Abstract

We introduce the concept of a photonic Dirac monopole, appropriate for photonic crystals, metamaterials and 2D materials, by utilizing the Dirac-Maxwell correspondence. We start by exploring the vacuum where the reciprocal momentum space of both Maxwell’s equations and the massless Dirac equation (Weyl equation) possess a magnetic monopole. The critical distinction is the nature of magnetic monopole charges, which are integer valued for photons but half-integer for electrons. This inherent difference is directly tied to the spin and ultimately connects to the bosonic or fermionic behavior. We also show the presence of photonic Dirac strings, which are line singularities in the underlying Berry gauge potential. While the results in vacuum are intuitively expected, our central result is the application of this topological Dirac-Maxwell correspondence to 2D photonic (bosonic) materials, as opposed to conventional electronic (fermionic) materials. Intriguingly, within dispersive matter, the presence of photonic Dirac monopoles is captured by nonlocal quantum Hall conductivity–i.e., a spatiotemporally dispersive gyroelectric constant. For both 2D photonic and electronic media, the nontrivial topological phases emerge in the context of massive particles with broken time-reversal symmetry. However, the bulk dynamics of these bosonic and fermionic Chern insulators are characterized by spin-1 and spin-½ skyrmions in momentum space, which have fundamentally different interpretations. This is exemplified by their contrasting spin-1 and spin-½ helically quantized edge states. Our work sheds light on the recently proposed quantum gyroelectric phase of matter and the essential role of photon spin quantization in topological bosonic phases.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

22 February 2019: A typographical correction was made to the title.


OSA Recommended Articles
Photonics meets topology

Bi-Ye Xie, Hong-Fei Wang, Xue-Yi Zhu, Ming-Hui Lu, Z. D. Wang, and Yan-Feng Chen
Opt. Express 26(19) 24531-24550 (2018)

Directly probing the Chern number of the Haldane model in optical lattices

Rui-Bin Liu, Dong-Ling Deng, Dan-Wei Zhang, and Shi-Liang Zhu
J. Opt. Soc. Am. B 32(12) 2500-2506 (2015)

Tunable THz generalized Weyl points

Zhiping Yin, Fujia Chen, Kai Guo, Fei Shen, Keya Zhou, Jun Gao, Shutian Liu, and Zhongyi Guo
Opt. Express 27(2) 512-522 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. Dirac, “Quantised singularities in the electromagnetic field,” Proc. Royal Soc. Lond. A: Math. Phys. Eng. Sci. 133, 60–72 (1931).
    [Crossref]
  2. J. Preskill, “Magnetic monopoles,” Annu. Rev. Nucl. Part. Sci. 34, 461–530 (1984).
    [Crossref]
  3. D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized hall conductance in a two-dimensional periodic potential,” Phys. Rev. Lett. 49, 405–408 (1982).
    [Crossref]
  4. C. L. Kane and E. J. Mele, “𝕑2 topological order and the quantum spin hall effect,” Phys. Rev. Lett. 95, 146802 (2005).
    [Crossref]
  5. S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a weyl fermion semimetal and topological fermi arcs,” Science 349, 613–617 (2015).
    [Crossref] [PubMed]
  6. R. B. Laughlin, “Quantized hall conductivity in two dimensions,” Phys. Rev. B 23, 5632–5633 (1981).
    [Crossref]
  7. K. Osterloh, M. Baig, L. Santos, P. Zoller, and M. Lewenstein, “Cold atoms in non-abelian gauge potentials: From the hofstadter “moth” to lattice gauge theory,” Phys. Rev. Lett. 95, 010403 (2005).
    [Crossref]
  8. D. J. P. Morris, D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry, “Dirac strings and magnetic monopoles in the spin ice dy2ti2o7,” Science 326, 411–414 (2009).
    [Crossref] [PubMed]
  9. S. Sugawa, F. Salces-Carcoba, A. R. Perry, Y. Yue, and I. B. Spielman, “Observation of a non-Abelian Yang Monopole: From New Chern Numbers to a Topological Transition,” arXiv:1610.06228 (2016).
  10. H. Kedia, I. Bialynicki-Birula, D. Peralta-Salas, and W. T. M. Irvine, “Tying knots in light fields,” Phys. Rev. Lett. 111, 150404 (2013).
    [Crossref] [PubMed]
  11. M. Stone, “Berry phase and anomalous velocity of weyl fermions and maxwell photons,” Int. J. Mod. Phys. B 30, 1550249 (2016).
    [Crossref]
  12. I. Bialynicki-Birula and Z. Bialynicka-Birula, “Uncertainty relation for photons,” Phys. Rev. Lett. 108, 140401 (2012).
    [Crossref] [PubMed]
  13. L. Lu, J. D. Joannopoulos, and M. Soljacic, “Topological photonics,” Nat Photon 8, 821–829 (2014). Review.
    [Crossref]
  14. M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic floquet topological insulators,” Nature 496, 196–200 (2013). Letter.
    [Crossref] [PubMed]
  15. A. B. Khanikaev, S. Hossein Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat Mater 12, 233–239 (2013).
    [Crossref]
  16. K. Ding, G. Ma, M. Xiao, Z. Q. Zhang, and C. T. Chan, “Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization,” Phys. Rev. X 6, 021007 (2016).
  17. H. Wang, L. Xu, H. Chen, and J.-H. Jiang, “Three-dimensional photonic dirac points stabilized by point group symmetry,” Phys. Rev. B 93, 235155 (2016).
    [Crossref]
  18. M. G. Silveirinha, “Chern invariants for continuous media,” Phys. Rev. B 92, 125153 (2015).
    [Crossref]
  19. S. Raghu and F. D. M. Haldane, “Analogs of quantum-hall-effect edge states in photonic crystals,” Phys. Rev. A 78, 033834 (2008).
    [Crossref]
  20. F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008).
    [Crossref] [PubMed]
  21. M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, “Imaging topological edge states in silicon photonics,” Nat Photon 7, 1001–1005 (2013). Article.
    [Crossref]
  22. Y. Guo, M. Xiao, and S. Fan, “Topologically protected complete polarization conversion,” Phys. Rev. Lett. 119, 167401 (2017).
    [Crossref] [PubMed]
  23. W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
    [Crossref] [PubMed]
  24. S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Reports 634, 1–72 (2016). Metasurfaces: From microwaves to visible.
    [Crossref]
  25. N. Papasimakis, Z. Luo, Z. X. Shen, F. D. Angelis, E. D. Fabrizio, A. E. Nikolaenko, and N. I. Zheludev, “Graphene in a photonic metamaterial,” Opt. Express 18, 8353–8359 (2010).
    [Crossref] [PubMed]
  26. F. D. M. Haldane, “Model for a quantum hall effect without landau levels: Condensed-matter realization of the “parity anomaly”,” Phys. Rev. Lett. 61, 2015–2018 (1988).
    [Crossref] [PubMed]
  27. L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, and M. Soljačić, “Experimental observation of weyl points,” Science 349, 622–624 (2015).
    [Crossref] [PubMed]
  28. W.-J. Chen, M. Xiao, and C. T. Chan, “Photonic crystals possessing multiple weyl points and the experimental observation of robust surface states,” Nat. Commun. 7, 13038 (2016). Article.
    [Crossref] [PubMed]
  29. B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal weyl points and helicoid surface states in artificial photonic crystal structures,” Science (2018).
    [Crossref]
  30. L. Wang, S.-K. Jian, and H. Yao, “Topological photonic crystal with equifrequency weyl points,” Phys. Rev. A 93, 061801 (2016).
    [Crossref]
  31. H. Hu and C. Zhang, “Spin-1 topological monopoles in the parameter space of ultracold atoms,” Phys. Rev. A 98, 013627 (2018).
    [Crossref]
  32. T. Van Mechelen and Z. Jacob, “Quantum gyroelectric effect: Photon spin-1 quantization in continuum topological bosonic phases,” Phys. Rev. A 98, 023842 (2018).
    [Crossref]
  33. T. Van Mechelen and Z. Jacob, “Dirac-Maxwell correspondence: Spin-1 bosonic topological insulator,” arXiv:1708.08192 (2017).
  34. D. Chruscinski and A. Jamiolkowski, Geometric Phases in Classical and Quantum Mechanics, Progress in Mathematical Physics (BirkhäuserBasel, 2004).
    [Crossref]
  35. I. Bialynicki-Birula and Z. Bialynicka-Birula, “Berry’s phase in the relativistic theory of spinning particles,” Phys. Rev. D 35, 2383–2387 (1987).
    [Crossref]
  36. L.-k. Shi and J. C. W. Song, “Plasmon geometric phase and plasmon hall shift,” Phys. Rev. X 8, 021020 (2018).
  37. P. A. D. Gonçalves, L. P. Bertelsen, S. Xiao, and N. A. Mortensen, “Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces,” Phys. Rev. B 97, 041402 (2018).
    [Crossref]
  38. S. A. R. Horsley, “Topology and the optical dirac equation,” Phys. Rev. A 98, 043837 (2018).
    [Crossref]
  39. S. M. Barnett, L. Allen, R. P. Cameron, C. R. Gilson, M. J. Padgett, F. C. Speirits, and A. M. Yao, “On the natures of the spin and orbital parts of optical angular momentum,” J. Opt. 18, 064004 (2016).
    [Crossref]
  40. O. E. Gawhary, T. Van Mechelen, and H. P. Urbach, “Role of radial charges on the angular momentum of electro-magnetic fields: Spin-3/2 light,” Phys. Rev. Lett. 121, 123202 (2018).
    [Crossref]
  41. B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological nature of optical bound states in the continuum,” Phys. Rev. Lett. 113, 257401 (2014).
    [Crossref]
  42. D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
    [Crossref] [PubMed]
  43. I. V. Lindell and A. H. Sihvola, “Realization of the pemc boundary,” IEEE Transactions on Antennas Propag. 53, 3012–3018 (2005).
    [Crossref]
  44. J. Li, C. Shen, A. Díaz-Rubio, S. A. Tretyakov, and S. A. Cummer, “Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts,” Nat. Commun. 9, 1342 (2018).
    [Crossref] [PubMed]
  45. Y.-M. Lu and A. Vishwanath, “Theory and classification of interacting integer topological phases in two dimensions: A chern-simons approach,” Phys. Rev. B 86, 125119 (2012).
    [Crossref]
  46. T. Senthil and M. Levin, “Integer quantum hall effect for bosons,” Phys. Rev. Lett. 110, 046801 (2013).
    [Crossref] [PubMed]
  47. M. A. Metlitski, C. L. Kane, and M. P. A. Fisher, “Bosonic topological insulator in three dimensions and the statistical witten effect,” Phys. Rev. B 88, 035131 (2013).
    [Crossref]
  48. A. Vishwanath and T. Senthil, “Physics of three-dimensional bosonic topological insulators: Surface-deconfined criticality and quantized magnetoelectric effect,” Phys. Rev. X 3, 011016 (2013).
  49. X. Chen, Z.-X. Liu, and X.-G. Wen, “Two-dimensional symmetry-protected topological orders and their protected gapless edge excitations,” Phys. Rev. B 84, 235141 (2011).
    [Crossref]
  50. X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, “Symmetry-protected topological orders in interacting bosonic systems,” Science 338, 1604–1606 (2012).
    [Crossref] [PubMed]
  51. M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
    [Crossref]
  52. J. H. Han, Skyrmions in Condensed Matter, Springer Tracts in Modern Physics (Springer International Publishing, 2017).
    [Crossref]
  53. N. Nagaosa and Y. Tokura, “Topological properties and dynamics of magnetic skyrmions,” Nat Nano 8, 899–911 (2013). Review.
    [Crossref]
  54. B. A. Bernevig and T. L. Hughes, Topological Insulators and Topological Superconductors (Princeton University Press, Princeton, NJ, 2013).
    [Crossref]
  55. S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. Lindner, and G. Bartal, “Optical skyrmion lattice in evanescent electromagnetic fields,” Science,  2018, aau0227 (2018).
    [Crossref]
  56. I. Bialynicki-Birula and Z. Bialynicka-Birula, “The role of the riemann-silberstein vector in classical and quantum theories of electromagnetism,” J. Phys. A: Math. Theor. 46, 053001 (2013).
    [Crossref]
  57. S. M. Barnett, “Optical dirac equation,” New J. Phys. 16, 093008 (2014).
    [Crossref]
  58. S. P. Martin, “A supersymmetry primer,” Perspectives on Supersymmetry pp. 1–98 (2011).
  59. S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108, 140405 (2012).
    [Crossref]
  60. C.-H. Park and N. Marzari, “Berry phase and pseudospin winding number in bilayer graphene,” Phys. Rev. B 84, 205440 (2011).
    [Crossref]
  61. K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum hall effect and berry’s phase of 2p in bilayer graphene,” Nat. Phys. 2, 177 (2006).
    [Crossref]
  62. R. Y. Chiao and Y.-S. Wu, “Manifestations of berry’s topological phase for the photon,” Phys. Rev. Lett. 57, 933–936 (1986).
    [Crossref]
  63. T. V. Mechelen and Z. Jacob, “Universal spin-momentum locking of evanescent waves,” Optica 3, 118–126 (2016).
    [Crossref]
  64. F. Kalhor, T. Thundat, and Z. Jacob, “Universal spin-momentum locked optical forces,” Appl. Phys. Lett. 108, 061102 (2016).
    [Crossref]
  65. S. Pendharker, F. Kalhor, T. V. Mechelen, S. Jahani, N. Nazemifard, T. Thundat, and Z. Jacob, “Spin photonic forces in non-reciprocal waveguides,” Opt. Express 26, 23898–23910 (2018).
    [Crossref]
  66. K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin hall effect of light,” Science 348, 1448–1451 (2015).
    [Crossref]
  67. W. Pauli, “The connection between spin and statistics,” Phys. Rev. 58, 716–722 (1940).
    [Crossref]
  68. N. Regnault and T. Senthil, “Microscopic model for the boson integer quantum hall effect,” Phys. Rev. B 88, 161106 (2013).
    [Crossref]
  69. G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, “Experimental realization of the topological haldane model with ultracold fermions,” Nature 515, 237 (2014).
    [Crossref]
  70. S.-Q. Shen, W.-Y. Shan, and H.-Z. Lu, “Topological insulator and the dirac equation,” in Spin, vol. 1 (World Scientific, 2011), pp. 33–44.
    [Crossref]
  71. Z. Zhu, Y. Cheng, and U. Schwingenschlögl, “Band inversion mechanism in topological insulators: A guideline for materials design,” Phys. Rev. B 85, 235401 (2012).
    [Crossref]
  72. A. F. Shinsei Ryu, Andreas P. Schnyder, and A. W. W. Ludwig, “Topological insulators and superconductors: tenfold way and dimensional hierarchy,” New J. Phys. 12, 065010 (2010).
    [Crossref]
  73. G. V. Dunne, “Aspects of chern-simons theory,” in Aspects topologiques de la physique en basse dimension. Topological aspects of low dimensional systems, A. Comtet, T. Jolicoeur, S. Ouvry, and F. David, eds. (Springer Berlin Heidelberg, Berlin, Heidelberg, 1999), pp. 177–263.
    [Crossref]
  74. D. Boyanovsky, R. Blankenbecler, and R. Yahalom, “Physical origin of topological mass in 2 + 1 dimensions,” Nucl. Phys. B 270, 483–505 (1986).
    [Crossref]
  75. E. H. Hall, “On a new action of the magnet on electric currents,” Am. J. Math. 2, 287–292 (1879).
    [Crossref]
  76. A. Tiwari, X. Chen, K. Shiozaki, and S. Ryu, “Bosonic topological phases of matter: Bulk-boundary correspondence, symmetry protected topological invariants, and gauging,” Phys. Rev. B 97, 245133 (2018).
    [Crossref]
  77. Y. Hatsugai, “Chern number and edge states in the integer quantum hall effect,” Phys. Rev. Lett. 71, 3697–3700 (1993).
    [Crossref]
  78. J. C. Avila, H. Schulz-Baldes, and C. Villegas-Blas, “Topological Invariants of Edge States for Periodic Two-Dimensional Models,” Math. Physics, Analysis Geom. 16, 137–170 (2013).
    [Crossref]
  79. Y. Oreg, G. Refael, and F. von Oppen, “Helical liquids and majorana bound states in quantum wires,” Phys. Rev. Lett. 105, 177002 (2010).
    [Crossref]

