Abstract

The coupling of light with low-frequency functionalities of dielectrics and liquid crystals and an ability to turn “on” and “off” the pyro-, piezo-, or ferro- electric properties of materials on demand by optical means leads to fascinating science and device applications. Moreover, to achieve all-optical control in nano-circuits, the coupling of the light with mechanical degrees of freedom is highly desirable and has been elusive until recently. In this work, we report on the light intensity-induced structural phase transitions in graphene oxide doped piezoelectric polyvinylidene fluoride (PVDF) film observed by micro-Raman spectroscopy. Increasing the laser power results in a steady transformation of the Raman spectrum featured piezoelectric β phase to one of non-piezoelectric α structure. This effect is accompanied by volumetric change of a PVDF unit cell by a factor of two, useful for a photostriction materials application. Furthermore, we observed the reversible switching of α and β phases as a function of the light intensity (laser power between 5.7–31.3 mW). This opens up a new route for multi-functionality control where strain, piezoelectric constants and polarization can be modified by light.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Graphene Oxide vs. Reduced Graphene Oxide as saturable absorbers for Er-doped passively mode-locked fiber laser

Grzegorz Sobon, Jaroslaw Sotor, Joanna Jagiello, Rafal Kozinski, Mariusz Zdrojek, Marcin Holdynski, Piotr Paletko, Jakub Boguslawski, Ludwika Lipinska, and Krzysztof M. Abramski
Opt. Express 20(17) 19463-19473 (2012)

Persistent light-induced absorption in oxidized iron-doped barium titanate crystals

U. van Stevendaal, K. Buse, H. Malz, and E. Krätzig
Opt. Lett. 24(13) 908-910 (1999)

Graphene oxide-based micropatterns via high-throughput multiphoton-induced reduction and ablation

Yi-Cheng Li, Te-Fu Yeh, Hsin-Chieh Huang, Hsin-Yu Chang, Chun-Yu Lin, Li-Chung Cheng, Chia-Yuan Chang, Hsisheng Teng, and Shean-Jen Chen
Opt. Express 22(16) 19726-19734 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19(22), 22029–22106 (2011).
    [Crossref] [PubMed]
  2. P. Guenter, “Electro-optical and nonlinear-optical materials,” Ferroelectrics 24(1), 35–42 (1980).
    [Crossref]
  3. B. Kundys, “Photostrictive materials,” Appl. Phys. Rev. 2(1), 011301 (2015).
    [Crossref]
  4. R. G. Kepler, “Ferroelectric, pyroelectric, and piezoelectric properties of poly(vinylidene fluoride,” in Ferroelectric Polymers, H. S. Nalwa, ed. (Marcel Dekker, Inc., 1995).
  5. A. J. Lovinger, D. D. Davis, R. E. Cais, and J. M. Kometani, “On the Curie temperature of Poly(vinylidene fluoride),” Macromol. 19(5), 1491–1494 (1986).
    [Crossref]
  6. D. Lingam, A. R. Parikh, J. Huang, A. Jain, and M. Minary-Jolandan, “Nano/microscale pyroelectric energy harvesting: challenges and opportunities,” Int. J. Smart Nano Mater. 4(4), 1–17 (2013).
    [Crossref]
  7. T. R. Dargaville, M. C. Celina, J. M. Elliott, P. M. Chaplya, G. D. Jones, Mowery D. M., R. A. Assink, R. L. Clough, J. W. Martin, “Characterization, performance and optimization of PVDF as piezoelectric film for advanced space mirror concepts,” in Sandia National Laboratories Reports (2005).
  8. M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou, and Z. L. Wang, “A hybrid piezoelectric structure for wearable nanogenerators,” Adv. Mater. 24(13), 1759–1764 (2012).
    [Crossref] [PubMed]
  9. H. Kawai, “The piezoelectricity in polyvinylidene fluoride,” Jpn. J. Appl. Phys. 8(7), 975–976 (1969).
    [Crossref]
  10. V. K. Prateek, Thakur, and R. K. Gupta, “Recent progress on ferroelectric polymer based nanocomposites for high energy density capacitors: synthesis, dielectric properties and future aspects,” Chem. Rev. 116(7), 4260–4317 (2016).
    [Crossref] [PubMed]
  11. C. Dagdeviren, P. Joe, O. L. Tuzman, K.-L. Park, K. J. Lee, Y. Shi, Y. Huang, and J. A. Rogers, “Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation,” Ext. Mech. Lett. 9, 269–281 (2016).
    [Crossref]
  12. K. Noda, K. Ishida, A. Kubono, T. Horiuchi, H. Yamada, and K. Matsushige, “Remanent polarization of evaporated films of vinylidene fluoride oligomers,” J. Appl. Phys. 93(5), 2866–2870 (2003).
    [Crossref]
  13. M. G. Broadhurst and G. T. Davis, “Physical basis for piezoelectricity in PVDF,” Ferroelectrics 60(1), 3–13 (1984).
    [Crossref]
  14. R. Hasegawa, Y. Takahashi, Y. Chatani, and H. Tadokoro, “Crystal structures of three crystalline forms of poly(vinylidene fluoride),” Polym. J. 3(5), 600–610 (1972).
    [Crossref]
  15. M. Poulsen and S. Durcharme, “Why ferroelectric polyvinylidene fluoride is special,” IEEE Trans. Dielectr. Electr. Insul. 17(4), 1028–1035 (2010).
    [Crossref]
  16. B. Kundys, M. Viret, D. Colson, and D. O. Kundys, “Light-induced size changes in BiFeO3 crystals,” Nat. Mater. 9(10), 803–805 (2010).
    [Crossref] [PubMed]
  17. P. Martins, C. Capparos, R. Goncalves, P. M. Martins, M. Benelmekki, G. Botelho, and S. Lanceros-Mendez, “Role of nanoparticle surface charge on the nucleation of the electroactive -Polyvinylidene fluoride nanocomposites for sensor and actuator application,” J. Phys. Chem. C 116(29), 15790–15794 (2012).
    [Crossref]
  18. V. Corral-Flores and D. Bueno-Baques, “Flexible ferroelectric BaTiO3 – PVDF nanocomposites,” in Ferroelectrics-Material Aspects (InTech, 2011).
  19. H. Kim, F. Torres, D. Villagran, C. Stewart, Y. Lin, and T.-L. B. Tseng, “3D printing of BaTiO3/PVDF composites with electric in situ poling for pressure sensing applications,” Macromol. Mater. Eng. 302(11), 1700229 (2017).
    [Crossref]
  20. Z.-W. Ouyang, E. C. Chen, and T.-M. Wu, “Thermal stability and magnetic properties of Polyvinylidene fluoride/magnetite nanocomposites,” Materials (Basel) 8(7), 4553–4564 (2015).
    [Crossref] [PubMed]
  21. N. An, H. Liu, Y. Ding, M. Zhang, and Y. Tang, “Preparation and electroactive properties of a PVDF/nano-TiO2 composite film,” Appl. Surf. Sci. 257(9), 3831–3835 (2011).
    [Crossref]
  22. Y. Feng, M.-L. Li, W.-L. Li, T.-D. Zhang, Y. Zhao, and W.-D. Fei, “Polymer/metal multilayers structured composites: A route to high dielectric constant and suppressed dielectric loss,” Appl. Phys. Lett. 112(2), 022901 (2018).
    [Crossref]
  23. N. An, S. Liu, C. Fang, R. Yu, X. Zhou, and Y. Cheng, “Preparation and properties of β phase Graphene oxide/PVDF composite films,” J. Appl. Polym. Sci. 132, 41577 (2015).
  24. E. H. Abdelhamid, O. D. Jayakumar, V. Kotari, B. Mandal, R. Rao, V. M. Naik, and A. K. Tyagi, “Multiferroic PVDF-Fe3O4 hybrid films with reduced graphene oxide and ZnO nanofillers,” RSC Advances 6(24), 20089–20094 (2016).
    [Crossref]
  25. Y.-C. Hu, W.-L. Hsu, Y.-T. Wang, C.-T. Ho, and P.-Z. Chang, “Enhance the pyroelectricity of polyvinylidene fluoride by graphene-oxide doping,” Sensors (Basel) 14(4), 6877–6890 (2014).
    [Crossref] [PubMed]
  26. A. Al-Saygh, D. Ponnamma, M. Al Ali Almaadeed, P. Vijayan, P. A. Karim, and M. K. Hassan, “Flexible pressure sensor based on PVDF nanocomposites containing reduced graphene oxide titania hybrid nanolayers,” Polymers (Basel) 9(33), 1–19 (2017).
  27. C. J. L. Constantino, A. E. Job, R. D. Simões, J. A. Giacometti, V. Zucolotto, O. N. Oliveira, G. Gozzi, and D. L. Chinaglia, “Phase transition in Polyvinylidene fluoride investigated with micro-Raman spectroscopy,” Appl. Spectrosc. 59(3), 275–279 (2005).
    [Crossref] [PubMed]
  28. Ye. Bormashenko, R. Pogreb, and O. Stanevsky, “Vibrational spectrum of PVDF and its interpretation,” Pol. Test.  23, 791–796 (2004).
  29. V. Sencadas, R. Gregorio, and S. Lanceros-Mendez, “Phase transformation and microstructural changes of PVDF films induced by uniaxial stretch,” J. Macromol. Sci. 48(3), 514–525 (2009).
    [Crossref]
  30. S. Lanceros-Mendez, J. F. Mano, A. M. Costa, and V. H. Schmidt, “FTIR and DSC studies of mechanically deformed β-PVDF films,” J. Macromol. Sci. Phys. B40(3&4), 517–527 (2001).
    [Crossref]
  31. K. Nakamoto, Infrared and Raman Spectra of Inorganic andCoordination Compounds (3rd ed.: J. Wiley & Sons, Inc. 1978).
  32. Y. P. Chen, “Raman spectroscopy studies of graphene and related nanomaterials,” Horiba readout, 39–44 (2015).
  33. A. V. Ievlev, M. A. Susner, M. A. McGuire, P. Maksymovych, and S. V. Kalinin, “Quantitative analysis of the local phase transitions induced by laser heating,” ACS Nano 9(12), 12442–12450 (2015).
    [Crossref] [PubMed]
  34. P. Wang, N. M. Dimitrijevic, A. Y. Chang, R. D. Schaller, Y. Liu, T. Rajh, and E. A. Rozhkova, “Photoinduced electron transfer pathways in hydrogen-evolving reduced graphene oxide-boosted hybrid nano-bio catalyst,” ACS Nano 8(8), 7995–8002 (2014).
    [Crossref] [PubMed]

