Abstract

We present a femtosecond regenerative Yb:YGAG (Y3Ga2Al3O12) ceramic slab amplifier delivering 405 fs pulses at a wavelength of 1030 nm with a bandwidth limit of 306 fs, 1.1 W of average power, 8 μJ of pulse energy, and a repetition rate of 100 kHz. The amplifier is seeded by 9 pJ pulses generated by a Yb-doped fiber ring oscillator with extra-cavity spectral shaping to minimize gain narrowing. The net-gain of the pulses is 60 dB, the spectral bandwidth is 4.1 nm (FWHM), and the M2 beam quality factor is < 1.2. Due to similar optical and thermo-mechanical properties to Yb:YAG, the Yb:YGAG gain medium is a promising alternative for upgrading the existing Yb:YAG picosecond disk amplifiers to the femtosecond regime.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sub-picosecond regenerative amplifier of Yb-doped Y2O3 ceramic thin disk

Momoko Maruyama, Hajime Okada, Yoshihiro Ochi, and Keisuke Nagashima
Opt. Express 24(2) 1685-1692 (2016)

Spectroscopic and lasing characteristics of Yb:YGAG ceramic at cryogenic temperatures

Venkatesan Jambunathan, Lucie Horackova, Taisuke Miura, Jan Sulc, Helena Jelínková, Akira Endo, Antonio Lucianetti, and Tomas Mocek
Opt. Mater. Express 5(6) 1289-1295 (2015)

Cryogenically-cooled Yb:YGAG ceramic mode-locked laser

J. Mužík, M. Jelínek, V. Jambunathan, T. Miura, M. Smrž, A. Endo, T. Mocek, and V. Kubeček
Opt. Express 24(2) 1402-1408 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Delaigue, S. Ricaud, C. Hönninger, and E. Mottay, “1.2-ps CPA system using an Yb:YAG thin disk regenerative amplifier,” 2011 Conf. Lasers Electro-Optics Eur. 12th Eur. Quantum Electron. Conf. CLEO Eur. 2011 426, 33600 (2011).
    [Crossref]
  2. Y. Ochi, K. Nagashima, M. Maruyama, M. Tsubouchi, F. Yoshida, N. Kohno, M. Mori, and A. Sugiyama, “Yb:YAG thin-disk chirped pulse amplification laser system for intense terahertz pulse generation,” Opt. Express 23(11), 15057–15064 (2015).
    [Crossref] [PubMed]
  3. S. Klingebiel, C. Wandt, C. Skrobol, I. Ahmad, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, “High energy picosecond Yb : YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers,” 19, 421–427 (2011).
  4. M. Schultze, C. Wandt, S. Klingebiel, C. Y. Teisset, M. Häfner, R. Bessing, T. Herzig, S. Prinz, S. Stark, K. Michel, and T. Metzger, “Toward Kilowatt-Level Ultrafast Regenerative Thin-Disk Amplifiers,” in (2016), Vol. 2016, pp. 4–6.
    [Crossref]
  5. T. Nubbemeyer, M. Kaumanns, M. Ueffing, M. Gorjan, A. Alismail, H. Fattahi, J. Brons, O. Pronin, H. G. Barros, Z. Major, T. Metzger, D. Sutter, and F. Krausz, “1 kW, 200 mJ picosecond thin-disk laser system,” Opt. Lett. 42(7), 1381–1384 (2017).
    [Crossref] [PubMed]
  6. M. Smrž, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. S. Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in High-Power, Ultrashort Pulse DPSSL Technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
    [Crossref]
  7. J. Pouysegur, M. Delaigue, C. Hoenninger, Y. Zaouter, P. Georges, F. Druon, and E. Mottay, “Numerical and experimental analysis of nonlinear regenerative amplifiers overcoming the gain bandwidth limitation,” IEEE J. Sel. Top. Quantum Electron. 21, 1 (2014).
  8. B. M. Walsh, N. P. Barnes, R. L. Hutcheson, R. W. Equall, and B. Di Bartolo, “Spectroscopy and lasing characteristics of Nd-doped Y_3Ga_xAl_(5 x)O_12 materials: application toward a compositionally tuned 0.94-μm laser,” J. Opt. Soc. Am. B 15(11), 2794 (1998).
    [Crossref]
  9. J. Mužík, M. Jelínek, V. Jambunathan, T. Miura, M. Smrž, A. Endo, T. Mocek, and V. Kubeček, “Cryogenically-cooled Yb:YGAG ceramic mode-locked laser,” Opt. Express 24(2), 1402–1408 (2016).
    [Crossref] [PubMed]
  10. J. Šulc, H. Jelínková, V. Jambunathan, T. Miura, A. Endo, A. Lucianetti, and T. Mocek, “Wavelength tunability of laser based on Yb-doped YGAG ceramics,” Proc. SPIE 9342, Solid State Lasers XXIV Technol. Devices 9342, 93421T (2015).
  11. V. Jambunathan, L. Horackova, T. Miura, J. Sulc, H. Jelínková, A. Endo, A. Lucianetti, and T. Mocek, “Spectroscopic and lasing characteristics of Yb:YGAG ceramic at cryogenic temperatures,” Opt. Mater. Express 5(6), 1289 (2015).
    [Crossref]
  12. C-Therm Technologies Ltd, “Thermal Conductivity Instruments - C-Therm - Thermal Conductivity Instruments,” http://www.ctherm.com/products/tci_thermal_conductivity/ .
  13. Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater. (Amst) 31(5), 720–724 (2009).
    [Crossref]
  14. V. Cardinali, “Matériaux lasers dopés à l ’ ion ytterbium : Performances lasers en pompage par diodes lasers et étude des propriétés thermo-optiques à des températures cryogéniques,” Ecole Polytechnique ParisTech (2011).
  15. J. Sarthou, J.-Y. Duquesne, L. Becerra, P. Gredin, and M. Mortier, “Thermal conductivity measurements of Yb:CaF 2 transparent ceramics using the 3 ω method,” J. Appl. Phys. 121(24), 245108 (2017).
    [Crossref]
  16. P. A. Popov, P. P. Fedorov, and V. V. Osiko, “Thermal conductivity of single crystals of the Ca1 − x Y x F2 + x solid solution,” Dokl. Phys. 59(5), 199–202 (2014).
    [Crossref]
  17. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
    [Crossref]
  18. E. B. Treacy, “Optical Pulse Compression With Diffraction Gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
    [Crossref]

