Abstract

The infrared absorption spectrum due to structural vibrations in molecules has been widely used to resolve chemical identification. However, this method is limited by the weak molecule-light interaction. Graphene plasmon, having strong confinement and large field enhancement, provides a promising way to increase their interactions. Here we propose tunable hybridization-induced graphene nanostructures for sensing application. Our results reveal that when the symmetry of the graphene disk is broken by introducing a small circular defect, dual-band resonance can be excited at mid-infrared frequencies. The dual-band resonance peaks are produced by plasmon hybridization effect between two simple structures: graphene disks and circular defects. We investigate the influence of the size and position of the circular defect on the dual-band resonance peaks. We further explore the dual-band resonance peaks for sensing, and the sensitivity can reach 550 cm−1/RIU and the FOM can reach 20.4. Compared to the original graphene disk structure, the results show stronger resonance intensity and higher frequency sensitivity. Our findings provide a new platform for sensing, and moreover the dual-band resonance structure feature enables us to promote the development of multi-substance detection.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable metamaterial-induced transparency with gate-controlled on-chip graphene metasurface

Zan Hui Chen, Jin Tao, Jia Hua Gu, Jian Li, Di Hu, Qi Long Tan, Fengchun Zhang, and Xu Guang Huang
Opt. Express 24(25) 29216-29225 (2016)

Dual-band tunable perfect metamaterial absorber based on graphene

Fengling Wang, Sha Huang, Ling Li, Weidong Chen, and Zhengwei Xie
Appl. Opt. 57(24) 6916-6922 (2018)