2018 (1)

Y. Feng, M.-L. Li, W.-L. Li, T.-D. Zhang, Y. Zhao, and W.-D. Fei, “Polymer/metal multilayers structured composites: A route to high dielectric constant and suppressed dielectric loss,” Appl. Phys. Lett. 112(2), 022901 (2018).
[Crossref]

2017 (2)

H. Kim, F. Torres, D. Villagran, C. Stewart, Y. Lin, and T.-L. B. Tseng, “3D printing of BaTiO3/PVDF composites with electric in situ poling for pressure sensing applications,” Macromol. Mater. Eng. 302(11), 1700229 (2017).
[Crossref]

A. Al-Saygh, D. Ponnamma, M. Al Ali Almaadeed, P. Vijayan, P. A. Karim, and M. K. Hassan, “Flexible pressure sensor based on PVDF nanocomposites containing reduced graphene oxide titania hybrid nanolayers,” Polymers (Basel) 9(33), 1–19 (2017).

2016 (3)

E. H. Abdelhamid, O. D. Jayakumar, V. Kotari, B. Mandal, R. Rao, V. M. Naik, and A. K. Tyagi, “Multiferroic PVDF-Fe3O4 hybrid films with reduced graphene oxide and ZnO nanofillers,” RSC Advances 6(24), 20089–20094 (2016).
[Crossref]

V. K. Prateek, Thakur, and R. K. Gupta, “Recent progress on ferroelectric polymer based nanocomposites for high energy density capacitors: synthesis, dielectric properties and future aspects,” Chem. Rev. 116(7), 4260–4317 (2016).
[Crossref] [PubMed]

C. Dagdeviren, P. Joe, O. L. Tuzman, K.-L. Park, K. J. Lee, Y. Shi, Y. Huang, and J. A. Rogers, “Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation,” Ext. Mech. Lett. 9, 269–281 (2016).
[Crossref]

2015 (4)

B. Kundys, “Photostrictive materials,” Appl. Phys. Rev. 2(1), 011301 (2015).
[Crossref]

Z.-W. Ouyang, E. C. Chen, and T.-M. Wu, “Thermal stability and magnetic properties of Polyvinylidene fluoride/magnetite nanocomposites,” Materials (Basel) 8(7), 4553–4564 (2015).
[Crossref] [PubMed]

N. An, S. Liu, C. Fang, R. Yu, X. Zhou, and Y. Cheng, “Preparation and properties of β phase Graphene oxide/PVDF composite films,” J. Appl. Polym. Sci. 132, 41577 (2015).

A. V. Ievlev, M. A. Susner, M. A. McGuire, P. Maksymovych, and S. V. Kalinin, “Quantitative analysis of the local phase transitions induced by laser heating,” ACS Nano 9(12), 12442–12450 (2015).
[Crossref] [PubMed]

2014 (2)

P. Wang, N. M. Dimitrijevic, A. Y. Chang, R. D. Schaller, Y. Liu, T. Rajh, and E. A. Rozhkova, “Photoinduced electron transfer pathways in hydrogen-evolving reduced graphene oxide-boosted hybrid nano-bio catalyst,” ACS Nano 8(8), 7995–8002 (2014).
[Crossref] [PubMed]

Y.-C. Hu, W.-L. Hsu, Y.-T. Wang, C.-T. Ho, and P.-Z. Chang, “Enhance the pyroelectricity of polyvinylidene fluoride by graphene-oxide doping,” Sensors (Basel) 14(4), 6877–6890 (2014).
[Crossref] [PubMed]

2013 (1)

D. Lingam, A. R. Parikh, J. Huang, A. Jain, and M. Minary-Jolandan, “Nano/microscale pyroelectric energy harvesting: challenges and opportunities,” Int. J. Smart Nano Mater. 4(4), 1–17 (2013).
[Crossref]

2012 (2)

M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou, and Z. L. Wang, “A hybrid piezoelectric structure for wearable nanogenerators,” Adv. Mater. 24(13), 1759–1764 (2012).
[Crossref] [PubMed]

P. Martins, C. Capparos, R. Goncalves, P. M. Martins, M. Benelmekki, G. Botelho, and S. Lanceros-Mendez, “Role of nanoparticle surface charge on the nucleation of the electroactive -Polyvinylidene fluoride nanocomposites for sensor and actuator application,” J. Phys. Chem. C 116(29), 15790–15794 (2012).
[Crossref]

2011 (2)

N. An, H. Liu, Y. Ding, M. Zhang, and Y. Tang, “Preparation and electroactive properties of a PVDF/nano-TiO2 composite film,” Appl. Surf. Sci. 257(9), 3831–3835 (2011).
[Crossref]

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19(22), 22029–22106 (2011).
[Crossref] [PubMed]

2010 (2)

M. Poulsen and S. Durcharme, “Why ferroelectric polyvinylidene fluoride is special,” IEEE Trans. Dielectr. Electr. Insul. 17(4), 1028–1035 (2010).
[Crossref]

B. Kundys, M. Viret, D. Colson, and D. O. Kundys, “Light-induced size changes in BiFeO3 crystals,” Nat. Mater. 9(10), 803–805 (2010).
[Crossref] [PubMed]

2009 (1)

V. Sencadas, R. Gregorio, and S. Lanceros-Mendez, “Phase transformation and microstructural changes of PVDF films induced by uniaxial stretch,” J. Macromol. Sci. 48(3), 514–525 (2009).
[Crossref]

2005 (1)

2004 (1)

Ye. Bormashenko, R. Pogreb, and O. Stanevsky, “Vibrational spectrum of PVDF and its interpretation,” Pol. Test.  23, 791–796 (2004).