2018 (10)

L.-k. Shi and J. C. W. Song, “Plasmon geometric phase and plasmon hall shift,” Phys. Rev. X 8, 021020 (2018).

P. A. D. Gonçalves, L. P. Bertelsen, S. Xiao, and N. A. Mortensen, “Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces,” Phys. Rev. B 97, 041402 (2018).
[Crossref]

S. A. R. Horsley, “Topology and the optical dirac equation,” Phys. Rev. A 98, 043837 (2018).
[Crossref]

O. E. Gawhary, T. Van Mechelen, and H. P. Urbach, “Role of radial charges on the angular momentum of electro-magnetic fields: Spin-3/2 light,” Phys. Rev. Lett. 121, 123202 (2018).
[Crossref]

H. Hu and C. Zhang, “Spin-1 topological monopoles in the parameter space of ultracold atoms,” Phys. Rev. A 98, 013627 (2018).
[Crossref]

T. Van Mechelen and Z. Jacob, “Quantum gyroelectric effect: Photon spin-1 quantization in continuum topological bosonic phases,” Phys. Rev. A 98, 023842 (2018).
[Crossref]

J. Li, C. Shen, A. Díaz-Rubio, S. A. Tretyakov, and S. A. Cummer, “Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts,” Nat. Commun. 9, 1342 (2018).
[Crossref] [PubMed]

S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. Lindner, and G. Bartal, “Optical skyrmion lattice in evanescent electromagnetic fields,” Science,  2018, aau0227 (2018).
[Crossref]

A. Tiwari, X. Chen, K. Shiozaki, and S. Ryu, “Bosonic topological phases of matter: Bulk-boundary correspondence, symmetry protected topological invariants, and gauging,” Phys. Rev. B 97, 245133 (2018).
[Crossref]

S. Pendharker, F. Kalhor, T. V. Mechelen, S. Jahani, N. Nazemifard, T. Thundat, and Z. Jacob, “Spin photonic forces in non-reciprocal waveguides,” Opt. Express 26, 23898–23910 (2018).
[Crossref]

2017 (1)

Y. Guo, M. Xiao, and S. Fan, “Topologically protected complete polarization conversion,” Phys. Rev. Lett. 119, 167401 (2017).
[Crossref] [PubMed]

2016 (9)

K. Ding, G. Ma, M. Xiao, Z. Q. Zhang, and C. T. Chan, “Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization,” Phys. Rev. X 6, 021007 (2016).

H. Wang, L. Xu, H. Chen, and J.-H. Jiang, “Three-dimensional photonic dirac points stabilized by point group symmetry,” Phys. Rev. B 93, 235155 (2016).
[Crossref]

M. Stone, “Berry phase and anomalous velocity of weyl fermions and maxwell photons,” Int. J. Mod. Phys. B 30, 1550249 (2016).
[Crossref]

T. V. Mechelen and Z. Jacob, “Universal spin-momentum locking of evanescent waves,” Optica 3, 118–126 (2016).
[Crossref]

F. Kalhor, T. Thundat, and Z. Jacob, “Universal spin-momentum locked optical forces,” Appl. Phys. Lett. 108, 061102 (2016).
[Crossref]

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Reports 634, 1–72 (2016). Metasurfaces: From microwaves to visible.
[Crossref]

S. M. Barnett, L. Allen, R. P. Cameron, C. R. Gilson, M. J. Padgett, F. C. Speirits, and A. M. Yao, “On the natures of the spin and orbital parts of optical angular momentum,” J. Opt. 18, 064004 (2016).
[Crossref]

W.-J. Chen, M. Xiao, and C. T. Chan, “Photonic crystals possessing multiple weyl points and the experimental observation of robust surface states,” Nat. Commun. 7, 13038 (2016). Article.
[Crossref] [PubMed]

L. Wang, S.-K. Jian, and H. Yao, “Topological photonic crystal with equifrequency weyl points,” Phys. Rev. A 93, 061801 (2016).
[Crossref]

2015 (5)

L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, and M. Soljačić, “Experimental observation of weyl points,” Science 349, 622–624 (2015).
[Crossref] [PubMed]

K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin hall effect of light,” Science 348, 1448–1451 (2015).
[Crossref]

S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a weyl fermion semimetal and topological fermi arcs,” Science 349, 613–617 (2015).
[Crossref] [PubMed]

M. G. Silveirinha, “Chern invariants for continuous media,” Phys. Rev. B 92, 125153 (2015).
[Crossref]

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref] [PubMed]

2014 (4)

L. Lu, J. D. Joannopoulos, and M. Soljacic, “Topological photonics,” Nat Photon 8, 821–829 (2014). Review.
[Crossref]

G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, “Experimental realization of the topological haldane model with ultracold fermions,” Nature 515, 237 (2014).
[Crossref]

B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological nature of optical bound states in the continuum,” Phys. Rev. Lett. 113, 257401 (2014).
[Crossref]

S. M. Barnett, “Optical dirac equation,” New J. Phys. 16, 093008 (2014).
[Crossref]

2013 (11)

N. Nagaosa and Y. Tokura, “Topological properties and dynamics of magnetic skyrmions,” Nat Nano 8, 899–911 (2013). Review.
[Crossref]

I. Bialynicki-Birula and Z. Bialynicka-Birula, “The role of the riemann-silberstein vector in classical and quantum theories of electromagnetism,” J. Phys. A: Math. Theor. 46, 053001 (2013).
[Crossref]

T. Senthil and M. Levin, “Integer quantum hall effect for bosons,” Phys. Rev. Lett. 110, 046801 (2013).
[Crossref] [PubMed]

M. A. Metlitski, C. L. Kane, and M. P. A. Fisher, “Bosonic topological insulator in three dimensions and the statistical witten effect,” Phys. Rev. B 88, 035131 (2013).
[Crossref]

A. Vishwanath and T. Senthil, “Physics of three-dimensional bosonic topological insulators: Surface-deconfined criticality and quantized magnetoelectric effect,” Phys. Rev. X 3, 011016 (2013).

J. C. Avila, H. Schulz-Baldes, and C. Villegas-Blas, “Topological Invariants of Edge States for Periodic Two-Dimensional Models,” Math. Physics, Analysis Geom. 16, 137–170 (2013).
[Crossref]

N. Regnault and T. Senthil, “Microscopic model for the boson integer quantum hall effect,” Phys. Rev. B 88, 161106 (2013).
[Crossref]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic floquet topological insulators,” Nature 496, 196–200 (2013). Letter.
[Crossref] [PubMed]

A. B. Khanikaev, S. Hossein Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat Mater 12, 233–239 (2013).
[Crossref]

H. Kedia, I. Bialynicki-Birula, D. Peralta-Salas, and W. T. M. Irvine, “Tying knots in light fields,” Phys. Rev. Lett. 111, 150404 (2013).
[Crossref] [PubMed]

M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, “Imaging topological edge states in silicon photonics,” Nat Photon 7, 1001–1005 (2013). Article.
[Crossref]

2012 (5)

I. Bialynicki-Birula and Z. Bialynicka-Birula, “Uncertainty relation for photons,” Phys. Rev. Lett. 108, 140401 (2012).
[Crossref] [PubMed]

Z. Zhu, Y. Cheng, and U. Schwingenschlögl, “Band inversion mechanism in topological insulators: A guideline for materials design,” Phys. Rev. B 85, 235401 (2012).
[Crossref]

X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, “Symmetry-protected topological orders in interacting bosonic systems,” Science 338, 1604–1606 (2012).
[Crossref] [PubMed]

S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108, 140405 (2012).
[Crossref]

Y.-M. Lu and A. Vishwanath, “Theory and classification of interacting integer topological phases in two dimensions: A chern-simons approach,” Phys. Rev. B 86, 125119 (2012).
[Crossref]

2011 (2)

C.-H. Park and N. Marzari, “Berry phase and pseudospin winding number in bilayer graphene,” Phys. Rev. B 84, 205440 (2011).
[Crossref]

X. Chen, Z.-X. Liu, and X.-G. Wen, “Two-dimensional symmetry-protected topological orders and their protected gapless edge excitations,” Phys. Rev. B 84, 235141 (2011).
[Crossref]

2010 (4)

M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]

A. F. Shinsei Ryu, Andreas P. Schnyder, and A. W. W. Ludwig, “Topological insulators and superconductors: tenfold way and dimensional hierarchy,” New J. Phys. 12, 065010 (2010).
[Crossref]

Y. Oreg, G. Refael, and F. von Oppen, “Helical liquids and majorana bound states in quantum wires,” Phys. Rev. Lett. 105, 177002 (2010).
[Crossref]

N. Papasimakis, Z. Luo, Z. X. Shen, F. D. Angelis, E. D. Fabrizio, A. E. Nikolaenko, and N. I. Zheludev, “Graphene in a photonic metamaterial,” Opt. Express 18, 8353–8359 (2010).
[Crossref] [PubMed]

