Abstract

A new wideband sinusoidally-slotted graphene-based cross-polarization converter (CPC) is proposed in this paper. The proposed polarization converter can realize a broadband terahertz polarization conversion from 1.28 to 2.13-THz with a polarization conversion ratio (PCR) of more than 0.85. Taking advantage of the gradient width modulation of the graphene-based unit structure, the continuous plasmon resonances are excited at the edges of the sinusoidal slot. Therefore, the proposed converter can achieve a broadband polarization conversion in a simplified structure. Furthermore, the polarization conversion characteristics of the CPC are insensitive to the incident angle. The PCR remains more than 0.85 with little bandwidth degradation even as the incident angle increases to as high as 50°. More importantly, the operating bandwidth and the magnitude of the PCR can be tuned easily by adjusting the chemical potential and the electron scattering times of the graphene. In a way, we believe this kind of graphene-based polarization converter can enrich the polarization conversion community for realizing broadband and tunable polarization conversion.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wideband tunable mid-infrared cross polarization converter using rectangle-shape perforated graphene

Chen Yang, Yi Luo, Jiaxin Guo, Yang Pu, De He, Yadong Jiang, Jimmy Xu, and Zhijun Liu
Opt. Express 24(15) 16913-16922 (2016)

Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas

Jun Ding, Bayaner Arigong, Han Ren, Mi Zhou, Jin Shao, Yuankun Lin, and Hualiang Zhang
Opt. Express 22(23) 29143-29151 (2014)

Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range

Longfang Ye, Yao Chen, Guoxiong Cai, Na Liu, Jinfeng Zhu, Zhengyong Song, and Qing Huo Liu
Opt. Express 25(10) 11223-11232 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics. Cambridge, U.K.: Cambridge Univ. Press, (1999).
  2. Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
    [Crossref]
  3. K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
    [Crossref]
  4. J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
    [Crossref]
  5. H. Chen, J. F. Wang, H. Ma, S. B. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
    [Crossref]
  6. H. L. Zhu, S. W. Cheung, K. L. Chung, and T. I. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antenn. Propag. 61(9), 4615–4623 (2013).
    [Crossref]
  7. H. F. Ma, G. Z. W. G. S. Kong, and T. J. Cui, “Broadband circular and linear polarization conversions realized by thin briefringent reflective metasurfaces,” Opt. Mater. Express 4(8), 1717–1724 (2014).
    [Crossref]
  8. Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, L. Zheng, Y. Q. Pang, Z. Xu, and A. X. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bilayered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
    [Crossref]
  9. L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. A. Duan, and X. H. Yuan, “Circular polarization converters based on bi-layered asymmetrical split ring metamaterials,” Appl. Phys., A Mater. Sci. Process. 116(2), 643–648 (2014).
    [Crossref]
  10. L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. A. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular pol arization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
    [Crossref]
  11. J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
    [Crossref]
  12. Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D Appl. Phys. 45(23), 235106 (2012).
    [Crossref]
  13. D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
    [Crossref] [PubMed]
  14. X. Zheng, Z. Xiao, and X. Ling, “A Tunable Hybrid Metamaterial Reflective Polarization Converter Based on Vanadium Oxide Film,” Plasmonics 13(1), 287–291 (2018).
    [Crossref]
  15. Z. Xiao, H. Zou, X. Zheng, X. Ling, and L. Wang, “A tunable reflective polarization converter based on hybrid metamaterial, ” Opt. Quant. Electron. 49, 12 (2017).
    [Crossref]
  16. D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
    [Crossref] [PubMed]
  17. N.-H. Shen, M. Kafesaki, T. Koschny, L. Zhang, E. N. Economou, and C. M. Soukoulis, “Broadband blueshift tunable metamaterials and dual-band switches,” Phys. Rev. B 79(16), 161102 (2009).
    [Crossref]
  18. J. Zhu, Y. Yang, and S. Li, “A photo-excited broadband to dual-band tunable terahertz prefect metamaterial polarization converter,” Opt. Commun. 413, 336–340 (2018).
    [Crossref]
  19. Y. Cheng, R. Gong, and J. Zhao, “A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves,” Opt. Mater. 62, 28–33 (2016).
    [Crossref]
  20. J. Zhao, Y. Cheng, and Z. Cheng, “Design of a Photo-Excited Switchable Broadband Reflective Linear Polarization Conversion Metasurface for Terahertz Waves,” IEEE Photonics J. 10(1), 1–10 (2018).
  21. S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–948 (2012).
    [Crossref] [PubMed]
  22. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  23. A. K. Geim, “Graphene: Status and prospects,” Science 324(5934), 1530–1534 (2009).
    [Crossref] [PubMed]
  24. L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
    [Crossref] [PubMed]
  25. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
    [Crossref] [PubMed]
  26. B. Z. Xu, C. Q. Gu, Z. Li, and Z. Y. Niu, “A novel structure for tunable terahertz absorber based on graphene,” Opt. Express 21(20), 23803–23811 (2013).
    [Crossref] [PubMed]
  27. Z. Su, J. Yin, and X. Zhao, “Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures,” Opt. Express 23(2), 1679–1690 (2015).
    [Crossref] [PubMed]
  28. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
    [Crossref] [PubMed]
  29. A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
    [Crossref] [PubMed]
  30. H. Xiong, Y. B. Wu, J. Dong, M. C. Tang, Y. N. Jiang, and X. P. Zeng, “Ultra-thin and broadband tunable metamaterial graphene absorber,” Opt. Express 26(2), 1681–1688 (2018).
    [Crossref] [PubMed]
  31. H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
    [Crossref]
  32. H. Cheng, S. Chen, P. Yu, J. Li, L. Deng, and J. Tian, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
    [Crossref] [PubMed]
  33. Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transission pf planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
    [Crossref]
  34. S. Luo, B. Li, A. Yu, J. Gao, X. Wang, and D. Zuo, “Broadband tunable terahertz polarization converter based on graphene metamaterial,” Opt. Commun. 413, 184–189 (2018).
    [Crossref]
  35. Y. V. Bludov, M. I. Vasilevskiy, and N. M. R. Peres, “Tunable graphene-based polarizer,” J. Appl. Phys. 112(8), 084320 (2012).
    [Crossref]
  36. X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
    [Crossref]
  37. C. Yang, Y. Luo, J. Guo, Y. Pu, D. He, Y. Jiang, J. Xu, and Z. Liu, “Wideband tunable mid-infrared cross polarization converter using rectangle-shape perforated graphene,” Opt. Express 24(15), 16913–16922 (2016).
    [Crossref] [PubMed]
  38. J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
    [Crossref] [PubMed]
  39. J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
    [Crossref]
  40. Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene plasmonic metasurfaces to steer infrared light,” Sci. Rep. 5(1), 12423 (2015).
    [Crossref] [PubMed]
  41. M. Chen, L. Chang, X. Gao, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband Tunable Cross Polarization Converter Based on a Graphene Metasurface With a Hollow-Carved “H” Array,” IEEE Photonics J. 9(5), 1–11 (2017).
  42. X. Gao, W. Yang, W. Cao, M. Chen, Y. Jiang, X. Yu, and H. Li, “Bandwidth broadening of a graphene-based circular polarization converter by phase compensation,” Opt. Express 25(20), 23945–23954 (2017).
    [Crossref] [PubMed]
  43. N. M. R. Peres, A. Ferreira, Y. V. Bludov, and M. I. Vasilevskiy, “Light scattering by a medium with a spatially modulated optical conductivity: the case of graphene,” J. Phys. Condens. Matter 24(24), 245303 (2012).
    [Crossref] [PubMed]
  44. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  45. L. Wang, J. Zhang, N. Liu, Y. Wang, P. A. Hu, and Z. Wang, “Fast patterned graphene ribbons via soft lithography,” Procedia CIRP 42, 428–432 (2016).
    [Crossref]
  46. G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
    [Crossref] [PubMed]
  47. E. Carrasco, M. Tamagnone, and C. J. Perruisseau, “Tunable graphene reflective cells for THz reflectarrays and generalized law of reflection,” Appl. Phys. Lett. 102(10), 104103 (2013).
    [Crossref]

