Abstract

Thermally activated delayed fluorescence (TADF) resulting from the harvesting of triplet excitons has currently emerged as an excellent candidate for enhancing the efficiency of organic light-emitting devices (OLEDs). Highly efficient blue OLEDs based on an exciplex host with carbazole/thioxanthene-S, S-dioxide (EBCz-ThX) and 2-phenyl-bis-4, 6-(3, 5-di-4-pyridylphenyl) pyrimidine (B4PYPPM) acting as a blue TADF emitter were fabricated. The maximum values of the current and the power efficiency for the blue OLEDs with an EBCz-ThX:B4PYPPM exciplex host were 22.46 cd/A and 28.23 lm/W, respectively. The power efficiency of blue OLEDs with an exciplex host was much higher than that of conventional blue OLEDs. The efficiency enhancement of the blue OLEDs based on an exciplex system with a TADF emitter was attributed to the efficient up-conversion of the triplet excitons in the EBCz-thx:B4PYPPM and to the efficient energy transfer from the exciplex host to the blue TADF emitter.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Energy transfer process in white organic light-emitting devices based on carbazole/thioxanthene-S,S-dioxide host material

Young Pyo Jeon, Dong Hyun Park, Keon-Ho Yoo, and Tae Whan Kim
Opt. Mater. Express 8(7) 1833-1840 (2018)

Solution-processed single-emitting-layer white organic light-emitting diodes based on small molecules with efficiency/CRI/color-stability trade-off

Qiang Fu, Jiangshan Chen, Hongmei Zhang, Changsheng Shi, and Dongge Ma
Opt. Express 21(9) 11078-11085 (2013)

References

  • View by:
  • |
  • |
  • |

  1. N. S. Höfle, M. Pfaff, H. Do, C. Bernhard, D. Gerthsen, U. Lemmer, and A. Colsmann, “Suppressing molecular aggregation in solution processed small molecule organic light emitting diodes,” Org. Electron. 15(1), 337–341 (2014).
    [Crossref]
  2. D. H. Kim and T. W. Kim, “Efficiency enhancement of organic light-emitting devices due to a localized surface plasmonic resonance effect of poly(4-butylphenyl-diphenyl-amine):dodecanethiol functionalized Au nanocomposites,” Opt. Express 23(9), 11211–11220 (2015).
    [Crossref] [PubMed]
  3. Z. Wang, X. -L. Li, Z. Ma, X. Cai, C. Cai, and S. -J. Su, “Excition-adjustable interlayers for high efficiency, low efficiency roll-off, and lifetime improved warm white organic light-emitting diodes (WOLEDs) based on a delayed fluorescence assistant host,” Adv. Funct. Mater. 28(11), 1706922 (2018).
    [Crossref]
  4. H. J. Shin and T. W. Kim, “Ultra-high-image-density large-size organic light-emitting devices based on In-Ga-Zn-O thin-film transistors with a coplanar structure,” Opt. Express 26(13), 16805–16812 (2018).
    [Crossref] [PubMed]
  5. D. H. Kim and T. W. Kim, “Efficiency enhancement in tandem organic light-emitting devices with a hybrid charge generation layer composed of BEDT-TTF-doped TPBi/mCP/HAT-CN,” Org. Electron. 15(12), 3452–3457 (2014).
    [Crossref]
  6. D. H. Kim and T. W. Kim, “Highly efficient organic light-emitting devices based on poly(N,N′-bis-4-butylphenyl-N,N′-bisphenyl)benzidine:octadecylamine-graphene quantum dots,” Org. Electron. 57, 305–310 (2018).
    [Crossref]
  7. C. W. Tang, S. A. Van Slyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” Appl. Phys. Lett. 65(9), 3610–3616 (1989).
  8. M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395(6698), 151–154 (1998).
    [Crossref]
  9. K. Goushi, R. Kwong, J. J. Brown, H. Sasabe, and C. Adachi, “Triplet exciton confinement and unconfinement by adjacent hole-transport layers,” Appl. Phys. Lett. 95(12), 7798–7802 (2004).
  10. S. Su, E. Gonmori, H. Sasabe, and J. Kido, “Highly efficient organic blue- and white-light-emitting devices having a carrier- and exciton-confining structure for reduced efficiency roll-off,” Adv. Mater. 20(21), 4189–4194 (2008).
    [Crossref]
  11. L. S. Liao, K. P. Klubek, and C. W. Tang, “High-efficiency tandem organic light-emitting diodes,” Appl. Phys. Lett. 84(2), 167–169 (2004).
    [Crossref]
  12. J. W. Sun, K.-H. Kim, C.-K. Moon, J.-H. Lee, and J.-J. Kim, “Highly efficient sky-blue fluorescent organic light emitting diode based on mixed cohost system for thermally activated delayed fluorescence emitter (2CzPN),” ACS Appl. Mater. Interfaces 8(15), 9806–9810 (2016).
    [Crossref] [PubMed]
  13. H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492(7428), 234–238 (2012).
    [Crossref] [PubMed]
  14. A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, and C. Adachi, “Efficient up-conversion of triplet excitons into a singlet state and its application to organic light emitting diodes,” Appl. Phys. Lett. 98(8), 083302 (2011).
    [Crossref]
  15. S. Y. Lee, T. Yasuda, H. Nomura, and C. Adachi, “High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor–acceptor hybrid molecules,” Appl. Phys. Lett. 101(9), 093306 (2012).
    [Crossref]
  16. K. Goushi, K. Yoshida, K. Sato, and C. Adachi, “Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion,” Nat. Photonics 6(4), 253–258 (2012).
    [Crossref]
  17. K. Goushi and C. Adachi, “Efficient organic light-emitting diodes through upconversion from triplet to singlet excited states of exciplexes,” Appl. Phys. Lett. 101(2), 023306 (2012).
    [Crossref]
  18. H. Shin, S. Lee, K. H. Kim, C. K. Moon, S. J. Yoo, J. H. Lee, and J. J. Kim, “Blue phosphorescent organic light-emitting diodes using an exciplex forming co-host with the external quantum efficiency of theoretical limit,” Adv. Mater. 26(27), 4730–4734 (2014).
    [Crossref] [PubMed]
  19. X. K. Liu, Z. Chen, J. Qing, W. J. Zhang, B. Wu, H. L. Tam, F. Zhu, X. H. Zhang, and C. S. Lee, “Remanagement of singlet and triplet excitons in single-emissive-layer hybrid white organic light-emitting devices using thermally activated delayed fluorescent blue exciplex,” Adv. Mater. 27(44), 7079–7085 (2015).
    [Crossref] [PubMed]
  20. Y. Seino, S. Inomata, H. Sasabe, Y. J. Pu, and J. Kido, “High-Performance Green OLEDs Using Thermally Activated Delayed Fluorescence with a Power Efficiency of over 100 lm W(-1),” Adv. Mater. 28(13), 2638–2643 (2016).
    [Crossref] [PubMed]
  21. Y. P. Jeon, K. S. Kim, K. K. Lee, I. K. Moon, D. C. Choo, J. Y. Lee, and T. W. Kim, “Blue phosphorescent organic light-emitting devices based on carbazole/thioxanthene-S,S-dioxide with a high glass transition temperature,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(24), 6192–6199 (2015).
    [Crossref]
  22. T. Zhang, B. Zhao, B. Chu, W. Li, Z. Su, L. Wang, J. Wang, F. Jin, X. Yan, Y. Gao, H. Wu, C. Liu, T. Lin, and F. Hou, “Blue exciplex emission and its role as a host of phosphorescent emitter,” Org. Electron. 24, 1–6 (2015).
    [Crossref]
  23. M. Mamada, K. Inada, T. Komino, W. J. Potscavage, H. Nakanotani, and C. Adachi, “Highly efficient thermally activated delayed fluorescence from an excited-state intramolecular proton transfer system,” ACS Cent. Sci. 3(7), 769–777 (2017).
    [Crossref] [PubMed]
  24. D. Y. Zhou, H. Z. Siboni, Q. Wang, S. S. Liao, and H. Aziz, “Host to guest energy transfer mechanism in phosphorescent and fluorescent organic light-emitting devices utilizing exciplex-forming hosts,” J. Phys. Chem. C 118(4), 24006–24012 (2014).
    [Crossref]
  25. C. H. Chen, C. W. Tang, J. Shi, and K. P. Klubek, “Improved red dopants for organic electroluminescent devices,” Macromol. Symp. 125(1), 49–58 (1998).
    [Crossref]
  26. V. Bulović, A. Shoustikovb, M. A. Baldoa, E. Bosea, V. G. Kozlova, M. E. Thompson, and S. R. Forresta, “Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts,” Chem. Phys. Lett. 287(3–4), 455–460 (1998).
    [Crossref]