2009 (1)

D. J. P. Morris, D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry, “Dirac strings and magnetic monopoles in the spin ice dy2ti2o7,” Science 326, 411–414 (2009).
[Crossref] [PubMed]

2008 (3)

S. Raghu and F. D. M. Haldane, “Analogs of quantum-hall-effect edge states in photonic crystals,” Phys. Rev. A 78, 033834 (2008).
[Crossref]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008).
[Crossref] [PubMed]

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[Crossref] [PubMed]

2006 (1)

K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum hall effect and berry’s phase of 2p in bilayer graphene,” Nat. Phys. 2, 177 (2006).
[Crossref]

2005 (3)

C. L. Kane and E. J. Mele, “𝕑2 topological order and the quantum spin hall effect,” Phys. Rev. Lett. 95, 146802 (2005).
[Crossref]

I. V. Lindell and A. H. Sihvola, “Realization of the pemc boundary,” IEEE Transactions on Antennas Propag. 53, 3012–3018 (2005).
[Crossref]

K. Osterloh, M. Baig, L. Santos, P. Zoller, and M. Lewenstein, “Cold atoms in non-abelian gauge potentials: From the hofstadter “moth” to lattice gauge theory,” Phys. Rev. Lett. 95, 010403 (2005).
[Crossref]

1993 (1)

Y. Hatsugai, “Chern number and edge states in the integer quantum hall effect,” Phys. Rev. Lett. 71, 3697–3700 (1993).
[Crossref]

1988 (1)

F. D. M. Haldane, “Model for a quantum hall effect without landau levels: Condensed-matter realization of the “parity anomaly”,” Phys. Rev. Lett. 61, 2015–2018 (1988).
[Crossref] [PubMed]

1987 (1)

I. Bialynicki-Birula and Z. Bialynicka-Birula, “Berry’s phase in the relativistic theory of spinning particles,” Phys. Rev. D 35, 2383–2387 (1987).
[Crossref]

1986 (2)

R. Y. Chiao and Y.-S. Wu, “Manifestations of berry’s topological phase for the photon,” Phys. Rev. Lett. 57, 933–936 (1986).
[Crossref]

D. Boyanovsky, R. Blankenbecler, and R. Yahalom, “Physical origin of topological mass in 2 + 1 dimensions,” Nucl. Phys. B 270, 483–505 (1986).
[Crossref]

1984 (1)

J. Preskill, “Magnetic monopoles,” Annu. Rev. Nucl. Part. Sci. 34, 461–530 (1984).
[Crossref]

1982 (1)

D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized hall conductance in a two-dimensional periodic potential,” Phys. Rev. Lett. 49, 405–408 (1982).
[Crossref]

1981 (1)

R. B. Laughlin, “Quantized hall conductivity in two dimensions,” Phys. Rev. B 23, 5632–5633 (1981).
[Crossref]

1940 (1)

W. Pauli, “The connection between spin and statistics,” Phys. Rev. 58, 716–722 (1940).
[Crossref]

1931 (1)

P. Dirac, “Quantised singularities in the electromagnetic field,” Proc. Royal Soc. Lond. A: Math. Phys. Eng. Sci. 133, 60–72 (1931).
[Crossref]

1879 (1)

E. H. Hall, “On a new action of the magnet on electric currents,” Am. J. Math. 2, 287–292 (1879).
[Crossref]

Alidoust, N.

S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a weyl fermion semimetal and topological fermi arcs,” Science 349, 613–617 (2015).
[Crossref] [PubMed]

Allen, L.

S. M. Barnett, L. Allen, R. P. Cameron, C. R. Gilson, M. J. Padgett, F. C. Speirits, and A. M. Yao, “On the natures of the spin and orbital parts of optical angular momentum,” J. Opt. 18, 064004 (2016).
[Crossref]

Angelis, F. D.

Avila, J. C.

J. C. Avila, H. Schulz-Baldes, and C. Villegas-Blas, “Topological Invariants of Edge States for Periodic Two-Dimensional Models,” Math. Physics, Analysis Geom. 16, 137–170 (2013).
[Crossref]

Baig, M.

K. Osterloh, M. Baig, L. Santos, P. Zoller, and M. Lewenstein, “Cold atoms in non-abelian gauge potentials: From the hofstadter “moth” to lattice gauge theory,” Phys. Rev. Lett. 95, 010403 (2005).
[Crossref]

Bansil, A.

S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a weyl fermion semimetal and topological fermi arcs,” Science 349, 613–617 (2015).
[Crossref] [PubMed]

Barnett, S. M.

S. M. Barnett, L. Allen, R. P. Cameron, C. R. Gilson, M. J. Padgett, F. C. Speirits, and A. M. Yao, “On the natures of the spin and orbital parts of optical angular momentum,” J. Opt. 18, 064004 (2016).
[Crossref]

S. M. Barnett, “Optical dirac equation,” New J. Phys. 16, 093008 (2014).
[Crossref]

Barr, L. E.

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal weyl points and helicoid surface states in artificial photonic crystal structures,” Science (2018).
[Crossref]

Bartal, G.

S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. Lindner, and G. Bartal, “Optical skyrmion lattice in evanescent electromagnetic fields,” Science,  2018, aau0227 (2018).
[Crossref]

Belopolski, I.

S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a weyl fermion semimetal and topological fermi arcs,” Science 349, 613–617 (2015).
[Crossref] [PubMed]

Belov, P. A.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Reports 634, 1–72 (2016). Metasurfaces: From microwaves to visible.
[Crossref]

Béri, B.

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref] [PubMed]

Bernevig, B. A.

B. A. Bernevig and T. L. Hughes, Topological Insulators and Topological Superconductors (Princeton University Press, Princeton, NJ, 2013).
[Crossref]

Bertelsen, L. P.

P. A. D. Gonçalves, L. P. Bertelsen, S. Xiao, and N. A. Mortensen, “Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces,” Phys. Rev. B 97, 041402 (2018).
[Crossref]

Bialynicka-Birula, Z.

I. Bialynicki-Birula and Z. Bialynicka-Birula, “The role of the riemann-silberstein vector in classical and quantum theories of electromagnetism,” J. Phys. A: Math. Theor. 46, 053001 (2013).
[Crossref]

I. Bialynicki-Birula and Z. Bialynicka-Birula, “Uncertainty relation for photons,” Phys. Rev. Lett. 108, 140401 (2012).
[Crossref] [PubMed]

I. Bialynicki-Birula and Z. Bialynicka-Birula, “Berry’s phase in the relativistic theory of spinning particles,” Phys. Rev. D 35, 2383–2387 (1987).
[Crossref]

Bialynicki-Birula, I.

I. Bialynicki-Birula and Z. Bialynicka-Birula, “The role of the riemann-silberstein vector in classical and quantum theories of electromagnetism,” J. Phys. A: Math. Theor. 46, 053001 (2013).
[Crossref]

H. Kedia, I. Bialynicki-Birula, D. Peralta-Salas, and W. T. M. Irvine, “Tying knots in light fields,” Phys. Rev. Lett. 111, 150404 (2013).
[Crossref] [PubMed]

I. Bialynicki-Birula and Z. Bialynicka-Birula, “Uncertainty relation for photons,” Phys. Rev. Lett. 108, 140401 (2012).
[Crossref] [PubMed]

I. Bialynicki-Birula and Z. Bialynicka-Birula, “Berry’s phase in the relativistic theory of spinning particles,” Phys. Rev. D 35, 2383–2387 (1987).
[Crossref]

Bian, G.

S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a weyl fermion semimetal and topological fermi arcs,” Science 349, 613–617 (2015).
[Crossref] [PubMed]

Blankenbecler, R.

D. Boyanovsky, R. Blankenbecler, and R. Yahalom, “Physical origin of topological mass in 2 + 1 dimensions,” Nucl. Phys. B 270, 483–505 (1986).
[Crossref]

Bliokh, K. Y.

K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin hall effect of light,” Science 348, 1448–1451 (2015).
[Crossref]

Borisov, A. G.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[Crossref] [PubMed]

Boyanovsky, D.

D. Boyanovsky, R. Blankenbecler, and R. Yahalom, “Physical origin of topological mass in 2 + 1 dimensions,” Nucl. Phys. B 270, 483–505 (1986).
[Crossref]

Cameron, R. P.

S. M. Barnett, L. Allen, R. P. Cameron, C. R. Gilson, M. J. Padgett, F. C. Speirits, and A. M. Yao, “On the natures of the spin and orbital parts of optical angular momentum,” J. Opt. 18, 064004 (2016).
[Crossref]

Castelnovo, C.

D. J. P. Morris, D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry, “Dirac strings and magnetic monopoles in the spin ice dy2ti2o7,” Science 326, 411–414 (2009).
[Crossref] [PubMed]

Chan, C. T.

K. Ding, G. Ma, M. Xiao, Z. Q. Zhang, and C. T. Chan, “Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization,” Phys. Rev. X 6, 021007 (2016).

W.-J. Chen, M. Xiao, and C. T. Chan, “Photonic crystals possessing multiple weyl points and the experimental observation of robust surface states,” Nat. Commun. 7, 13038 (2016). Article.
[Crossref] [PubMed]

Chang, G.

S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a weyl fermion semimetal and topological fermi arcs,” Science 349, 613–617 (2015).
[Crossref] [PubMed]

Chen, H.

H. Wang, L. Xu, H. Chen, and J.-H. Jiang, “Three-dimensional photonic dirac points stabilized by point group symmetry,” Phys. Rev. B 93, 235155 (2016).
[Crossref]

Chen, J.

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal weyl points and helicoid surface states in artificial photonic crystal structures,” Science (2018).
[Crossref]

Chen, W.-J.

W.-J. Chen, M. Xiao, and C. T. Chan, “Photonic crystals possessing multiple weyl points and the experimental observation of robust surface states,” Nat. Commun. 7, 13038 (2016). Article.
[Crossref] [PubMed]

Chen, X.

A. Tiwari, X. Chen, K. Shiozaki, and S. Ryu, “Bosonic topological phases of matter: Bulk-boundary correspondence, symmetry protected topological invariants, and gauging,” Phys. Rev. B 97, 245133 (2018).
[Crossref]

X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, “Symmetry-protected topological orders in interacting bosonic systems,” Science 338, 1604–1606 (2012).
[Crossref] [PubMed]

X. Chen, Z.-X. Liu, and X.-G. Wen, “Two-dimensional symmetry-protected topological orders and their protected gapless edge excitations,” Phys. Rev. B 84, 235141 (2011).
[Crossref]

Cheng, Y.

Z. Zhu, Y. Cheng, and U. Schwingenschlögl, “Band inversion mechanism in topological insulators: A guideline for materials design,” Phys. Rev. B 85, 235401 (2012).
[Crossref]

Chiao, R. Y.

R. Y. Chiao and Y.-S. Wu, “Manifestations of berry’s topological phase for the photon,” Phys. Rev. Lett. 57, 933–936 (1986).
[Crossref]

Chou, F.

S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a weyl fermion semimetal and topological fermi arcs,” Science 349, 613–617 (2015).
[Crossref] [PubMed]

Chruscinski, D.

D. Chruscinski and A. Jamiolkowski, Geometric Phases in Classical and Quantum Mechanics, Progress in Mathematical Physics (BirkhäuserBasel, 2004).
[Crossref]

Cohen, K.

S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. Lindner, and G. Bartal, “Optical skyrmion lattice in evanescent electromagnetic fields,” Science,  2018, aau0227 (2018).
[Crossref]

Cummer, S. A.

J. Li, C. Shen, A. Díaz-Rubio, S. A. Tretyakov, and S. A. Cummer, “Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts,” Nat. Commun. 9, 1342 (2018).
[Crossref] [PubMed]

Czternasty, C.

D. J. P. Morris, D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry, “Dirac strings and magnetic monopoles in the spin ice dy2ti2o7,” Science 326, 411–414 (2009).
[Crossref] [PubMed]

den Nijs, M.

D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized hall conductance in a two-dimensional periodic potential,” Phys. Rev. Lett. 49, 405–408 (1982).
[Crossref]

Desbuquois, R.

G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, “Experimental realization of the topological haldane model with ultracold fermions,” Nature 515, 237 (2014).
[Crossref]

Díaz-Rubio, A.

J. Li, C. Shen, A. Díaz-Rubio, S. A. Tretyakov, and S. A. Cummer, “Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts,” Nat. Commun. 9, 1342 (2018).
[Crossref] [PubMed]

Ding, K.

K. Ding, G. Ma, M. Xiao, Z. Q. Zhang, and C. T. Chan, “Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization,” Phys. Rev. X 6, 021007 (2016).

