Abstract

Fully controllable phase-change materials embedded in integrated photonic circuits are a promising platform for on-chip reconfigurable devices. Successful experimental demonstrations have thus far enabled non-volatile multilevel memories and switches, optical synapses, and on-chip photonic computing. However, the origin and mechanism behind the phase switching has not been described in detail. In this paper, we study qualitatively the evanescent field coupling between Ge2Sb2Te5 and the confined mode within a Si3N4 rib waveguide. To do so, we carry out simulations and compare to experimental results to reveal the switching dynamics that drives the precise control during amorphization and crystallization. Furthermore, we study the unique deterministic control of intermediate states for multilevel applications. Through better understanding of the physics behind the phase switching, optimized parameters for faster and more energy efficient devices are proposed. This, in turn, offers a better perspective on the applicability of phase-change materials in multilevel reconfigurable optics and novel computing architectures.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform

Jiajiu Zheng, Amey Khanolkar, Peipeng Xu, Shane Colburn, Sanchit Deshmukh, Jason Myers, Jesse Frantz, Eric Pop, Joshua Hendrickson, Jonathan Doylend, Nicholas Boechler, and Arka Majumdar
Opt. Mater. Express 8(6) 1551-1561 (2018)

Switching photonic nanostructures between cloaking and superscattering regimes using phase-change materials [Invited]

Yin Huang, Yuecheng Shen, Changjun Min, and Georgios Veronis
Opt. Mater. Express 8(6) 1672-1685 (2018)

All-optical tuning of EIT-like dielectric metasurfaces by means of chalcogenide phase change materials

E. Petronijevic and C. Sibilia
Opt. Express 24(26) 30411-30420 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. H. P. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
    [Crossref]
  2. C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
    [Crossref]
  3. M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
    [Crossref]
  4. Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
    [Crossref] [PubMed]
  5. D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
    [Crossref] [PubMed]
  6. R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express 18(11), 11192–11201 (2010).
    [Crossref] [PubMed]
  7. C. Ríos, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
    [Crossref] [PubMed]
  8. M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1×2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 2–7 (2017).
    [Crossref]
  9. Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, and J. Hu, “Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit,” Opt. Lett. 43(1), 94–97 (2018).
    [Crossref] [PubMed]
  10. C. Rios, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” https://arxiv.org/abs/1801.06228 (2018).
  11. J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
    [Crossref] [PubMed]
  12. K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium-tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
    [Crossref]
  13. E. Kuramochi and M. Notomi, “Optical memory: Phase-change memory,” Nat. Photonics 9(11), 712–714 (2015).
    [Crossref]
  14. H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
    [Crossref]
  15. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  16. K. R. Benjamin, J. Eggleton, and B. Luther-Davies, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
    [Crossref]
  17. W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3(1), 1325 (2012).
    [Crossref] [PubMed]
  18. N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current,” Nat. Photonics 9(4), 247–252 (2015).
    [Crossref]
  19. M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
    [Crossref]
  20. M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007).
    [Crossref] [PubMed]
  21. K. J. Miller, K. A. Hallman, R. F. Haglund, and S. M. Weiss, “Silicon waveguide optical switch with embedded phase change material,” Opt. Express 25(22), 26527–26536 (2017).
    [Crossref] [PubMed]
  22. M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
    [Crossref]
  23. Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368 (2010).
    [Crossref]
  24. A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3(10), 703–708 (2004).
    [Crossref] [PubMed]
  25. V. Weidenhof, N. Pirch, I. Friedrich, S. Ziegler, and M. Wuttig, “Minimum time for laser induced amorphization of Ge2Sb2Te5 films,” J. Appl. Phys. 88(2), 657–664 (2000).
    [Crossref]
  26. P. K. Khulbe, X. Xun, and M. Mansuripur, “Crystallization and amorphization studies of a pulsed laser irradiation,” Appl. Opt.  39, 2359–2366 (2000)
  27. J.-L. Battaglia, A. Kusiak, V. Schick, A. Cappella, C. Wiemer, M. Longo, and E. Varesi, “Thermal characterization of the SiO2-Ge2Sb2Te5 interface from room temperature up to 400°C,” J. Appl. Phys. 107(4), 44314 (2010).
    [Crossref]
  28. A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
    [Crossref]
  29. T. Ohta, “Phase-change optical memory promotes the DVD optical disk,” J. Optoelectron. Adv. Mater. 3, 609–626 (2001).

