000 (2)

N. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62(16), 10696–10705 (2000).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref]

1996 (1)

B. D. Terris, H. J. Mamin, and D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68(2), 141–143 (1996).
[Crossref]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Sov . Phys.-Usp. 10(4), 509–514 (1968).
[Crossref]

Altena, G.

G. Altena, M. Dijkstra, G. V. Elzakker, G. Venhorst, H. J. W. M. Hoekstra, and P. V. Lambeck, “A Novel MOENS device: detection of MEMS movements using free-standing Si3N4 suspended optical waveguides,” presented at 8th Annual Symposium IEEE/LEOS Benelux Chapter 2003, Enschede, Netherlands, 25–28 Nov. 2003.

Ao, X. Y.

Aydin, K.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens,” Phys. Rev. Lett. 91(20), 207401 (2003).
[Crossref]

Chang, S. D.

Chen, J. B.

Chen, M. K.

M. L. Tseng, H. H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A. Q. Liu, and D. P. Tsai, “Metalenses: Advances and applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
[Crossref]

Chu, C. H.

M. L. Tseng, H. H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A. Q. Liu, and D. P. Tsai, “Metalenses: Advances and applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
[Crossref]

Cubukcu, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens,” Phys. Rev. Lett. 91(20), 207401 (2003).
[Crossref]

Deng, Y.

C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam focusing by metallic nano-slit array containing nonlinear material,” Appl. Phys. B: Lasers Opt. 90(1), 97–99 (2008).
[Crossref]

Dijkstra, M.

G. Altena, M. Dijkstra, G. V. Elzakker, G. Venhorst, H. J. W. M. Hoekstra, and P. V. Lambeck, “A Novel MOENS device: detection of MEMS movements using free-standing Si3N4 suspended optical waveguides,” presented at 8th Annual Symposium IEEE/LEOS Benelux Chapter 2003, Enschede, Netherlands, 25–28 Nov. 2003.

Dong, H. T.

J. Fu, H. T. Dong, and W. Fang, “Subwavelength focusing of light by a tapered microtube,” Appl. Phys. Lett. 97(4), 041114 (2010).
[Crossref]

Dong, X. C.

Du, C. L.

B. H. Jia, H. F. Shi, J. F. Li, Y. Q. Fu, C. L. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94(15), 151912 (2009).
[Crossref]

Y. Q. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91(6), 061124 (2007).
[Crossref]

H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[Crossref]

Elzakker, G. V.

G. Altena, M. Dijkstra, G. V. Elzakker, G. Venhorst, H. J. W. M. Hoekstra, and P. V. Lambeck, “A Novel MOENS device: detection of MEMS movements using free-standing Si3N4 suspended optical waveguides,” presented at 8th Annual Symposium IEEE/LEOS Benelux Chapter 2003, Enschede, Netherlands, 25–28 Nov. 2003.

Fang, W.

J. Fu, H. T. Dong, and W. Fang, “Subwavelength focusing of light by a tapered microtube,” Appl. Phys. Lett. 97(4), 041114 (2010).
[Crossref]

Flueraru, C.

Foteinopoulou, S.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens,” Phys. Rev. Lett. 91(20), 207401 (2003).
[Crossref]

Freeman, D. M.

S. S. Hong, B. K. P. Horn, D. M. Freeman, and M. S. Mermelstein, “Lensless focusing with subwavelength resolution by direct synthesis of the angular spectrum,” Appl. Phys. Lett. 88(26), 261107 (2006).
[Crossref]

Fu, J.

J. Fu, H. T. Dong, and W. Fang, “Subwavelength focusing of light by a tapered microtube,” Appl. Phys. Lett. 97(4), 041114 (2010).
[Crossref]

X. Wang, J. Fu, X. Liu, and L. M. Tong, “Subwavelength focusing by a micro/nanofiber array,” J. Opt. Soc. Am. A 26(8), 1827–1833 (2009).
[Crossref]

Fu, Y. Q.

B. H. Jia, H. F. Shi, J. F. Li, Y. Q. Fu, C. L. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94(15), 151912 (2009).
[Crossref]

Y. Q. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91(6), 061124 (2007).
[Crossref]

Gao, H. T.

Gordon, R.

R. Gordon, “Proposal for Superfocusing at Visible Wavelengths Using Radiationless Interference of a Plasmonic Array,” Phys. Rev. Lett. 102(20), 207402 (2009).
[Crossref]

Gu, M.

B. H. Jia, H. F. Shi, J. F. Li, Y. Q. Fu, C. L. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94(15), 151912 (2009).
[Crossref]

Guo, H. M.

Han, Y. X.

Hao, X.