Dirac, P.

P. Dirac, “Quantised singularities in the electromagnetic field,” Proc. Royal Soc. Lond. A: Math. Phys. Eng. Sci. 133, 60–72 (1931).
[Crossref]

Dreisow, F.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic floquet topological insulators,” Nature 496, 196–200 (2013). Letter.
[Crossref] [PubMed]

Dunne, G. V.

G. V. Dunne, “Aspects of chern-simons theory,” in Aspects topologiques de la physique en basse dimension. Topological aspects of low dimensional systems, A. Comtet, T. Jolicoeur, S. Ouvry, and F. David, eds. (Springer Berlin Heidelberg, Berlin, Heidelberg, 1999), pp. 177–263.
[Crossref]

Esslinger, T.

G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, “Experimental realization of the topological haldane model with ultracold fermions,” Nature 515, 237 (2014).
[Crossref]

Fabrizio, E. D.

Fal’ko, V. I.

K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum hall effect and berry’s phase of 2p in bilayer graphene,” Nat. Phys. 2, 177 (2006).
[Crossref]

Fan, J.

M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, “Imaging topological edge states in silicon photonics,” Nat Photon 7, 1001–1005 (2013). Article.
[Crossref]

Fan, S.

Y. Guo, M. Xiao, and S. Fan, “Topologically protected complete polarization conversion,” Phys. Rev. Lett. 119, 167401 (2017).
[Crossref] [PubMed]

Fang, C.

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal weyl points and helicoid surface states in artificial photonic crystal structures,” Science (2018).
[Crossref]

Fang, F.

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref] [PubMed]

Fisher, M. P. A.

M. A. Metlitski, C. L. Kane, and M. P. A. Fisher, “Bosonic topological insulator in three dimensions and the statistical witten effect,” Phys. Rev. B 88, 035131 (2013).
[Crossref]

Fu, L.

L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, and M. Soljačić, “Experimental observation of weyl points,” Science 349, 622–624 (2015).
[Crossref] [PubMed]

Gao, W.

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref] [PubMed]

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal weyl points and helicoid surface states in artificial photonic crystal structures,” Science (2018).
[Crossref]

Gawhary, O. E.

O. E. Gawhary, T. Van Mechelen, and H. P. Urbach, “Role of radial charges on the angular momentum of electro-magnetic fields: Spin-3/2 light,” Phys. Rev. Lett. 121, 123202 (2018).
[Crossref]

Geim, A. K.

K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum hall effect and berry’s phase of 2p in bilayer graphene,” Nat. Phys. 2, 177 (2006).
[Crossref]

Gerischer, S.

D. J. P. Morris, D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry, “Dirac strings and magnetic monopoles in the spin ice dy2ti2o7,” Science 326, 411–414 (2009).
[Crossref] [PubMed]

Gilson, C. R.

S. M. Barnett, L. Allen, R. P. Cameron, C. R. Gilson, M. J. Padgett, F. C. Speirits, and A. M. Yao, “On the natures of the spin and orbital parts of optical angular momentum,” J. Opt. 18, 064004 (2016).
[Crossref]

Gjonaj, B.

S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. Lindner, and G. Bartal, “Optical skyrmion lattice in evanescent electromagnetic fields,” Science,  2018, aau0227 (2018).
[Crossref]

Glybovski, S. B.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Reports 634, 1–72 (2016). Metasurfaces: From microwaves to visible.
[Crossref]

Gonçalves, P. A. D.

P. A. D. Gonçalves, L. P. Bertelsen, S. Xiao, and N. A. Mortensen, “Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces,” Phys. Rev. B 97, 041402 (2018).
[Crossref]

Greif, D.

G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, “Experimental realization of the topological haldane model with ultracold fermions,” Nature 515, 237 (2014).
[Crossref]

Grigera, S. A.

D. J. P. Morris, D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry, “Dirac strings and magnetic monopoles in the spin ice dy2ti2o7,” Science 326, 411–414 (2009).
[Crossref] [PubMed]

Gu, Z.-C.

X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, “Symmetry-protected topological orders in interacting bosonic systems,” Science 338, 1604–1606 (2012).
[Crossref] [PubMed]

Guo, Q.

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal weyl points and helicoid surface states in artificial photonic crystal structures,” Science (2018).
[Crossref]

Guo, Y.

Y. Guo, M. Xiao, and S. Fan, “Topologically protected complete polarization conversion,” Phys. Rev. Lett. 119, 167401 (2017).
[Crossref] [PubMed]

Hafezi, M.

M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, “Imaging topological edge states in silicon photonics,” Nat Photon 7, 1001–1005 (2013). Article.
[Crossref]

Haldane, F. D. M.

S. Raghu and F. D. M. Haldane, “Analogs of quantum-hall-effect edge states in photonic crystals,” Phys. Rev. A 78, 033834 (2008).
[Crossref]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008).
[Crossref] [PubMed]

F. D. M. Haldane, “Model for a quantum hall effect without landau levels: Condensed-matter realization of the “parity anomaly”,” Phys. Rev. Lett. 61, 2015–2018 (1988).
[Crossref] [PubMed]

Hall, E. H.

E. H. Hall, “On a new action of the magnet on electric currents,” Am. J. Math. 2, 287–292 (1879).
[Crossref]

Han, J. H.

J. H. Han, Skyrmions in Condensed Matter, Springer Tracts in Modern Physics (Springer International Publishing, 2017).
[Crossref]

Hasan, M. Z.

S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a weyl fermion semimetal and topological fermi arcs,” Science 349, 613–617 (2015).
[Crossref] [PubMed]

M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]

Hatsugai, Y.

Y. Hatsugai, “Chern number and edge states in the integer quantum hall effect,” Phys. Rev. Lett. 71, 3697–3700 (1993).
[Crossref]

Hibbins, A.

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal weyl points and helicoid surface states in artificial photonic crystal structures,” Science (2018).
[Crossref]

Hoffmann, J.-U.

D. J. P. Morris, D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry, “Dirac strings and magnetic monopoles in the spin ice dy2ti2o7,” Science 326, 411–414 (2009).
[Crossref] [PubMed]

Horsley, S. A. R.

S. A. R. Horsley, “Topology and the optical dirac equation,” Phys. Rev. A 98, 043837 (2018).
[Crossref]

Hossein Mousavi, S.

A. B. Khanikaev, S. Hossein Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat Mater 12, 233–239 (2013).
[Crossref]

Hsu, C. W.

B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological nature of optical bound states in the continuum,” Phys. Rev. Lett. 113, 257401 (2014).
[Crossref]

Hu, H.

H. Hu and C. Zhang, “Spin-1 topological monopoles in the parameter space of ultracold atoms,” Phys. Rev. A 98, 013627 (2018).
[Crossref]

Huang, S.-M.

S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a weyl fermion semimetal and topological fermi arcs,” Science 349, 613–617 (2015).
[Crossref] [PubMed]

Hughes, T. L.

B. A. Bernevig and T. L. Hughes, Topological Insulators and Topological Superconductors (Princeton University Press, Princeton, NJ, 2013).
[Crossref]

Irvine, W. T. M.

H. Kedia, I. Bialynicki-Birula, D. Peralta-Salas, and W. T. M. Irvine, “Tying knots in light fields,” Phys. Rev. Lett. 111, 150404 (2013).
[Crossref] [PubMed]

Jacob, Z.

T. Van Mechelen and Z. Jacob, “Quantum gyroelectric effect: Photon spin-1 quantization in continuum topological bosonic phases,” Phys. Rev. A 98, 023842 (2018).
[Crossref]

S. Pendharker, F. Kalhor, T. V. Mechelen, S. Jahani, N. Nazemifard, T. Thundat, and Z. Jacob, “Spin photonic forces in non-reciprocal waveguides,” Opt. Express 26, 23898–23910 (2018).
[Crossref]

T. V. Mechelen and Z. Jacob, “Universal spin-momentum locking of evanescent waves,” Optica 3, 118–126 (2016).
[Crossref]

F. Kalhor, T. Thundat, and Z. Jacob, “Universal spin-momentum locked optical forces,” Appl. Phys. Lett. 108, 061102 (2016).
[Crossref]

T. Van Mechelen and Z. Jacob, “Dirac-Maxwell correspondence: Spin-1 bosonic topological insulator,” arXiv:1708.08192 (2017).

Jahani, S.

Jamiolkowski, A.

D. Chruscinski and A. Jamiolkowski, Geometric Phases in Classical and Quantum Mechanics, Progress in Mathematical Physics (BirkhäuserBasel, 2004).
[Crossref]

Jia, S.

S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a weyl fermion semimetal and topological fermi arcs,” Science 349, 613–617 (2015).
[Crossref] [PubMed]

Jian, S.-K.

L. Wang, S.-K. Jian, and H. Yao, “Topological photonic crystal with equifrequency weyl points,” Phys. Rev. A 93, 061801 (2016).
[Crossref]

Jiang, D.

K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum hall effect and berry’s phase of 2p in bilayer graphene,” Nat. Phys. 2, 177 (2006).
[Crossref]

Jiang, J.-H.

H. Wang, L. Xu, H. Chen, and J.-H. Jiang, “Three-dimensional photonic dirac points stabilized by point group symmetry,” Phys. Rev. B 93, 235155 (2016).
[Crossref]

Joannopoulos, J. D.

L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, and M. Soljačić, “Experimental observation of weyl points,” Science 349, 622–624 (2015).
[Crossref] [PubMed]

L. Lu, J. D. Joannopoulos, and M. Soljacic, “Topological photonics,” Nat Photon 8, 821–829 (2014). Review.
[Crossref]

Jotzu, G.

G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, “Experimental realization of the topological haldane model with ultracold fermions,” Nature 515, 237 (2014).
[Crossref]

Kalhor, F.

Kane, C. L.

M. A. Metlitski, C. L. Kane, and M. P. A. Fisher, “Bosonic topological insulator in three dimensions and the statistical witten effect,” Phys. Rev. B 88, 035131 (2013).
[Crossref]

S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108, 140405 (2012).
[Crossref]

M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]

C. L. Kane and E. J. Mele, “𝕑2 topological order and the quantum spin hall effect,” Phys. Rev. Lett. 95, 146802 (2005).
[Crossref]

Kargarian, M.

A. B. Khanikaev, S. Hossein Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat Mater 12, 233–239 (2013).
[Crossref]

Katsnelson, M. I.

K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum hall effect and berry’s phase of 2p in bilayer graphene,” Nat. Phys. 2, 177 (2006).
[Crossref]

Kedia, H.

H. Kedia, I. Bialynicki-Birula, D. Peralta-Salas, and W. T. M. Irvine, “Tying knots in light fields,” Phys. Rev. Lett. 111, 150404 (2013).
[Crossref] [PubMed]

Khanikaev, A. B.

A. B. Khanikaev, S. Hossein Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat Mater 12, 233–239 (2013).
[Crossref]

Kiefer, K.

D. J. P. Morris, D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry, “Dirac strings and magnetic monopoles in the spin ice dy2ti2o7,” Science 326, 411–414 (2009).
[Crossref] [PubMed]

Kivshar, Y. S.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Reports 634, 1–72 (2016). Metasurfaces: From microwaves to visible.
[Crossref]

Klemke, B.

D. J. P. Morris, D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry, “Dirac strings and magnetic monopoles in the spin ice dy2ti2o7,” Science 326, 411–414 (2009).
[Crossref] [PubMed]

Kohmoto, M.

D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized hall conductance in a two-dimensional periodic potential,” Phys. Rev. Lett. 49, 405–408 (1982).
[Crossref]

Laughlin, R. B.

R. B. Laughlin, “Quantized hall conductivity in two dimensions,” Phys. Rev. B 23, 5632–5633 (1981).
[Crossref]

Lawrence, M.

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref] [PubMed]

Lebrat, M.

G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, “Experimental realization of the topological haldane model with ultracold fermions,” Nature 515, 237 (2014).
[Crossref]

Lee, C.-C.

S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a weyl fermion semimetal and topological fermi arcs,” Science 349, 613–617 (2015).
[Crossref] [PubMed]

Levin, M.

T. Senthil and M. Levin, “Integer quantum hall effect for bosons,” Phys. Rev. Lett. 110, 046801 (2013).
[Crossref] [PubMed]

Lewenstein, M.

K. Osterloh, M. Baig, L. Santos, P. Zoller, and M. Lewenstein, “Cold atoms in non-abelian gauge potentials: From the hofstadter “moth” to lattice gauge theory,” Phys. Rev. Lett. 95, 010403 (2005).
[Crossref]

Li, J.