2018 (1)

2017 (6)

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium-tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref] [PubMed]

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1×2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 2–7 (2017).
[Crossref]

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

K. J. Miller, K. A. Hallman, R. F. Haglund, and S. M. Weiss, “Silicon waveguide optical switch with embedded phase change material,” Opt. Express 25(22), 26527–26536 (2017).
[Crossref] [PubMed]

2016 (1)

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

2015 (3)

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

E. Kuramochi and M. Notomi, “Optical memory: Phase-change memory,” Nat. Photonics 9(11), 712–714 (2015).
[Crossref]

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current,” Nat. Photonics 9(4), 247–252 (2015).
[Crossref]

2014 (2)

A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

C. Ríos, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

2013 (1)

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

2012 (3)

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3(1), 1325 (2012).
[Crossref] [PubMed]

W. H. P. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
[Crossref]

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

2011 (2)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

K. R. Benjamin, J. Eggleton, and B. Luther-Davies, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

2010 (4)

R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express 18(11), 11192–11201 (2010).
[Crossref] [PubMed]

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
[Crossref]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368 (2010).
[Crossref]

J.-L. Battaglia, A. Kusiak, V. Schick, A. Cappella, C. Wiemer, M. Longo, and E. Varesi, “Thermal characterization of the SiO2-Ge2Sb2Te5 interface from room temperature up to 400°C,” J. Appl. Phys. 107(4), 44314 (2010).
[Crossref]

2007 (1)

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007).
[Crossref] [PubMed]

2004 (1)

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3(10), 703–708 (2004).
[Crossref] [PubMed]

2001 (1)

T. Ohta, “Phase-change optical memory promotes the DVD optical disk,” J. Optoelectron. Adv. Mater. 3, 609–626 (2001).

2000 (2)

V. Weidenhof, N. Pirch, I. Friedrich, S. Ziegler, and M. Wuttig, “Minimum time for laser induced amorphization of Ge2Sb2Te5 films,” J. Appl. Phys. 88(2), 657–664 (2000).
[Crossref]

P. K. Khulbe, X. Xun, and M. Mansuripur, “Crystallization and amorphization studies of a pulsed laser irradiation,” Appl. Opt.  39, 2359–2366 (2000)

Ankudinov, A. L.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3(10), 703–708 (2004).
[Crossref] [PubMed]

Atwater, H. A.

Battaglia, J.-L.

J.-L. Battaglia, A. Kusiak, V. Schick, A. Cappella, C. Wiemer, M. Longo, and E. Varesi, “Thermal characterization of the SiO2-Ge2Sb2Te5 interface from room temperature up to 400°C,” J. Appl. Phys. 107(4), 44314 (2010).
[Crossref]

Benjamin, K. R.

K. R. Benjamin, J. Eggleton, and B. Luther-Davies, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Bhaskaran, H.

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref] [PubMed]

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1×2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 2–7 (2017).
[Crossref]

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

C. Ríos, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

W. H. P. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
[Crossref]

C. Rios, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” https://arxiv.org/abs/1801.06228 (2018).

Briggs, R. M.

Cappella, A.

J.-L. Battaglia, A. Kusiak, V. Schick, A. Cappella, C. Wiemer, M. Longo, and E. Varesi, “Thermal characterization of the SiO2-Ge2Sb2Te5 interface from room temperature up to 400°C,” J. Appl. Phys. 107(4), 44314 (2010).
[Crossref]

Caulfield, H. J.

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
[Crossref]

Chen, C.

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current,” Nat. Photonics 9(4), 247–252 (2015).
[Crossref]

Cheng, Z.

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref] [PubMed]

C. Rios, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” https://arxiv.org/abs/1801.06228 (2018).

Chigrin, D. N.

A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

Dolev, S.

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
[Crossref]

Eggleton, J.

K. R. Benjamin, J. Eggleton, and B. Luther-Davies, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Feldmann, J.

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

Fons, P.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3(10), 703–708 (2004).
[Crossref] [PubMed]

Frenkel, A. I.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3(10), 703–708 (2004).
[Crossref] [PubMed]

Friedrich, I.