X. Hao, X. Liu, C. Kuang, and Y. Li, “Far-field super-resolution imaging using near-field illumination by micro-fiber,” Appl. Phys. Lett. 102(1), 013104 (2013).
[Crossref]

He, S. L.

Hoekstra, H. J. W. M.

G. Altena, M. Dijkstra, G. V. Elzakker, G. Venhorst, H. J. W. M. Hoekstra, and P. V. Lambeck, “A Novel MOENS device: detection of MEMS movements using free-standing Si3N4 suspended optical waveguides,” presented at 8th Annual Symposium IEEE/LEOS Benelux Chapter 2003, Enschede, Netherlands, 25–28 Nov. 2003.

Hong, B. H.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, and Y. k. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Hong, S. S.

S. S. Hong, B. K. P. Horn, D. M. Freeman, and M. S. Mermelstein, “Lensless focusing with subwavelength resolution by direct synthesis of the angular spectrum,” Appl. Phys. Lett. 88(26), 261107 (2006).
[Crossref]

Horn, B. K. P.

S. S. Hong, B. K. P. Horn, D. M. Freeman, and M. S. Mermelstein, “Lensless focusing with subwavelength resolution by direct synthesis of the angular spectrum,” Appl. Phys. Lett. 88(26), 261107 (2006).
[Crossref]

Hsiao, H. H.

M. L. Tseng, H. H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A. Q. Liu, and D. P. Tsai, “Metalenses: Advances and applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
[Crossref]

Ishihara, T.

Jia, B. H.

B. H. Jia, H. F. Shi, J. F. Li, Y. Q. Fu, C. L. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94(15), 151912 (2009).
[Crossref]

Jiao, X.

C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam focusing by metallic nano-slit array containing nonlinear material,” Appl. Phys. B: Lasers Opt. 90(1), 97–99 (2008).
[Crossref]

Joannopoulos, J. D.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68(4), 045115 (2003).
[Crossref]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65(20), 201104 (2002).
[Crossref]

Johnson, S. G.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68(4), 045115 (2003).
[Crossref]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65(20), 201104 (2002).
[Crossref]

Kalkbremer, T.

K. Lindfors, T. Kalkbremer, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93(3), 037401 (2004).
[Crossref]

Kao, T. S.

T. S. Kao, E. T. F. Rogers, J. Y. Ou, and N. I. Zheludev, “Digitally addressable focusing of light into a subwavelength hot spot,” Nano Lett. 12(6), 2728–2731 (2012).
[Crossref]

Kim, W. Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, and Y. k. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kim, Y. k.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, and Y. k. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kuang, C.

X. Hao, X. Liu, C. Kuang, and Y. Li, “Far-field super-resolution imaging using near-field illumination by micro-fiber,” Appl. Phys. Lett. 102(1), 013104 (2013).
[Crossref]

Lambeck, P. V.

G. Altena, M. Dijkstra, G. V. Elzakker, G. Venhorst, H. J. W. M. Hoekstra, and P. V. Lambeck, “A Novel MOENS device: detection of MEMS movements using free-standing Si3N4 suspended optical waveguides,” presented at 8th Annual Symposium IEEE/LEOS Benelux Chapter 2003, Enschede, Netherlands, 25–28 Nov. 2003.

Lee, J. Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, and Y. k. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Li, J. F.

B. H. Jia, H. F. Shi, J. F. Li, Y. Q. Fu, C. L. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94(15), 151912 (2009).
[Crossref]

Li, Y.

X. Hao, X. Liu, C. Kuang, and Y. Li, “Far-field super-resolution imaging using near-field illumination by micro-fiber,” Appl. Phys. Lett. 102(1), 013104 (2013).
[Crossref]

Liang, B. M.

Lim, L. E. N.

Y. Q. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91(6), 061124 (2007).
[Crossref]

Lindfors, K.

K. Lindfors, T. Kalkbremer, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93(3), 037401 (2004).
[Crossref]

Liu, A. Q.

M. L. Tseng, H. H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A. Q. Liu, and D. P. Tsai, “Metalenses: Advances and applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
[Crossref]

Liu, X.

X. Hao, X. Liu, C. Kuang, and Y. Li, “Far-field super-resolution imaging using near-field illumination by micro-fiber,” Appl. Phys. Lett. 102(1), 013104 (2013).
[Crossref]

X. Wang, J. Fu, X. Liu, and L. M. Tong, “Subwavelength focusing by a micro/nanofiber array,” J. Opt. Soc. Am. A 26(8), 1827–1833 (2009).
[Crossref]

Lou, X. G.