J. Li, C. Shen, A. Díaz-Rubio, S. A. Tretyakov, and S. A. Cummer, “Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts,” Nat. Commun. 9, 1342 (2018).
[Crossref] [PubMed]

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref] [PubMed]

Lin, H.

S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a weyl fermion semimetal and topological fermi arcs,” Science 349, 613–617 (2015).
[Crossref] [PubMed]

Lindell, I. V.

I. V. Lindell and A. H. Sihvola, “Realization of the pemc boundary,” IEEE Transactions on Antennas Propag. 53, 3012–3018 (2005).
[Crossref]

Lindner, N.

S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. Lindner, and G. Bartal, “Optical skyrmion lattice in evanescent electromagnetic fields,” Science,  2018, aau0227 (2018).
[Crossref]

Liu, F.

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref] [PubMed]

Liu, H.

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal weyl points and helicoid surface states in artificial photonic crystal structures,” Science (2018).
[Crossref]

Liu, R.

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal weyl points and helicoid surface states in artificial photonic crystal structures,” Science (2018).
[Crossref]

Liu, Z.-X.

X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, “Symmetry-protected topological orders in interacting bosonic systems,” Science 338, 1604–1606 (2012).
[Crossref] [PubMed]

X. Chen, Z.-X. Liu, and X.-G. Wen, “Two-dimensional symmetry-protected topological orders and their protected gapless edge excitations,” Phys. Rev. B 84, 235141 (2011).
[Crossref]

Lu, H.-Z.

S.-Q. Shen, W.-Y. Shan, and H.-Z. Lu, “Topological insulator and the dirac equation,” in Spin, vol. 1 (World Scientific, 2011), pp. 33–44.
[Crossref]

Lu, L.

L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, and M. Soljačić, “Experimental observation of weyl points,” Science 349, 622–624 (2015).
[Crossref] [PubMed]

L. Lu, J. D. Joannopoulos, and M. Soljacic, “Topological photonics,” Nat Photon 8, 821–829 (2014). Review.
[Crossref]

B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological nature of optical bound states in the continuum,” Phys. Rev. Lett. 113, 257401 (2014).
[Crossref]

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal weyl points and helicoid surface states in artificial photonic crystal structures,” Science (2018).
[Crossref]

Lu, Y.-M.

Y.-M. Lu and A. Vishwanath, “Theory and classification of interacting integer topological phases in two dimensions: A chern-simons approach,” Phys. Rev. B 86, 125119 (2012).
[Crossref]

Ludwig, A. W. W.

A. F. Shinsei Ryu, Andreas P. Schnyder, and A. W. W. Ludwig, “Topological insulators and superconductors: tenfold way and dimensional hierarchy,” New J. Phys. 12, 065010 (2010).
[Crossref]

Lumer, Y.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic floquet topological insulators,” Nature 496, 196–200 (2013). Letter.
[Crossref] [PubMed]

Luo, Z.

Ma, G.

K. Ding, G. Ma, M. Xiao, Z. Q. Zhang, and C. T. Chan, “Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization,” Phys. Rev. X 6, 021007 (2016).

Ma, J.

S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a weyl fermion semimetal and topological fermi arcs,” Science 349, 613–617 (2015).
[Crossref] [PubMed]

MacDonald, A. H.

A. B. Khanikaev, S. Hossein Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat Mater 12, 233–239 (2013).
[Crossref]

Marinica, D. C.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[Crossref] [PubMed]

Martin, S. P.

S. P. Martin, “A supersymmetry primer,” Perspectives on Supersymmetry pp. 1–98 (2011).

Marzari, N.

C.-H. Park and N. Marzari, “Berry phase and pseudospin winding number in bilayer graphene,” Phys. Rev. B 84, 205440 (2011).
[Crossref]

McCann, E.

K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum hall effect and berry’s phase of 2p in bilayer graphene,” Nat. Phys. 2, 177 (2006).
[Crossref]

Mechelen, T. V.

Meissner, M.

D. J. P. Morris, D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry, “Dirac strings and magnetic monopoles in the spin ice dy2ti2o7,” Science 326, 411–414 (2009).
[Crossref] [PubMed]

Mele, E. J.

S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108, 140405 (2012).
[Crossref]

C. L. Kane and E. J. Mele, “𝕑2 topological order and the quantum spin hall effect,” Phys. Rev. Lett. 95, 146802 (2005).
[Crossref]

Messer, M.

G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, “Experimental realization of the topological haldane model with ultracold fermions,” Nature 515, 237 (2014).
[Crossref]

Metlitski, M. A.

M. A. Metlitski, C. L. Kane, and M. P. A. Fisher, “Bosonic topological insulator in three dimensions and the statistical witten effect,” Phys. Rev. B 88, 035131 (2013).
[Crossref]

Migdall, A.

M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, “Imaging topological edge states in silicon photonics,” Nat Photon 7, 1001–1005 (2013). Article.
[Crossref]

Mittal, S.

M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, “Imaging topological edge states in silicon photonics,” Nat Photon 7, 1001–1005 (2013). Article.
[Crossref]

Moessner, R.

D. J. P. Morris, D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry, “Dirac strings and magnetic monopoles in the spin ice dy2ti2o7,” Science 326, 411–414 (2009).
[Crossref] [PubMed]

Morozov, S. V.

K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum hall effect and berry’s phase of 2p in bilayer graphene,” Nat. Phys. 2, 177 (2006).
[Crossref]

Morris, D. J. P.

D. J. P. Morris, D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry, “Dirac strings and magnetic monopoles in the spin ice dy2ti2o7,” Science 326, 411–414 (2009).
[Crossref] [PubMed]

Mortensen, N. A.

P. A. D. Gonçalves, L. P. Bertelsen, S. Xiao, and N. A. Mortensen, “Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces,” Phys. Rev. B 97, 041402 (2018).
[Crossref]

Nagaosa, N.

N. Nagaosa and Y. Tokura, “Topological properties and dynamics of magnetic skyrmions,” Nat Nano 8, 899–911 (2013). Review.
[Crossref]

Nazemifard, N.

Neupane, M.

S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a weyl fermion semimetal and topological fermi arcs,” Science 349, 613–617 (2015).
[Crossref] [PubMed]

Nightingale, M. P.

D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized hall conductance in a two-dimensional periodic potential,” Phys. Rev. Lett. 49, 405–408 (1982).
[Crossref]

Nikolaenko, A. E.

Nolte, S.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic floquet topological insulators,” Nature 496, 196–200 (2013). Letter.
[Crossref] [PubMed]

Nori, F.

K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin hall effect of light,” Science 348, 1448–1451 (2015).
[Crossref]

Novoselov, K. S.

K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum hall effect and berry’s phase of 2p in bilayer graphene,” Nat. Phys. 2, 177 (2006).
[Crossref]

Oreg, Y.

Y. Oreg, G. Refael, and F. von Oppen, “Helical liquids and majorana bound states in quantum wires,” Phys. Rev. Lett. 105, 177002 (2010).
[Crossref]

Osterloh, K.

K. Osterloh, M. Baig, L. Santos, P. Zoller, and M. Lewenstein, “Cold atoms in non-abelian gauge potentials: From the hofstadter “moth” to lattice gauge theory,” Phys. Rev. Lett. 95, 010403 (2005).
[Crossref]

Ostrovsky, E.

S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. Lindner, and G. Bartal, “Optical skyrmion lattice in evanescent electromagnetic fields,” Science,  2018, aau0227 (2018).
[Crossref]

Padgett, M. J.

S. M. Barnett, L. Allen, R. P. Cameron, C. R. Gilson, M. J. Padgett, F. C. Speirits, and A. M. Yao, “On the natures of the spin and orbital parts of optical angular momentum,” J. Opt. 18, 064004 (2016).
[Crossref]

Papasimakis, N.

Park, C.-H.

C.-H. Park and N. Marzari, “Berry phase and pseudospin winding number in bilayer graphene,” Phys. Rev. B 84, 205440 (2011).
[Crossref]

Pauli, W.

W. Pauli, “The connection between spin and statistics,” Phys. Rev. 58, 716–722 (1940).
[Crossref]

Pendharker, S.

Peralta-Salas, D.

H. Kedia, I. Bialynicki-Birula, D. Peralta-Salas, and W. T. M. Irvine, “Tying knots in light fields,” Phys. Rev. Lett. 111, 150404 (2013).
[Crossref] [PubMed]

Perry, A. R.

S. Sugawa, F. Salces-Carcoba, A. R. Perry, Y. Yue, and I. B. Spielman, “Observation of a non-Abelian Yang Monopole: From New Chern Numbers to a Topological Transition,” arXiv:1610.06228 (2016).

Perry, R. S.

D. J. P. Morris, D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry, “Dirac strings and magnetic monopoles in the spin ice dy2ti2o7,” Science 326, 411–414 (2009).
[Crossref] [PubMed]

Plotnik, Y.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic floquet topological insulators,” Nature 496, 196–200 (2013). Letter.
[Crossref] [PubMed]

Podolsky, D.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic floquet topological insulators,” Nature 496, 196–200 (2013). Letter.
[Crossref] [PubMed]

Preskill, J.

J. Preskill, “Magnetic monopoles,” Annu. Rev. Nucl. Part. Sci. 34, 461–530 (1984).
[Crossref]

Raghu, S.

S. Raghu and F. D. M. Haldane, “Analogs of quantum-hall-effect edge states in photonic crystals,” Phys. Rev. A 78, 033834 (2008).
[Crossref]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008).
[Crossref] [PubMed]

Ran, L.

L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, and M. Soljačić, “Experimental observation of weyl points,” Science 349, 622–624 (2015).
[Crossref] [PubMed]

Rappe, A. M.

S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108, 140405 (2012).
[Crossref]

Rechtsman, M. C.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic floquet topological insulators,” Nature 496, 196–200 (2013). Letter.
[Crossref] [PubMed]

Refael, G.

Y. Oreg, G. Refael, and F. von Oppen, “Helical liquids and majorana bound states in quantum wires,” Phys. Rev. Lett. 105, 177002 (2010).
[Crossref]

Regnault, N.

N. Regnault and T. Senthil, “Microscopic model for the boson integer quantum hall effect,” Phys. Rev. B 88, 161106 (2013).
[Crossref]

Rule, K. C.

D. J. P. Morris, D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry, “Dirac strings and magnetic monopoles in the spin ice dy2ti2o7,” Science 326, 411–414 (2009).
[Crossref] [PubMed]

Ryu, S.

A. Tiwari, X. Chen, K. Shiozaki, and S. Ryu, “Bosonic topological phases of matter: Bulk-boundary correspondence, symmetry protected topological invariants, and gauging,” Phys. Rev. B 97, 245133 (2018).
[Crossref]

Salces-Carcoba, F.

S. Sugawa, F. Salces-Carcoba, A. R. Perry, Y. Yue, and I. B. Spielman, “Observation of a non-Abelian Yang Monopole: From New Chern Numbers to a Topological Transition,” arXiv:1610.06228 (2016).

Sanchez, D. S.

S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a weyl fermion semimetal and topological fermi arcs,” Science 349, 613–617 (2015).
[Crossref] [PubMed]

Sankar, R.

S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a weyl fermion semimetal and topological fermi arcs,” Science 349, 613–617 (2015).
[Crossref] [PubMed]

Santos, L.

K. Osterloh, M. Baig, L. Santos, P. Zoller, and M. Lewenstein, “Cold atoms in non-abelian gauge potentials: From the hofstadter “moth” to lattice gauge theory,” Phys. Rev. Lett. 95, 010403 (2005).
[Crossref]

Schedin, F.

K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum hall effect and berry’s phase of 2p in bilayer graphene,” Nat. Phys. 2, 177 (2006).
[Crossref]

Schnyder, Andreas P.

A. F. Shinsei Ryu, Andreas P. Schnyder, and A. W. W. Ludwig, “Topological insulators and superconductors: tenfold way and dimensional hierarchy,” New J. Phys. 12, 065010 (2010).
[Crossref]

Schulz-Baldes, H.

J. C. Avila, H. Schulz-Baldes, and C. Villegas-Blas, “Topological Invariants of Edge States for Periodic Two-Dimensional Models,” Math. Physics, Analysis Geom. 16, 137–170 (2013).
[Crossref]

Schwingenschlögl, U.

Z. Zhu, Y. Cheng, and U. Schwingenschlögl, “Band inversion mechanism in topological insulators: A guideline for materials design,” Phys. Rev. B 85, 235401 (2012).
[Crossref]

Segev, M.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic floquet topological insulators,” Nature 496, 196–200 (2013). Letter.
[Crossref] [PubMed]

Senthil, T.