2018 (5)

X. Zheng, Z. Xiao, and X. Ling, “A Tunable Hybrid Metamaterial Reflective Polarization Converter Based on Vanadium Oxide Film,” Plasmonics 13(1), 287–291 (2018).
[Crossref]

J. Zhu, Y. Yang, and S. Li, “A photo-excited broadband to dual-band tunable terahertz prefect metamaterial polarization converter,” Opt. Commun. 413, 336–340 (2018).
[Crossref]

J. Zhao, Y. Cheng, and Z. Cheng, “Design of a Photo-Excited Switchable Broadband Reflective Linear Polarization Conversion Metasurface for Terahertz Waves,” IEEE Photonics J. 10(1), 1–10 (2018).

H. Xiong, Y. B. Wu, J. Dong, M. C. Tang, Y. N. Jiang, and X. P. Zeng, “Ultra-thin and broadband tunable metamaterial graphene absorber,” Opt. Express 26(2), 1681–1688 (2018).
[Crossref] [PubMed]

S. Luo, B. Li, A. Yu, J. Gao, X. Wang, and D. Zuo, “Broadband tunable terahertz polarization converter based on graphene metamaterial,” Opt. Commun. 413, 184–189 (2018).
[Crossref]

2017 (4)

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transission pf planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref] [PubMed]

M. Chen, L. Chang, X. Gao, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband Tunable Cross Polarization Converter Based on a Graphene Metasurface With a Hollow-Carved “H” Array,” IEEE Photonics J. 9(5), 1–11 (2017).

X. Gao, W. Yang, W. Cao, M. Chen, Y. Jiang, X. Yu, and H. Li, “Bandwidth broadening of a graphene-based circular polarization converter by phase compensation,” Opt. Express 25(20), 23945–23954 (2017).
[Crossref] [PubMed]

2016 (4)

L. Wang, J. Zhang, N. Liu, Y. Wang, P. A. Hu, and Z. Wang, “Fast patterned graphene ribbons via soft lithography,” Procedia CIRP 42, 428–432 (2016).
[Crossref]

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

C. Yang, Y. Luo, J. Guo, Y. Pu, D. He, Y. Jiang, J. Xu, and Z. Liu, “Wideband tunable mid-infrared cross polarization converter using rectangle-shape perforated graphene,” Opt. Express 24(15), 16913–16922 (2016).
[Crossref] [PubMed]

Y. Cheng, R. Gong, and J. Zhao, “A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves,” Opt. Mater. 62, 28–33 (2016).
[Crossref]

2015 (5)

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, L. Zheng, Y. Q. Pang, Z. Xu, and A. X. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bilayered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene plasmonic metasurfaces to steer infrared light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Z. Su, J. Yin, and X. Zhao, “Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures,” Opt. Express 23(2), 1679–1690 (2015).
[Crossref] [PubMed]

2014 (6)

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
[Crossref] [PubMed]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
[Crossref] [PubMed]