Luo, C.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68(4), 045115 (2003).
[Crossref]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65(20), 201104 (2002).
[Crossref]

Luo, X. G.

Y. Q. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91(6), 061124 (2007).
[Crossref]

H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[Crossref]

Ma, H. L.

Mamin, H. J.

B. D. Terris, H. J. Mamin, and D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68(2), 141–143 (1996).
[Crossref]

Mao, Y. X.

Mermelstein, M. S.

S. S. Hong, B. K. P. Horn, D. M. Freeman, and M. S. Mermelstein, “Lensless focusing with subwavelength resolution by direct synthesis of the angular spectrum,” Appl. Phys. Lett. 88(26), 261107 (2006).
[Crossref]

Min, C.

C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam focusing by metallic nano-slit array containing nonlinear material,” Appl. Phys. B: Lasers Opt. 90(1), 97–99 (2008).
[Crossref]

Min, S. K.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, and Y. k. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Ming, H.

C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam focusing by metallic nano-slit array containing nonlinear material,” Appl. Phys. B: Lasers Opt. 90(1), 97–99 (2008).
[Crossref]

Niu, J. K.

Notomi, N.

N. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62(16), 10696–10705 (2000).
[Crossref]

Ou, J. Y.

T. S. Kao, E. T. F. Rogers, J. Y. Ou, and N. I. Zheludev, “Digitally addressable focusing of light into a subwavelength hot spot,” Nano Lett. 12(6), 2728–2731 (2012).
[Crossref]

Ozbay, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens,” Phys. Rev. Lett. 91(20), 207401 (2003).
[Crossref]

Pendry, J. B.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68(4), 045115 (2003).
[Crossref]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65(20), 201104 (2002).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref]

Rawal, S.

B. R. Singh, S. Rawal, and R. K. Sinha, “Chirped photonic crystal with different symmetries for asymmetric light propagation,” Appl. Phys. A: Mater. Sci. Process. 122(6), 605 (2016).
[Crossref]

Rogers, E. T. F.

T. S. Kao, E. T. F. Rogers, J. Y. Ou, and N. I. Zheludev, “Digitally addressable focusing of light into a subwavelength hot spot,” Nano Lett. 12(6), 2728–2731 (2012).
[Crossref]

Rugar, D.

B. D. Terris, H. J. Mamin, and D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68(2), 141–143 (1996).
[Crossref]

Sandoghdar, V.

K. Lindfors, T. Kalkbremer, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93(3), 037401 (2004).
[Crossref]

Sherif, S.

Shi, H. F.

B. H. Jia, H. F. Shi, J. F. Li, Y. Q. Fu, C. L. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94(15), 151912 (2009).
[Crossref]

H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[Crossref]

Singh, B. R.

B. R. Singh, S. Rawal, and R. K. Sinha, “Chirped photonic crystal with different symmetries for asymmetric light propagation,” Appl. Phys. A: Mater. Sci. Process. 122(6), 605 (2016).
[Crossref]

Sinha, R. K.

B. R. Singh, S. Rawal, and R. K. Sinha, “Chirped photonic crystal with different symmetries for asymmetric light propagation,” Appl. Phys. A: Mater. Sci. Process. 122(6), 605 (2016).
[Crossref]

Soukoulis, C. M.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens,” Phys. Rev. Lett. 91(20), 207401 (2003).
[Crossref]

Stoller, P.

K. Lindfors, T. Kalkbremer, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93(3), 037401 (2004).
[Crossref]

Sui, G. R.

Sun, G.

M. L. Tseng, H. H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A. Q. Liu, and D. P. Tsai, “Metalenses: Advances and applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
[Crossref]

Terris, B. D.

B. D. Terris, H. J. Mamin, and D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68(2), 141–143 (1996).
[Crossref]

Tong, L. M.

Tsai, D. P.

M. L. Tseng, H. H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A. Q. Liu, and D. P. Tsai, “Metalenses: Advances and applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
[Crossref]

Tseng, M. L.

M. L. Tseng, H. H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A. Q. Liu, and D. P. Tsai, “Metalenses: Advances and applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
[Crossref]

Venhorst, G.

G. Altena, M. Dijkstra, G. V. Elzakker, G. Venhorst, H. J. W. M. Hoekstra, and P. V. Lambeck, “A Novel MOENS device: detection of MEMS movements using free-standing Si3N4 suspended optical waveguides,” presented at 8th Annual Symposium IEEE/LEOS Benelux Chapter 2003, Enschede, Netherlands, 25–28 Nov. 2003.

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Sov . Phys.-Usp. 10(4), 509–514 (1968).
[Crossref]

Wang, C. T.

Wang, P.