N. Regnault and T. Senthil, “Microscopic model for the boson integer quantum hall effect,” Phys. Rev. B 88, 161106 (2013).
[Crossref]

A. Vishwanath and T. Senthil, “Physics of three-dimensional bosonic topological insulators: Surface-deconfined criticality and quantized magnetoelectric effect,” Phys. Rev. X 3, 011016 (2013).

T. Senthil and M. Levin, “Integer quantum hall effect for bosons,” Phys. Rev. Lett. 110, 046801 (2013).
[Crossref] [PubMed]

Shabanov, S. V.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[Crossref] [PubMed]

Shan, W.-Y.

S.-Q. Shen, W.-Y. Shan, and H.-Z. Lu, “Topological insulator and the dirac equation,” in Spin, vol. 1 (World Scientific, 2011), pp. 33–44.
[Crossref]

Shen, C.

J. Li, C. Shen, A. Díaz-Rubio, S. A. Tretyakov, and S. A. Cummer, “Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts,” Nat. Commun. 9, 1342 (2018).
[Crossref] [PubMed]

Shen, S.-Q.

S.-Q. Shen, W.-Y. Shan, and H.-Z. Lu, “Topological insulator and the dirac equation,” in Spin, vol. 1 (World Scientific, 2011), pp. 33–44.
[Crossref]

Shen, Z. X.

Shi, L.-k.

L.-k. Shi and J. C. W. Song, “Plasmon geometric phase and plasmon hall shift,” Phys. Rev. X 8, 021020 (2018).

Shibayev, P. P.

S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a weyl fermion semimetal and topological fermi arcs,” Science 349, 613–617 (2015).
[Crossref] [PubMed]

Shinsei Ryu, A. F.

A. F. Shinsei Ryu, Andreas P. Schnyder, and A. W. W. Ludwig, “Topological insulators and superconductors: tenfold way and dimensional hierarchy,” New J. Phys. 12, 065010 (2010).
[Crossref]

Shiozaki, K.

A. Tiwari, X. Chen, K. Shiozaki, and S. Ryu, “Bosonic topological phases of matter: Bulk-boundary correspondence, symmetry protected topological invariants, and gauging,” Phys. Rev. B 97, 245133 (2018).
[Crossref]

Shvets, G.

A. B. Khanikaev, S. Hossein Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat Mater 12, 233–239 (2013).
[Crossref]

Sihvola, A. H.

I. V. Lindell and A. H. Sihvola, “Realization of the pemc boundary,” IEEE Transactions on Antennas Propag. 53, 3012–3018 (2005).
[Crossref]

Silveirinha, M. G.

M. G. Silveirinha, “Chern invariants for continuous media,” Phys. Rev. B 92, 125153 (2015).
[Crossref]

Simovski, C. R.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Reports 634, 1–72 (2016). Metasurfaces: From microwaves to visible.
[Crossref]

Slobinsky, D.

D. J. P. Morris, D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry, “Dirac strings and magnetic monopoles in the spin ice dy2ti2o7,” Science 326, 411–414 (2009).
[Crossref] [PubMed]

Smirnova, D.

K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin hall effect of light,” Science 348, 1448–1451 (2015).
[Crossref]

Soljacic, M.

L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, and M. Soljačić, “Experimental observation of weyl points,” Science 349, 622–624 (2015).
[Crossref] [PubMed]

L. Lu, J. D. Joannopoulos, and M. Soljacic, “Topological photonics,” Nat Photon 8, 821–829 (2014). Review.
[Crossref]

B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological nature of optical bound states in the continuum,” Phys. Rev. Lett. 113, 257401 (2014).
[Crossref]

Song, J. C. W.

L.-k. Shi and J. C. W. Song, “Plasmon geometric phase and plasmon hall shift,” Phys. Rev. X 8, 021020 (2018).

Speirits, F. C.

S. M. Barnett, L. Allen, R. P. Cameron, C. R. Gilson, M. J. Padgett, F. C. Speirits, and A. M. Yao, “On the natures of the spin and orbital parts of optical angular momentum,” J. Opt. 18, 064004 (2016).
[Crossref]

Spielman, I. B.

S. Sugawa, F. Salces-Carcoba, A. R. Perry, Y. Yue, and I. B. Spielman, “Observation of a non-Abelian Yang Monopole: From New Chern Numbers to a Topological Transition,” arXiv:1610.06228 (2016).

Stone, A. D.

B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological nature of optical bound states in the continuum,” Phys. Rev. Lett. 113, 257401 (2014).
[Crossref]

Stone, M.

M. Stone, “Berry phase and anomalous velocity of weyl fermions and maxwell photons,” Int. J. Mod. Phys. B 30, 1550249 (2016).
[Crossref]

Sugawa, S.

S. Sugawa, F. Salces-Carcoba, A. R. Perry, Y. Yue, and I. B. Spielman, “Observation of a non-Abelian Yang Monopole: From New Chern Numbers to a Topological Transition,” arXiv:1610.06228 (2016).

Szameit, A.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic floquet topological insulators,” Nature 496, 196–200 (2013). Letter.
[Crossref] [PubMed]

Taylor, J. M.

M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, “Imaging topological edge states in silicon photonics,” Nat Photon 7, 1001–1005 (2013). Article.
[Crossref]

Tennant, D. A.

D. J. P. Morris, D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry, “Dirac strings and magnetic monopoles in the spin ice dy2ti2o7,” Science 326, 411–414 (2009).
[Crossref] [PubMed]

Teo, J. C. Y.

S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108, 140405 (2012).
[Crossref]

Thouless, D. J.

D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized hall conductance in a two-dimensional periodic potential,” Phys. Rev. Lett. 49, 405–408 (1982).
[Crossref]

Thundat, T.

Tiwari, A.

A. Tiwari, X. Chen, K. Shiozaki, and S. Ryu, “Bosonic topological phases of matter: Bulk-boundary correspondence, symmetry protected topological invariants, and gauging,” Phys. Rev. B 97, 245133 (2018).
[Crossref]

Tokura, Y.

N. Nagaosa and Y. Tokura, “Topological properties and dynamics of magnetic skyrmions,” Nat Nano 8, 899–911 (2013). Review.
[Crossref]

Tremain, B.

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal weyl points and helicoid surface states in artificial photonic crystal structures,” Science (2018).
[Crossref]

Tretyakov, S. A.

J. Li, C. Shen, A. Díaz-Rubio, S. A. Tretyakov, and S. A. Cummer, “Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts,” Nat. Commun. 9, 1342 (2018).
[Crossref] [PubMed]

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Reports 634, 1–72 (2016). Metasurfaces: From microwaves to visible.
[Crossref]

Tse, W.-K.

A. B. Khanikaev, S. Hossein Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat Mater 12, 233–239 (2013).
[Crossref]

Tsesses, S.

S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. Lindner, and G. Bartal, “Optical skyrmion lattice in evanescent electromagnetic fields,” Science,  2018, aau0227 (2018).
[Crossref]

Uehlinger, T.

G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, “Experimental realization of the topological haldane model with ultracold fermions,” Nature 515, 237 (2014).
[Crossref]

Urbach, H. P.

O. E. Gawhary, T. Van Mechelen, and H. P. Urbach, “Role of radial charges on the angular momentum of electro-magnetic fields: Spin-3/2 light,” Phys. Rev. Lett. 121, 123202 (2018).
[Crossref]

Van Mechelen, T.

O. E. Gawhary, T. Van Mechelen, and H. P. Urbach, “Role of radial charges on the angular momentum of electro-magnetic fields: Spin-3/2 light,” Phys. Rev. Lett. 121, 123202 (2018).
[Crossref]

T. Van Mechelen and Z. Jacob, “Quantum gyroelectric effect: Photon spin-1 quantization in continuum topological bosonic phases,” Phys. Rev. A 98, 023842 (2018).
[Crossref]

T. Van Mechelen and Z. Jacob, “Dirac-Maxwell correspondence: Spin-1 bosonic topological insulator,” arXiv:1708.08192 (2017).

Villegas-Blas, C.

J. C. Avila, H. Schulz-Baldes, and C. Villegas-Blas, “Topological Invariants of Edge States for Periodic Two-Dimensional Models,” Math. Physics, Analysis Geom. 16, 137–170 (2013).
[Crossref]

Vishwanath, A.

A. Vishwanath and T. Senthil, “Physics of three-dimensional bosonic topological insulators: Surface-deconfined criticality and quantized magnetoelectric effect,” Phys. Rev. X 3, 011016 (2013).

Y.-M. Lu and A. Vishwanath, “Theory and classification of interacting integer topological phases in two dimensions: A chern-simons approach,” Phys. Rev. B 86, 125119 (2012).
[Crossref]

von Oppen, F.

Y. Oreg, G. Refael, and F. von Oppen, “Helical liquids and majorana bound states in quantum wires,” Phys. Rev. Lett. 105, 177002 (2010).
[Crossref]

Wang, B.

S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a weyl fermion semimetal and topological fermi arcs,” Science 349, 613–617 (2015).
[Crossref] [PubMed]

Wang, H.

H. Wang, L. Xu, H. Chen, and J.-H. Jiang, “Three-dimensional photonic dirac points stabilized by point group symmetry,” Phys. Rev. B 93, 235155 (2016).
[Crossref]

Wang, L.

L. Wang, S.-K. Jian, and H. Yao, “Topological photonic crystal with equifrequency weyl points,” Phys. Rev. A 93, 061801 (2016).
[Crossref]

Wang, Z.

L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, and M. Soljačić, “Experimental observation of weyl points,” Science 349, 622–624 (2015).
[Crossref] [PubMed]

Wen, X.-G.

X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, “Symmetry-protected topological orders in interacting bosonic systems,” Science 338, 1604–1606 (2012).
[Crossref] [PubMed]

X. Chen, Z.-X. Liu, and X.-G. Wen, “Two-dimensional symmetry-protected topological orders and their protected gapless edge excitations,” Phys. Rev. B 84, 235141 (2011).
[Crossref]

Wu, Y.-S.

R. Y. Chiao and Y.-S. Wu, “Manifestations of berry’s topological phase for the photon,” Phys. Rev. Lett. 57, 933–936 (1986).
[Crossref]

Xiang, Y.

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal weyl points and helicoid surface states in artificial photonic crystal structures,” Science (2018).
[Crossref]

Xiao, M.

Y. Guo, M. Xiao, and S. Fan, “Topologically protected complete polarization conversion,” Phys. Rev. Lett. 119, 167401 (2017).
[Crossref] [PubMed]

K. Ding, G. Ma, M. Xiao, Z. Q. Zhang, and C. T. Chan, “Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization,” Phys. Rev. X 6, 021007 (2016).

W.-J. Chen, M. Xiao, and C. T. Chan, “Photonic crystals possessing multiple weyl points and the experimental observation of robust surface states,” Nat. Commun. 7, 13038 (2016). Article.
[Crossref] [PubMed]

Xiao, S.

P. A. D. Gonçalves, L. P. Bertelsen, S. Xiao, and N. A. Mortensen, “Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces,” Phys. Rev. B 97, 041402 (2018).
[Crossref]

Xu, L.

H. Wang, L. Xu, H. Chen, and J.-H. Jiang, “Three-dimensional photonic dirac points stabilized by point group symmetry,” Phys. Rev. B 93, 235155 (2016).
[Crossref]

Xu, S.-Y.

S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a weyl fermion semimetal and topological fermi arcs,” Science 349, 613–617 (2015).
[Crossref] [PubMed]

Yahalom, R.

D. Boyanovsky, R. Blankenbecler, and R. Yahalom, “Physical origin of topological mass in 2 + 1 dimensions,” Nucl. Phys. B 270, 483–505 (1986).
[Crossref]

Yan, Q.

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal weyl points and helicoid surface states in artificial photonic crystal structures,” Science (2018).
[Crossref]

Yang, B.

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref] [PubMed]

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal weyl points and helicoid surface states in artificial photonic crystal structures,” Science (2018).
[Crossref]

Yao, A. M.

S. M. Barnett, L. Allen, R. P. Cameron, C. R. Gilson, M. J. Padgett, F. C. Speirits, and A. M. Yao, “On the natures of the spin and orbital parts of optical angular momentum,” J. Opt. 18, 064004 (2016).
[Crossref]

Yao, H.

L. Wang, S.-K. Jian, and H. Yao, “Topological photonic crystal with equifrequency weyl points,” Phys. Rev. A 93, 061801 (2016).
[Crossref]

Ye, D.

L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, and M. Soljačić, “Experimental observation of weyl points,” Science 349, 622–624 (2015).
[Crossref] [PubMed]

Young, S. M.