Graphene patterns supported terahertz tunable plasmon induced transparency

Xiaoyong He, Feng Liu, Fangting Lin, and Wangzhou Shi
Opt. Express 26(8) 9931-9944 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. Y. Xie, Y. X. Huang, W. L. Zhao, W. H. Xu, and C. He, “A Novel Plasmonic Sensor Based on Metal–Insulator–Metal Waveguide With Side-Coupled Hexagonal Cavity,” IEEE Photonics J. 7(2), 1–12 (2015).
    [Crossref]
  2. A. Akhavan, H. Ghafoorifard, S. Abdolhosseini, and H. Habibiyan, “Plasmon-induced transparency based on a triangle cavity coupled with an ellipse-ring resonator,” Appl. Opt. 56(34), 9556–9563 (2017).
    [Crossref] [PubMed]
  3. X. Yang, X. Hu, Z. Chai, C. Lu, H. Yang, and Q. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).
    [Crossref]
  4. R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
    [Crossref] [PubMed]
  5. B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
    [Crossref] [PubMed]
  6. C. Caucheteur, T. Guo, F. Liu, B. O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
    [Crossref] [PubMed]
  7. J. Shibayama, K. Shimizu, J. Yamauchi, and H. Nakano, “Surface Plasmon Resonance Waveguide Sensor in the Terahertz Regime,” J. Lightwave Technol. 34(10), 2518–2525 (2016).
    [Crossref]
  8. I. Alnaib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101, 77–79 (2012).
  9. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
    [Crossref] [PubMed]
  10. K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
    [Crossref] [PubMed]
  11. Z. Sekkat, S. Hayashi, D. V. Nesterenko, A. Rahmouni, S. Refki, H. Ishitobi, Y. Inouye, and S. Kawata, “Plasmonic coupled modes in metal-dielectric multilayer structures: Fano resonance and giant field enhancement,” Opt. Express 24(18), 20080–20088 (2016).
    [Crossref] [PubMed]
  12. A. R. Wright and C. Zhang, “Dynamic conductivity of graphene with electron-LO-phonon interaction,” Phys. Rev. B 81, 165413 (2010).
  13. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  14. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
    [Crossref]
  15. F. J. G. D. Abajo, “Graphene Plasmonics: Challenges and Opportunities,” ACS Photonics 1, S2 (2014).
  16. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
    [Crossref] [PubMed]
  17. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
    [Crossref] [PubMed]
  18. R. Zafar and M. Salim, “Enhanced Figure of Merit in Fano Resonance-Based Plasmonic Refractive Index Sensor,” IEEE Sens. J. 15(11), 6313–6317 (2015).
    [Crossref]
  19. C. I. L. Justino, A. R. Gomes, A. C. Freitas, A. C. Duarte, and T. A. P. Rocha-Santos, “Graphene based sensors and biosensors,” Trac Trends Anal. Chem. 91, 53–66 (2017).
    [Crossref]
  20. S. Kabiri Ameri, R. Ho, H. Jang, L. Tao, Y. Wang, L. Wang, D. M. Schnyer, D. Akinwande, and N. Lu, “Graphene Electronic Tattoo Sensors,” ACS Nano 11(8), 7634–7641 (2017).
    [Crossref] [PubMed]
  21. J. Wang, C. Song, J. Hang, Z. D. Hu, and F. Zhang, “Tunable Fano resonance based on grating-coupled and graphene-based Otto configuration,” Opt. Express 25(20), 23880–23892 (2017).
    [Crossref] [PubMed]
  22. X. He, F. Lin, F. Liu, and W. Shi, “Tunable high Q-factor terahertz complementary graphene metamaterial,” Nanotechnology 29(48), 485205 (2018).
    [Crossref] [PubMed]
  23. X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
    [Crossref] [PubMed]
  24. C. Sun, Z. Dong, J. Si, and X. Deng, “Independently tunable dual-band plasmonically induced transparency based on hybrid metal-graphene metamaterials at mid-infrared frequencies,” Opt. Express 25(2), 1242–1250 (2017).
    [Crossref] [PubMed]
  25. Z. Dong, C. Sun, J. Si, and X. Deng, “Tunable polarization-independent plasmonically induced transparency based on metal-graphene metasurface,” Opt. Express 25(11), 12251–12259 (2017).
    [Crossref] [PubMed]
  26. H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
    [Crossref] [PubMed]
  27. X. He, F. Liu, F. Lin, and W. Shi, “Graphene patterns supported terahertz tunable plasmon induced transparency,” Opt. Express 26(8), 9931–9944 (2018).
    [Crossref] [PubMed]
  28. N. Mou, S. Sun, H. Dong, S. Dong, Q. He, L. Zhou, and L. Zhang, “Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces,” Opt. Express 26(9), 11728–11736 (2018).
    [Crossref] [PubMed]
  29. J. H. Cho, J. Lee, Y. Xia, B. Kim, Y. He, M. J. Renn, T. P. Lodge, and C. D. Frisbie, “Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic,” Nat. Mater. 7(11), 900–906 (2008).
    [Crossref] [PubMed]
  30. Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
    [Crossref] [PubMed]
  31. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref] [PubMed]
  32. Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
    [Crossref] [PubMed]
  33. Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
    [Crossref] [PubMed]
  34. X. Guo, H. Hu, X. Zhu, X. Yang, and Q. Dai, “Higher order Fano graphene metamaterials for nanoscale optical sensing,” Nanoscale 9(39), 14998–15004 (2017).
    [Crossref] [PubMed]
  35. H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
    [Crossref] [PubMed]
  36. L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect‐Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
    [Crossref]

2018 (3)

2017 (9)

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

C. I. L. Justino, A. R. Gomes, A. C. Freitas, A. C. Duarte, and T. A. P. Rocha-Santos, “Graphene based sensors and biosensors,” Trac Trends Anal. Chem. 91, 53–66 (2017).
[Crossref]

S. Kabiri Ameri, R. Ho, H. Jang, L. Tao, Y. Wang, L. Wang, D. M. Schnyer, D. Akinwande, and N. Lu, “Graphene Electronic Tattoo Sensors,” ACS Nano 11(8), 7634–7641 (2017).
[Crossref] [PubMed]

X. Guo, H. Hu, X. Zhu, X. Yang, and Q. Dai, “Higher order Fano graphene metamaterials for nanoscale optical sensing,” Nanoscale 9(39), 14998–15004 (2017).
[Crossref] [PubMed]

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect‐Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

C. Sun, Z. Dong, J. Si, and X. Deng, “Independently tunable dual-band plasmonically induced transparency based on hybrid metal-graphene metamaterials at mid-infrared frequencies,” Opt. Express 25(2), 1242–1250 (2017).
[Crossref] [PubMed]

Z. Dong, C. Sun, J. Si, and X. Deng, “Tunable polarization-independent plasmonically induced transparency based on metal-graphene metasurface,” Opt. Express 25(11), 12251–12259 (2017).
[Crossref] [PubMed]

J. Wang, C. Song, J. Hang, Z. D. Hu, and F. Zhang, “Tunable Fano resonance based on grating-coupled and graphene-based Otto configuration,” Opt. Express 25(20), 23880–23892 (2017).
[Crossref] [PubMed]