C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam focusing by metallic nano-slit array containing nonlinear material,” Appl. Phys. B: Lasers Opt. 90(1), 97–99 (2008).
[Crossref]

Wang, X.

Wang, Y.

Weng, X. Y.

Zhao, Y. H.

Zheludev, N. I.

T. S. Kao, E. T. F. Rogers, J. Y. Ou, and N. I. Zheludev, “Digitally addressable focusing of light into a subwavelength hot spot,” Nano Lett. 12(6), 2728–2731 (2012).
[Crossref]

Zhou, W.

Y. Q. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91(6), 061124 (2007).
[Crossref]

Zhuang, S. L.

Adv. Opt. Mater. (1)

M. L. Tseng, H. H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A. Q. Liu, and D. P. Tsai, “Metalenses: Advances and applications,” Adv. Opt. Mater. 6(18), 1800554 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A: Mater. Sci. Process. (1)

B. R. Singh, S. Rawal, and R. K. Sinha, “Chirped photonic crystal with different symmetries for asymmetric light propagation,” Appl. Phys. A: Mater. Sci. Process. 122(6), 605 (2016).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam focusing by metallic nano-slit array containing nonlinear material,” Appl. Phys. B: Lasers Opt. 90(1), 97–99 (2008).
[Crossref]

Appl. Phys. Lett. (6)

B. H. Jia, H. F. Shi, J. F. Li, Y. Q. Fu, C. L. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94(15), 151912 (2009).
[Crossref]

S. S. Hong, B. K. P. Horn, D. M. Freeman, and M. S. Mermelstein, “Lensless focusing with subwavelength resolution by direct synthesis of the angular spectrum,” Appl. Phys. Lett. 88(26), 261107 (2006).
[Crossref]

B. D. Terris, H. J. Mamin, and D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68(2), 141–143 (1996).
[Crossref]

J. Fu, H. T. Dong, and W. Fang, “Subwavelength focusing of light by a tapered microtube,” Appl. Phys. Lett. 97(4), 041114 (2010).
[Crossref]

Y. Q. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91(6), 061124 (2007).
[Crossref]

X. Hao, X. Liu, C. Kuang, and Y. Li, “Far-field super-resolution imaging using near-field illumination by micro-fiber,” Appl. Phys. Lett. 102(1), 013104 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

Nano Lett. (1)

T. S. Kao, E. T. F. Rogers, J. Y. Ou, and N. I. Zheludev, “Digitally addressable focusing of light into a subwavelength hot spot,” Nano Lett. 12(6), 2728–2731 (2012).
[Crossref]

Nature (1)

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, and Y. k. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (3)

N. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62(16), 10696–10705 (2000).
[Crossref]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65(20), 201104 (2002).
[Crossref]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68(4), 045115 (2003).
[Crossref]

Phys. Rev. Lett. (4)

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens,” Phys. Rev. Lett. 91(20), 207401 (2003).
[Crossref]

K. Lindfors, T. Kalkbremer, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93(3), 037401 (2004).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref]

R. Gordon, “Proposal for Superfocusing at Visible Wavelengths Using Radiationless Interference of a Plasmonic Array,” Phys. Rev. Lett. 102(20), 207402 (2009).
[Crossref]

Sov . Phys.-Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Sov . Phys.-Usp. 10(4), 509–514 (1968).
[Crossref]

Other (1)

G. Altena, M. Dijkstra, G. V. Elzakker, G. Venhorst, H. J. W. M. Hoekstra, and P. V. Lambeck, “A Novel MOENS device: detection of MEMS movements using free-standing Si3N4 suspended optical waveguides,” presented at 8th Annual Symposium IEEE/LEOS Benelux Chapter 2003, Enschede, Netherlands, 25–28 Nov. 2003.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a)Several EFS contours in the first TE-polarized photonic band of the PC; (b) Relationship between incident angle and refraction angle at the same frequency.
Fig. 2.
Fig. 2. (a)The peak value of the image when gratings is added to the upper surface of PCs and 20% cut on the upper surface; (b) Half-width of the image when gratings is added to the upper surface of PCs and 20% cut on the upper surface; (c) Variables schematic diagram on the focusing system.
Fig. 3.
Fig. 3. (a) Light path of silicon lens with curvature radius 1.12R; (b) The half width of the spot; (c) Blue indicates dependence of the half width and black indicates the dependence of the focus to the exit face when the radius XR changes from R to 8R.
Fig. 4.
Fig. 4. (a) The light path of the focusing system is incident at the position of L = 1.5µm; (b) the half-width of the focal spot. (c) When moving the silicon lens, the focus position is distributed; (d) The focal length and half width of the moving silicon lens change in the range of 4µm.