2018 (3)

Z. Wang, X. -L. Li, Z. Ma, X. Cai, C. Cai, and S. -J. Su, “Excition-adjustable interlayers for high efficiency, low efficiency roll-off, and lifetime improved warm white organic light-emitting diodes (WOLEDs) based on a delayed fluorescence assistant host,” Adv. Funct. Mater. 28(11), 1706922 (2018).
[Crossref]

H. J. Shin and T. W. Kim, “Ultra-high-image-density large-size organic light-emitting devices based on In-Ga-Zn-O thin-film transistors with a coplanar structure,” Opt. Express 26(13), 16805–16812 (2018).
[Crossref] [PubMed]

D. H. Kim and T. W. Kim, “Highly efficient organic light-emitting devices based on poly(N,N′-bis-4-butylphenyl-N,N′-bisphenyl)benzidine:octadecylamine-graphene quantum dots,” Org. Electron. 57, 305–310 (2018).
[Crossref]

2017 (1)

M. Mamada, K. Inada, T. Komino, W. J. Potscavage, H. Nakanotani, and C. Adachi, “Highly efficient thermally activated delayed fluorescence from an excited-state intramolecular proton transfer system,” ACS Cent. Sci. 3(7), 769–777 (2017).
[Crossref] [PubMed]

2016 (2)

Y. Seino, S. Inomata, H. Sasabe, Y. J. Pu, and J. Kido, “High-Performance Green OLEDs Using Thermally Activated Delayed Fluorescence with a Power Efficiency of over 100 lm W(-1),” Adv. Mater. 28(13), 2638–2643 (2016).
[Crossref] [PubMed]

J. W. Sun, K.-H. Kim, C.-K. Moon, J.-H. Lee, and J.-J. Kim, “Highly efficient sky-blue fluorescent organic light emitting diode based on mixed cohost system for thermally activated delayed fluorescence emitter (2CzPN),” ACS Appl. Mater. Interfaces 8(15), 9806–9810 (2016).
[Crossref] [PubMed]

2015 (4)

X. K. Liu, Z. Chen, J. Qing, W. J. Zhang, B. Wu, H. L. Tam, F. Zhu, X. H. Zhang, and C. S. Lee, “Remanagement of singlet and triplet excitons in single-emissive-layer hybrid white organic light-emitting devices using thermally activated delayed fluorescent blue exciplex,” Adv. Mater. 27(44), 7079–7085 (2015).
[Crossref] [PubMed]

D. H. Kim and T. W. Kim, “Efficiency enhancement of organic light-emitting devices due to a localized surface plasmonic resonance effect of poly(4-butylphenyl-diphenyl-amine):dodecanethiol functionalized Au nanocomposites,” Opt. Express 23(9), 11211–11220 (2015).
[Crossref] [PubMed]

Y. P. Jeon, K. S. Kim, K. K. Lee, I. K. Moon, D. C. Choo, J. Y. Lee, and T. W. Kim, “Blue phosphorescent organic light-emitting devices based on carbazole/thioxanthene-S,S-dioxide with a high glass transition temperature,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(24), 6192–6199 (2015).
[Crossref]

T. Zhang, B. Zhao, B. Chu, W. Li, Z. Su, L. Wang, J. Wang, F. Jin, X. Yan, Y. Gao, H. Wu, C. Liu, T. Lin, and F. Hou, “Blue exciplex emission and its role as a host of phosphorescent emitter,” Org. Electron. 24, 1–6 (2015).
[Crossref]

2014 (4)

D. Y. Zhou, H. Z. Siboni, Q. Wang, S. S. Liao, and H. Aziz, “Host to guest energy transfer mechanism in phosphorescent and fluorescent organic light-emitting devices utilizing exciplex-forming hosts,” J. Phys. Chem. C 118(4), 24006–24012 (2014).
[Crossref]

N. S. Höfle, M. Pfaff, H. Do, C. Bernhard, D. Gerthsen, U. Lemmer, and A. Colsmann, “Suppressing molecular aggregation in solution processed small molecule organic light emitting diodes,” Org. Electron. 15(1), 337–341 (2014).
[Crossref]

D. H. Kim and T. W. Kim, “Efficiency enhancement in tandem organic light-emitting devices with a hybrid charge generation layer composed of BEDT-TTF-doped TPBi/mCP/HAT-CN,” Org. Electron. 15(12), 3452–3457 (2014).
[Crossref]

H. Shin, S. Lee, K. H. Kim, C. K. Moon, S. J. Yoo, J. H. Lee, and J. J. Kim, “Blue phosphorescent organic light-emitting diodes using an exciplex forming co-host with the external quantum efficiency of theoretical limit,” Adv. Mater. 26(27), 4730–4734 (2014).
[Crossref] [PubMed]

2012 (4)

S. Y. Lee, T. Yasuda, H. Nomura, and C. Adachi, “High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor–acceptor hybrid molecules,” Appl. Phys. Lett. 101(9), 093306 (2012).
[Crossref]

K. Goushi, K. Yoshida, K. Sato, and C. Adachi, “Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion,” Nat. Photonics 6(4), 253–258 (2012).
[Crossref]

K. Goushi and C. Adachi, “Efficient organic light-emitting diodes through upconversion from triplet to singlet excited states of exciplexes,” Appl. Phys. Lett. 101(2), 023306 (2012).
[Crossref]

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492(7428), 234–238 (2012).
[Crossref] [PubMed]

2011 (1)

A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, and C. Adachi, “Efficient up-conversion of triplet excitons into a singlet state and its application to organic light emitting diodes,” Appl. Phys. Lett. 98(8), 083302 (2011).
[Crossref]

2008 (1)

S. Su, E. Gonmori, H. Sasabe, and J. Kido, “Highly efficient organic blue- and white-light-emitting devices having a carrier- and exciton-confining structure for reduced efficiency roll-off,” Adv. Mater. 20(21), 4189–4194 (2008).
[Crossref]

2004 (2)

L. S. Liao, K. P. Klubek, and C. W. Tang, “High-efficiency tandem organic light-emitting diodes,” Appl. Phys. Lett. 84(2), 167–169 (2004).
[Crossref]

K. Goushi, R. Kwong, J. J. Brown, H. Sasabe, and C. Adachi, “Triplet exciton confinement and unconfinement by adjacent hole-transport layers,” Appl. Phys. Lett. 95(12), 7798–7802 (2004).

1998 (3)

M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395(6698), 151–154 (1998).
[Crossref]

C. H. Chen, C. W. Tang, J. Shi, and K. P. Klubek, “Improved red dopants for organic electroluminescent devices,” Macromol. Symp. 125(1), 49–58 (1998).
[Crossref]

V. Bulović, A. Shoustikovb, M. A. Baldoa, E. Bosea, V. G. Kozlova, M. E. Thompson, and S. R. Forresta, “Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts,” Chem. Phys. Lett. 287(3–4), 455–460 (1998).
[Crossref]

1989 (1)

C. W. Tang, S. A. Van Slyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” Appl. Phys. Lett. 65(9), 3610–3616 (1989).