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. A. Duan, and X. H. Yuan, “Circular polarization converters based on bi-layered asymmetrical split ring metamaterials,” Appl. Phys., A Mater. Sci. Process. 116(2), 643–648 (2014).
[Crossref]

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

H. Chen, J. F. Wang, H. Ma, S. B. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

H. F. Ma, G. Z. W. G. S. Kong, and T. J. Cui, “Broadband circular and linear polarization conversions realized by thin briefringent reflective metasurfaces,” Opt. Mater. Express 4(8), 1717–1724 (2014).
[Crossref]

2013 (9)

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

H. L. Zhu, S. W. Cheung, K. L. Chung, and T. I. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antenn. Propag. 61(9), 4615–4623 (2013).
[Crossref]

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. A. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular pol arization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

B. Z. Xu, C. Q. Gu, Z. Li, and Z. Y. Niu, “A novel structure for tunable terahertz absorber based on graphene,” Opt. Express 21(20), 23803–23811 (2013).
[Crossref] [PubMed]

A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
[Crossref] [PubMed]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, L. Deng, and J. Tian, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
[Crossref] [PubMed]

E. Carrasco, M. Tamagnone, and C. J. Perruisseau, “Tunable graphene reflective cells for THz reflectarrays and generalized law of reflection,” Appl. Phys. Lett. 102(10), 104103 (2013).
[Crossref]

2012 (6)

N. M. R. Peres, A. Ferreira, Y. V. Bludov, and M. I. Vasilevskiy, “Light scattering by a medium with a spatially modulated optical conductivity: the case of graphene,” J. Phys. Condens. Matter 24(24), 245303 (2012).
[Crossref] [PubMed]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

Y. V. Bludov, M. I. Vasilevskiy, and N. M. R. Peres, “Tunable graphene-based polarizer,” J. Appl. Phys. 112(8), 084320 (2012).
[Crossref]

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D Appl. Phys. 45(23), 235106 (2012).
[Crossref]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–948 (2012).
[Crossref] [PubMed]

2010 (2)

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[Crossref] [PubMed]

2009 (2)

N.-H. Shen, M. Kafesaki, T. Koschny, L. Zhang, E. N. Economou, and C. M. Soukoulis, “Broadband blueshift tunable metamaterials and dual-band switches,” Phys. Rev. B 79(16), 161102 (2009).
[Crossref]

A. K. Geim, “Graphene: Status and prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

2008 (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

2007 (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Alaee, R.

Andryieuski, A.

Arigong, B.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
[Crossref] [PubMed]

Azad, A. K.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–948 (2012).
[Crossref] [PubMed]

Bludov, Y. V.

Y. V. Bludov, M. I. Vasilevskiy, and N. M. R. Peres, “Tunable graphene-based polarizer,” J. Appl. Phys. 112(8), 084320 (2012).
[Crossref]

N. M. R. Peres, A. Ferreira, Y. V. Bludov, and M. I. Vasilevskiy, “Light scattering by a medium with a spatially modulated optical conductivity: the case of graphene,” J. Phys. Condens. Matter 24(24), 245303 (2012).
[Crossref] [PubMed]

Cai, G.

Cao, W.

Carrasco, E.

E. Carrasco, M. Tamagnone, and C. J. Perruisseau, “Tunable graphene reflective cells for THz reflectarrays and generalized law of reflection,” Appl. Phys. Lett. 102(10), 104103 (2013).
[Crossref]

Chang, L.

M. Chen, L. Chang, X. Gao, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband Tunable Cross Polarization Converter Based on a Graphene Metasurface With a Hollow-Carved “H” Array,” IEEE Photonics J. 9(5), 1–11 (2017).

Chen, H.

M. Chen, L. Chang, X. Gao, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband Tunable Cross Polarization Converter Based on a Graphene Metasurface With a Hollow-Carved “H” Array,” IEEE Photonics J. 9(5), 1–11 (2017).

H. Chen, J. F. Wang, H. Ma, S. B. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Chen, H. T.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–948 (2012).
[Crossref] [PubMed]

Chen, M.

M. Chen, L. Chang, X. Gao, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband Tunable Cross Polarization Converter Based on a Graphene Metasurface With a Hollow-Carved “H” Array,” IEEE Photonics J. 9(5), 1–11 (2017).

X. Gao, W. Yang, W. Cao, M. Chen, Y. Jiang, X. Yu, and H. Li, “Bandwidth broadening of a graphene-based circular polarization converter by phase compensation,” Opt. Express 25(20), 23945–23954 (2017).
[Crossref] [PubMed]

Chen, S.

H. Cheng, S. Chen, P. Yu, J. Li, L. Deng, and J. Tian, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
[Crossref] [PubMed]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Chen, W.-C.

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Chen, Y.

Chen, Z.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D Appl. Phys. 45(23), 235106 (2012).
[Crossref]

Cheng, H.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, L. Deng, and J. Tian, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
[Crossref] [PubMed]

Cheng, Y.

J. Zhao, Y. Cheng, and Z. Cheng, “Design of a Photo-Excited Switchable Broadband Reflective Linear Polarization Conversion Metasurface for Terahertz Waves,” IEEE Photonics J. 10(1), 1–10 (2018).

Y. Cheng, R. Gong, and J. Zhao, “A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves,” Opt. Mater. 62, 28–33 (2016).
[Crossref]

Cheng, Y. Z.

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. A. Duan, and X. H. Yuan, “Circular polarization converters based on bi-layered asymmetrical split ring metamaterials,” Appl. Phys., A Mater. Sci. Process. 116(2), 643–648 (2014).
[Crossref]

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. A. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular pol arization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Cheng, Z.