V. Weidenhof, N. Pirch, I. Friedrich, S. Ziegler, and M. Wuttig, “Minimum time for laser induced amorphization of Ge2Sb2Te5 films,” J. Appl. Phys. 88(2), 657–664 (2000).
[Crossref]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Goltsman, G. N.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3(1), 1325 (2012).
[Crossref] [PubMed]

Gruhler, N.

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

Gu, T.

Haglund, R. F.

Hallman, K. A.

Hosseini, P.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

C. Ríos, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

Hu, J.

Ikuma, Y.

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368 (2010).
[Crossref]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Kato, K.

K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium-tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]

Kawashima, H.

K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium-tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368 (2010).
[Crossref]

Khulbe, P. K.

P. K. Khulbe, X. Xun, and M. Mansuripur, “Crystallization and amorphization studies of a pulsed laser irradiation,” Appl. Opt.  39, 2359–2366 (2000)

Kintaka, K.

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368 (2010).
[Crossref]

Koester, S. J.

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current,” Nat. Photonics 9(4), 247–252 (2015).
[Crossref]

Kolobov, A. V.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3(10), 703–708 (2004).
[Crossref] [PubMed]

Kuramochi, E.

E. Kuramochi and M. Notomi, “Optical memory: Phase-change memory,” Nat. Photonics 9(11), 712–714 (2015).
[Crossref]

Kusiak, A.

J.-L. Battaglia, A. Kusiak, V. Schick, A. Cappella, C. Wiemer, M. Longo, and E. Varesi, “Thermal characterization of the SiO2-Ge2Sb2Te5 interface from room temperature up to 400°C,” J. Appl. Phys. 107(4), 44314 (2010).
[Crossref]

Kuwahara, M.

K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium-tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368 (2010).
[Crossref]

Le Gallo, M.

C. Rios, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” https://arxiv.org/abs/1801.06228 (2018).

Li, J.

Li, M.

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current,” Nat. Photonics 9(4), 247–252 (2015).
[Crossref]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3(1), 1325 (2012).
[Crossref] [PubMed]

Lindenberg, A. M.

A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Longo, M.

J.-L. Battaglia, A. Kusiak, V. Schick, A. Cappella, C. Wiemer, M. Longo, and E. Varesi, “Thermal characterization of the SiO2-Ge2Sb2Te5 interface from room temperature up to 400°C,” J. Appl. Phys. 107(4), 44314 (2010).
[Crossref]

Luther-Davies, B.

K. R. Benjamin, J. Eggleton, and B. Luther-Davies, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Mansuripur, M.

P. K. Khulbe, X. Xun, and M. Mansuripur, “Crystallization and amorphization studies of a pulsed laser irradiation,” Appl. Opt.  39, 2359–2366 (2000)

Michel, A.-K. U.

A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

Miller, K. J.

Minaeva, O.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3(1), 1325 (2012).
[Crossref] [PubMed]

Notomi, M.

E. Kuramochi and M. Notomi, “Optical memory: Phase-change memory,” Nat. Photonics 9(11), 712–714 (2015).
[Crossref]

Ohta, T.

T. Ohta, “Phase-change optical memory promotes the DVD optical disk,” J. Optoelectron. Adv. Mater. 3, 609–626 (2001).

Osmond, J.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

Pello, J.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

Pernice, W. H. P.

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1×2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 2–7 (2017).
[Crossref]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref] [PubMed]

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

C. Ríos, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

W. H. P. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
[Crossref]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3(1), 1325 (2012).
[Crossref] [PubMed]

C. Rios, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” https://arxiv.org/abs/1801.06228 (2018).

Pirch, N.

V. Weidenhof, N. Pirch, I. Friedrich, S. Ziegler, and M. Wuttig, “Minimum time for laser induced amorphization of Ge2Sb2Te5 films,” J. Appl. Phys. 88(2), 657–664 (2000).
[Crossref]

Pruneri, V.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

Pryce, I. M.

Rios, C.

C. Rios, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” https://arxiv.org/abs/1801.06228 (2018).

Ríos, C.

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1×2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 2–7 (2017).
[Crossref]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref] [PubMed]

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

C. Ríos, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

Roelkens, G.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

Rudé, M.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

Scherer, T.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Schick, V.