Adachi, C.

M. Mamada, K. Inada, T. Komino, W. J. Potscavage, H. Nakanotani, and C. Adachi, “Highly efficient thermally activated delayed fluorescence from an excited-state intramolecular proton transfer system,” ACS Cent. Sci. 3(7), 769–777 (2017).
[Crossref] [PubMed]

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492(7428), 234–238 (2012).
[Crossref] [PubMed]

S. Y. Lee, T. Yasuda, H. Nomura, and C. Adachi, “High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor–acceptor hybrid molecules,” Appl. Phys. Lett. 101(9), 093306 (2012).
[Crossref]

K. Goushi, K. Yoshida, K. Sato, and C. Adachi, “Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion,” Nat. Photonics 6(4), 253–258 (2012).
[Crossref]

K. Goushi and C. Adachi, “Efficient organic light-emitting diodes through upconversion from triplet to singlet excited states of exciplexes,” Appl. Phys. Lett. 101(2), 023306 (2012).
[Crossref]

A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, and C. Adachi, “Efficient up-conversion of triplet excitons into a singlet state and its application to organic light emitting diodes,” Appl. Phys. Lett. 98(8), 083302 (2011).
[Crossref]

K. Goushi, R. Kwong, J. J. Brown, H. Sasabe, and C. Adachi, “Triplet exciton confinement and unconfinement by adjacent hole-transport layers,” Appl. Phys. Lett. 95(12), 7798–7802 (2004).

Aziz, H.

D. Y. Zhou, H. Z. Siboni, Q. Wang, S. S. Liao, and H. Aziz, “Host to guest energy transfer mechanism in phosphorescent and fluorescent organic light-emitting devices utilizing exciplex-forming hosts,” J. Phys. Chem. C 118(4), 24006–24012 (2014).
[Crossref]

Baldo, M. A.

M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395(6698), 151–154 (1998).
[Crossref]

Baldoa, M. A.

V. Bulović, A. Shoustikovb, M. A. Baldoa, E. Bosea, V. G. Kozlova, M. E. Thompson, and S. R. Forresta, “Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts,” Chem. Phys. Lett. 287(3–4), 455–460 (1998).
[Crossref]

Bernhard, C.

N. S. Höfle, M. Pfaff, H. Do, C. Bernhard, D. Gerthsen, U. Lemmer, and A. Colsmann, “Suppressing molecular aggregation in solution processed small molecule organic light emitting diodes,” Org. Electron. 15(1), 337–341 (2014).
[Crossref]

Bosea, E.

V. Bulović, A. Shoustikovb, M. A. Baldoa, E. Bosea, V. G. Kozlova, M. E. Thompson, and S. R. Forresta, “Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts,” Chem. Phys. Lett. 287(3–4), 455–460 (1998).
[Crossref]

Brown, J. J.

K. Goushi, R. Kwong, J. J. Brown, H. Sasabe, and C. Adachi, “Triplet exciton confinement and unconfinement by adjacent hole-transport layers,” Appl. Phys. Lett. 95(12), 7798–7802 (2004).

Bulovic, V.

V. Bulović, A. Shoustikovb, M. A. Baldoa, E. Bosea, V. G. Kozlova, M. E. Thompson, and S. R. Forresta, “Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts,” Chem. Phys. Lett. 287(3–4), 455–460 (1998).
[Crossref]

Cai, C.

Z. Wang, X. -L. Li, Z. Ma, X. Cai, C. Cai, and S. -J. Su, “Excition-adjustable interlayers for high efficiency, low efficiency roll-off, and lifetime improved warm white organic light-emitting diodes (WOLEDs) based on a delayed fluorescence assistant host,” Adv. Funct. Mater. 28(11), 1706922 (2018).
[Crossref]

Cai, X.

Z. Wang, X. -L. Li, Z. Ma, X. Cai, C. Cai, and S. -J. Su, “Excition-adjustable interlayers for high efficiency, low efficiency roll-off, and lifetime improved warm white organic light-emitting diodes (WOLEDs) based on a delayed fluorescence assistant host,” Adv. Funct. Mater. 28(11), 1706922 (2018).
[Crossref]

Chen, C. H.

C. H. Chen, C. W. Tang, J. Shi, and K. P. Klubek, “Improved red dopants for organic electroluminescent devices,” Macromol. Symp. 125(1), 49–58 (1998).
[Crossref]

C. W. Tang, S. A. Van Slyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” Appl. Phys. Lett. 65(9), 3610–3616 (1989).

Chen, Z.

X. K. Liu, Z. Chen, J. Qing, W. J. Zhang, B. Wu, H. L. Tam, F. Zhu, X. H. Zhang, and C. S. Lee, “Remanagement of singlet and triplet excitons in single-emissive-layer hybrid white organic light-emitting devices using thermally activated delayed fluorescent blue exciplex,” Adv. Mater. 27(44), 7079–7085 (2015).
[Crossref] [PubMed]

Choo, D. C.

Y. P. Jeon, K. S. Kim, K. K. Lee, I. K. Moon, D. C. Choo, J. Y. Lee, and T. W. Kim, “Blue phosphorescent organic light-emitting devices based on carbazole/thioxanthene-S,S-dioxide with a high glass transition temperature,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(24), 6192–6199 (2015).
[Crossref]

Chu, B.

T. Zhang, B. Zhao, B. Chu, W. Li, Z. Su, L. Wang, J. Wang, F. Jin, X. Yan, Y. Gao, H. Wu, C. Liu, T. Lin, and F. Hou, “Blue exciplex emission and its role as a host of phosphorescent emitter,” Org. Electron. 24, 1–6 (2015).
[Crossref]

Colsmann, A.

N. S. Höfle, M. Pfaff, H. Do, C. Bernhard, D. Gerthsen, U. Lemmer, and A. Colsmann, “Suppressing molecular aggregation in solution processed small molecule organic light emitting diodes,” Org. Electron. 15(1), 337–341 (2014).
[Crossref]

Do, H.

N. S. Höfle, M. Pfaff, H. Do, C. Bernhard, D. Gerthsen, U. Lemmer, and A. Colsmann, “Suppressing molecular aggregation in solution processed small molecule organic light emitting diodes,” Org. Electron. 15(1), 337–341 (2014).
[Crossref]

Endo, A.

A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, and C. Adachi, “Efficient up-conversion of triplet excitons into a singlet state and its application to organic light emitting diodes,” Appl. Phys. Lett. 98(8), 083302 (2011).
[Crossref]

Forrest, S. R.

M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395(6698), 151–154 (1998).
[Crossref]

Forresta, S. R.

V. Bulović, A. Shoustikovb, M. A. Baldoa, E. Bosea, V. G. Kozlova, M. E. Thompson, and S. R. Forresta, “Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts,” Chem. Phys. Lett. 287(3–4), 455–460 (1998).
[Crossref]

Gao, Y.

T. Zhang, B. Zhao, B. Chu, W. Li, Z. Su, L. Wang, J. Wang, F. Jin, X. Yan, Y. Gao, H. Wu, C. Liu, T. Lin, and F. Hou, “Blue exciplex emission and its role as a host of phosphorescent emitter,” Org. Electron. 24, 1–6 (2015).
[Crossref]

Gerthsen, D.

N. S. Höfle, M. Pfaff, H. Do, C. Bernhard, D. Gerthsen, U. Lemmer, and A. Colsmann, “Suppressing molecular aggregation in solution processed small molecule organic light emitting diodes,” Org. Electron. 15(1), 337–341 (2014).
[Crossref]

Gonmori, E.

S. Su, E. Gonmori, H. Sasabe, and J. Kido, “Highly efficient organic blue- and white-light-emitting devices having a carrier- and exciton-confining structure for reduced efficiency roll-off,” Adv. Mater. 20(21), 4189–4194 (2008).
[Crossref]

Goushi, K.