2003 (1)

K. Noda, K. Ishida, A. Kubono, T. Horiuchi, H. Yamada, and K. Matsushige, “Remanent polarization of evaporated films of vinylidene fluoride oligomers,” J. Appl. Phys. 93(5), 2866–2870 (2003).
[Crossref]

2001 (1)

S. Lanceros-Mendez, J. F. Mano, A. M. Costa, and V. H. Schmidt, “FTIR and DSC studies of mechanically deformed β-PVDF films,” J. Macromol. Sci. Phys. B40(3&4), 517–527 (2001).
[Crossref]

1986 (1)

A. J. Lovinger, D. D. Davis, R. E. Cais, and J. M. Kometani, “On the Curie temperature of Poly(vinylidene fluoride),” Macromol. 19(5), 1491–1494 (1986).
[Crossref]

1984 (1)

M. G. Broadhurst and G. T. Davis, “Physical basis for piezoelectricity in PVDF,” Ferroelectrics 60(1), 3–13 (1984).
[Crossref]

1980 (1)

P. Guenter, “Electro-optical and nonlinear-optical materials,” Ferroelectrics 24(1), 35–42 (1980).
[Crossref]

1972 (1)

R. Hasegawa, Y. Takahashi, Y. Chatani, and H. Tadokoro, “Crystal structures of three crystalline forms of poly(vinylidene fluoride),” Polym. J. 3(5), 600–610 (1972).
[Crossref]

1969 (1)

H. Kawai, “The piezoelectricity in polyvinylidene fluoride,” Jpn. J. Appl. Phys. 8(7), 975–976 (1969).
[Crossref]

Abdelhamid, E. H.

E. H. Abdelhamid, O. D. Jayakumar, V. Kotari, B. Mandal, R. Rao, V. M. Naik, and A. K. Tyagi, “Multiferroic PVDF-Fe3O4 hybrid films with reduced graphene oxide and ZnO nanofillers,” RSC Advances 6(24), 20089–20094 (2016).
[Crossref]

Al Ali Almaadeed, M.

A. Al-Saygh, D. Ponnamma, M. Al Ali Almaadeed, P. Vijayan, P. A. Karim, and M. K. Hassan, “Flexible pressure sensor based on PVDF nanocomposites containing reduced graphene oxide titania hybrid nanolayers,” Polymers (Basel) 9(33), 1–19 (2017).

Al-Saygh, A.

A. Al-Saygh, D. Ponnamma, M. Al Ali Almaadeed, P. Vijayan, P. A. Karim, and M. K. Hassan, “Flexible pressure sensor based on PVDF nanocomposites containing reduced graphene oxide titania hybrid nanolayers,” Polymers (Basel) 9(33), 1–19 (2017).

An, N.

N. An, S. Liu, C. Fang, R. Yu, X. Zhou, and Y. Cheng, “Preparation and properties of β phase Graphene oxide/PVDF composite films,” J. Appl. Polym. Sci. 132, 41577 (2015).

N. An, H. Liu, Y. Ding, M. Zhang, and Y. Tang, “Preparation and electroactive properties of a PVDF/nano-TiO2 composite film,” Appl. Surf. Sci. 257(9), 3831–3835 (2011).
[Crossref]

Benelmekki, M.

P. Martins, C. Capparos, R. Goncalves, P. M. Martins, M. Benelmekki, G. Botelho, and S. Lanceros-Mendez, “Role of nanoparticle surface charge on the nucleation of the electroactive -Polyvinylidene fluoride nanocomposites for sensor and actuator application,” J. Phys. Chem. C 116(29), 15790–15794 (2012).
[Crossref]

Bormashenko, Ye.

Ye. Bormashenko, R. Pogreb, and O. Stanevsky, “Vibrational spectrum of PVDF and its interpretation,” Pol. Test.  23, 791–796 (2004).

Botelho, G.

P. Martins, C. Capparos, R. Goncalves, P. M. Martins, M. Benelmekki, G. Botelho, and S. Lanceros-Mendez, “Role of nanoparticle surface charge on the nucleation of the electroactive -Polyvinylidene fluoride nanocomposites for sensor and actuator application,” J. Phys. Chem. C 116(29), 15790–15794 (2012).
[Crossref]

Broadhurst, M. G.

M. G. Broadhurst and G. T. Davis, “Physical basis for piezoelectricity in PVDF,” Ferroelectrics 60(1), 3–13 (1984).
[Crossref]

Cais, R. E.

A. J. Lovinger, D. D. Davis, R. E. Cais, and J. M. Kometani, “On the Curie temperature of Poly(vinylidene fluoride),” Macromol. 19(5), 1491–1494 (1986).
[Crossref]

Capparos, C.

P. Martins, C. Capparos, R. Goncalves, P. M. Martins, M. Benelmekki, G. Botelho, and S. Lanceros-Mendez, “Role of nanoparticle surface charge on the nucleation of the electroactive -Polyvinylidene fluoride nanocomposites for sensor and actuator application,” J. Phys. Chem. C 116(29), 15790–15794 (2012).
[Crossref]

Cha, S. N.

M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou, and Z. L. Wang, “A hybrid piezoelectric structure for wearable nanogenerators,” Adv. Mater. 24(13), 1759–1764 (2012).
[Crossref] [PubMed]

Chang, A. Y.

P. Wang, N. M. Dimitrijevic, A. Y. Chang, R. D. Schaller, Y. Liu, T. Rajh, and E. A. Rozhkova, “Photoinduced electron transfer pathways in hydrogen-evolving reduced graphene oxide-boosted hybrid nano-bio catalyst,” ACS Nano 8(8), 7995–8002 (2014).
[Crossref] [PubMed]

Chang, P.-Z.

Y.-C. Hu, W.-L. Hsu, Y.-T. Wang, C.-T. Ho, and P.-Z. Chang, “Enhance the pyroelectricity of polyvinylidene fluoride by graphene-oxide doping,” Sensors (Basel) 14(4), 6877–6890 (2014).
[Crossref] [PubMed]

Chatani, Y.

R. Hasegawa, Y. Takahashi, Y. Chatani, and H. Tadokoro, “Crystal structures of three crystalline forms of poly(vinylidene fluoride),” Polym. J. 3(5), 600–610 (1972).
[Crossref]

Chen, C. Y.

M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou, and Z. L. Wang, “A hybrid piezoelectric structure for wearable nanogenerators,” Adv. Mater. 24(13), 1759–1764 (2012).
[Crossref] [PubMed]

Chen, E. C.

Z.-W. Ouyang, E. C. Chen, and T.-M. Wu, “Thermal stability and magnetic properties of Polyvinylidene fluoride/magnetite nanocomposites,” Materials (Basel) 8(7), 4553–4564 (2015).
[Crossref] [PubMed]

Cheng, Y.

N. An, S. Liu, C. Fang, R. Yu, X. Zhou, and Y. Cheng, “Preparation and properties of β phase Graphene oxide/PVDF composite films,” J. Appl. Polym. Sci. 132, 41577 (2015).

Chinaglia, D. L.

Chou, L. J.

M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou, and Z. L. Wang, “A hybrid piezoelectric structure for wearable nanogenerators,” Adv. Mater. 24(13), 1759–1764 (2012).
[Crossref] [PubMed]

Colson, D.

B. Kundys, M. Viret, D. Colson, and D. O. Kundys, “Light-induced size changes in BiFeO3 crystals,” Nat. Mater. 9(10), 803–805 (2010).
[Crossref] [PubMed]

Constantino, C. J. L.