J.-L. Battaglia, A. Kusiak, V. Schick, A. Cappella, C. Wiemer, M. Longo, and E. Varesi, “Thermal characterization of the SiO2-Ge2Sb2Te5 interface from room temperature up to 400°C,” J. Appl. Phys. 107(4), 44314 (2010).
[Crossref]

Schuck, C.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3(1), 1325 (2012).
[Crossref] [PubMed]

Sebastian, A.

C. Rios, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” https://arxiv.org/abs/1801.06228 (2018).

Sergienko, A. V.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3(1), 1325 (2012).
[Crossref] [PubMed]

Shoji, Y.

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368 (2010).
[Crossref]

Simpson, R. E.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

Soref, R.

Stegmaier, M.

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1×2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 2–7 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Tanaka, D.

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368 (2010).
[Crossref]

Tang, H. X.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3(1), 1325 (2012).
[Crossref] [PubMed]

Taubner, T.

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

Tominaga, J.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3(10), 703–708 (2004).
[Crossref] [PubMed]

Toyosaki, T.

Tsuda, H.

K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium-tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368 (2010).
[Crossref]

Tsuruoka, T.

K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium-tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Uruga, T.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3(10), 703–708 (2004).
[Crossref] [PubMed]

van der Tol, J. J. G. M.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

Varesi, E.

J.-L. Battaglia, A. Kusiak, V. Schick, A. Cappella, C. Wiemer, M. Longo, and E. Varesi, “Thermal characterization of the SiO2-Ge2Sb2Te5 interface from room temperature up to 400°C,” J. Appl. Phys. 107(4), 44314 (2010).
[Crossref]

Wang, D.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wang, X.

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref] [PubMed]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368 (2010).
[Crossref]

Weidenhof, V.

V. Weidenhof, N. Pirch, I. Friedrich, S. Ziegler, and M. Wuttig, “Minimum time for laser induced amorphization of Ge2Sb2Te5 films,” J. Appl. Phys. 88(2), 657–664 (2000).
[Crossref]

Weiss, S. M.

Wiemer, C.

J.-L. Battaglia, A. Kusiak, V. Schick, A. Cappella, C. Wiemer, M. Longo, and E. Varesi, “Thermal characterization of the SiO2-Ge2Sb2Te5 interface from room temperature up to 400°C,” J. Appl. Phys. 107(4), 44314 (2010).
[Crossref]

Wright, C. D.

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref] [PubMed]

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1×2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 2–7 (2017).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

C. Ríos, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

C. Rios, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” https://arxiv.org/abs/1801.06228 (2018).

Wuttig, M.

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007).
[Crossref] [PubMed]

V. Weidenhof, N. Pirch, I. Friedrich, S. Ziegler, and M. Wuttig, “Minimum time for laser induced amorphization of Ge2Sb2Te5 films,” J. Appl. Phys. 88(2), 657–664 (2000).
[Crossref]

Xun, X.

P. K. Khulbe, X. Xun, and M. Mansuripur, “Crystallization and amorphization studies of a pulsed laser irradiation,” Appl. Opt.  39, 2359–2366 (2000)

Yamada, N.

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007).
[Crossref] [PubMed]

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Youngblood, N.

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current,” Nat. Photonics 9(4), 247–252 (2015).
[Crossref]

C. Rios, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” https://arxiv.org/abs/1801.06228 (2018).

Zalden, P.

A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, Q.

Zhang, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, Y.

Ziegler, S.

V. Weidenhof, N. Pirch, I. Friedrich, S. Ziegler, and M. Wuttig, “Minimum time for laser induced amorphization of Ge2Sb2Te5 films,” J. Appl. Phys. 88(2), 657–664 (2000).
[Crossref]

ACS Photonics (2)

A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

Adv. Mater. (1)

C. Ríos, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1×2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5(1), 2–7 (2017).
[Crossref]

Appl. Opt (1)

P. K. Khulbe, X. Xun, and M. Mansuripur, “Crystallization and amorphization studies of a pulsed laser irradiation,” Appl. Opt.  39, 2359–2366 (2000)

Appl. Phys. Express (1)

K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium-tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]

Appl. Phys. Lett. (2)

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103(14), 141119 (2013).
[Crossref]