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492(7428), 234–238 (2012).
[Crossref] [PubMed]

K. Goushi and C. Adachi, “Efficient organic light-emitting diodes through upconversion from triplet to singlet excited states of exciplexes,” Appl. Phys. Lett. 101(2), 023306 (2012).
[Crossref]

K. Goushi, K. Yoshida, K. Sato, and C. Adachi, “Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion,” Nat. Photonics 6(4), 253–258 (2012).
[Crossref]

K. Goushi, R. Kwong, J. J. Brown, H. Sasabe, and C. Adachi, “Triplet exciton confinement and unconfinement by adjacent hole-transport layers,” Appl. Phys. Lett. 95(12), 7798–7802 (2004).

Höfle, N. S.

N. S. Höfle, M. Pfaff, H. Do, C. Bernhard, D. Gerthsen, U. Lemmer, and A. Colsmann, “Suppressing molecular aggregation in solution processed small molecule organic light emitting diodes,” Org. Electron. 15(1), 337–341 (2014).
[Crossref]

Hou, F.

T. Zhang, B. Zhao, B. Chu, W. Li, Z. Su, L. Wang, J. Wang, F. Jin, X. Yan, Y. Gao, H. Wu, C. Liu, T. Lin, and F. Hou, “Blue exciplex emission and its role as a host of phosphorescent emitter,” Org. Electron. 24, 1–6 (2015).
[Crossref]

Inada, K.

M. Mamada, K. Inada, T. Komino, W. J. Potscavage, H. Nakanotani, and C. Adachi, “Highly efficient thermally activated delayed fluorescence from an excited-state intramolecular proton transfer system,” ACS Cent. Sci. 3(7), 769–777 (2017).
[Crossref] [PubMed]

Inomata, S.

Y. Seino, S. Inomata, H. Sasabe, Y. J. Pu, and J. Kido, “High-Performance Green OLEDs Using Thermally Activated Delayed Fluorescence with a Power Efficiency of over 100 lm W(-1),” Adv. Mater. 28(13), 2638–2643 (2016).
[Crossref] [PubMed]

Jeon, Y. P.

Y. P. Jeon, K. S. Kim, K. K. Lee, I. K. Moon, D. C. Choo, J. Y. Lee, and T. W. Kim, “Blue phosphorescent organic light-emitting devices based on carbazole/thioxanthene-S,S-dioxide with a high glass transition temperature,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(24), 6192–6199 (2015).
[Crossref]

Jin, F.

T. Zhang, B. Zhao, B. Chu, W. Li, Z. Su, L. Wang, J. Wang, F. Jin, X. Yan, Y. Gao, H. Wu, C. Liu, T. Lin, and F. Hou, “Blue exciplex emission and its role as a host of phosphorescent emitter,” Org. Electron. 24, 1–6 (2015).
[Crossref]

Kai, T.

A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, and C. Adachi, “Efficient up-conversion of triplet excitons into a singlet state and its application to organic light emitting diodes,” Appl. Phys. Lett. 98(8), 083302 (2011).
[Crossref]

Kawada, A.

A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, and C. Adachi, “Efficient up-conversion of triplet excitons into a singlet state and its application to organic light emitting diodes,” Appl. Phys. Lett. 98(8), 083302 (2011).
[Crossref]

Kido, J.

Y. Seino, S. Inomata, H. Sasabe, Y. J. Pu, and J. Kido, “High-Performance Green OLEDs Using Thermally Activated Delayed Fluorescence with a Power Efficiency of over 100 lm W(-1),” Adv. Mater. 28(13), 2638–2643 (2016).
[Crossref] [PubMed]

S. Su, E. Gonmori, H. Sasabe, and J. Kido, “Highly efficient organic blue- and white-light-emitting devices having a carrier- and exciton-confining structure for reduced efficiency roll-off,” Adv. Mater. 20(21), 4189–4194 (2008).
[Crossref]

Kim, D. H.

D. H. Kim and T. W. Kim, “Highly efficient organic light-emitting devices based on poly(N,N′-bis-4-butylphenyl-N,N′-bisphenyl)benzidine:octadecylamine-graphene quantum dots,” Org. Electron. 57, 305–310 (2018).
[Crossref]

D. H. Kim and T. W. Kim, “Efficiency enhancement of organic light-emitting devices due to a localized surface plasmonic resonance effect of poly(4-butylphenyl-diphenyl-amine):dodecanethiol functionalized Au nanocomposites,” Opt. Express 23(9), 11211–11220 (2015).
[Crossref] [PubMed]

D. H. Kim and T. W. Kim, “Efficiency enhancement in tandem organic light-emitting devices with a hybrid charge generation layer composed of BEDT-TTF-doped TPBi/mCP/HAT-CN,” Org. Electron. 15(12), 3452–3457 (2014).
[Crossref]

Kim, J. J.

H. Shin, S. Lee, K. H. Kim, C. K. Moon, S. J. Yoo, J. H. Lee, and J. J. Kim, “Blue phosphorescent organic light-emitting diodes using an exciplex forming co-host with the external quantum efficiency of theoretical limit,” Adv. Mater. 26(27), 4730–4734 (2014).
[Crossref] [PubMed]

Kim, J.-J.

J. W. Sun, K.-H. Kim, C.-K. Moon, J.-H. Lee, and J.-J. Kim, “Highly efficient sky-blue fluorescent organic light emitting diode based on mixed cohost system for thermally activated delayed fluorescence emitter (2CzPN),” ACS Appl. Mater. Interfaces 8(15), 9806–9810 (2016).
[Crossref] [PubMed]

Kim, K. H.

H. Shin, S. Lee, K. H. Kim, C. K. Moon, S. J. Yoo, J. H. Lee, and J. J. Kim, “Blue phosphorescent organic light-emitting diodes using an exciplex forming co-host with the external quantum efficiency of theoretical limit,” Adv. Mater. 26(27), 4730–4734 (2014).
[Crossref] [PubMed]

Kim, K. S.

Y. P. Jeon, K. S. Kim, K. K. Lee, I. K. Moon, D. C. Choo, J. Y. Lee, and T. W. Kim, “Blue phosphorescent organic light-emitting devices based on carbazole/thioxanthene-S,S-dioxide with a high glass transition temperature,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(24), 6192–6199 (2015).
[Crossref]

Kim, K.-H.

J. W. Sun, K.-H. Kim, C.-K. Moon, J.-H. Lee, and J.-J. Kim, “Highly efficient sky-blue fluorescent organic light emitting diode based on mixed cohost system for thermally activated delayed fluorescence emitter (2CzPN),” ACS Appl. Mater. Interfaces 8(15), 9806–9810 (2016).
[Crossref] [PubMed]

Kim, T. W.

D. H. Kim and T. W. Kim, “Highly efficient organic light-emitting devices based on poly(N,N′-bis-4-butylphenyl-N,N′-bisphenyl)benzidine:octadecylamine-graphene quantum dots,” Org. Electron. 57, 305–310 (2018).
[Crossref]

H. J. Shin and T. W. Kim, “Ultra-high-image-density large-size organic light-emitting devices based on In-Ga-Zn-O thin-film transistors with a coplanar structure,” Opt. Express 26(13), 16805–16812 (2018).
[Crossref] [PubMed]

D. H. Kim and T. W. Kim, “Efficiency enhancement of organic light-emitting devices due to a localized surface plasmonic resonance effect of poly(4-butylphenyl-diphenyl-amine):dodecanethiol functionalized Au nanocomposites,” Opt. Express 23(9), 11211–11220 (2015).
[Crossref] [PubMed]

Y. P. Jeon, K. S. Kim, K. K. Lee, I. K. Moon, D. C. Choo, J. Y. Lee, and T. W. Kim, “Blue phosphorescent organic light-emitting devices based on carbazole/thioxanthene-S,S-dioxide with a high glass transition temperature,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(24), 6192–6199 (2015).
[Crossref]

D. H. Kim and T. W. Kim, “Efficiency enhancement in tandem organic light-emitting devices with a hybrid charge generation layer composed of BEDT-TTF-doped TPBi/mCP/HAT-CN,” Org. Electron. 15(12), 3452–3457 (2014).
[Crossref]

Klubek, K. P.