A. Akhavan, H. Ghafoorifard, S. Abdolhosseini, and H. Habibiyan, “Plasmon-induced transparency based on a triangle cavity coupled with an ellipse-ring resonator,” Appl. Opt. 56(34), 9556–9563 (2017).
[Crossref] [PubMed]

2016 (7)

J. Shibayama, K. Shimizu, J. Yamauchi, and H. Nakano, “Surface Plasmon Resonance Waveguide Sensor in the Terahertz Regime,” J. Lightwave Technol. 34(10), 2518–2525 (2016).
[Crossref]

Z. Sekkat, S. Hayashi, D. V. Nesterenko, A. Rahmouni, S. Refki, H. Ishitobi, Y. Inouye, and S. Kawata, “Plasmonic coupled modes in metal-dielectric multilayer structures: Fano resonance and giant field enhancement,” Opt. Express 24(18), 20080–20088 (2016).
[Crossref] [PubMed]

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

C. Caucheteur, T. Guo, F. Liu, B. O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

2015 (2)

R. Zafar and M. Salim, “Enhanced Figure of Merit in Fano Resonance-Based Plasmonic Refractive Index Sensor,” IEEE Sens. J. 15(11), 6313–6317 (2015).
[Crossref]

Y. Y. Xie, Y. X. Huang, W. L. Zhao, W. H. Xu, and C. He, “A Novel Plasmonic Sensor Based on Metal–Insulator–Metal Waveguide With Side-Coupled Hexagonal Cavity,” IEEE Photonics J. 7(2), 1–12 (2015).
[Crossref]

2014 (6)

X. Yang, X. Hu, Z. Chai, C. Lu, H. Yang, and Q. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).
[Crossref]

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

F. J. G. D. Abajo, “Graphene Plasmonics: Challenges and Opportunities,” ACS Photonics 1, S2 (2014).

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[Crossref] [PubMed]

2013 (1)

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

2012 (4)

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

I. Alnaib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101, 77–79 (2012).

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

2010 (1)

A. R. Wright and C. Zhang, “Dynamic conductivity of graphene with electron-LO-phonon interaction,” Phys. Rev. B 81, 165413 (2010).

2009 (1)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

2008 (1)

J. H. Cho, J. Lee, Y. Xia, B. Kim, Y. He, M. J. Renn, T. P. Lodge, and C. D. Frisbie, “Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic,” Nat. Mater. 7(11), 900–906 (2008).
[Crossref] [PubMed]

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Abajo, F. J. G. D.

F. J. G. D. Abajo, “Graphene Plasmonics: Challenges and Opportunities,” ACS Photonics 1, S2 (2014).

Abdolhosseini, S.

Ajayan, P. M.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Akhavan, A.

Akinwande, D.

S. Kabiri Ameri, R. Ho, H. Jang, L. Tao, Y. Wang, L. Wang, D. M. Schnyer, D. Akinwande, and N. Lu, “Graphene Electronic Tattoo Sensors,” ACS Nano 11(8), 7634–7641 (2017).
[Crossref] [PubMed]

Alapan, Y.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Albert, J.

C. Caucheteur, T. Guo, F. Liu, B. O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

Alnaib, I.

I. Alnaib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101, 77–79 (2012).

Alonso-González, P.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Andreev, G. O.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Badioli, M.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Bao, W.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Basov, D. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Camara, N.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Castro Neto, A. H.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Caucheteur, C.

C. Caucheteur, T. Guo, F. Liu, B. O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

Centeno, A.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Chai, Z.

X. Yang, X. Hu, Z. Chai, C. Lu, H. Yang, and Q. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).
[Crossref]

Chaker, M.

I. Alnaib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101, 77–79 (2012).

Chen, J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Chen, L.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect‐Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Cho, J. H.

J. H. Cho, J. Lee, Y. Xia, B. Kim, Y. He, M. J. Renn, T. P. Lodge, and C. D. Frisbie, “Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic,” Nat. Mater. 7(11), 900–906 (2008).
[Crossref] [PubMed]

Cui, T.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect‐Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Cui, T. J.

Dai, Q.

X. Guo, H. Hu, X. Zhu, X. Yang, and Q. Dai, “Higher order Fano graphene metamaterials for nanoscale optical sensing,” Nanoscale 9(39), 14998–15004 (2017).
[Crossref] [PubMed]

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

de Abajo, F. J.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

De Luca, A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Delprat, S.