Costa, A. M.

S. Lanceros-Mendez, J. F. Mano, A. M. Costa, and V. H. Schmidt, “FTIR and DSC studies of mechanically deformed β-PVDF films,” J. Macromol. Sci. Phys. B40(3&4), 517–527 (2001).
[Crossref]

Dagdeviren, C.

C. Dagdeviren, P. Joe, O. L. Tuzman, K.-L. Park, K. J. Lee, Y. Shi, Y. Huang, and J. A. Rogers, “Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation,” Ext. Mech. Lett. 9, 269–281 (2016).
[Crossref]

Davis, D. D.

A. J. Lovinger, D. D. Davis, R. E. Cais, and J. M. Kometani, “On the Curie temperature of Poly(vinylidene fluoride),” Macromol. 19(5), 1491–1494 (1986).
[Crossref]

Davis, G. T.

M. G. Broadhurst and G. T. Davis, “Physical basis for piezoelectricity in PVDF,” Ferroelectrics 60(1), 3–13 (1984).
[Crossref]

Dimitrijevic, N. M.

P. Wang, N. M. Dimitrijevic, A. Y. Chang, R. D. Schaller, Y. Liu, T. Rajh, and E. A. Rozhkova, “Photoinduced electron transfer pathways in hydrogen-evolving reduced graphene oxide-boosted hybrid nano-bio catalyst,” ACS Nano 8(8), 7995–8002 (2014).
[Crossref] [PubMed]

Ding, Y.

N. An, H. Liu, Y. Ding, M. Zhang, and Y. Tang, “Preparation and electroactive properties of a PVDF/nano-TiO2 composite film,” Appl. Surf. Sci. 257(9), 3831–3835 (2011).
[Crossref]

Durcharme, S.

M. Poulsen and S. Durcharme, “Why ferroelectric polyvinylidene fluoride is special,” IEEE Trans. Dielectr. Electr. Insul. 17(4), 1028–1035 (2010).
[Crossref]

Fang, C.

N. An, S. Liu, C. Fang, R. Yu, X. Zhou, and Y. Cheng, “Preparation and properties of β phase Graphene oxide/PVDF composite films,” J. Appl. Polym. Sci. 132, 41577 (2015).

Fei, W.-D.

Y. Feng, M.-L. Li, W.-L. Li, T.-D. Zhang, Y. Zhao, and W.-D. Fei, “Polymer/metal multilayers structured composites: A route to high dielectric constant and suppressed dielectric loss,” Appl. Phys. Lett. 112(2), 022901 (2018).
[Crossref]

Feng, Y.

Y. Feng, M.-L. Li, W.-L. Li, T.-D. Zhang, Y. Zhao, and W.-D. Fei, “Polymer/metal multilayers structured composites: A route to high dielectric constant and suppressed dielectric loss,” Appl. Phys. Lett. 112(2), 022901 (2018).
[Crossref]

Giacometti, J. A.

Goncalves, R.

P. Martins, C. Capparos, R. Goncalves, P. M. Martins, M. Benelmekki, G. Botelho, and S. Lanceros-Mendez, “Role of nanoparticle surface charge on the nucleation of the electroactive -Polyvinylidene fluoride nanocomposites for sensor and actuator application,” J. Phys. Chem. C 116(29), 15790–15794 (2012).
[Crossref]

Gozzi, G.

Gregorio, R.

V. Sencadas, R. Gregorio, and S. Lanceros-Mendez, “Phase transformation and microstructural changes of PVDF films induced by uniaxial stretch,” J. Macromol. Sci. 48(3), 514–525 (2009).
[Crossref]

Guenter, P.

P. Guenter, “Electro-optical and nonlinear-optical materials,” Ferroelectrics 24(1), 35–42 (1980).
[Crossref]

Gupta, R. K.

V. K. Prateek, Thakur, and R. K. Gupta, “Recent progress on ferroelectric polymer based nanocomposites for high energy density capacitors: synthesis, dielectric properties and future aspects,” Chem. Rev. 116(7), 4260–4317 (2016).
[Crossref] [PubMed]

Hasegawa, R.

R. Hasegawa, Y. Takahashi, Y. Chatani, and H. Tadokoro, “Crystal structures of three crystalline forms of poly(vinylidene fluoride),” Polym. J. 3(5), 600–610 (1972).
[Crossref]

Hassan, M. K.

A. Al-Saygh, D. Ponnamma, M. Al Ali Almaadeed, P. Vijayan, P. A. Karim, and M. K. Hassan, “Flexible pressure sensor based on PVDF nanocomposites containing reduced graphene oxide titania hybrid nanolayers,” Polymers (Basel) 9(33), 1–19 (2017).

Ho, C.-T.

Y.-C. Hu, W.-L. Hsu, Y.-T. Wang, C.-T. Ho, and P.-Z. Chang, “Enhance the pyroelectricity of polyvinylidene fluoride by graphene-oxide doping,” Sensors (Basel) 14(4), 6877–6890 (2014).
[Crossref] [PubMed]

Horiuchi, T.

K. Noda, K. Ishida, A. Kubono, T. Horiuchi, H. Yamada, and K. Matsushige, “Remanent polarization of evaporated films of vinylidene fluoride oligomers,” J. Appl. Phys. 93(5), 2866–2870 (2003).
[Crossref]

Hsu, W.-L.

Y.-C. Hu, W.-L. Hsu, Y.-T. Wang, C.-T. Ho, and P.-Z. Chang, “Enhance the pyroelectricity of polyvinylidene fluoride by graphene-oxide doping,” Sensors (Basel) 14(4), 6877–6890 (2014).
[Crossref] [PubMed]

Hu, Y.-C.

Y.-C. Hu, W.-L. Hsu, Y.-T. Wang, C.-T. Ho, and P.-Z. Chang, “Enhance the pyroelectricity of polyvinylidene fluoride by graphene-oxide doping,” Sensors (Basel) 14(4), 6877–6890 (2014).
[Crossref] [PubMed]

Huang, J.

D. Lingam, A. R. Parikh, J. Huang, A. Jain, and M. Minary-Jolandan, “Nano/microscale pyroelectric energy harvesting: challenges and opportunities,” Int. J. Smart Nano Mater. 4(4), 1–17 (2013).
[Crossref]

Huang, Y.

C. Dagdeviren, P. Joe, O. L. Tuzman, K.-L. Park, K. J. Lee, Y. Shi, Y. Huang, and J. A. Rogers, “Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation,” Ext. Mech. Lett. 9, 269–281 (2016).
[Crossref]

Ievlev, A. V.

A. V. Ievlev, M. A. Susner, M. A. McGuire, P. Maksymovych, and S. V. Kalinin, “Quantitative analysis of the local phase transitions induced by laser heating,” ACS Nano 9(12), 12442–12450 (2015).
[Crossref] [PubMed]

Ishida, K.

K. Noda, K. Ishida, A. Kubono, T. Horiuchi, H. Yamada, and K. Matsushige, “Remanent polarization of evaporated films of vinylidene fluoride oligomers,” J. Appl. Phys. 93(5), 2866–2870 (2003).
[Crossref]

Jain, A.

D. Lingam, A. R. Parikh, J. Huang, A. Jain, and M. Minary-Jolandan, “Nano/microscale pyroelectric energy harvesting: challenges and opportunities,” Int. J. Smart Nano Mater. 4(4), 1–17 (2013).
[Crossref]

Jayakumar, O. D.

E. H. Abdelhamid, O. D. Jayakumar, V. Kotari, B. Mandal, R. Rao, V. M. Naik, and A. K. Tyagi, “Multiferroic PVDF-Fe3O4 hybrid films with reduced graphene oxide and ZnO nanofillers,” RSC Advances 6(24), 20089–20094 (2016).
[Crossref]

Job, A. E.

Joe, P.