J. Zhao, Y. Cheng, and Z. Cheng, “Design of a Photo-Excited Switchable Broadband Reflective Linear Polarization Conversion Metasurface for Terahertz Waves,” IEEE Photonics J. 10(1), 1–10 (2018).

Cheung, S. W.

H. L. Zhu, S. W. Cheung, K. L. Chung, and T. I. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antenn. Propag. 61(9), 4615–4623 (2013).
[Crossref]

Cho, C. Y.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[Crossref] [PubMed]

Choe, M.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[Crossref] [PubMed]

Chung, K. L.

H. L. Zhu, S. W. Cheung, K. L. Chung, and T. I. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antenn. Propag. 61(9), 4615–4623 (2013).
[Crossref]

Cui, T. J.

H. F. Ma, G. Z. W. G. S. Kong, and T. J. Cui, “Broadband circular and linear polarization conversions realized by thin briefringent reflective metasurfaces,” Opt. Mater. Express 4(8), 1717–1724 (2014).
[Crossref]

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Deng, L.

Ding, J.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
[Crossref] [PubMed]

Dong, J.

Duan, J. A.

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. A. Duan, and X. H. Yuan, “Circular polarization converters based on bi-layered asymmetrical split ring metamaterials,” Appl. Phys., A Mater. Sci. Process. 116(2), 643–648 (2014).
[Crossref]

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. A. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular pol arization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Economou, E. N.

N.-H. Shen, M. Kafesaki, T. Koschny, L. Zhang, E. N. Economou, and C. M. Soukoulis, “Broadband blueshift tunable metamaterials and dual-band switches,” Phys. Rev. B 79(16), 161102 (2009).
[Crossref]

Farhat, M.

Feng, Y.

Ferreira, A.

N. M. R. Peres, A. Ferreira, Y. V. Bludov, and M. I. Vasilevskiy, “Light scattering by a medium with a spatially modulated optical conductivity: the case of graphene,” J. Phys. Condens. Matter 24(24), 245303 (2012).
[Crossref] [PubMed]

Frölich, A.

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

Gansel, J. K.

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

Gao, J.

S. Luo, B. Li, A. Yu, J. Gao, X. Wang, and D. Zuo, “Broadband tunable terahertz polarization converter based on graphene metamaterial,” Opt. Commun. 413, 184–189 (2018).
[Crossref]

Gao, X.

M. Chen, L. Chang, X. Gao, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband Tunable Cross Polarization Converter Based on a Graphene Metasurface With a Hollow-Carved “H” Array,” IEEE Photonics J. 9(5), 1–11 (2017).

X. Gao, W. Yang, W. Cao, M. Chen, Y. Jiang, X. Yu, and H. Li, “Bandwidth broadening of a graphene-based circular polarization converter by phase compensation,” Opt. Express 25(20), 23945–23954 (2017).
[Crossref] [PubMed]

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Geim, A. K.

A. K. Geim, “Graphene: Status and prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Gong, R.

Y. Cheng, R. Gong, and J. Zhao, “A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves,” Opt. Mater. 62, 28–33 (2016).
[Crossref]

Gong, R. Z.

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. A. Duan, and X. H. Yuan, “Circular polarization converters based on bi-layered asymmetrical split ring metamaterials,” Appl. Phys., A Mater. Sci. Process. 116(2), 643–648 (2014).
[Crossref]

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. A. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular pol arization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Gong, Y.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Gu, C. Q.

Gu, Y.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Guo, J.

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

He, D.

He, S.

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

Hong, B. H.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[Crossref] [PubMed]

Hong, M.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Hong, W. K.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[Crossref] [PubMed]

Hu, F.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transission pf planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Hu, P. A.

L. Wang, J. Zhang, N. Liu, Y. Wang, P. A. Hu, and Z. Wang, “Fast patterned graphene ribbons via soft lithography,” Procedia CIRP 42, 428–432 (2016).
[Crossref]

Huang, Y.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transission pf planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Jian, L.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Jiang, T.

Jiang, Y.

Jiang, Y. N.

Jin, Y.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transission pf planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Jing, Y.-L.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D Appl. Phys. 45(23), 235106 (2012).
[Crossref]

Jo, G.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[Crossref] [PubMed]

Kafesaki, M.

N.-H. Shen, M. Kafesaki, T. Koschny, L. Zhang, E. N. Economou, and C. M. Soukoulis, “Broadband blueshift tunable metamaterials and dual-band switches,” Phys. Rev. B 79(16), 161102 (2009).
[Crossref]

Kahng, Y. H.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[Crossref] [PubMed]

Kaschke, J.

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

Kim, J. H.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[Crossref] [PubMed]

Kim, T. W.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[Crossref] [PubMed]

Kong, G. Z. W. G. S.

Koschny, T.

N.-H. Shen, M. Kafesaki, T. Koschny, L. Zhang, E. N. Economou, and C. M. Soukoulis, “Broadband blueshift tunable metamaterials and dual-band switches,” Phys. Rev. B 79(16), 161102 (2009).
[Crossref]

Latzel, M.

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

Lavrinenko, A. V.

Lederer, F.

Lee, S.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[Crossref] [PubMed]

Lee, T.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[Crossref] [PubMed]

Li, B.

S. Luo, B. Li, A. Yu, J. Gao, X. Wang, and D. Zuo, “Broadband tunable terahertz polarization converter based on graphene metamaterial,” Opt. Commun. 413, 184–189 (2018).
[Crossref]

Li, H.

Li, J.

H. Cheng, S. Chen, P. Yu, J. Li, L. Deng, and J. Tian, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
[Crossref] [PubMed]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Li, S.