2017 (3)

T. Nubbemeyer, M. Kaumanns, M. Ueffing, M. Gorjan, A. Alismail, H. Fattahi, J. Brons, O. Pronin, H. G. Barros, Z. Major, T. Metzger, D. Sutter, and F. Krausz, “1 kW, 200 mJ picosecond thin-disk laser system,” Opt. Lett. 42(7), 1381–1384 (2017).
[Crossref] [PubMed]

M. Smrž, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. S. Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in High-Power, Ultrashort Pulse DPSSL Technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

J. Sarthou, J.-Y. Duquesne, L. Becerra, P. Gredin, and M. Mortier, “Thermal conductivity measurements of Yb:CaF 2 transparent ceramics using the 3 ω method,” J. Appl. Phys. 121(24), 245108 (2017).
[Crossref]

2016 (1)

2015 (3)

2014 (2)

P. A. Popov, P. P. Fedorov, and V. V. Osiko, “Thermal conductivity of single crystals of the Ca1 − x Y x F2 + x solid solution,” Dokl. Phys. 59(5), 199–202 (2014).
[Crossref]

J. Pouysegur, M. Delaigue, C. Hoenninger, Y. Zaouter, P. Georges, F. Druon, and E. Mottay, “Numerical and experimental analysis of nonlinear regenerative amplifiers overcoming the gain bandwidth limitation,” IEEE J. Sel. Top. Quantum Electron. 21, 1 (2014).

2009 (1)

Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater. (Amst) 31(5), 720–724 (2009).
[Crossref]

2005 (1)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

1998 (1)

1969 (1)

E. B. Treacy, “Optical Pulse Compression With Diffraction Gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

Aggarwal, R. L.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Ahmad, I.

S. Klingebiel, C. Wandt, C. Skrobol, I. Ahmad, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, “High energy picosecond Yb : YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers,” 19, 421–427 (2011).

Akiyama, J.

Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater. (Amst) 31(5), 720–724 (2009).
[Crossref]

Alismail, A.

Barnes, N. P.

Barros, H. G.

Becerra, L.