L. S. Liao, K. P. Klubek, and C. W. Tang, “High-efficiency tandem organic light-emitting diodes,” Appl. Phys. Lett. 84(2), 167–169 (2004).
[Crossref]

C. H. Chen, C. W. Tang, J. Shi, and K. P. Klubek, “Improved red dopants for organic electroluminescent devices,” Macromol. Symp. 125(1), 49–58 (1998).
[Crossref]

Komino, T.

M. Mamada, K. Inada, T. Komino, W. J. Potscavage, H. Nakanotani, and C. Adachi, “Highly efficient thermally activated delayed fluorescence from an excited-state intramolecular proton transfer system,” ACS Cent. Sci. 3(7), 769–777 (2017).
[Crossref] [PubMed]

Kozlova, V. G.

V. Bulović, A. Shoustikovb, M. A. Baldoa, E. Bosea, V. G. Kozlova, M. E. Thompson, and S. R. Forresta, “Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts,” Chem. Phys. Lett. 287(3–4), 455–460 (1998).
[Crossref]

Kwong, R.

K. Goushi, R. Kwong, J. J. Brown, H. Sasabe, and C. Adachi, “Triplet exciton confinement and unconfinement by adjacent hole-transport layers,” Appl. Phys. Lett. 95(12), 7798–7802 (2004).

Lee, C. S.

X. K. Liu, Z. Chen, J. Qing, W. J. Zhang, B. Wu, H. L. Tam, F. Zhu, X. H. Zhang, and C. S. Lee, “Remanagement of singlet and triplet excitons in single-emissive-layer hybrid white organic light-emitting devices using thermally activated delayed fluorescent blue exciplex,” Adv. Mater. 27(44), 7079–7085 (2015).
[Crossref] [PubMed]

Lee, J. H.

H. Shin, S. Lee, K. H. Kim, C. K. Moon, S. J. Yoo, J. H. Lee, and J. J. Kim, “Blue phosphorescent organic light-emitting diodes using an exciplex forming co-host with the external quantum efficiency of theoretical limit,” Adv. Mater. 26(27), 4730–4734 (2014).
[Crossref] [PubMed]

Lee, J. Y.

Y. P. Jeon, K. S. Kim, K. K. Lee, I. K. Moon, D. C. Choo, J. Y. Lee, and T. W. Kim, “Blue phosphorescent organic light-emitting devices based on carbazole/thioxanthene-S,S-dioxide with a high glass transition temperature,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(24), 6192–6199 (2015).
[Crossref]

Lee, J.-H.

J. W. Sun, K.-H. Kim, C.-K. Moon, J.-H. Lee, and J.-J. Kim, “Highly efficient sky-blue fluorescent organic light emitting diode based on mixed cohost system for thermally activated delayed fluorescence emitter (2CzPN),” ACS Appl. Mater. Interfaces 8(15), 9806–9810 (2016).
[Crossref] [PubMed]

Lee, K. K.

Y. P. Jeon, K. S. Kim, K. K. Lee, I. K. Moon, D. C. Choo, J. Y. Lee, and T. W. Kim, “Blue phosphorescent organic light-emitting devices based on carbazole/thioxanthene-S,S-dioxide with a high glass transition temperature,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(24), 6192–6199 (2015).
[Crossref]

Lee, S.

H. Shin, S. Lee, K. H. Kim, C. K. Moon, S. J. Yoo, J. H. Lee, and J. J. Kim, “Blue phosphorescent organic light-emitting diodes using an exciplex forming co-host with the external quantum efficiency of theoretical limit,” Adv. Mater. 26(27), 4730–4734 (2014).
[Crossref] [PubMed]

Lee, S. Y.

S. Y. Lee, T. Yasuda, H. Nomura, and C. Adachi, “High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor–acceptor hybrid molecules,” Appl. Phys. Lett. 101(9), 093306 (2012).
[Crossref]

Lemmer, U.

N. S. Höfle, M. Pfaff, H. Do, C. Bernhard, D. Gerthsen, U. Lemmer, and A. Colsmann, “Suppressing molecular aggregation in solution processed small molecule organic light emitting diodes,” Org. Electron. 15(1), 337–341 (2014).
[Crossref]

Li, W.

T. Zhang, B. Zhao, B. Chu, W. Li, Z. Su, L. Wang, J. Wang, F. Jin, X. Yan, Y. Gao, H. Wu, C. Liu, T. Lin, and F. Hou, “Blue exciplex emission and its role as a host of phosphorescent emitter,” Org. Electron. 24, 1–6 (2015).
[Crossref]

Li, X. -L.

Z. Wang, X. -L. Li, Z. Ma, X. Cai, C. Cai, and S. -J. Su, “Excition-adjustable interlayers for high efficiency, low efficiency roll-off, and lifetime improved warm white organic light-emitting diodes (WOLEDs) based on a delayed fluorescence assistant host,” Adv. Funct. Mater. 28(11), 1706922 (2018).
[Crossref]

Liao, L. S.

L. S. Liao, K. P. Klubek, and C. W. Tang, “High-efficiency tandem organic light-emitting diodes,” Appl. Phys. Lett. 84(2), 167–169 (2004).
[Crossref]

Liao, S. S.

D. Y. Zhou, H. Z. Siboni, Q. Wang, S. S. Liao, and H. Aziz, “Host to guest energy transfer mechanism in phosphorescent and fluorescent organic light-emitting devices utilizing exciplex-forming hosts,” J. Phys. Chem. C 118(4), 24006–24012 (2014).
[Crossref]

Lin, T.

T. Zhang, B. Zhao, B. Chu, W. Li, Z. Su, L. Wang, J. Wang, F. Jin, X. Yan, Y. Gao, H. Wu, C. Liu, T. Lin, and F. Hou, “Blue exciplex emission and its role as a host of phosphorescent emitter,” Org. Electron. 24, 1–6 (2015).
[Crossref]

Liu, C.

T. Zhang, B. Zhao, B. Chu, W. Li, Z. Su, L. Wang, J. Wang, F. Jin, X. Yan, Y. Gao, H. Wu, C. Liu, T. Lin, and F. Hou, “Blue exciplex emission and its role as a host of phosphorescent emitter,” Org. Electron. 24, 1–6 (2015).
[Crossref]

Liu, X. K.

X. K. Liu, Z. Chen, J. Qing, W. J. Zhang, B. Wu, H. L. Tam, F. Zhu, X. H. Zhang, and C. S. Lee, “Remanagement of singlet and triplet excitons in single-emissive-layer hybrid white organic light-emitting devices using thermally activated delayed fluorescent blue exciplex,” Adv. Mater. 27(44), 7079–7085 (2015).
[Crossref] [PubMed]

Ma, Z.

Z. Wang, X. -L. Li, Z. Ma, X. Cai, C. Cai, and S. -J. Su, “Excition-adjustable interlayers for high efficiency, low efficiency roll-off, and lifetime improved warm white organic light-emitting diodes (WOLEDs) based on a delayed fluorescence assistant host,” Adv. Funct. Mater. 28(11), 1706922 (2018).
[Crossref]

Mamada, M.

M. Mamada, K. Inada, T. Komino, W. J. Potscavage, H. Nakanotani, and C. Adachi, “Highly efficient thermally activated delayed fluorescence from an excited-state intramolecular proton transfer system,” ACS Cent. Sci. 3(7), 769–777 (2017).
[Crossref] [PubMed]

Miyazaki, H.