C. Dagdeviren, P. Joe, O. L. Tuzman, K.-L. Park, K. J. Lee, Y. Shi, Y. Huang, and J. A. Rogers, “Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation,” Ext. Mech. Lett. 9, 269–281 (2016).
[Crossref]

Kalinin, S. V.

A. V. Ievlev, M. A. Susner, M. A. McGuire, P. Maksymovych, and S. V. Kalinin, “Quantitative analysis of the local phase transitions induced by laser heating,” ACS Nano 9(12), 12442–12450 (2015).
[Crossref] [PubMed]

Karim, P. A.

A. Al-Saygh, D. Ponnamma, M. Al Ali Almaadeed, P. Vijayan, P. A. Karim, and M. K. Hassan, “Flexible pressure sensor based on PVDF nanocomposites containing reduced graphene oxide titania hybrid nanolayers,” Polymers (Basel) 9(33), 1–19 (2017).

Kawai, H.

H. Kawai, “The piezoelectricity in polyvinylidene fluoride,” Jpn. J. Appl. Phys. 8(7), 975–976 (1969).
[Crossref]

Kim, H.

H. Kim, F. Torres, D. Villagran, C. Stewart, Y. Lin, and T.-L. B. Tseng, “3D printing of BaTiO3/PVDF composites with electric in situ poling for pressure sensing applications,” Macromol. Mater. Eng. 302(11), 1700229 (2017).
[Crossref]

Kim, J. M.

M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou, and Z. L. Wang, “A hybrid piezoelectric structure for wearable nanogenerators,” Adv. Mater. 24(13), 1759–1764 (2012).
[Crossref] [PubMed]

Kometani, J. M.

A. J. Lovinger, D. D. Davis, R. E. Cais, and J. M. Kometani, “On the Curie temperature of Poly(vinylidene fluoride),” Macromol. 19(5), 1491–1494 (1986).
[Crossref]

Kotari, V.

E. H. Abdelhamid, O. D. Jayakumar, V. Kotari, B. Mandal, R. Rao, V. M. Naik, and A. K. Tyagi, “Multiferroic PVDF-Fe3O4 hybrid films with reduced graphene oxide and ZnO nanofillers,” RSC Advances 6(24), 20089–20094 (2016).
[Crossref]

Kubono, A.

K. Noda, K. Ishida, A. Kubono, T. Horiuchi, H. Yamada, and K. Matsushige, “Remanent polarization of evaporated films of vinylidene fluoride oligomers,” J. Appl. Phys. 93(5), 2866–2870 (2003).
[Crossref]

Kundys, B.

B. Kundys, “Photostrictive materials,” Appl. Phys. Rev. 2(1), 011301 (2015).
[Crossref]

B. Kundys, M. Viret, D. Colson, and D. O. Kundys, “Light-induced size changes in BiFeO3 crystals,” Nat. Mater. 9(10), 803–805 (2010).
[Crossref] [PubMed]

Kundys, D. O.

B. Kundys, M. Viret, D. Colson, and D. O. Kundys, “Light-induced size changes in BiFeO3 crystals,” Nat. Mater. 9(10), 803–805 (2010).
[Crossref] [PubMed]

Lanceros-Mendez, S.

P. Martins, C. Capparos, R. Goncalves, P. M. Martins, M. Benelmekki, G. Botelho, and S. Lanceros-Mendez, “Role of nanoparticle surface charge on the nucleation of the electroactive -Polyvinylidene fluoride nanocomposites for sensor and actuator application,” J. Phys. Chem. C 116(29), 15790–15794 (2012).
[Crossref]

V. Sencadas, R. Gregorio, and S. Lanceros-Mendez, “Phase transformation and microstructural changes of PVDF films induced by uniaxial stretch,” J. Macromol. Sci. 48(3), 514–525 (2009).
[Crossref]

S. Lanceros-Mendez, J. F. Mano, A. M. Costa, and V. H. Schmidt, “FTIR and DSC studies of mechanically deformed β-PVDF films,” J. Macromol. Sci. Phys. B40(3&4), 517–527 (2001).
[Crossref]

Lee, K. J.

C. Dagdeviren, P. Joe, O. L. Tuzman, K.-L. Park, K. J. Lee, Y. Shi, Y. Huang, and J. A. Rogers, “Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation,” Ext. Mech. Lett. 9, 269–281 (2016).
[Crossref]

Lee, M.

M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou, and Z. L. Wang, “A hybrid piezoelectric structure for wearable nanogenerators,” Adv. Mater. 24(13), 1759–1764 (2012).
[Crossref] [PubMed]

Li, M.-L.

Y. Feng, M.-L. Li, W.-L. Li, T.-D. Zhang, Y. Zhao, and W.-D. Fei, “Polymer/metal multilayers structured composites: A route to high dielectric constant and suppressed dielectric loss,” Appl. Phys. Lett. 112(2), 022901 (2018).
[Crossref]

Li, W.-L.

Y. Feng, M.-L. Li, W.-L. Li, T.-D. Zhang, Y. Zhao, and W.-D. Fei, “Polymer/metal multilayers structured composites: A route to high dielectric constant and suppressed dielectric loss,” Appl. Phys. Lett. 112(2), 022901 (2018).
[Crossref]

Lin, Y.

H. Kim, F. Torres, D. Villagran, C. Stewart, Y. Lin, and T.-L. B. Tseng, “3D printing of BaTiO3/PVDF composites with electric in situ poling for pressure sensing applications,” Macromol. Mater. Eng. 302(11), 1700229 (2017).
[Crossref]

Lingam, D.

D. Lingam, A. R. Parikh, J. Huang, A. Jain, and M. Minary-Jolandan, “Nano/microscale pyroelectric energy harvesting: challenges and opportunities,” Int. J. Smart Nano Mater. 4(4), 1–17 (2013).
[Crossref]

Liu, H.

N. An, H. Liu, Y. Ding, M. Zhang, and Y. Tang, “Preparation and electroactive properties of a PVDF/nano-TiO2 composite film,” Appl. Surf. Sci. 257(9), 3831–3835 (2011).
[Crossref]

Liu, S.

N. An, S. Liu, C. Fang, R. Yu, X. Zhou, and Y. Cheng, “Preparation and properties of β phase Graphene oxide/PVDF composite films,” J. Appl. Polym. Sci. 132, 41577 (2015).

Liu, Y.

P. Wang, N. M. Dimitrijevic, A. Y. Chang, R. D. Schaller, Y. Liu, T. Rajh, and E. A. Rozhkova, “Photoinduced electron transfer pathways in hydrogen-evolving reduced graphene oxide-boosted hybrid nano-bio catalyst,” ACS Nano 8(8), 7995–8002 (2014).
[Crossref] [PubMed]

Lovinger, A. J.

A. J. Lovinger, D. D. Davis, R. E. Cais, and J. M. Kometani, “On the Curie temperature of Poly(vinylidene fluoride),” Macromol. 19(5), 1491–1494 (1986).
[Crossref]

Maksymovych, P.

A. V. Ievlev, M. A. Susner, M. A. McGuire, P. Maksymovych, and S. V. Kalinin, “Quantitative analysis of the local phase transitions induced by laser heating,” ACS Nano 9(12), 12442–12450 (2015).
[Crossref] [PubMed]

Mandal, B.

E. H. Abdelhamid, O. D. Jayakumar, V. Kotari, B. Mandal, R. Rao, V. M. Naik, and A. K. Tyagi, “Multiferroic PVDF-Fe3O4 hybrid films with reduced graphene oxide and ZnO nanofillers,” RSC Advances 6(24), 20089–20094 (2016).
[Crossref]

Mano, J. F.

S. Lanceros-Mendez, J. F. Mano, A. M. Costa, and V. H. Schmidt, “FTIR and DSC studies of mechanically deformed β-PVDF films,” J. Macromol. Sci. Phys. B40(3&4), 517–527 (2001).
[Crossref]

Martins, P.