W. H. P. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
[Crossref]

Electron. Lett. (1)

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368 (2010).
[Crossref]

J. Appl. Phys. (2)

J.-L. Battaglia, A. Kusiak, V. Schick, A. Cappella, C. Wiemer, M. Longo, and E. Varesi, “Thermal characterization of the SiO2-Ge2Sb2Te5 interface from room temperature up to 400°C,” J. Appl. Phys. 107(4), 44314 (2010).
[Crossref]

V. Weidenhof, N. Pirch, I. Friedrich, S. Ziegler, and M. Wuttig, “Minimum time for laser induced amorphization of Ge2Sb2Te5 films,” J. Appl. Phys. 88(2), 657–664 (2000).
[Crossref]

J. Optoelectron. Adv. Mater. (1)

T. Ohta, “Phase-change optical memory promotes the DVD optical disk,” J. Optoelectron. Adv. Mater. 3, 609–626 (2001).

Nat. Commun. (2)

J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Calculating with light using a chip-scale all-optical abacus,” Nat. Commun. 8(1), 1256 (2017).
[Crossref] [PubMed]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3(1), 1325 (2012).
[Crossref] [PubMed]

Nat. Mater. (2)

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3(10), 703–708 (2004).
[Crossref] [PubMed]

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007).
[Crossref] [PubMed]

Nat. Photonics (6)

K. R. Benjamin, J. Eggleton, and B. Luther-Davies, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current,” Nat. Photonics 9(4), 247–252 (2015).
[Crossref]

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

E. Kuramochi and M. Notomi, “Optical memory: Phase-change memory,” Nat. Photonics 9(11), 712–714 (2015).
[Crossref]

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Nature (1)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Sci. Adv. (1)

Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, “On-chip photonic synapse,” Sci. Adv. 3(9), e1700160 (2017).
[Crossref] [PubMed]

Other (1)