A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, and C. Adachi, “Efficient up-conversion of triplet excitons into a singlet state and its application to organic light emitting diodes,” Appl. Phys. Lett. 98(8), 083302 (2011).
[Crossref]

Moon, C. K.

H. Shin, S. Lee, K. H. Kim, C. K. Moon, S. J. Yoo, J. H. Lee, and J. J. Kim, “Blue phosphorescent organic light-emitting diodes using an exciplex forming co-host with the external quantum efficiency of theoretical limit,” Adv. Mater. 26(27), 4730–4734 (2014).
[Crossref] [PubMed]

Moon, C.-K.

J. W. Sun, K.-H. Kim, C.-K. Moon, J.-H. Lee, and J.-J. Kim, “Highly efficient sky-blue fluorescent organic light emitting diode based on mixed cohost system for thermally activated delayed fluorescence emitter (2CzPN),” ACS Appl. Mater. Interfaces 8(15), 9806–9810 (2016).
[Crossref] [PubMed]

Moon, I. K.

Y. P. Jeon, K. S. Kim, K. K. Lee, I. K. Moon, D. C. Choo, J. Y. Lee, and T. W. Kim, “Blue phosphorescent organic light-emitting devices based on carbazole/thioxanthene-S,S-dioxide with a high glass transition temperature,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(24), 6192–6199 (2015).
[Crossref]

Nakanotani, H.

M. Mamada, K. Inada, T. Komino, W. J. Potscavage, H. Nakanotani, and C. Adachi, “Highly efficient thermally activated delayed fluorescence from an excited-state intramolecular proton transfer system,” ACS Cent. Sci. 3(7), 769–777 (2017).
[Crossref] [PubMed]

Nomura, H.

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492(7428), 234–238 (2012).
[Crossref] [PubMed]

S. Y. Lee, T. Yasuda, H. Nomura, and C. Adachi, “High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor–acceptor hybrid molecules,” Appl. Phys. Lett. 101(9), 093306 (2012).
[Crossref]

O’Brien, D. F.

M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395(6698), 151–154 (1998).
[Crossref]

Pfaff, M.

N. S. Höfle, M. Pfaff, H. Do, C. Bernhard, D. Gerthsen, U. Lemmer, and A. Colsmann, “Suppressing molecular aggregation in solution processed small molecule organic light emitting diodes,” Org. Electron. 15(1), 337–341 (2014).
[Crossref]

Potscavage, W. J.

M. Mamada, K. Inada, T. Komino, W. J. Potscavage, H. Nakanotani, and C. Adachi, “Highly efficient thermally activated delayed fluorescence from an excited-state intramolecular proton transfer system,” ACS Cent. Sci. 3(7), 769–777 (2017).
[Crossref] [PubMed]

Pu, Y. J.

Y. Seino, S. Inomata, H. Sasabe, Y. J. Pu, and J. Kido, “High-Performance Green OLEDs Using Thermally Activated Delayed Fluorescence with a Power Efficiency of over 100 lm W(-1),” Adv. Mater. 28(13), 2638–2643 (2016).
[Crossref] [PubMed]

Qing, J.

X. K. Liu, Z. Chen, J. Qing, W. J. Zhang, B. Wu, H. L. Tam, F. Zhu, X. H. Zhang, and C. S. Lee, “Remanagement of singlet and triplet excitons in single-emissive-layer hybrid white organic light-emitting devices using thermally activated delayed fluorescent blue exciplex,” Adv. Mater. 27(44), 7079–7085 (2015).
[Crossref] [PubMed]

Sasabe, H.

Y. Seino, S. Inomata, H. Sasabe, Y. J. Pu, and J. Kido, “High-Performance Green OLEDs Using Thermally Activated Delayed Fluorescence with a Power Efficiency of over 100 lm W(-1),” Adv. Mater. 28(13), 2638–2643 (2016).
[Crossref] [PubMed]

S. Su, E. Gonmori, H. Sasabe, and J. Kido, “Highly efficient organic blue- and white-light-emitting devices having a carrier- and exciton-confining structure for reduced efficiency roll-off,” Adv. Mater. 20(21), 4189–4194 (2008).
[Crossref]

K. Goushi, R. Kwong, J. J. Brown, H. Sasabe, and C. Adachi, “Triplet exciton confinement and unconfinement by adjacent hole-transport layers,” Appl. Phys. Lett. 95(12), 7798–7802 (2004).

Sato, K.

K. Goushi, K. Yoshida, K. Sato, and C. Adachi, “Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion,” Nat. Photonics 6(4), 253–258 (2012).
[Crossref]

A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, and C. Adachi, “Efficient up-conversion of triplet excitons into a singlet state and its application to organic light emitting diodes,” Appl. Phys. Lett. 98(8), 083302 (2011).
[Crossref]

Seino, Y.

Y. Seino, S. Inomata, H. Sasabe, Y. J. Pu, and J. Kido, “High-Performance Green OLEDs Using Thermally Activated Delayed Fluorescence with a Power Efficiency of over 100 lm W(-1),” Adv. Mater. 28(13), 2638–2643 (2016).
[Crossref] [PubMed]

Shi, J.

C. H. Chen, C. W. Tang, J. Shi, and K. P. Klubek, “Improved red dopants for organic electroluminescent devices,” Macromol. Symp. 125(1), 49–58 (1998).
[Crossref]

Shin, H.

H. Shin, S. Lee, K. H. Kim, C. K. Moon, S. J. Yoo, J. H. Lee, and J. J. Kim, “Blue phosphorescent organic light-emitting diodes using an exciplex forming co-host with the external quantum efficiency of theoretical limit,” Adv. Mater. 26(27), 4730–4734 (2014).
[Crossref] [PubMed]

Shin, H. J.

Shizu, K.

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492(7428), 234–238 (2012).
[Crossref] [PubMed]

Shoustikov, A.

M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395(6698), 151–154 (1998).
[Crossref]

Shoustikovb, A.

V. Bulović, A. Shoustikovb, M. A. Baldoa, E. Bosea, V. G. Kozlova, M. E. Thompson, and S. R. Forresta, “Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts,” Chem. Phys. Lett. 287(3–4), 455–460 (1998).
[Crossref]

Sibley, S.

M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395(6698), 151–154 (1998).
[Crossref]

Siboni, H. Z.

D. Y. Zhou, H. Z. Siboni, Q. Wang, S. S. Liao, and H. Aziz, “Host to guest energy transfer mechanism in phosphorescent and fluorescent organic light-emitting devices utilizing exciplex-forming hosts,” J. Phys. Chem. C 118(4), 24006–24012 (2014).
[Crossref]

Su, S.

S. Su, E. Gonmori, H. Sasabe, and J. Kido, “Highly efficient organic blue- and white-light-emitting devices having a carrier- and exciton-confining structure for reduced efficiency roll-off,” Adv. Mater. 20(21), 4189–4194 (2008).
[Crossref]

Su, S. -J.

Z. Wang, X. -L. Li, Z. Ma, X. Cai, C. Cai, and S. -J. Su, “Excition-adjustable interlayers for high efficiency, low efficiency roll-off, and lifetime improved warm white organic light-emitting diodes (WOLEDs) based on a delayed fluorescence assistant host,” Adv. Funct. Mater. 28(11), 1706922 (2018).
[Crossref]

Su, Z.

T. Zhang, B. Zhao, B. Chu, W. Li, Z. Su, L. Wang, J. Wang, F. Jin, X. Yan, Y. Gao, H. Wu, C. Liu, T. Lin, and F. Hou, “Blue exciplex emission and its role as a host of phosphorescent emitter,” Org. Electron. 24, 1–6 (2015).
[Crossref]

Sun, J. W.

J. W. Sun, K.-H. Kim, C.-K. Moon, J.-H. Lee, and J.-J. Kim, “Highly efficient sky-blue fluorescent organic light emitting diode based on mixed cohost system for thermally activated delayed fluorescence emitter (2CzPN),” ACS Appl. Mater. Interfaces 8(15), 9806–9810 (2016).
[Crossref] [PubMed]

Tam, H. L.