I. Alnaib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101, 77–79 (2012).

Deng, X.

Dominguez, G.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Dong, H.

Dong, S.

Dong, Z.

Duarte, A. C.

C. I. L. Justino, A. R. Gomes, A. C. Freitas, A. C. Duarte, and T. A. P. Rocha-Santos, “Graphene based sensors and biosensors,” Trac Trends Anal. Chem. 91, 53–66 (2017).
[Crossref]

Dubey, M.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

ElKabbash, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Elorza, A. Z.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Fang, Z.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Fei, Z.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Fogler, M. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Freitas, A. C.

C. I. L. Justino, A. R. Gomes, A. C. Freitas, A. C. Duarte, and T. A. P. Rocha-Santos, “Graphene based sensors and biosensors,” Trac Trends Anal. Chem. 91, 53–66 (2017).
[Crossref]

Frisbie, C. D.

J. H. Cho, J. Lee, Y. Xia, B. Kim, Y. He, M. J. Renn, T. P. Lodge, and C. D. Frisbie, “Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic,” Nat. Mater. 7(11), 900–906 (2008).
[Crossref] [PubMed]

Gao, P.

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

García de Abajo, F. J.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Ghafoorifard, H.

Godignon, P.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Gomes, A. R.

C. I. L. Justino, A. R. Gomes, A. C. Freitas, A. C. Duarte, and T. A. P. Rocha-Santos, “Graphene based sensors and biosensors,” Trac Trends Anal. Chem. 91, 53–66 (2017).
[Crossref]

Gong, Q.

X. Yang, X. Hu, Z. Chai, C. Lu, H. Yang, and Q. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).
[Crossref]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Guan, B. O.

C. Caucheteur, T. Guo, F. Liu, B. O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

Guo, T.

C. Caucheteur, T. Guo, F. Liu, B. O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

Guo, X.

X. Guo, H. Hu, X. Zhu, X. Yang, and Q. Dai, “Higher order Fano graphene metamaterials for nanoscale optical sensing,” Nanoscale 9(39), 14998–15004 (2017).
[Crossref] [PubMed]

Gurkan, U. A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Habibiyan, H.

Halas, N. J.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Hang, J.

Hayashi, S.

He, C.

Y. Y. Xie, Y. X. Huang, W. L. Zhao, W. H. Xu, and C. He, “A Novel Plasmonic Sensor Based on Metal–Insulator–Metal Waveguide With Side-Coupled Hexagonal Cavity,” IEEE Photonics J. 7(2), 1–12 (2015).
[Crossref]

He, Q.

He, X.

X. He, F. Liu, F. Lin, and W. Shi, “Graphene patterns supported terahertz tunable plasmon induced transparency,” Opt. Express 26(8), 9931–9944 (2018).
[Crossref] [PubMed]

X. He, F. Lin, F. Liu, and W. Shi, “Tunable high Q-factor terahertz complementary graphene metamaterial,” Nanotechnology 29(48), 485205 (2018).
[Crossref] [PubMed]

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

He, Y.

J. H. Cho, J. Lee, Y. Xia, B. Kim, Y. He, M. J. Renn, T. P. Lodge, and C. D. Frisbie, “Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic,” Nat. Mater. 7(11), 900–906 (2008).
[Crossref] [PubMed]

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Hillenbrand, R.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Hinczewski, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Ho, R.

S. Kabiri Ameri, R. Ho, H. Jang, L. Tao, Y. Wang, L. Wang, D. M. Schnyer, D. Akinwande, and N. Lu, “Graphene Electronic Tattoo Sensors,” ACS Nano 11(8), 7634–7641 (2017).
[Crossref] [PubMed]

Hu, D.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Hu, H.

X. Guo, H. Hu, X. Zhu, X. Yang, and Q. Dai, “Higher order Fano graphene metamaterials for nanoscale optical sensing,” Nanoscale 9(39), 14998–15004 (2017).
[Crossref] [PubMed]

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Hu, X.

X. Yang, X. Hu, Z. Chai, C. Lu, H. Yang, and Q. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).
[Crossref]

Hu, Z. D.

Huang, Y. X.