J. Zhu, Y. Yang, and S. Li, “A photo-excited broadband to dual-band tunable terahertz prefect metamaterial polarization converter,” Opt. Commun. 413, 336–340 (2018).
[Crossref]

Li, Y.

H. Chen, J. F. Wang, H. Ma, S. B. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Li, Y. F.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, L. Zheng, Y. Q. Pang, Z. Xu, and A. X. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bilayered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

Li, Z.

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene plasmonic metasurfaces to steer infrared light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

B. Z. Xu, C. Q. Gu, Z. Li, and Z. Y. Niu, “A novel structure for tunable terahertz absorber based on graphene,” Opt. Express 21(20), 23803–23811 (2013).
[Crossref] [PubMed]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Lin, Y.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
[Crossref] [PubMed]

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D Appl. Phys. 45(23), 235106 (2012).
[Crossref]

Ling, X.

X. Zheng, Z. Xiao, and X. Ling, “A Tunable Hybrid Metamaterial Reflective Polarization Converter Based on Vanadium Oxide Film,” Plasmonics 13(1), 287–291 (2018).
[Crossref]

Liu, C.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transission pf planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Liu, N.

Liu, Q. H.

Liu, X. C.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Liu, Y.

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene plasmonic metasurfaces to steer infrared light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

Liu, Z.

Long, Y.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D Appl. Phys. 45(23), 235106 (2012).
[Crossref]

Luo, C.

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

Luo, S.

S. Luo, B. Li, A. Yu, J. Gao, X. Wang, and D. Zuo, “Broadband tunable terahertz polarization converter based on graphene metamaterial,” Opt. Commun. 413, 184–189 (2018).
[Crossref]

Luo, Y.

Lv, T. T.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Ma, H.

H. Chen, J. F. Wang, H. Ma, S. B. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Ma, H. F.

H. F. Ma, G. Z. W. G. S. Kong, and T. J. Cui, “Broadband circular and linear polarization conversions realized by thin briefringent reflective metasurfaces,” Opt. Mater. Express 4(8), 1717–1724 (2014).
[Crossref]

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Mehmood, M. Q.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Nam, S.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–948 (2012).
[Crossref] [PubMed]

Niu, Z. Y.

Novoselov, K. S.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Padilla, W. J.

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Pang, Y. Q.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, L. Zheng, Y. Q. Pang, Z. Xu, and A. X. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bilayered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

Park, S. J.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[Crossref] [PubMed]

Park, W.

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[Crossref] [PubMed]

Park, Y. S.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–948 (2012).
[Crossref] [PubMed]

Peres, N. M. R.

Y. V. Bludov, M. I. Vasilevskiy, and N. M. R. Peres, “Tunable graphene-based polarizer,” J. Appl. Phys. 112(8), 084320 (2012).
[Crossref]

N. M. R. Peres, A. Ferreira, Y. V. Bludov, and M. I. Vasilevskiy, “Light scattering by a medium with a spatially modulated optical conductivity: the case of graphene,” J. Phys. Condens. Matter 24(24), 245303 (2012).
[Crossref] [PubMed]

Perruisseau, C. J.

E. Carrasco, M. Tamagnone, and C. J. Perruisseau, “Tunable graphene reflective cells for THz reflectarrays and generalized law of reflection,” Appl. Phys. Lett. 102(10), 104103 (2013).
[Crossref]

Pu, Y.

Qiao, W.

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Qiu, C. W.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Qu, S. B.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, L. Zheng, Y. Q. Pang, Z. Xu, and A. X. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bilayered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

H. Chen, J. F. Wang, H. Ma, S. B. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Ren, H.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
[Crossref] [PubMed]

Rho, J.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–948 (2012).
[Crossref] [PubMed]

Rockstuhl, C.

Shao, J.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
[Crossref] [PubMed]

Shen, N.-H.

N.-H. Shen, M. Kafesaki, T. Koschny, L. Zhang, E. N. Economou, and C. M. Soukoulis, “Broadband blueshift tunable metamaterials and dual-band switches,” Phys. Rev. B 79(16), 161102 (2009).
[Crossref]

Shen, S.

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene plasmonic metasurfaces to steer infrared light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

Shi, J. H.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Shrekenhamer, D.

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Singh, R.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–948 (2012).
[Crossref] [PubMed]

Song, K.

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

Song, Z.

Soukoulis, C. M.

N.-H. Shen, M. Kafesaki, T. Koschny, L. Zhang, E. N. Economou, and C. M. Soukoulis, “Broadband blueshift tunable metamaterials and dual-band switches,” Phys. Rev. B 79(16), 161102 (2009).
[Crossref]

Srivastava, A.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Su, Z.

Tamagnone, M.

E. Carrasco, M. Tamagnone, and C. J. Perruisseau, “Tunable graphene reflective cells for THz reflectarrays and generalized law of reflection,” Appl. Phys. Lett. 102(10), 104103 (2013).
[Crossref]

Tang, M. C.

Taylor, A. J.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–948 (2012).
[Crossref] [PubMed]

Thiel, M.

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

Tian, J.

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene plasmonic metasurfaces to steer infrared light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

H. Cheng, S. Chen, P. Yu, J. Li, L. Deng, and J. Tian, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
[Crossref] [PubMed]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Vasilevskiy, M. I.

Y. V. Bludov, M. I. Vasilevskiy, and N. M. R. Peres, “Tunable graphene-based polarizer,” J. Appl. Phys. 112(8), 084320 (2012).
[Crossref]

N. M. R. Peres, A. Ferreira, Y. V. Bludov, and M. I. Vasilevskiy, “Light scattering by a medium with a spatially modulated optical conductivity: the case of graphene,” J. Phys. Condens. Matter 24(24), 245303 (2012).
[Crossref] [PubMed]

Venkatesan, T.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Wang, C.