X. K. Liu, Z. Chen, J. Qing, W. J. Zhang, B. Wu, H. L. Tam, F. Zhu, X. H. Zhang, and C. S. Lee, “Remanagement of singlet and triplet excitons in single-emissive-layer hybrid white organic light-emitting devices using thermally activated delayed fluorescent blue exciplex,” Adv. Mater. 27(44), 7079–7085 (2015).
[Crossref] [PubMed]

Tang, C. W.

L. S. Liao, K. P. Klubek, and C. W. Tang, “High-efficiency tandem organic light-emitting diodes,” Appl. Phys. Lett. 84(2), 167–169 (2004).
[Crossref]

C. H. Chen, C. W. Tang, J. Shi, and K. P. Klubek, “Improved red dopants for organic electroluminescent devices,” Macromol. Symp. 125(1), 49–58 (1998).
[Crossref]

C. W. Tang, S. A. Van Slyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” Appl. Phys. Lett. 65(9), 3610–3616 (1989).

Thompson, M. E.

M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395(6698), 151–154 (1998).
[Crossref]

V. Bulović, A. Shoustikovb, M. A. Baldoa, E. Bosea, V. G. Kozlova, M. E. Thompson, and S. R. Forresta, “Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts,” Chem. Phys. Lett. 287(3–4), 455–460 (1998).
[Crossref]

Uoyama, H.

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492(7428), 234–238 (2012).
[Crossref] [PubMed]

Van Slyke, S. A.

C. W. Tang, S. A. Van Slyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” Appl. Phys. Lett. 65(9), 3610–3616 (1989).

Wang, J.

T. Zhang, B. Zhao, B. Chu, W. Li, Z. Su, L. Wang, J. Wang, F. Jin, X. Yan, Y. Gao, H. Wu, C. Liu, T. Lin, and F. Hou, “Blue exciplex emission and its role as a host of phosphorescent emitter,” Org. Electron. 24, 1–6 (2015).
[Crossref]

Wang, L.

T. Zhang, B. Zhao, B. Chu, W. Li, Z. Su, L. Wang, J. Wang, F. Jin, X. Yan, Y. Gao, H. Wu, C. Liu, T. Lin, and F. Hou, “Blue exciplex emission and its role as a host of phosphorescent emitter,” Org. Electron. 24, 1–6 (2015).
[Crossref]

Wang, Q.

D. Y. Zhou, H. Z. Siboni, Q. Wang, S. S. Liao, and H. Aziz, “Host to guest energy transfer mechanism in phosphorescent and fluorescent organic light-emitting devices utilizing exciplex-forming hosts,” J. Phys. Chem. C 118(4), 24006–24012 (2014).
[Crossref]

Wang, Z.

Z. Wang, X. -L. Li, Z. Ma, X. Cai, C. Cai, and S. -J. Su, “Excition-adjustable interlayers for high efficiency, low efficiency roll-off, and lifetime improved warm white organic light-emitting diodes (WOLEDs) based on a delayed fluorescence assistant host,” Adv. Funct. Mater. 28(11), 1706922 (2018).
[Crossref]

Wu, B.

X. K. Liu, Z. Chen, J. Qing, W. J. Zhang, B. Wu, H. L. Tam, F. Zhu, X. H. Zhang, and C. S. Lee, “Remanagement of singlet and triplet excitons in single-emissive-layer hybrid white organic light-emitting devices using thermally activated delayed fluorescent blue exciplex,” Adv. Mater. 27(44), 7079–7085 (2015).
[Crossref] [PubMed]

Wu, H.

T. Zhang, B. Zhao, B. Chu, W. Li, Z. Su, L. Wang, J. Wang, F. Jin, X. Yan, Y. Gao, H. Wu, C. Liu, T. Lin, and F. Hou, “Blue exciplex emission and its role as a host of phosphorescent emitter,” Org. Electron. 24, 1–6 (2015).
[Crossref]

Yan, X.

T. Zhang, B. Zhao, B. Chu, W. Li, Z. Su, L. Wang, J. Wang, F. Jin, X. Yan, Y. Gao, H. Wu, C. Liu, T. Lin, and F. Hou, “Blue exciplex emission and its role as a host of phosphorescent emitter,” Org. Electron. 24, 1–6 (2015).
[Crossref]

Yasuda, T.

S. Y. Lee, T. Yasuda, H. Nomura, and C. Adachi, “High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor–acceptor hybrid molecules,” Appl. Phys. Lett. 101(9), 093306 (2012).
[Crossref]

Yoo, S. J.

H. Shin, S. Lee, K. H. Kim, C. K. Moon, S. J. Yoo, J. H. Lee, and J. J. Kim, “Blue phosphorescent organic light-emitting diodes using an exciplex forming co-host with the external quantum efficiency of theoretical limit,” Adv. Mater. 26(27), 4730–4734 (2014).
[Crossref] [PubMed]

Yoshida, K.

K. Goushi, K. Yoshida, K. Sato, and C. Adachi, “Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion,” Nat. Photonics 6(4), 253–258 (2012).
[Crossref]

Yoshimura, K.

A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, and C. Adachi, “Efficient up-conversion of triplet excitons into a singlet state and its application to organic light emitting diodes,” Appl. Phys. Lett. 98(8), 083302 (2011).
[Crossref]

You, Y.

M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395(6698), 151–154 (1998).
[Crossref]

Zhang, T.

T. Zhang, B. Zhao, B. Chu, W. Li, Z. Su, L. Wang, J. Wang, F. Jin, X. Yan, Y. Gao, H. Wu, C. Liu, T. Lin, and F. Hou, “Blue exciplex emission and its role as a host of phosphorescent emitter,” Org. Electron. 24, 1–6 (2015).
[Crossref]

Zhang, W. J.

X. K. Liu, Z. Chen, J. Qing, W. J. Zhang, B. Wu, H. L. Tam, F. Zhu, X. H. Zhang, and C. S. Lee, “Remanagement of singlet and triplet excitons in single-emissive-layer hybrid white organic light-emitting devices using thermally activated delayed fluorescent blue exciplex,” Adv. Mater. 27(44), 7079–7085 (2015).
[Crossref] [PubMed]

Zhang, X. H.

X. K. Liu, Z. Chen, J. Qing, W. J. Zhang, B. Wu, H. L. Tam, F. Zhu, X. H. Zhang, and C. S. Lee, “Remanagement of singlet and triplet excitons in single-emissive-layer hybrid white organic light-emitting devices using thermally activated delayed fluorescent blue exciplex,” Adv. Mater. 27(44), 7079–7085 (2015).
[Crossref] [PubMed]

Zhao, B.

T. Zhang, B. Zhao, B. Chu, W. Li, Z. Su, L. Wang, J. Wang, F. Jin, X. Yan, Y. Gao, H. Wu, C. Liu, T. Lin, and F. Hou, “Blue exciplex emission and its role as a host of phosphorescent emitter,” Org. Electron. 24, 1–6 (2015).
[Crossref]

Zhou, D. Y.

D. Y. Zhou, H. Z. Siboni, Q. Wang, S. S. Liao, and H. Aziz, “Host to guest energy transfer mechanism in phosphorescent and fluorescent organic light-emitting devices utilizing exciplex-forming hosts,” J. Phys. Chem. C 118(4), 24006–24012 (2014).
[Crossref]

Zhu, F.