Y. Y. Xie, Y. X. Huang, W. L. Zhao, W. H. Xu, and C. He, “A Novel Plasmonic Sensor Based on Metal–Insulator–Metal Waveguide With Side-Coupled Hexagonal Cavity,” IEEE Photonics J. 7(2), 1–12 (2015).
[Crossref]

Huth, F.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Ilker, E.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Inouye, Y.

Ishitobi, H.

Jang, H.

S. Kabiri Ameri, R. Ho, H. Jang, L. Tao, Y. Wang, L. Wang, D. M. Schnyer, D. Akinwande, and N. Lu, “Graphene Electronic Tattoo Sensors,” ACS Nano 11(8), 7634–7641 (2017).
[Crossref] [PubMed]

Justino, C. I. L.

C. I. L. Justino, A. R. Gomes, A. C. Freitas, A. C. Duarte, and T. A. P. Rocha-Santos, “Graphene based sensors and biosensors,” Trac Trends Anal. Chem. 91, 53–66 (2017).
[Crossref]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Kabiri Ameri, S.

S. Kabiri Ameri, R. Ho, H. Jang, L. Tao, Y. Wang, L. Wang, D. M. Schnyer, D. Akinwande, and N. Lu, “Graphene Electronic Tattoo Sensors,” ACS Nano 11(8), 7634–7641 (2017).
[Crossref] [PubMed]

Kawata, S.

Keilmann, F.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Kim, B.

J. H. Cho, J. Lee, Y. Xia, B. Kim, Y. He, M. J. Renn, T. P. Lodge, and C. D. Frisbie, “Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic,” Nat. Mater. 7(11), 900–906 (2008).
[Crossref] [PubMed]

Koppens, F. H.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Lau, C. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Lederer, F.

I. Alnaib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101, 77–79 (2012).

Lee, J.

J. H. Cho, J. Lee, Y. Xia, B. Kim, Y. He, M. J. Renn, T. P. Lodge, and C. D. Frisbie, “Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic,” Nat. Mater. 7(11), 900–906 (2008).
[Crossref] [PubMed]

Li, R.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

Liao, Z.

Lin, F.

X. He, F. Lin, F. Liu, and W. Shi, “Tunable high Q-factor terahertz complementary graphene metamaterial,” Nanotechnology 29(48), 485205 (2018).
[Crossref] [PubMed]

X. He, F. Liu, F. Lin, and W. Shi, “Graphene patterns supported terahertz tunable plasmon induced transparency,” Opt. Express 26(8), 9931–9944 (2018).
[Crossref] [PubMed]

Liu, F.

X. He, F. Lin, F. Liu, and W. Shi, “Tunable high Q-factor terahertz complementary graphene metamaterial,” Nanotechnology 29(48), 485205 (2018).
[Crossref] [PubMed]

X. He, F. Liu, F. Lin, and W. Shi, “Graphene patterns supported terahertz tunable plasmon induced transparency,” Opt. Express 26(8), 9931–9944 (2018).
[Crossref] [PubMed]

C. Caucheteur, T. Guo, F. Liu, B. O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

Liu, K.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Liu, R.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Liu, Y.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

Liu, Z.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Lodge, T. P.

J. H. Cho, J. Lee, Y. Xia, B. Kim, Y. He, M. J. Renn, T. P. Lodge, and C. D. Frisbie, “Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic,” Nat. Mater. 7(11), 900–906 (2008).
[Crossref] [PubMed]

Lu, C.

X. Yang, X. Hu, Z. Chai, C. Lu, H. Yang, and Q. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).
[Crossref]

Lu, N.

S. Kabiri Ameri, R. Ho, H. Jang, L. Tao, Y. Wang, L. Wang, D. M. Schnyer, D. Akinwande, and N. Lu, “Graphene Electronic Tattoo Sensors,” ACS Nano 11(8), 7634–7641 (2017).
[Crossref] [PubMed]

Ma, L.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

McLeod, A. S.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Morandotti, R.

I. Alnaib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101, 77–79 (2012).

Mou, N.

Nakano, H.

Nesterenko, D. V.

Nordlander, P.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Osmond, J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Ozaki, T.

I. Alnaib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101, 77–79 (2012).

Pan, B. C.

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Pesquera, A.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Rahmouni, A.

Ramasubramaniam, A.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Refki, S.

Renn, M. J.

J. H. Cho, J. Lee, Y. Xia, B. Kim, Y. He, M. J. Renn, T. P. Lodge, and C. D. Frisbie, “Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic,” Nat. Mater. 7(11), 900–906 (2008).
[Crossref] [PubMed]

Rocha-Santos, T. A. P.