C. Rios, N. Youngblood, Z. Cheng, M. Le Gallo, W. H. P. Pernice, C. D. Wright, A. Sebastian, and H. Bhaskaran, “In-memory computing on a photonic platform,” https://arxiv.org/abs/1801.06228 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Electric field and power transfer to the GST/ITO capping for a mode with λ = 1550nm. a) Normalized electric field amplitude across the vertical cut-line shown in the inset. b) Normalized power absorbed by the GST with respect to the maximum power that can be transferred to GST (i.e. PabscryGST for fully crystalline GST) on the same vertical cut of a). c) Normalized Pabs on a horizontal line cut shown in the inset, which is traced at half the thickness of the GST. d) Simulated optical intensity of a guided wave travelling from left to right through a 5 µm long GST in the crystalline state (cf. zoom-in on the right). e) Phase (upper panel) and amplitude (lower panel) of the S12 scattering parameter of the optical mode in d). f) Derived overall power flow for different GST-cell length: power transmitted through the phase-change photonic cell (black), power absorbed within the GST (red), and power scattered out of the waveguide (blue). Reflections at the bare waveguide/GST interface are at least as small as −30 dB and therefore negligible. g) Effective attenuation coefficient calculated from the scattering parameter according to Eq. (2). For longer cell-lengths the result match well the ones obtained experimentally in Eq. (1). For lengths below 2 µm, in contrast, a clear deviation can be observed due to mode transition effects between the bare waveguide and the phase-change element whose size is comparable to the wavelength.
Fig. 2
Fig. 2 Simulated dependence of the effective refractive index (upper panels) and the effective extinction coefficient (lower panels) of the GST cell at λ = 1550 nm by varying a) the width (for 10 nm thick cell), and b) the height (for 1 µm wide cell).
Fig. 3
Fig. 3 Amorphization by evanescent coupling in a GST cell. a) Projection of the mode in Fig. 1(c) into the cry-GST, along the propagation direction, and using the experimental value for the optical attenuation in Eq. (1) (not accounting for edge effects). b) 3D FTDT and heat transfer simulation of a 100 ns, 15 mW pulse at λ = 1580 nm propagating through a waveguide with a 2 μm fully crystalline GST on top. The temperature profile is shown at four times during the pulse excitation reaching its maximum at the end of the pulse (t = 100 ns). The area that is amorphized is the area with T>890 K. c) Thermo-optic effect and amorphization by varying pulse power and fixing pulse length to 100 ns, and d) varying pulse length and fixing pulse power to 6.1 mW for a 5 μm long GST and λ = 1580 nm. e) Change in transmission (ΔT) as a function of the pulse power and pulse width for devices with GST cells with a length of 1 μm. f) same as e) but for a 5 μm long GST. g-j) SEM images of 5 µm long phase-change photonic memories after pump-probe measurements. g) In the fully crystalline state. h) Amorphization and recrystallization with the same pump-pulse. i) Differential amorphization from the two opposite directions (after several back and forth cycles). j) Ablation after a very energetic pulse of ~30 nJ.
Fig. 4
Fig. 4 Power absorbed by GST with varying widths at λ = 1550nm. a) Simulated power absorption (power loss density) of a waveguide with cry-GST on top. b) Plot of Pabs in a) along a vertical line through the 10 nm thick GST. c) Power absorbed by GST along a horizontal line through the have thickness of GST for different widths of centrally positioned cells. d) SEM micrograph of GST after excitation with a high-power picosecond pulse that cause irreversible degradation.
Fig. 5
Fig. 5 Recrystallization scheme computational modelling and experiments using λ = 1580nm. a) Normalized attenuation coefficient as function of the amorphous section width, embedded into crystalline GST, as shown in the inset. The αcry corresponds to the attenuation when GST is fully crystalline, which can be measured experimentally. b) Normalized power absorbed (Pabs)—with respect to the maximum power absorbed when GST is fully crystalline Pabscry-GST—traced on the horizontal line parallel to the substrate and crossing the GST at half-height (at 5 nm, as shown in the inset), including the embedded amorphous section. c) Light absorption calculated for 5 μm long GST considering: 1) an initial amorphization depth of 4.5 μm with 0.9 μm of width; 2) the experimental attenuation calculated for fully amorphous and fully crystalline GST; and 3) the partial-amorphous attenuation values reached in intermediate recrystallization steps, calculated using a) until the amorphous area is completely recrystallized (i.e. the amorphized area depth is equal to zero). The bars indicate the pulse energies required to transfer the same energy E to the material via absorption, as a function of the energy required to heat-up over the crystallization temperature (and below the melting temperature) when the material is in a fully-crystalline state, which can be experimentally measured. d) Sketch of the full recrystallization as understood from the simulations, requiring thus an energy-decreasing train of pulses. The GST sections sketches are plotted as seen from the top representing both 5 μm and 1 μm GST long devices. e) Top view of the temperature profile of the GST-cell calculated from FDTD and heat simulations. Pump pulses with lower, equal, and higher power than that used to amorphize the marked elliptical area (P = 15 mW, see Fig. 3(b)) are studied. Using 100 ns pulses, the temperature is plotted for 5 ns, 50 ns, and 100 ns into the pulse excitation. f) Similar thermal simulations considering a smaller GST cell: 0.7 μm wide and 1 μm long, and a fully amorphized area that extends along the entire GST cell. g) SEM micrographs of cells with 0.7 μm wide and 1 μm long GST, featuring off-centered amorphous lines. h) Transmission measured in real time during the pulse excitation, thus carrying the information of the thermo-optical effect that leads to partial recrystallization in small steps. i) Amorphization followed by a full recrystallization with a single double-step pulse.
Fig. 6
Fig. 6 Real-time pump pulse and probe signal measurements on 5 μm-long GST, using 100 ns pulses with energies of 373 pJ and 561 pJ (inside the waveguide) and λ = 1580nm.

Tables (1)

Tables Icon

Table 1 Thermal material coefficients user for the FEM and FDTD simulations.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α dB,AM  ( L )= ( 0.095 ± 0.005 dBμ m 1 )L + ( 0.21 ± 0.05 dB ) ,   α dB,CRY  ( L )= ( 1.10 ± 0.01 dBμ m 1 )L + ( 1.465 ± 0.03 dB ).
= 10 L GST log( | S 12 | 2 ),
n eff ( T 0 +ΔT )= n eff,0 + β eff ΔT k eff ( T 0 +ΔT )= k eff,0 + γ eff ΔT
P( T )= P 0 e α( T )L =  P 0 e α 0 L e ζ ΔT L = P GST e ζ ΔT L