S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108, 140405 (2012).
[Crossref]

Yuan, Z.

S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a weyl fermion semimetal and topological fermi arcs,” Science 349, 613–617 (2015).
[Crossref] [PubMed]

Yue, Y.

S. Sugawa, F. Salces-Carcoba, A. R. Perry, Y. Yue, and I. B. Spielman, “Observation of a non-Abelian Yang Monopole: From New Chern Numbers to a Topological Transition,” arXiv:1610.06228 (2016).

Zaheer, S.

S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108, 140405 (2012).
[Crossref]

Zeitler, U.

K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum hall effect and berry’s phase of 2p in bilayer graphene,” Nat. Phys. 2, 177 (2006).
[Crossref]

Zeuner, J. M.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic floquet topological insulators,” Nature 496, 196–200 (2013). Letter.
[Crossref] [PubMed]

Zhang, C.

H. Hu and C. Zhang, “Spin-1 topological monopoles in the parameter space of ultracold atoms,” Phys. Rev. A 98, 013627 (2018).
[Crossref]

S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a weyl fermion semimetal and topological fermi arcs,” Science 349, 613–617 (2015).
[Crossref] [PubMed]

Zhang, S.

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref] [PubMed]

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal weyl points and helicoid surface states in artificial photonic crystal structures,” Science (2018).
[Crossref]

Zhang, Z. Q.

K. Ding, G. Ma, M. Xiao, Z. Q. Zhang, and C. T. Chan, “Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization,” Phys. Rev. X 6, 021007 (2016).

Zheludev, N. I.

Zhen, B.

B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological nature of optical bound states in the continuum,” Phys. Rev. Lett. 113, 257401 (2014).
[Crossref]

Zheng, H.

S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a weyl fermion semimetal and topological fermi arcs,” Science 349, 613–617 (2015).
[Crossref] [PubMed]

Zhu, Z.

Z. Zhu, Y. Cheng, and U. Schwingenschlögl, “Band inversion mechanism in topological insulators: A guideline for materials design,” Phys. Rev. B 85, 235401 (2012).
[Crossref]

Zoller, P.

K. Osterloh, M. Baig, L. Santos, P. Zoller, and M. Lewenstein, “Cold atoms in non-abelian gauge potentials: From the hofstadter “moth” to lattice gauge theory,” Phys. Rev. Lett. 95, 010403 (2005).
[Crossref]

Am. J. Math. (1)

E. H. Hall, “On a new action of the magnet on electric currents,” Am. J. Math. 2, 287–292 (1879).
[Crossref]

Annu. Rev. Nucl. Part. Sci. (1)

J. Preskill, “Magnetic monopoles,” Annu. Rev. Nucl. Part. Sci. 34, 461–530 (1984).
[Crossref]

Appl. Phys. Lett. (1)

F. Kalhor, T. Thundat, and Z. Jacob, “Universal spin-momentum locked optical forces,” Appl. Phys. Lett. 108, 061102 (2016).
[Crossref]

IEEE Transactions on Antennas Propag. (1)

I. V. Lindell and A. H. Sihvola, “Realization of the pemc boundary,” IEEE Transactions on Antennas Propag. 53, 3012–3018 (2005).
[Crossref]

Int. J. Mod. Phys. B (1)

M. Stone, “Berry phase and anomalous velocity of weyl fermions and maxwell photons,” Int. J. Mod. Phys. B 30, 1550249 (2016).
[Crossref]

J. Opt. (1)

S. M. Barnett, L. Allen, R. P. Cameron, C. R. Gilson, M. J. Padgett, F. C. Speirits, and A. M. Yao, “On the natures of the spin and orbital parts of optical angular momentum,” J. Opt. 18, 064004 (2016).
[Crossref]

J. Phys. A: Math. Theor. (1)

I. Bialynicki-Birula and Z. Bialynicka-Birula, “The role of the riemann-silberstein vector in classical and quantum theories of electromagnetism,” J. Phys. A: Math. Theor. 46, 053001 (2013).
[Crossref]

Math. Physics, Analysis Geom. (1)

J. C. Avila, H. Schulz-Baldes, and C. Villegas-Blas, “Topological Invariants of Edge States for Periodic Two-Dimensional Models,” Math. Physics, Analysis Geom. 16, 137–170 (2013).
[Crossref]

Nat Mater (1)

A. B. Khanikaev, S. Hossein Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat Mater 12, 233–239 (2013).
[Crossref]

Nat Nano (1)

N. Nagaosa and Y. Tokura, “Topological properties and dynamics of magnetic skyrmions,” Nat Nano 8, 899–911 (2013). Review.
[Crossref]

Nat Photon (2)

L. Lu, J. D. Joannopoulos, and M. Soljacic, “Topological photonics,” Nat Photon 8, 821–829 (2014). Review.
[Crossref]

M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, “Imaging topological edge states in silicon photonics,” Nat Photon 7, 1001–1005 (2013). Article.
[Crossref]

Nat. Commun. (2)

W.-J. Chen, M. Xiao, and C. T. Chan, “Photonic crystals possessing multiple weyl points and the experimental observation of robust surface states,” Nat. Commun. 7, 13038 (2016). Article.
[Crossref] [PubMed]

J. Li, C. Shen, A. Díaz-Rubio, S. A. Tretyakov, and S. A. Cummer, “Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts,” Nat. Commun. 9, 1342 (2018).
[Crossref] [PubMed]

Nat. Phys. (1)

K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum hall effect and berry’s phase of 2p in bilayer graphene,” Nat. Phys. 2, 177 (2006).
[Crossref]

Nature (2)

G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, “Experimental realization of the topological haldane model with ultracold fermions,” Nature 515, 237 (2014).
[Crossref]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic floquet topological insulators,” Nature 496, 196–200 (2013). Letter.
[Crossref] [PubMed]

New J. Phys. (2)

S. M. Barnett, “Optical dirac equation,” New J. Phys. 16, 093008 (2014).
[Crossref]

A. F. Shinsei Ryu, Andreas P. Schnyder, and A. W. W. Ludwig, “Topological insulators and superconductors: tenfold way and dimensional hierarchy,” New J. Phys. 12, 065010 (2010).
[Crossref]

Nucl. Phys. B (1)

D. Boyanovsky, R. Blankenbecler, and R. Yahalom, “Physical origin of topological mass in 2 + 1 dimensions,” Nucl. Phys. B 270, 483–505 (1986).
[Crossref]

Opt. Express (2)

Optica (1)

Phys. Reports (1)

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Reports 634, 1–72 (2016). Metasurfaces: From microwaves to visible.
[Crossref]

Phys. Rev. (1)

W. Pauli, “The connection between spin and statistics,” Phys. Rev. 58, 716–722 (1940).
[Crossref]

Phys. Rev. A (5)

S. A. R. Horsley, “Topology and the optical dirac equation,” Phys. Rev. A 98, 043837 (2018).
[Crossref]

S. Raghu and F. D. M. Haldane, “Analogs of quantum-hall-effect edge states in photonic crystals,” Phys. Rev. A 78, 033834 (2008).
[Crossref]

L. Wang, S.-K. Jian, and H. Yao, “Topological photonic crystal with equifrequency weyl points,” Phys. Rev. A 93, 061801 (2016).
[Crossref]

H. Hu and C. Zhang, “Spin-1 topological monopoles in the parameter space of ultracold atoms,” Phys. Rev. A 98, 013627 (2018).
[Crossref]

T. Van Mechelen and Z. Jacob, “Quantum gyroelectric effect: Photon spin-1 quantization in continuum topological bosonic phases,” Phys. Rev. A 98, 023842 (2018).
[Crossref]

Phys. Rev. B (11)

H. Wang, L. Xu, H. Chen, and J.-H. Jiang, “Three-dimensional photonic dirac points stabilized by point group symmetry,” Phys. Rev. B 93, 235155 (2016).
[Crossref]

M. G. Silveirinha, “Chern invariants for continuous media,” Phys. Rev. B 92, 125153 (2015).
[Crossref]

R. B. Laughlin, “Quantized hall conductivity in two dimensions,” Phys. Rev. B 23, 5632–5633 (1981).
[Crossref]

C.-H. Park and N. Marzari, “Berry phase and pseudospin winding number in bilayer graphene,” Phys. Rev. B 84, 205440 (2011).
[Crossref]

N. Regnault and T. Senthil, “Microscopic model for the boson integer quantum hall effect,” Phys. Rev. B 88, 161106 (2013).
[Crossref]

P. A. D. Gonçalves, L. P. Bertelsen, S. Xiao, and N. A. Mortensen, “Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces,” Phys. Rev. B 97, 041402 (2018).
[Crossref]

M. A. Metlitski, C. L. Kane, and M. P. A. Fisher, “Bosonic topological insulator in three dimensions and the statistical witten effect,” Phys. Rev. B 88, 035131 (2013).
[Crossref]

X. Chen, Z.-X. Liu, and X.-G. Wen, “Two-dimensional symmetry-protected topological orders and their protected gapless edge excitations,” Phys. Rev. B 84, 235141 (2011).
[Crossref]

Y.-M. Lu and A. Vishwanath, “Theory and classification of interacting integer topological phases in two dimensions: A chern-simons approach,” Phys. Rev. B 86, 125119 (2012).
[Crossref]

Z. Zhu, Y. Cheng, and U. Schwingenschlögl, “Band inversion mechanism in topological insulators: A guideline for materials design,” Phys. Rev. B 85, 235401 (2012).
[Crossref]

A. Tiwari, X. Chen, K. Shiozaki, and S. Ryu, “Bosonic topological phases of matter: Bulk-boundary correspondence, symmetry protected topological invariants, and gauging,” Phys. Rev. B 97, 245133 (2018).
[Crossref]

Phys. Rev. D (1)

I. Bialynicki-Birula and Z. Bialynicka-Birula, “Berry’s phase in the relativistic theory of spinning particles,” Phys. Rev. D 35, 2383–2387 (1987).
[Crossref]

Phys. Rev. Lett. (17)

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008).
[Crossref] [PubMed]

F. D. M. Haldane, “Model for a quantum hall effect without landau levels: Condensed-matter realization of the “parity anomaly”,” Phys. Rev. Lett. 61, 2015–2018 (1988).
[Crossref] [PubMed]

Y. Guo, M. Xiao, and S. Fan, “Topologically protected complete polarization conversion,” Phys. Rev. Lett. 119, 167401 (2017).
[Crossref] [PubMed]

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref] [PubMed]

K. Osterloh, M. Baig, L. Santos, P. Zoller, and M. Lewenstein, “Cold atoms in non-abelian gauge potentials: From the hofstadter “moth” to lattice gauge theory,” Phys. Rev. Lett. 95, 010403 (2005).
[Crossref]

D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized hall conductance in a two-dimensional periodic potential,” Phys. Rev. Lett. 49, 405–408 (1982).
[Crossref]

C. L. Kane and E. J. Mele, “𝕑2 topological order and the quantum spin hall effect,” Phys. Rev. Lett. 95, 146802 (2005).
[Crossref]

I. Bialynicki-Birula and Z. Bialynicka-Birula, “Uncertainty relation for photons,” Phys. Rev. Lett. 108, 140401 (2012).
[Crossref] [PubMed]

H. Kedia, I. Bialynicki-Birula, D. Peralta-Salas, and W. T. M. Irvine, “Tying knots in light fields,” Phys. Rev. Lett. 111, 150404 (2013).
[Crossref] [PubMed]

T. Senthil and M. Levin, “Integer quantum hall effect for bosons,” Phys. Rev. Lett. 110, 046801 (2013).
[Crossref] [PubMed]

O. E. Gawhary, T. Van Mechelen, and H. P. Urbach, “Role of radial charges on the angular momentum of electro-magnetic fields: Spin-3/2 light,” Phys. Rev. Lett. 121, 123202 (2018).
[Crossref]

B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological nature of optical bound states in the continuum,” Phys. Rev. Lett. 113, 257401 (2014).
[Crossref]

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[Crossref] [PubMed]

R. Y. Chiao and Y.-S. Wu, “Manifestations of berry’s topological phase for the photon,” Phys. Rev. Lett. 57, 933–936 (1986).
[Crossref]

S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108, 140405 (2012).
[Crossref]

Y. Hatsugai, “Chern number and edge states in the integer quantum hall effect,” Phys. Rev. Lett. 71, 3697–3700 (1993).
[Crossref]

Y. Oreg, G. Refael, and F. von Oppen, “Helical liquids and majorana bound states in quantum wires,” Phys. Rev. Lett. 105, 177002 (2010).
[Crossref]

Phys. Rev. X (3)

A. Vishwanath and T. Senthil, “Physics of three-dimensional bosonic topological insulators: Surface-deconfined criticality and quantized magnetoelectric effect,” Phys. Rev. X 3, 011016 (2013).