C. I. L. Justino, A. R. Gomes, A. C. Freitas, A. C. Duarte, and T. A. P. Rocha-Santos, “Graphene based sensors and biosensors,” Trac Trends Anal. Chem. 91, 53–66 (2017).
[Crossref]

Rocheleau, D.

I. Alnaib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101, 77–79 (2012).

Rockstuhl, C.

I. Alnaib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101, 77–79 (2012).

Rodin, A. S.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Salim, M.

R. Zafar and M. Salim, “Enhanced Figure of Merit in Fano Resonance-Based Plasmonic Refractive Index Sensor,” IEEE Sens. J. 15(11), 6313–6317 (2015).
[Crossref]

Schlather, A.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Schlather, A. E.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Schnyer, D. M.

S. Kabiri Ameri, R. Ho, H. Jang, L. Tao, Y. Wang, L. Wang, D. M. Schnyer, D. Akinwande, and N. Lu, “Graphene Electronic Tattoo Sensors,” ACS Nano 11(8), 7634–7641 (2017).
[Crossref] [PubMed]

Sekkat, Z.

Shi, W.

X. He, F. Lin, F. Liu, and W. Shi, “Tunable high Q-factor terahertz complementary graphene metamaterial,” Nanotechnology 29(48), 485205 (2018).
[Crossref] [PubMed]

X. He, F. Liu, F. Lin, and W. Shi, “Graphene patterns supported terahertz tunable plasmon induced transparency,” Opt. Express 26(8), 9931–9944 (2018).
[Crossref] [PubMed]

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

Shibayama, J.

Shimizu, K.

Si, J.

Singh, L.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect‐Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Singh, R.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect‐Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

I. Alnaib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101, 77–79 (2012).

Song, C.

Spasenovic, M.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Sreekanth, K. V.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Strangi, G.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Sun, C.

Sun, S.

Sun, Z.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Tao, L.

S. Kabiri Ameri, R. Ho, H. Jang, L. Tao, Y. Wang, L. Wang, D. M. Schnyer, D. Akinwande, and N. Lu, “Graphene Electronic Tattoo Sensors,” ACS Nano 11(8), 7634–7641 (2017).
[Crossref] [PubMed]

Thiemens, M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Thongrattanasiri, S.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Wagner, M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Wang, H.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Wang, J.

Wang, L.

S. Kabiri Ameri, R. Ho, H. Jang, L. Tao, Y. Wang, L. Wang, D. M. Schnyer, D. Akinwande, and N. Lu, “Graphene Electronic Tattoo Sensors,” ACS Nano 11(8), 7634–7641 (2017).
[Crossref] [PubMed]

Wang, Y.

S. Kabiri Ameri, R. Ho, H. Jang, L. Tao, Y. Wang, L. Wang, D. M. Schnyer, D. Akinwande, and N. Lu, “Graphene Electronic Tattoo Sensors,” ACS Nano 11(8), 7634–7641 (2017).
[Crossref] [PubMed]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

Wright, A. R.

A. R. Wright and C. Zhang, “Dynamic conductivity of graphene with electron-LO-phonon interaction,” Phys. Rev. B 81, 165413 (2010).

Wu, D.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Xia, F.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Xia, Y.

J. H. Cho, J. Lee, Y. Xia, B. Kim, Y. He, M. J. Renn, T. P. Lodge, and C. D. Frisbie, “Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic,” Nat. Mater. 7(11), 900–906 (2008).
[Crossref] [PubMed]

Xiao, D.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Xie, Y. Y.

Y. Y. Xie, Y. X. Huang, W. L. Zhao, W. H. Xu, and C. He, “A Novel Plasmonic Sensor Based on Metal–Insulator–Metal Waveguide With Side-Coupled Hexagonal Cavity,” IEEE Photonics J. 7(2), 1–12 (2015).
[Crossref]

Xu, N.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect‐Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Xu, W. H.

Y. Y. Xie, Y. X. Huang, W. L. Zhao, W. H. Xu, and C. He, “A Novel Plasmonic Sensor Based on Metal–Insulator–Metal Waveguide With Side-Coupled Hexagonal Cavity,” IEEE Photonics J. 7(2), 1–12 (2015).
[Crossref]

Yamauchi, J.

Yang, H.