M. Chen, L. Chang, X. Gao, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband Tunable Cross Polarization Converter Based on a Graphene Metasurface With a Hollow-Carved “H” Array,” IEEE Photonics J. 9(5), 1–11 (2017).

Wang, D.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Wang, J. F.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, L. Zheng, Y. Q. Pang, Z. Xu, and A. X. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bilayered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

H. Chen, J. F. Wang, H. Ma, S. B. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Wang, L.

L. Wang, J. Zhang, N. Liu, Y. Wang, P. A. Hu, and Z. Wang, “Fast patterned graphene ribbons via soft lithography,” Procedia CIRP 42, 428–432 (2016).
[Crossref]

Wang, X.

S. Luo, B. Li, A. Yu, J. Gao, X. Wang, and D. Zuo, “Broadband tunable terahertz polarization converter based on graphene metamaterial,” Opt. Commun. 413, 184–189 (2018).
[Crossref]

Wang, Y.

L. Wang, J. Zhang, N. Liu, Y. Wang, P. A. Hu, and Z. Wang, “Fast patterned graphene ribbons via soft lithography,” Procedia CIRP 42, 428–432 (2016).
[Crossref]

Wang, Z.

L. Wang, J. Zhang, N. Liu, Y. Wang, P. A. Hu, and Z. Wang, “Fast patterned graphene ribbons via soft lithography,” Procedia CIRP 42, 428–432 (2016).
[Crossref]

Wegener, M.

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

Wen, L.

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Wen, Q.-Y.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D Appl. Phys. 45(23), 235106 (2012).
[Crossref]

Wu, L.

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. A. Duan, and X. H. Yuan, “Circular polarization converters based on bi-layered asymmetrical split ring metamaterials,” Appl. Phys., A Mater. Sci. Process. 116(2), 643–648 (2014).
[Crossref]

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. A. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular pol arization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Wu, Y. B.

Xia, F.

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene plasmonic metasurfaces to steer infrared light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

Xiao, X.

M. Chen, L. Chang, X. Gao, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband Tunable Cross Polarization Converter Based on a Graphene Metasurface With a Hollow-Carved “H” Array,” IEEE Photonics J. 9(5), 1–11 (2017).

Xiao, Z.

X. Zheng, Z. Xiao, and X. Ling, “A Tunable Hybrid Metamaterial Reflective Polarization Converter Based on Vanadium Oxide Film,” Plasmonics 13(1), 287–291 (2018).
[Crossref]

Xie, B.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Xiong, H.

Xu, B. Z.

Xu, J.

Xu, X.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transission pf planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Xu, Z.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, L. Zheng, Y. Q. Pang, Z. Xu, and A. X. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bilayered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

H. Chen, J. F. Wang, H. Ma, S. B. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Yan, M.

H. Chen, J. F. Wang, H. Ma, S. B. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Yang, C.

Yang, Q.-H.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D Appl. Phys. 45(23), 235106 (2012).
[Crossref]

Yang, W.

X. Gao, W. Yang, W. Cao, M. Chen, Y. Jiang, X. Yu, and H. Li, “Bandwidth broadening of a graphene-based circular polarization converter by phase compensation,” Opt. Express 25(20), 23945–23954 (2017).
[Crossref] [PubMed]

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Yang, Y.

J. Zhu, Y. Yang, and S. Li, “A photo-excited broadband to dual-band tunable terahertz prefect metamaterial polarization converter,” Opt. Commun. 413, 336–340 (2018).
[Crossref]

Yang, Z. Y.

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. A. Duan, and X. H. Yuan, “Circular polarization converters based on bi-layered asymmetrical split ring metamaterials,” Appl. Phys., A Mater. Sci. Process. 116(2), 643–648 (2014).
[Crossref]

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. A. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular pol arization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Yao, K.

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene plasmonic metasurfaces to steer infrared light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

Yao, Z.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transission pf planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Ye, L.

Ye, Y.

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

Yin, J.

Yin, X.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–948 (2012).
[Crossref] [PubMed]

Yu, A.

S. Luo, B. Li, A. Yu, J. Gao, X. Wang, and D. Zuo, “Broadband tunable terahertz polarization converter based on graphene metamaterial,” Opt. Commun. 413, 184–189 (2018).
[Crossref]

Yu, L.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transission pf planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Yu, P.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, L. Deng, and J. Tian, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
[Crossref] [PubMed]

Yu, S. W.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Yu, X.

X. Gao, W. Yang, W. Cao, M. Chen, Y. Jiang, X. Yu, and H. Li, “Bandwidth broadening of a graphene-based circular polarization converter by phase compensation,” Opt. Express 25(20), 23945–23954 (2017).
[Crossref] [PubMed]

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Yuan, X. H.

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. A. Duan, and X. H. Yuan, “Circular polarization converters based on bi-layered asymmetrical split ring metamaterials,” Appl. Phys., A Mater. Sci. Process. 116(2), 643–648 (2014).
[Crossref]

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. A. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular pol arization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Yuk, T. I.

H. L. Zhu, S. W. Cheung, K. L. Chung, and T. I. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antenn. Propag. 61(9), 4615–4623 (2013).
[Crossref]

Zeng, X. P.

Zhang, A.

H. Chen, J. F. Wang, H. Ma, S. B. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Zhang, A. X.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, L. Zheng, Y. Q. Pang, Z. Xu, and A. X. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bilayered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

Zhang, H.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
[Crossref] [PubMed]

Zhang, H.-W.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D Appl. Phys. 45(23), 235106 (2012).
[Crossref]

Zhang, J.