K. Ding, G. Ma, M. Xiao, Z. Q. Zhang, and C. T. Chan, “Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization,” Phys. Rev. X 6, 021007 (2016).

L.-k. Shi and J. C. W. Song, “Plasmon geometric phase and plasmon hall shift,” Phys. Rev. X 8, 021020 (2018).

Proc. Royal Soc. Lond. A: Math. Phys. Eng. Sci. (1)

P. Dirac, “Quantised singularities in the electromagnetic field,” Proc. Royal Soc. Lond. A: Math. Phys. Eng. Sci. 133, 60–72 (1931).
[Crossref]

Rev. Mod. Phys. (1)

M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]

Science (6)

X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, “Symmetry-protected topological orders in interacting bosonic systems,” Science 338, 1604–1606 (2012).
[Crossref] [PubMed]

S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. Lindner, and G. Bartal, “Optical skyrmion lattice in evanescent electromagnetic fields,” Science,  2018, aau0227 (2018).
[Crossref]

K. Y. Bliokh, D. Smirnova, and F. Nori, “Quantum spin hall effect of light,” Science 348, 1448–1451 (2015).
[Crossref]

S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, “Discovery of a weyl fermion semimetal and topological fermi arcs,” Science 349, 613–617 (2015).
[Crossref] [PubMed]

D. J. P. Morris, D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry, “Dirac strings and magnetic monopoles in the spin ice dy2ti2o7,” Science 326, 411–414 (2009).
[Crossref] [PubMed]

L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, and M. Soljačić, “Experimental observation of weyl points,” Science 349, 622–624 (2015).
[Crossref] [PubMed]

Other (9)

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal weyl points and helicoid surface states in artificial photonic crystal structures,” Science (2018).
[Crossref]

T. Van Mechelen and Z. Jacob, “Dirac-Maxwell correspondence: Spin-1 bosonic topological insulator,” arXiv:1708.08192 (2017).

D. Chruscinski and A. Jamiolkowski, Geometric Phases in Classical and Quantum Mechanics, Progress in Mathematical Physics (BirkhäuserBasel, 2004).
[Crossref]

S. Sugawa, F. Salces-Carcoba, A. R. Perry, Y. Yue, and I. B. Spielman, “Observation of a non-Abelian Yang Monopole: From New Chern Numbers to a Topological Transition,” arXiv:1610.06228 (2016).

S.-Q. Shen, W.-Y. Shan, and H.-Z. Lu, “Topological insulator and the dirac equation,” in Spin, vol. 1 (World Scientific, 2011), pp. 33–44.
[Crossref]

B. A. Bernevig and T. L. Hughes, Topological Insulators and Topological Superconductors (Princeton University Press, Princeton, NJ, 2013).
[Crossref]

S. P. Martin, “A supersymmetry primer,” Perspectives on Supersymmetry pp. 1–98 (2011).

J. H. Han, Skyrmions in Condensed Matter, Springer Tracts in Modern Physics (Springer International Publishing, 2017).
[Crossref]

G. V. Dunne, “Aspects of chern-simons theory,” in Aspects topologiques de la physique en basse dimension. Topological aspects of low dimensional systems, A. Comtet, T. Jolicoeur, S. Ouvry, and F. David, eds. (Springer Berlin Heidelberg, Berlin, Heidelberg, 1999), pp. 177–263.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1:
Fig. 1: (a) Linear dispersion (light cone) of the 3D massless photon and electron ω± = E± = ±k. At the origin of the momentum space k⃗ = 0 sits a magnetic monopole with quantized charge. This singularity is often called a Weyl point and is quantized to the spin of the particle Qs = s. Integer and half-integer spin quantization is connected to bosonic and fermionic statistics respectively. (b) Dirac monopoles (Berry curvature) F⃗s = ∇⃗ k × A⃗s of the massless electron Q 1 2 = 1 2 and photon Q1 = 1 in momentum space. The monopole charge acts as a source for the magnetic field ∇⃗ k · F⃗s = 4πQsδ3(k⃗) and arises due to the discontinuous behavior in the spin eigenstates. Notice that the flux through any surface enclosing the monopole is necessarily quantized Q s = ( 4 π ) 1 F s d 2 k . This monopole is accompanied by a string of singularities in the underlying gauge potential A⃗s. Any closed path around the equator of the string produces a quantized Berry phase γ s = A s d k = 2 π Q s . The accumulated phase in k⃗-space is fundamentally tied to the spin of the particle s(2π) = exp(s) = (−1)2s.
Fig. 2:
Fig. 2: Spin expectation value ℳ̂z(k) as a function of k. (a) N = 0 skyrmion with no band inversion Λ0Λ2 < 0. The spin returns to initial state ℳ̂z(0) = ℳ̂z(∞) and the total winding is trivial. (b) N = 1 skyrmion with band inversion Λ0Λ2 > 0. In this case, the spin flips direction ℳ̂z(0) ≠ ℳ̂z(∞) and the total winding is nontrivial. ki labels the band inversion point where ℳ̂z(ki) = 0 passes through zero. This point must occur for the spin to flip directions and can only be removed at a topological phase transition.
Fig. 3:
Fig. 3: Left: spin texture ℳ̂(k) as a function of k for trivial and nontrivial skyrmions. (a) N = 0 skyrmion with no band inversion Λ0Λ2 < 0. As an example, we have let v = 0.5, Λ0 = 4 and Λ2 = −2. Since the spin returns to initial state within the dispersion ℳ̂z(0) = ℳ̂z(∞), the total winding is trivial. (b) N = 1 skyrmion with band inversion Λ0Λ2 > 0. To demonstrate, we have let v = 0.5, Λ0 = 4 and Λ2 = 2. In this case, the spin flips direction within the dispersion ℳ̂z(0) ≠ ℳ̂z(∞) and the total winding is nontrivial. Right: spin texture ℳ̂ of the skyrmion projected on the unit sphere. As the momentum varies over all possible values, ℳ̂(k) can perform either a (c) retracted or (d) full evolution over the unit sphere. This corresponds to a total solid angle of Ω = 0 or 4π respectively.
Fig. 4:
Fig. 4: Dispersion relation of the bulk and gapless edge bands (black lines) of the topologically massive 2D particles. (a) The conventional fermionic Chern insulator is characterized by a spin-½ skyrmion (Dirac equation). (b) The bosonic Chern insulator is described by a spin-1 skyrmion (Maxwell’s equations). The bulk Chern number Cs = 2QsN depends on both the magnetic charge (spin) Qs = s and the skyrmion number N ∈ ��. This corresponds to integer phases for electrons C 1 2 �� but even integer phases for photons C1 ∈ 2��. At low energy, a band gap is formed at E = ω = 0 by a spatially dispersive effective mass Λ(k) = Λ0 − Λ2k2. (a) For the 2D electron, this is simply the Dirac mass. (b) For the 2D photon, this mass is equivalent to a nonlocal Hall conductivity εΛ(k) = σH(k). In the presence of band inversion Λ0Λ2 > 0, there is a point where the effective mass changes sign Λ(ki) = 0, precisely at k i = Λ 0 / Λ 2 . The massless helically quantized edge states touch the bulk bands at this point. This is known as the quantum anomalous Hall effect (QAHE) for electrons and the quantum gyroelectric effect (QGEE) for photons [32]. The flat longitudinal band ω0 = 0 is shown for completeness and represents the electrostatic limit (irrotational fields). However, this band can be removed from the spectrum by requiring that all static charges vanish.

Equations (55)

Equations on this page are rendered with MathJax. Learn more.

2 e Q h 𝕑 .
Ψ = 1 2 ( E + i H ) ,
i k × Ψ = H 1 Ψ = ω Ψ ,
H 1 ( k ) = k S = k x S x + k y S y + k z S z .
S x = [ 0 0 0 0 0 i 0 i 0 ] , S y = [ 0 0 i 0 0 0 i 0 0 ] , S z = [ 0 i 0 i 0 0 0 0 0 ] .
H 1 2 ψ = E ψ ,
H 1 2 ( k ) = k σ = k x σ x + k y σ y + k z σ z .
σ x = [ 0 1 1 0 ] , σ y = [ 0 i i 0 ] , σ z = [ 1 0 0 1 ] .
H 1 e ± = ± k e ± , e ± ( k ) = 1 2 ( θ ^ ± i ϕ ^ ) ,
H 1 2 ψ ± = ± k ψ ± , ψ + ( k ) = [ cos ( θ / 2 ) sin ( θ / 2 ) e i ϕ ] , ψ ( k ) = [ sin ( θ / 2 ) cos ( θ / 2 ) e i ϕ ] .
F 1 ± = i k × [ e ± * ( k e ± ) ] .
F 1 2 ± = i k × [ ψ ± k ψ ± ] .
F s = Q s F .
F ( k ) = k k 3 .
Q s = s .
Q s = 1 4 π F s d 2 k .
Q 1 = 2 Q 1 2 = 1 ,
A 1 ± = i e ± * ( k e ± ) , A 1 2 ± = i ψ ± k ψ ± .
A s ( k ) = Q s 1 cos θ k sin θ ϕ ^ ,
γ s = A s d k = F s d 2 k .
γ s = Q s Ω ( C ) ,
γ s = 2 π Q s .
exp ( i γ s ) = ( 1 ) 2 Q s .
s ( 2 π ) = ( 1 ) 2 s .
1 2 ψ = E ψ , 1 2 ( k ) = v ( k x σ x + k y σ y ) + Λ ( k ) σ z .
Λ ( k ) = Λ 0 Λ 2 k 2 .
1 Ψ = ω Ψ , 1 ( k ) = v ( k x S x + k y S y ) + Λ ( k ) S z .
Ψ = 1 2 ( ε E x , ε E y , i H z ) = 1 2 ( ε E , i H z ) .
ε Λ ( k ) = σ H ( k ) = σ 0 σ 2 k 2 .
1 = S , 1 2 = σ .
S ˙ = i [ S , 1 ] = g 1 × S .
σ ˙ = i [ σ , 1 2 ] = g 1 2 × σ .
Ω s = g s , g s = ( Q s ) 1 ,
1 e ± = ± e ± , 1 2 ψ ± = ± ψ ± .
ω ± ( k ) = E ± ( k ) = ± ( k ) = ± v 2 k 2 + Λ 2 ( k ) ,
S z ± = e ± * S z e ± = ± Q 1 ^ z ,
σ z / 2 ± = ψ ± ( σ z / 2 ) ψ ± = ± Q 1 2 ^ z .
1 e 0 = 0 , e 0 = ^ = / .
1 ± = i ( k x e ± * k y e ± k y e ± * k x e ± ) .
1 2 ± = i ( k x ψ ± k y ψ ± k y ψ ± k x ψ ± ) .
s = Q s .
= ^ ( k x ^ × k y ^ ) = F d 2 .
F = 3 , d 2 = k x × k y ,
N = 1 4 π 2 d k x d k y = 1 4 π 2 ^ ( k x ^ × k y ^ ) d k x d k y , N 𝕑 .
C s = 1 2 π 2 s d k x d k y = Q s 2 π 2 d k x d k y = 2 Q s N .
( k ) = v k [ Λ ( k ) v k Λ ( k ) ] [ v 2 k 2 + Λ 2 ( k ) ] 3 / 2 = sin θ ( k ) k θ ( k ) = k ^ z ( k ) .
N = 1 2 [ cos θ ( 0 ) cos θ ( ) ] = 1 2 [ ^ z ( 0 ) ^ z ( ) ] = 1 2 ( sgn [ Λ 0 ] + sgn [ Λ 2 ] ) .
Ψ ± e ( x = 0 + ) = ψ ± e ( x = 0 + ) = 0 .
Ψ ± e ( x ) = [ ε E x ε E y i H z ] ± e = Ψ 0 [ 1 0 i ] ( e η 1 x e η 2 x ) .
ψ ± e ( x ) = ψ 0 [ 1 ± i ] ( e η 1 x e η 2 x ) .
Λ 0 + Λ 2 ( η 2 k y 2 ) v η = 0 .
η 1 , 2 ( k y ) = 1 2 | Λ 2 | [ v ± v 2 + 4 Λ 2 ( Λ 2 k y 2 Λ 0 ) ] .
S y Ψ ± e = ± Q 1 Ψ ± e .
( σ y / 2 ) ψ ± e = ± Q 1 2 ψ ± e ,
ω ± ( k y ) = E ± ( k y ) = ± v k y , k i < k y < k i .

Metrics