X. Yang, X. Hu, Z. Chai, C. Lu, H. Yang, and Q. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).
[Crossref]

Yang, X.

X. Guo, H. Hu, X. Zhu, X. Yang, and Q. Dai, “Higher order Fano graphene metamaterials for nanoscale optical sensing,” Nanoscale 9(39), 14998–15004 (2017).
[Crossref] [PubMed]

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

X. Yang, X. Hu, Z. Chai, C. Lu, H. Yang, and Q. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).
[Crossref]

Ye, H.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

Yu, L.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

Yu, Z.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

Zafar, R.

R. Zafar and M. Salim, “Enhanced Figure of Merit in Fano Resonance-Based Plasmonic Refractive Index Sensor,” IEEE Sens. J. 15(11), 6313–6317 (2015).
[Crossref]

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Zhai, F.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Zhang, C.

A. R. Wright and C. Zhang, “Dynamic conductivity of graphene with electron-LO-phonon interaction,” Phys. Rev. B 81, 165413 (2010).

Zhang, F.

Zhang, L.

Zhang, L. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Zhang, W.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect‐Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Zhao, J.

Zhao, W. L.

Y. Y. Xie, Y. X. Huang, W. L. Zhao, W. H. Xu, and C. He, “A Novel Plasmonic Sensor Based on Metal–Insulator–Metal Waveguide With Side-Coupled Hexagonal Cavity,” IEEE Photonics J. 7(2), 1–12 (2015).
[Crossref]

Zhao, Z.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

Zhou, L.

Zhu, X.

X. Guo, H. Hu, X. Zhu, X. Yang, and Q. Dai, “Higher order Fano graphene metamaterials for nanoscale optical sensing,” Nanoscale 9(39), 14998–15004 (2017).
[Crossref] [PubMed]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Zhu, Y.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect‐Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

ACS Nano (2)

S. Kabiri Ameri, R. Ho, H. Jang, L. Tao, Y. Wang, L. Wang, D. M. Schnyer, D. Akinwande, and N. Lu, “Graphene Electronic Tattoo Sensors,” ACS Nano 11(8), 7634–7641 (2017).
[Crossref] [PubMed]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref] [PubMed]

ACS Photonics (1)

F. J. G. D. Abajo, “Graphene Plasmonics: Challenges and Opportunities,” ACS Photonics 1, S2 (2014).

Adv. Opt. Mater. (1)

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect‐Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

X. Yang, X. Hu, Z. Chai, C. Lu, H. Yang, and Q. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).
[Crossref]

I. Alnaib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101, 77–79 (2012).

IEEE Photonics J. (1)

Y. Y. Xie, Y. X. Huang, W. L. Zhao, W. H. Xu, and C. He, “A Novel Plasmonic Sensor Based on Metal–Insulator–Metal Waveguide With Side-Coupled Hexagonal Cavity,” IEEE Photonics J. 7(2), 1–12 (2015).
[Crossref]

IEEE Sens. J. (1)

R. Zafar and M. Salim, “Enhanced Figure of Merit in Fano Resonance-Based Plasmonic Refractive Index Sensor,” IEEE Sens. J. 15(11), 6313–6317 (2015).
[Crossref]

J. Lightwave Technol. (1)

Nano Lett. (2)

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Nanoscale (2)

X. Guo, H. Hu, X. Zhu, X. Yang, and Q. Dai, “Higher order Fano graphene metamaterials for nanoscale optical sensing,” Nanoscale 9(39), 14998–15004 (2017).
[Crossref] [PubMed]

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

Nanotechnology (1)

X. He, F. Lin, F. Liu, and W. Shi, “Tunable high Q-factor terahertz complementary graphene metamaterial,” Nanotechnology 29(48), 485205 (2018).
[Crossref] [PubMed]

Nat. Commun. (3)

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

C. Caucheteur, T. Guo, F. Liu, B. O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

Nat. Mater. (3)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

J. H. Cho, J. Lee, Y. Xia, B. Kim, Y. He, M. J. Renn, T. P. Lodge, and C. D. Frisbie, “Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic,” Nat. Mater. 7(11), 900–906 (2008).
[Crossref] [PubMed]

Nat. Photonics (2)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Nature (2)

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[Crossref] [PubMed]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref] [PubMed]

Opt. Express (7)