L. Wang, J. Zhang, N. Liu, Y. Wang, P. A. Hu, and Z. Wang, “Fast patterned graphene ribbons via soft lithography,” Procedia CIRP 42, 428–432 (2016).
[Crossref]

Zhang, J. Q.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, L. Zheng, Y. Q. Pang, Z. Xu, and A. X. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bilayered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

Zhang, L.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

N.-H. Shen, M. Kafesaki, T. Koschny, L. Zhang, E. N. Economou, and C. M. Soukoulis, “Broadband blueshift tunable metamaterials and dual-band switches,” Phys. Rev. B 79(16), 161102 (2009).
[Crossref]

Zhang, P.-X.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D Appl. Phys. 45(23), 235106 (2012).
[Crossref]

Zhang, S.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–948 (2012).
[Crossref] [PubMed]

Zhang, X.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–948 (2012).
[Crossref] [PubMed]

Zhang, Y.

Zhao, D.

M. Chen, L. Chang, X. Gao, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband Tunable Cross Polarization Converter Based on a Graphene Metasurface With a Hollow-Carved “H” Array,” IEEE Photonics J. 9(5), 1–11 (2017).

Zhao, J.

J. Zhao, Y. Cheng, and Z. Cheng, “Design of a Photo-Excited Switchable Broadband Reflective Linear Polarization Conversion Metasurface for Terahertz Waves,” IEEE Photonics J. 10(1), 1–10 (2018).

Y. Cheng, R. Gong, and J. Zhao, “A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves,” Opt. Mater. 62, 28–33 (2016).
[Crossref]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
[Crossref] [PubMed]

Zhao, M.

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. A. Duan, and X. H. Yuan, “Circular polarization converters based on bi-layered asymmetrical split ring metamaterials,” Appl. Phys., A Mater. Sci. Process. 116(2), 643–648 (2014).
[Crossref]

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. A. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular pol arization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Zhao, X.

Z. Su, J. Yin, and X. Zhao, “Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures,” Opt. Express 23(2), 1679–1690 (2015).
[Crossref] [PubMed]

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

Zheng, L.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, L. Zheng, Y. Q. Pang, Z. Xu, and A. X. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bilayered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

Zheng, X.

X. Zheng, Z. Xiao, and X. Ling, “A Tunable Hybrid Metamaterial Reflective Polarization Converter Based on Vanadium Oxide Film,” Plasmonics 13(1), 287–291 (2018).
[Crossref]

Zheng, Y.

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. A. Duan, and X. H. Yuan, “Circular polarization converters based on bi-layered asymmetrical split ring metamaterials,” Appl. Phys., A Mater. Sci. Process. 116(2), 643–648 (2014).
[Crossref]

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. A. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular pol arization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Zhou, J.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–948 (2012).
[Crossref] [PubMed]

Zhou, M.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
[Crossref] [PubMed]

Zhu, B.

Zhu, H. L.

H. L. Zhu, S. W. Cheung, K. L. Chung, and T. I. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antenn. Propag. 61(9), 4615–4623 (2013).
[Crossref]

Zhu, J.

J. Zhu, Y. Yang, and S. Li, “A photo-excited broadband to dual-band tunable terahertz prefect metamaterial polarization converter,” Opt. Commun. 413, 336–340 (2018).
[Crossref]

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref] [PubMed]

Zhu, Z.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Zuo, D.

S. Luo, B. Li, A. Yu, J. Gao, X. Wang, and D. Zuo, “Broadband tunable terahertz polarization converter based on graphene metamaterial,” Opt. Commun. 413, 184–189 (2018).
[Crossref]

Appl. Phys. Lett. (6)

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. A. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular pol arization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

E. Carrasco, M. Tamagnone, and C. J. Perruisseau, “Tunable graphene reflective cells for THz reflectarrays and generalized law of reflection,” Appl. Phys. Lett. 102(10), 104103 (2013).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. A. Duan, and X. H. Yuan, “Circular polarization converters based on bi-layered asymmetrical split ring metamaterials,” Appl. Phys., A Mater. Sci. Process. 116(2), 643–648 (2014).
[Crossref]

Carbon (1)

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transission pf planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

IEEE Photonics J. (2)

J. Zhao, Y. Cheng, and Z. Cheng, “Design of a Photo-Excited Switchable Broadband Reflective Linear Polarization Conversion Metasurface for Terahertz Waves,” IEEE Photonics J. 10(1), 1–10 (2018).

M. Chen, L. Chang, X. Gao, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband Tunable Cross Polarization Converter Based on a Graphene Metasurface With a Hollow-Carved “H” Array,” IEEE Photonics J. 9(5), 1–11 (2017).