P. Martins, C. Capparos, R. Goncalves, P. M. Martins, M. Benelmekki, G. Botelho, and S. Lanceros-Mendez, “Role of nanoparticle surface charge on the nucleation of the electroactive -Polyvinylidene fluoride nanocomposites for sensor and actuator application,” J. Phys. Chem. C 116(29), 15790–15794 (2012).
[Crossref]

Martins, P. M.

P. Martins, C. Capparos, R. Goncalves, P. M. Martins, M. Benelmekki, G. Botelho, and S. Lanceros-Mendez, “Role of nanoparticle surface charge on the nucleation of the electroactive -Polyvinylidene fluoride nanocomposites for sensor and actuator application,” J. Phys. Chem. C 116(29), 15790–15794 (2012).
[Crossref]

Matsushige, K.

K. Noda, K. Ishida, A. Kubono, T. Horiuchi, H. Yamada, and K. Matsushige, “Remanent polarization of evaporated films of vinylidene fluoride oligomers,” J. Appl. Phys. 93(5), 2866–2870 (2003).
[Crossref]

McGuire, M. A.

A. V. Ievlev, M. A. Susner, M. A. McGuire, P. Maksymovych, and S. V. Kalinin, “Quantitative analysis of the local phase transitions induced by laser heating,” ACS Nano 9(12), 12442–12450 (2015).
[Crossref] [PubMed]

Minary-Jolandan, M.

D. Lingam, A. R. Parikh, J. Huang, A. Jain, and M. Minary-Jolandan, “Nano/microscale pyroelectric energy harvesting: challenges and opportunities,” Int. J. Smart Nano Mater. 4(4), 1–17 (2013).
[Crossref]

Naik, V. M.

E. H. Abdelhamid, O. D. Jayakumar, V. Kotari, B. Mandal, R. Rao, V. M. Naik, and A. K. Tyagi, “Multiferroic PVDF-Fe3O4 hybrid films with reduced graphene oxide and ZnO nanofillers,” RSC Advances 6(24), 20089–20094 (2016).
[Crossref]

Noda, K.

K. Noda, K. Ishida, A. Kubono, T. Horiuchi, H. Yamada, and K. Matsushige, “Remanent polarization of evaporated films of vinylidene fluoride oligomers,” J. Appl. Phys. 93(5), 2866–2870 (2003).
[Crossref]

Oliveira, O. N.

Ouyang, Z.-W.

Z.-W. Ouyang, E. C. Chen, and T.-M. Wu, “Thermal stability and magnetic properties of Polyvinylidene fluoride/magnetite nanocomposites,” Materials (Basel) 8(7), 4553–4564 (2015).
[Crossref] [PubMed]

Parikh, A. R.

D. Lingam, A. R. Parikh, J. Huang, A. Jain, and M. Minary-Jolandan, “Nano/microscale pyroelectric energy harvesting: challenges and opportunities,” Int. J. Smart Nano Mater. 4(4), 1–17 (2013).
[Crossref]

Park, K.-L.

C. Dagdeviren, P. Joe, O. L. Tuzman, K.-L. Park, K. J. Lee, Y. Shi, Y. Huang, and J. A. Rogers, “Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation,” Ext. Mech. Lett. 9, 269–281 (2016).
[Crossref]

Park, Y. J.

M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou, and Z. L. Wang, “A hybrid piezoelectric structure for wearable nanogenerators,” Adv. Mater. 24(13), 1759–1764 (2012).
[Crossref] [PubMed]

Pogreb, R.

Ye. Bormashenko, R. Pogreb, and O. Stanevsky, “Vibrational spectrum of PVDF and its interpretation,” Pol. Test.  23, 791–796 (2004).

Ponnamma, D.

A. Al-Saygh, D. Ponnamma, M. Al Ali Almaadeed, P. Vijayan, P. A. Karim, and M. K. Hassan, “Flexible pressure sensor based on PVDF nanocomposites containing reduced graphene oxide titania hybrid nanolayers,” Polymers (Basel) 9(33), 1–19 (2017).

Poulsen, M.

M. Poulsen and S. Durcharme, “Why ferroelectric polyvinylidene fluoride is special,” IEEE Trans. Dielectr. Electr. Insul. 17(4), 1028–1035 (2010).
[Crossref]

Prateek, V. K.

V. K. Prateek, Thakur, and R. K. Gupta, “Recent progress on ferroelectric polymer based nanocomposites for high energy density capacitors: synthesis, dielectric properties and future aspects,” Chem. Rev. 116(7), 4260–4317 (2016).
[Crossref] [PubMed]

Rajh, T.

P. Wang, N. M. Dimitrijevic, A. Y. Chang, R. D. Schaller, Y. Liu, T. Rajh, and E. A. Rozhkova, “Photoinduced electron transfer pathways in hydrogen-evolving reduced graphene oxide-boosted hybrid nano-bio catalyst,” ACS Nano 8(8), 7995–8002 (2014).
[Crossref] [PubMed]

Rao, R.

E. H. Abdelhamid, O. D. Jayakumar, V. Kotari, B. Mandal, R. Rao, V. M. Naik, and A. K. Tyagi, “Multiferroic PVDF-Fe3O4 hybrid films with reduced graphene oxide and ZnO nanofillers,” RSC Advances 6(24), 20089–20094 (2016).
[Crossref]

Rogers, J. A.

C. Dagdeviren, P. Joe, O. L. Tuzman, K.-L. Park, K. J. Lee, Y. Shi, Y. Huang, and J. A. Rogers, “Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation,” Ext. Mech. Lett. 9, 269–281 (2016).
[Crossref]

Rozhkova, E. A.

P. Wang, N. M. Dimitrijevic, A. Y. Chang, R. D. Schaller, Y. Liu, T. Rajh, and E. A. Rozhkova, “Photoinduced electron transfer pathways in hydrogen-evolving reduced graphene oxide-boosted hybrid nano-bio catalyst,” ACS Nano 8(8), 7995–8002 (2014).
[Crossref] [PubMed]

Schaller, R. D.

P. Wang, N. M. Dimitrijevic, A. Y. Chang, R. D. Schaller, Y. Liu, T. Rajh, and E. A. Rozhkova, “Photoinduced electron transfer pathways in hydrogen-evolving reduced graphene oxide-boosted hybrid nano-bio catalyst,” ACS Nano 8(8), 7995–8002 (2014).
[Crossref] [PubMed]

Schmidt, V. H.

S. Lanceros-Mendez, J. F. Mano, A. M. Costa, and V. H. Schmidt, “FTIR and DSC studies of mechanically deformed β-PVDF films,” J. Macromol. Sci. Phys. B40(3&4), 517–527 (2001).
[Crossref]

Sencadas, V.

V. Sencadas, R. Gregorio, and S. Lanceros-Mendez, “Phase transformation and microstructural changes of PVDF films induced by uniaxial stretch,” J. Macromol. Sci. 48(3), 514–525 (2009).
[Crossref]

Shi, Y.

C. Dagdeviren, P. Joe, O. L. Tuzman, K.-L. Park, K. J. Lee, Y. Shi, Y. Huang, and J. A. Rogers, “Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation,” Ext. Mech. Lett. 9, 269–281 (2016).
[Crossref]

Simões, R. D.

Stanevsky, O.

Ye. Bormashenko, R. Pogreb, and O. Stanevsky, “Vibrational spectrum of PVDF and its interpretation,” Pol. Test.  23, 791–796 (2004).

Stewart, C.

H. Kim, F. Torres, D. Villagran, C. Stewart, Y. Lin, and T.-L. B. Tseng, “3D printing of BaTiO3/PVDF composites with electric in situ poling for pressure sensing applications,” Macromol. Mater. Eng. 302(11), 1700229 (2017).
[Crossref]

Stockman, M. I.

Susner, M. A.

A. V. Ievlev, M. A. Susner, M. A. McGuire, P. Maksymovych, and S. V. Kalinin, “Quantitative analysis of the local phase transitions induced by laser heating,” ACS Nano 9(12), 12442–12450 (2015).
[Crossref] [PubMed]

Tadokoro, H.