Z. Sekkat, S. Hayashi, D. V. Nesterenko, A. Rahmouni, S. Refki, H. Ishitobi, Y. Inouye, and S. Kawata, “Plasmonic coupled modes in metal-dielectric multilayer structures: Fano resonance and giant field enhancement,” Opt. Express 24(18), 20080–20088 (2016).
[Crossref] [PubMed]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[Crossref] [PubMed]

X. He, F. Liu, F. Lin, and W. Shi, “Graphene patterns supported terahertz tunable plasmon induced transparency,” Opt. Express 26(8), 9931–9944 (2018).
[Crossref] [PubMed]

N. Mou, S. Sun, H. Dong, S. Dong, Q. He, L. Zhou, and L. Zhang, “Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces,” Opt. Express 26(9), 11728–11736 (2018).
[Crossref] [PubMed]

C. Sun, Z. Dong, J. Si, and X. Deng, “Independently tunable dual-band plasmonically induced transparency based on hybrid metal-graphene metamaterials at mid-infrared frequencies,” Opt. Express 25(2), 1242–1250 (2017).
[Crossref] [PubMed]

Z. Dong, C. Sun, J. Si, and X. Deng, “Tunable polarization-independent plasmonically induced transparency based on metal-graphene metasurface,” Opt. Express 25(11), 12251–12259 (2017).
[Crossref] [PubMed]

J. Wang, C. Song, J. Hang, Z. D. Hu, and F. Zhang, “Tunable Fano resonance based on grating-coupled and graphene-based Otto configuration,” Opt. Express 25(20), 23880–23892 (2017).
[Crossref] [PubMed]

Phys. Rev. B (1)

A. R. Wright and C. Zhang, “Dynamic conductivity of graphene with electron-LO-phonon interaction,” Phys. Rev. B 81, 165413 (2010).

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Trac Trends Anal. Chem. (1)

C. I. L. Justino, A. R. Gomes, A. C. Freitas, A. C. Duarte, and T. A. P. Rocha-Santos, “Graphene based sensors and biosensors,” Trac Trends Anal. Chem. 91, 53–66 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic graph of the array of graphene nano-structure, which is fabricated on the CaF2 layer. The ion-gel layer deposits was spin-coated on top of the graphene disk arrays to apply the bias voltage, and the Au gate contact deposited on the top. The Si layer is used to apply the gate voltage too. (b) The top view of the unit of the graphene structures. The periodicity of unit cell is fixed as 100 nm, where R1 = 40 nm, R2 = 10 nm and S = 20√2 nm. (c) The transmission spectrum of graphene disk structure without circular defect. (d) The electric field distribution of z component of graphene disk. (e)The transmission spectrum of graphene layer with circular defect only. (f) The Electric field distribution of z component of circular defect.
Fig. 2
Fig. 2 Bonding and anti-bonding hybridized plasmons in graphene disk with circular defect under normal incidence. (a) Transmission spectra when graphene disk and circular defects are concentric. (b) Energy-level diagram to describe the plasmon hybridization effect in the proposed structure due to the mutual coupling between the graphene disk and circular defect. (c-d) Transmission spectra and electric field distribution when the circular defect is on the x-axis. (e-f) Transmission spectra and electric field distribution when the circular defect is on the y-axis. The illustrations are the schematic representation of the location of a circular defect in the graphene disk.
Fig. 3
Fig. 3 (a) Schematic of the planar defect graphene structure with different offset angle θ. (b)Simulated transmission spectra of bonding mode and anti-bonding mode resonance with θ = 0°, 45° and 90°.
Fig. 4
Fig. 4 (a) Transmission spectra at different Fermi levels with the values of 0.5, 0.7 and 0.9 eV. The graphene disk radius is 40nm, and the defect shift is 20√2 nm. (b) Transmission spectra at different circular defect radius with the values of8 nm, 9 nm and 10 nm.
Fig. 5
Fig. 5 (a) The transmission spectra of the graphene disk dipole resonance mode with different refractive indices. (b) Frequency shift of the dipole resonance mode versus the refractive index .
Fig. 6
Fig. 6 (a) The transmission spectra of the defect graphene disk structure's dual-band resonances with different refractive indices. (b) Frequency shift of bonding mode and anti-bonding mode resonance peaks versus the refractive index.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε g =1+iσ/ ε 0 ω t g , σ g = e 2 E f π 2 i ω+i τ 1
ω p 2αc L 1 E f π( ε 1 + ε 2 )D E f D