IEEE Photonics Technol. Lett. (1)

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

H. L. Zhu, S. W. Cheung, K. L. Chung, and T. I. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antenn. Propag. 61(9), 4615–4623 (2013).
[Crossref]

J. Appl. Phys. (4)

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, L. Zheng, Y. Q. Pang, Z. Xu, and A. X. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bilayered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

H. Chen, J. F. Wang, H. Ma, S. B. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Y. V. Bludov, M. I. Vasilevskiy, and N. M. R. Peres, “Tunable graphene-based polarizer,” J. Appl. Phys. 112(8), 084320 (2012).
[Crossref]

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Phys. Condens. Matter (1)

N. M. R. Peres, A. Ferreira, Y. V. Bludov, and M. I. Vasilevskiy, “Light scattering by a medium with a spatially modulated optical conductivity: the case of graphene,” J. Phys. Condens. Matter 24(24), 245303 (2012).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (2)

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, and P.-X. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D Appl. Phys. 45(23), 235106 (2012).
[Crossref]

Nanotechnology (1)

G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21(17), 175201 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–948 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Opt. Commun. (2)

S. Luo, B. Li, A. Yu, J. Gao, X. Wang, and D. Zuo, “Broadband tunable terahertz polarization converter based on graphene metamaterial,” Opt. Commun. 413, 184–189 (2018).
[Crossref]

J. Zhu, Y. Yang, and S. Li, “A photo-excited broadband to dual-band tunable terahertz prefect metamaterial polarization converter,” Opt. Commun. 413, 336–340 (2018).
[Crossref]

Opt. Express (10)

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref] [PubMed]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

B. Z. Xu, C. Q. Gu, Z. Li, and Z. Y. Niu, “A novel structure for tunable terahertz absorber based on graphene,” Opt. Express 21(20), 23803–23811 (2013).
[Crossref] [PubMed]

Z. Su, J. Yin, and X. Zhao, “Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures,” Opt. Express 23(2), 1679–1690 (2015).
[Crossref] [PubMed]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
[Crossref] [PubMed]

A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
[Crossref] [PubMed]

H. Xiong, Y. B. Wu, J. Dong, M. C. Tang, Y. N. Jiang, and X. P. Zeng, “Ultra-thin and broadband tunable metamaterial graphene absorber,” Opt. Express 26(2), 1681–1688 (2018).
[Crossref] [PubMed]

X. Gao, W. Yang, W. Cao, M. Chen, Y. Jiang, X. Yu, and H. Li, “Bandwidth broadening of a graphene-based circular polarization converter by phase compensation,” Opt. Express 25(20), 23945–23954 (2017).
[Crossref] [PubMed]

C. Yang, Y. Luo, J. Guo, Y. Pu, D. He, Y. Jiang, J. Xu, and Z. Liu, “Wideband tunable mid-infrared cross polarization converter using rectangle-shape perforated graphene,” Opt. Express 24(15), 16913–16922 (2016).
[Crossref] [PubMed]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. (1)

Y. Cheng, R. Gong, and J. Zhao, “A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves,” Opt. Mater. 62, 28–33 (2016).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. B (1)

N.-H. Shen, M. Kafesaki, T. Koschny, L. Zhang, E. N. Economou, and C. M. Soukoulis, “Broadband blueshift tunable metamaterials and dual-band switches,” Phys. Rev. B 79(16), 161102 (2009).
[Crossref]

Phys. Rev. Lett. (1)

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Plasmonics (2)

X. Zheng, Z. Xiao, and X. Ling, “A Tunable Hybrid Metamaterial Reflective Polarization Converter Based on Vanadium Oxide Film,” Plasmonics 13(1), 287–291 (2018).
[Crossref]

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

Procedia CIRP (1)

L. Wang, J. Zhang, N. Liu, Y. Wang, P. A. Hu, and Z. Wang, “Fast patterned graphene ribbons via soft lithography,” Procedia CIRP 42, 428–432 (2016).
[Crossref]

Sci. Rep. (2)

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene plasmonic metasurfaces to steer infrared light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Science (1)

A. K. Geim, “Graphene: Status and prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

Other (2)

Z. Xiao, H. Zou, X. Zheng, X. Ling, and L. Wang, “A tunable reflective polarization converter based on hybrid metamaterial, ” Opt. Quant. Electron. 49, 12 (2017).
[Crossref]

M. Born and E. Wolf, Principles of Optics. Cambridge, U.K.: Cambridge Univ. Press, (1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Unit cell of the proposed CPC. (b) Configurations of the proposed polarization converter, where θ is the incident angle, φ is azimuth angle.
Fig. 2
Fig. 2 The magnitudes of the reflectance and the PCR of the proposed CPC.
Fig. 3
Fig. 3 The magnitude of electric field distributions at 0.6, 1.45 and 2.0-THz.
Fig. 4
Fig. 4 Surface current distributions at 1.45 THz at the top (a1), bottom layer (a2) and the induced magnetic field distributions at the bottom layer (a3). Surface current distributions at 2.0 THz at the top (b1), bottom layer (b2) and the induced magnetic field distributions at the bottom layer (b3).
Fig. 5
Fig. 5 Simulated results of reflectance for the two orthogonal eigen modes with the incident polarization of 45° (Raa) and −45° (Rbb) clockwise from the x-axis direction and the reflected phase difference of them.
Fig. 6
Fig. 6 (a) PCR spectrum of the proposed CPC as a function of the operating frequency and incident angle with μc = 0.4 eV and τ = 1 ps. (b) PCR spectrum of the proposed CPC as a function of the operating frequency and thickness of the dielectric layer with μc = 0.4 eV and τ = 1 ps.
Fig. 7
Fig. 7 (a) Simulated PCRs of the proposed CPC for different Fermi energies of graphene. (b) Simulated PCRs of the proposed CPC for different electron scattering times of graphene.

Tables (1)

Tables Icon

Table 1 Comparisons of the proposed polarization converter with other tunable polarization converters

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

 sinusoidal curve 1:y'= A 1 cos(px')+ B 1
 sinusoidal curve 2:y'= A 2 cos(px')+ B 2
σ intra (ω, μ c ,Γ,T)=j e 2 k B T π 2 (ωj2Γ) ( μ c k B T +2ln( e μ c k B T +1)).
R=( R xx R xy R yx R yy )
PCR=( | R yx | 2 | R xx | 2 +| R yx | 2 )

Metrics