R. Hasegawa, Y. Takahashi, Y. Chatani, and H. Tadokoro, “Crystal structures of three crystalline forms of poly(vinylidene fluoride),” Polym. J. 3(5), 600–610 (1972).
[Crossref]

Takahashi, Y.

R. Hasegawa, Y. Takahashi, Y. Chatani, and H. Tadokoro, “Crystal structures of three crystalline forms of poly(vinylidene fluoride),” Polym. J. 3(5), 600–610 (1972).
[Crossref]

Tang, Y.

N. An, H. Liu, Y. Ding, M. Zhang, and Y. Tang, “Preparation and electroactive properties of a PVDF/nano-TiO2 composite film,” Appl. Surf. Sci. 257(9), 3831–3835 (2011).
[Crossref]

Thakur,

V. K. Prateek, Thakur, and R. K. Gupta, “Recent progress on ferroelectric polymer based nanocomposites for high energy density capacitors: synthesis, dielectric properties and future aspects,” Chem. Rev. 116(7), 4260–4317 (2016).
[Crossref] [PubMed]

Torres, F.

H. Kim, F. Torres, D. Villagran, C. Stewart, Y. Lin, and T.-L. B. Tseng, “3D printing of BaTiO3/PVDF composites with electric in situ poling for pressure sensing applications,” Macromol. Mater. Eng. 302(11), 1700229 (2017).
[Crossref]

Tseng, T.-L. B.

H. Kim, F. Torres, D. Villagran, C. Stewart, Y. Lin, and T.-L. B. Tseng, “3D printing of BaTiO3/PVDF composites with electric in situ poling for pressure sensing applications,” Macromol. Mater. Eng. 302(11), 1700229 (2017).
[Crossref]

Tuzman, O. L.

C. Dagdeviren, P. Joe, O. L. Tuzman, K.-L. Park, K. J. Lee, Y. Shi, Y. Huang, and J. A. Rogers, “Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation,” Ext. Mech. Lett. 9, 269–281 (2016).
[Crossref]

Tyagi, A. K.

E. H. Abdelhamid, O. D. Jayakumar, V. Kotari, B. Mandal, R. Rao, V. M. Naik, and A. K. Tyagi, “Multiferroic PVDF-Fe3O4 hybrid films with reduced graphene oxide and ZnO nanofillers,” RSC Advances 6(24), 20089–20094 (2016).
[Crossref]

Vijayan, P.

A. Al-Saygh, D. Ponnamma, M. Al Ali Almaadeed, P. Vijayan, P. A. Karim, and M. K. Hassan, “Flexible pressure sensor based on PVDF nanocomposites containing reduced graphene oxide titania hybrid nanolayers,” Polymers (Basel) 9(33), 1–19 (2017).

Villagran, D.

H. Kim, F. Torres, D. Villagran, C. Stewart, Y. Lin, and T.-L. B. Tseng, “3D printing of BaTiO3/PVDF composites with electric in situ poling for pressure sensing applications,” Macromol. Mater. Eng. 302(11), 1700229 (2017).
[Crossref]

Viret, M.

B. Kundys, M. Viret, D. Colson, and D. O. Kundys, “Light-induced size changes in BiFeO3 crystals,” Nat. Mater. 9(10), 803–805 (2010).
[Crossref] [PubMed]

Wang, P.

P. Wang, N. M. Dimitrijevic, A. Y. Chang, R. D. Schaller, Y. Liu, T. Rajh, and E. A. Rozhkova, “Photoinduced electron transfer pathways in hydrogen-evolving reduced graphene oxide-boosted hybrid nano-bio catalyst,” ACS Nano 8(8), 7995–8002 (2014).
[Crossref] [PubMed]

Wang, S.

M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou, and Z. L. Wang, “A hybrid piezoelectric structure for wearable nanogenerators,” Adv. Mater. 24(13), 1759–1764 (2012).
[Crossref] [PubMed]

Wang, Y.-T.

Y.-C. Hu, W.-L. Hsu, Y.-T. Wang, C.-T. Ho, and P.-Z. Chang, “Enhance the pyroelectricity of polyvinylidene fluoride by graphene-oxide doping,” Sensors (Basel) 14(4), 6877–6890 (2014).
[Crossref] [PubMed]

Wang, Z. L.

M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou, and Z. L. Wang, “A hybrid piezoelectric structure for wearable nanogenerators,” Adv. Mater. 24(13), 1759–1764 (2012).
[Crossref] [PubMed]

Wu, T.-M.

Z.-W. Ouyang, E. C. Chen, and T.-M. Wu, “Thermal stability and magnetic properties of Polyvinylidene fluoride/magnetite nanocomposites,” Materials (Basel) 8(7), 4553–4564 (2015).
[Crossref] [PubMed]

Yamada, H.

K. Noda, K. Ishida, A. Kubono, T. Horiuchi, H. Yamada, and K. Matsushige, “Remanent polarization of evaporated films of vinylidene fluoride oligomers,” J. Appl. Phys. 93(5), 2866–2870 (2003).
[Crossref]

Yu, R.

N. An, S. Liu, C. Fang, R. Yu, X. Zhou, and Y. Cheng, “Preparation and properties of β phase Graphene oxide/PVDF composite films,” J. Appl. Polym. Sci. 132, 41577 (2015).

Zhang, M.

N. An, H. Liu, Y. Ding, M. Zhang, and Y. Tang, “Preparation and electroactive properties of a PVDF/nano-TiO2 composite film,” Appl. Surf. Sci. 257(9), 3831–3835 (2011).
[Crossref]

Zhang, T.-D.

Y. Feng, M.-L. Li, W.-L. Li, T.-D. Zhang, Y. Zhao, and W.-D. Fei, “Polymer/metal multilayers structured composites: A route to high dielectric constant and suppressed dielectric loss,” Appl. Phys. Lett. 112(2), 022901 (2018).
[Crossref]

Zhao, Y.

Y. Feng, M.-L. Li, W.-L. Li, T.-D. Zhang, Y. Zhao, and W.-D. Fei, “Polymer/metal multilayers structured composites: A route to high dielectric constant and suppressed dielectric loss,” Appl. Phys. Lett. 112(2), 022901 (2018).
[Crossref]

Zhou, X.

N. An, S. Liu, C. Fang, R. Yu, X. Zhou, and Y. Cheng, “Preparation and properties of β phase Graphene oxide/PVDF composite films,” J. Appl. Polym. Sci. 132, 41577 (2015).

Zucolotto, V.

ACS Nano (2)

A. V. Ievlev, M. A. Susner, M. A. McGuire, P. Maksymovych, and S. V. Kalinin, “Quantitative analysis of the local phase transitions induced by laser heating,” ACS Nano 9(12), 12442–12450 (2015).
[Crossref] [PubMed]

P. Wang, N. M. Dimitrijevic, A. Y. Chang, R. D. Schaller, Y. Liu, T. Rajh, and E. A. Rozhkova, “Photoinduced electron transfer pathways in hydrogen-evolving reduced graphene oxide-boosted hybrid nano-bio catalyst,” ACS Nano 8(8), 7995–8002 (2014).
[Crossref] [PubMed]

Adv. Mater. (1)

M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou, and Z. L. Wang, “A hybrid piezoelectric structure for wearable nanogenerators,” Adv. Mater. 24(13), 1759–1764 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Y. Feng, M.-L. Li, W.-L. Li, T.-D. Zhang, Y. Zhao, and W.-D. Fei, “Polymer/metal multilayers structured composites: A route to high dielectric constant and suppressed dielectric loss,” Appl. Phys. Lett. 112(2), 022901 (2018).
[Crossref]

Appl. Phys. Rev. (1)

B. Kundys, “Photostrictive materials,” Appl. Phys. Rev. 2(1), 011301 (2015).
[Crossref]

Appl. Spectrosc. (1)

Appl. Surf. Sci. (1)