X. K. Liu, Z. Chen, J. Qing, W. J. Zhang, B. Wu, H. L. Tam, F. Zhu, X. H. Zhang, and C. S. Lee, “Remanagement of singlet and triplet excitons in single-emissive-layer hybrid white organic light-emitting devices using thermally activated delayed fluorescent blue exciplex,” Adv. Mater. 27(44), 7079–7085 (2015).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

J. W. Sun, K.-H. Kim, C.-K. Moon, J.-H. Lee, and J.-J. Kim, “Highly efficient sky-blue fluorescent organic light emitting diode based on mixed cohost system for thermally activated delayed fluorescence emitter (2CzPN),” ACS Appl. Mater. Interfaces 8(15), 9806–9810 (2016).
[Crossref] [PubMed]

ACS Cent. Sci. (1)

M. Mamada, K. Inada, T. Komino, W. J. Potscavage, H. Nakanotani, and C. Adachi, “Highly efficient thermally activated delayed fluorescence from an excited-state intramolecular proton transfer system,” ACS Cent. Sci. 3(7), 769–777 (2017).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

Z. Wang, X. -L. Li, Z. Ma, X. Cai, C. Cai, and S. -J. Su, “Excition-adjustable interlayers for high efficiency, low efficiency roll-off, and lifetime improved warm white organic light-emitting diodes (WOLEDs) based on a delayed fluorescence assistant host,” Adv. Funct. Mater. 28(11), 1706922 (2018).
[Crossref]

Adv. Mater. (4)

S. Su, E. Gonmori, H. Sasabe, and J. Kido, “Highly efficient organic blue- and white-light-emitting devices having a carrier- and exciton-confining structure for reduced efficiency roll-off,” Adv. Mater. 20(21), 4189–4194 (2008).
[Crossref]

H. Shin, S. Lee, K. H. Kim, C. K. Moon, S. J. Yoo, J. H. Lee, and J. J. Kim, “Blue phosphorescent organic light-emitting diodes using an exciplex forming co-host with the external quantum efficiency of theoretical limit,” Adv. Mater. 26(27), 4730–4734 (2014).
[Crossref] [PubMed]

X. K. Liu, Z. Chen, J. Qing, W. J. Zhang, B. Wu, H. L. Tam, F. Zhu, X. H. Zhang, and C. S. Lee, “Remanagement of singlet and triplet excitons in single-emissive-layer hybrid white organic light-emitting devices using thermally activated delayed fluorescent blue exciplex,” Adv. Mater. 27(44), 7079–7085 (2015).
[Crossref] [PubMed]

Y. Seino, S. Inomata, H. Sasabe, Y. J. Pu, and J. Kido, “High-Performance Green OLEDs Using Thermally Activated Delayed Fluorescence with a Power Efficiency of over 100 lm W(-1),” Adv. Mater. 28(13), 2638–2643 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (6)

L. S. Liao, K. P. Klubek, and C. W. Tang, “High-efficiency tandem organic light-emitting diodes,” Appl. Phys. Lett. 84(2), 167–169 (2004).
[Crossref]

A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, and C. Adachi, “Efficient up-conversion of triplet excitons into a singlet state and its application to organic light emitting diodes,” Appl. Phys. Lett. 98(8), 083302 (2011).
[Crossref]

S. Y. Lee, T. Yasuda, H. Nomura, and C. Adachi, “High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor–acceptor hybrid molecules,” Appl. Phys. Lett. 101(9), 093306 (2012).
[Crossref]

K. Goushi, R. Kwong, J. J. Brown, H. Sasabe, and C. Adachi, “Triplet exciton confinement and unconfinement by adjacent hole-transport layers,” Appl. Phys. Lett. 95(12), 7798–7802 (2004).

K. Goushi and C. Adachi, “Efficient organic light-emitting diodes through upconversion from triplet to singlet excited states of exciplexes,” Appl. Phys. Lett. 101(2), 023306 (2012).
[Crossref]

C. W. Tang, S. A. Van Slyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” Appl. Phys. Lett. 65(9), 3610–3616 (1989).

Chem. Phys. Lett. (1)

V. Bulović, A. Shoustikovb, M. A. Baldoa, E. Bosea, V. G. Kozlova, M. E. Thompson, and S. R. Forresta, “Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts,” Chem. Phys. Lett. 287(3–4), 455–460 (1998).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

Y. P. Jeon, K. S. Kim, K. K. Lee, I. K. Moon, D. C. Choo, J. Y. Lee, and T. W. Kim, “Blue phosphorescent organic light-emitting devices based on carbazole/thioxanthene-S,S-dioxide with a high glass transition temperature,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(24), 6192–6199 (2015).
[Crossref]

J. Phys. Chem. C (1)

D. Y. Zhou, H. Z. Siboni, Q. Wang, S. S. Liao, and H. Aziz, “Host to guest energy transfer mechanism in phosphorescent and fluorescent organic light-emitting devices utilizing exciplex-forming hosts,” J. Phys. Chem. C 118(4), 24006–24012 (2014).
[Crossref]

Macromol. Symp. (1)

C. H. Chen, C. W. Tang, J. Shi, and K. P. Klubek, “Improved red dopants for organic electroluminescent devices,” Macromol. Symp. 125(1), 49–58 (1998).
[Crossref]

Nat. Photonics (1)

K. Goushi, K. Yoshida, K. Sato, and C. Adachi, “Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion,” Nat. Photonics 6(4), 253–258 (2012).
[Crossref]

Nature (2)

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492(7428), 234–238 (2012).
[Crossref] [PubMed]

M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395(6698), 151–154 (1998).
[Crossref]

Opt. Express (2)

Org. Electron. (4)

D. H. Kim and T. W. Kim, “Efficiency enhancement in tandem organic light-emitting devices with a hybrid charge generation layer composed of BEDT-TTF-doped TPBi/mCP/HAT-CN,” Org. Electron. 15(12), 3452–3457 (2014).
[Crossref]

D. H. Kim and T. W. Kim, “Highly efficient organic light-emitting devices based on poly(N,N′-bis-4-butylphenyl-N,N′-bisphenyl)benzidine:octadecylamine-graphene quantum dots,” Org. Electron. 57, 305–310 (2018).
[Crossref]

N. S. Höfle, M. Pfaff, H. Do, C. Bernhard, D. Gerthsen, U. Lemmer, and A. Colsmann, “Suppressing molecular aggregation in solution processed small molecule organic light emitting diodes,” Org. Electron. 15(1), 337–341 (2014).
[Crossref]

T. Zhang, B. Zhao, B. Chu, W. Li, Z. Su, L. Wang, J. Wang, F. Jin, X. Yan, Y. Gao, H. Wu, C. Liu, T. Lin, and F. Hou, “Blue exciplex emission and its role as a host of phosphorescent emitter,” Org. Electron. 24, 1–6 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic energy diagrams of OLEDs (a) without and (b) with an exciplex host layer.
Fig. 2
Fig. 2 Schematic diagram of the exciplex emission mechanism from the exciplex host to the TADF dopant.
Fig. 3
Fig. 3 (a) Normalized absorption and photoluminescence spectra of the B4PYPPM, the EBCz-ThX, and the EBCz-ThX:B4PYPPM (exciplex) films, (b) low and room temperature photoluminescence spectra of the exciplex film, and (c) schematic diagrams of the molecular structures of EBCz-Thz and B4PYPPM.
Fig. 4
Fig. 4 Time-resolved photoluminescence spectra of the EBCz-ThX:B4PYPPM:2CzPN and the EBCz-ThX:2CzPN films at 375 nm.
Fig. 5
Fig. 5 (a) Current density - voltage and (b) current - power efficiencies - voltage characteristics for OLEDs with an exciplex host.
Fig. 6
Fig. 6 Electroluminescence spectra for OLEDs with a blue exciplex host at (a) 100 and (b) 1000 cd/m2.

Tables (1)

Tables Icon

Table 1 Fitting parameters for the PL decay spectra of the EBCz-ThX:2CzPN and the EBCz-ThX:B4PYPPM:2CzPN films.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f( t )=A+ B 1 exp( t/ τ 1 )+ B 2 exp( t/ τ 2 ),
τ avg = τ k f k ,     f k = B k / B i ,

Metrics