N. An, H. Liu, Y. Ding, M. Zhang, and Y. Tang, “Preparation and electroactive properties of a PVDF/nano-TiO2 composite film,” Appl. Surf. Sci. 257(9), 3831–3835 (2011).
[Crossref]

Chem. Rev. (1)

V. K. Prateek, Thakur, and R. K. Gupta, “Recent progress on ferroelectric polymer based nanocomposites for high energy density capacitors: synthesis, dielectric properties and future aspects,” Chem. Rev. 116(7), 4260–4317 (2016).
[Crossref] [PubMed]

Ext. Mech. Lett. (1)

C. Dagdeviren, P. Joe, O. L. Tuzman, K.-L. Park, K. J. Lee, Y. Shi, Y. Huang, and J. A. Rogers, “Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation,” Ext. Mech. Lett. 9, 269–281 (2016).
[Crossref]

Ferroelectrics (2)

M. G. Broadhurst and G. T. Davis, “Physical basis for piezoelectricity in PVDF,” Ferroelectrics 60(1), 3–13 (1984).
[Crossref]

P. Guenter, “Electro-optical and nonlinear-optical materials,” Ferroelectrics 24(1), 35–42 (1980).
[Crossref]

IEEE Trans. Dielectr. Electr. Insul. (1)

M. Poulsen and S. Durcharme, “Why ferroelectric polyvinylidene fluoride is special,” IEEE Trans. Dielectr. Electr. Insul. 17(4), 1028–1035 (2010).
[Crossref]

Int. J. Smart Nano Mater. (1)

D. Lingam, A. R. Parikh, J. Huang, A. Jain, and M. Minary-Jolandan, “Nano/microscale pyroelectric energy harvesting: challenges and opportunities,” Int. J. Smart Nano Mater. 4(4), 1–17 (2013).
[Crossref]

J. Appl. Phys. (1)

K. Noda, K. Ishida, A. Kubono, T. Horiuchi, H. Yamada, and K. Matsushige, “Remanent polarization of evaporated films of vinylidene fluoride oligomers,” J. Appl. Phys. 93(5), 2866–2870 (2003).
[Crossref]

J. Appl. Polym. Sci. (1)

N. An, S. Liu, C. Fang, R. Yu, X. Zhou, and Y. Cheng, “Preparation and properties of β phase Graphene oxide/PVDF composite films,” J. Appl. Polym. Sci. 132, 41577 (2015).

J. Macromol. Sci. (1)

V. Sencadas, R. Gregorio, and S. Lanceros-Mendez, “Phase transformation and microstructural changes of PVDF films induced by uniaxial stretch,” J. Macromol. Sci. 48(3), 514–525 (2009).
[Crossref]

J. Macromol. Sci. Phys. (1)

S. Lanceros-Mendez, J. F. Mano, A. M. Costa, and V. H. Schmidt, “FTIR and DSC studies of mechanically deformed β-PVDF films,” J. Macromol. Sci. Phys. B40(3&4), 517–527 (2001).
[Crossref]

J. Phys. Chem. C (1)

P. Martins, C. Capparos, R. Goncalves, P. M. Martins, M. Benelmekki, G. Botelho, and S. Lanceros-Mendez, “Role of nanoparticle surface charge on the nucleation of the electroactive -Polyvinylidene fluoride nanocomposites for sensor and actuator application,” J. Phys. Chem. C 116(29), 15790–15794 (2012).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Kawai, “The piezoelectricity in polyvinylidene fluoride,” Jpn. J. Appl. Phys. 8(7), 975–976 (1969).
[Crossref]

Macromol. (1)

A. J. Lovinger, D. D. Davis, R. E. Cais, and J. M. Kometani, “On the Curie temperature of Poly(vinylidene fluoride),” Macromol. 19(5), 1491–1494 (1986).
[Crossref]

Macromol. Mater. Eng. (1)

H. Kim, F. Torres, D. Villagran, C. Stewart, Y. Lin, and T.-L. B. Tseng, “3D printing of BaTiO3/PVDF composites with electric in situ poling for pressure sensing applications,” Macromol. Mater. Eng. 302(11), 1700229 (2017).
[Crossref]

Materials (Basel) (1)

Z.-W. Ouyang, E. C. Chen, and T.-M. Wu, “Thermal stability and magnetic properties of Polyvinylidene fluoride/magnetite nanocomposites,” Materials (Basel) 8(7), 4553–4564 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Kundys, M. Viret, D. Colson, and D. O. Kundys, “Light-induced size changes in BiFeO3 crystals,” Nat. Mater. 9(10), 803–805 (2010).
[Crossref] [PubMed]

Opt. Express (1)

Pol. Test (1)

Ye. Bormashenko, R. Pogreb, and O. Stanevsky, “Vibrational spectrum of PVDF and its interpretation,” Pol. Test.  23, 791–796 (2004).

Polym. J. (1)

R. Hasegawa, Y. Takahashi, Y. Chatani, and H. Tadokoro, “Crystal structures of three crystalline forms of poly(vinylidene fluoride),” Polym. J. 3(5), 600–610 (1972).
[Crossref]

Polymers (Basel) (1)

A. Al-Saygh, D. Ponnamma, M. Al Ali Almaadeed, P. Vijayan, P. A. Karim, and M. K. Hassan, “Flexible pressure sensor based on PVDF nanocomposites containing reduced graphene oxide titania hybrid nanolayers,” Polymers (Basel) 9(33), 1–19 (2017).

RSC Advances (1)

E. H. Abdelhamid, O. D. Jayakumar, V. Kotari, B. Mandal, R. Rao, V. M. Naik, and A. K. Tyagi, “Multiferroic PVDF-Fe3O4 hybrid films with reduced graphene oxide and ZnO nanofillers,” RSC Advances 6(24), 20089–20094 (2016).
[Crossref]

Sensors (Basel) (1)

Y.-C. Hu, W.-L. Hsu, Y.-T. Wang, C.-T. Ho, and P.-Z. Chang, “Enhance the pyroelectricity of polyvinylidene fluoride by graphene-oxide doping,” Sensors (Basel) 14(4), 6877–6890 (2014).
[Crossref] [PubMed]

Other (5)

K. Nakamoto, Infrared and Raman Spectra of Inorganic andCoordination Compounds (3rd ed.: J. Wiley & Sons, Inc. 1978).

Y. P. Chen, “Raman spectroscopy studies of graphene and related nanomaterials,” Horiba readout, 39–44 (2015).

V. Corral-Flores and D. Bueno-Baques, “Flexible ferroelectric BaTiO3 – PVDF nanocomposites,” in Ferroelectrics-Material Aspects (InTech, 2011).

R. G. Kepler, “Ferroelectric, pyroelectric, and piezoelectric properties of poly(vinylidene fluoride,” in Ferroelectric Polymers, H. S. Nalwa, ed. (Marcel Dekker, Inc., 1995).

T. R. Dargaville, M. C. Celina, J. M. Elliott, P. M. Chaplya, G. D. Jones, Mowery D. M., R. A. Assink, R. L. Clough, J. W. Martin, “Characterization, performance and optimization of PVDF as piezoelectric film for advanced space mirror concepts,” in Sandia National Laboratories Reports (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Raman spectra of crystalline PVDF: (a) β and (b) α phases.
Fig. 2
Fig. 2 Raman spectra of (a) undoped and (b) 0.3% wt. GO doped PVDF samples recorded with 5.7 mW laser power.
Fig. 3
Fig. 3 Raman spectra of undoped PVDF recorded with the laser power between 5.7 - 31.3 mW.
Fig. 4
Fig. 4 Raman spectra of 0.3% wt. GO doped PVDF recorded with the laser power between 5.7 - 31.3 mW.
Fig. 5
Fig. 5 The reversible αβ phase transitions of 0.3% wt. GO doped PVDF under reversal laser power modulation.

Tables (1)

Tables Icon

Table 1 Vibrational mode wavenumbers (cm−1) of undoped PVDF

Metrics