J. Sarthou, J.-Y. Duquesne, L. Becerra, P. Gredin, and M. Mortier, “Thermal conductivity measurements of Yb:CaF 2 transparent ceramics using the 3 ω method,” J. Appl. Phys. 121(24), 245108 (2017).
[Crossref]

Brons, J.

Cernohorská, J.

M. Smrž, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. S. Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in High-Power, Ultrashort Pulse DPSSL Technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

Chen, L.

M. Smrž, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. S. Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in High-Power, Ultrashort Pulse DPSSL Technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

Chyla, M.

M. Smrž, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. S. Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in High-Power, Ultrashort Pulse DPSSL Technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

Delaigue, M.

J. Pouysegur, M. Delaigue, C. Hoenninger, Y. Zaouter, P. Georges, F. Druon, and E. Mottay, “Numerical and experimental analysis of nonlinear regenerative amplifiers overcoming the gain bandwidth limitation,” IEEE J. Sel. Top. Quantum Electron. 21, 1 (2014).

Di Bartolo, B.

Druon, F.

J. Pouysegur, M. Delaigue, C. Hoenninger, Y. Zaouter, P. Georges, F. Druon, and E. Mottay, “Numerical and experimental analysis of nonlinear regenerative amplifiers overcoming the gain bandwidth limitation,” IEEE J. Sel. Top. Quantum Electron. 21, 1 (2014).

Duquesne, J.-Y.

J. Sarthou, J.-Y. Duquesne, L. Becerra, P. Gredin, and M. Mortier, “Thermal conductivity measurements of Yb:CaF 2 transparent ceramics using the 3 ω method,” J. Appl. Phys. 121(24), 245108 (2017).
[Crossref]

Endo, A.

M. Smrž, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. S. Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in High-Power, Ultrashort Pulse DPSSL Technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

J. Mužík, M. Jelínek, V. Jambunathan, T. Miura, M. Smrž, A. Endo, T. Mocek, and V. Kubeček, “Cryogenically-cooled Yb:YGAG ceramic mode-locked laser,” Opt. Express 24(2), 1402–1408 (2016).
[Crossref] [PubMed]

J. Šulc, H. Jelínková, V. Jambunathan, T. Miura, A. Endo, A. Lucianetti, and T. Mocek, “Wavelength tunability of laser based on Yb-doped YGAG ceramics,” Proc. SPIE 9342, Solid State Lasers XXIV Technol. Devices 9342, 93421T (2015).

V. Jambunathan, L. Horackova, T. Miura, J. Sulc, H. Jelínková, A. Endo, A. Lucianetti, and T. Mocek, “Spectroscopic and lasing characteristics of Yb:YGAG ceramic at cryogenic temperatures,” Opt. Mater. Express 5(6), 1289 (2015).
[Crossref]

Equall, R. W.

Fan, T. Y.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Fattahi, H.

Fedorov, P. P.

P. A. Popov, P. P. Fedorov, and V. V. Osiko, “Thermal conductivity of single crystals of the Ca1 − x Y x F2 + x solid solution,” Dokl. Phys. 59(5), 199–202 (2014).
[Crossref]

Georges, P.

J. Pouysegur, M. Delaigue, C. Hoenninger, Y. Zaouter, P. Georges, F. Druon, and E. Mottay, “Numerical and experimental analysis of nonlinear regenerative amplifiers overcoming the gain bandwidth limitation,” IEEE J. Sel. Top. Quantum Electron. 21, 1 (2014).

Gorjan, M.

Gredin, P.

J. Sarthou, J.-Y. Duquesne, L. Becerra, P. Gredin, and M. Mortier, “Thermal conductivity measurements of Yb:CaF 2 transparent ceramics using the 3 ω method,” J. Appl. Phys. 121(24), 245108 (2017).
[Crossref]

Hoenninger, C.

J. Pouysegur, M. Delaigue, C. Hoenninger, Y. Zaouter, P. Georges, F. Druon, and E. Mottay, “Numerical and experimental analysis of nonlinear regenerative amplifiers overcoming the gain bandwidth limitation,” IEEE J. Sel. Top. Quantum Electron. 21, 1 (2014).

Horackova, L.

Hutcheson, R. L.

Huynh, J.

M. Smrž, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. S. Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in High-Power, Ultrashort Pulse DPSSL Technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

Jambunathan, V.

Jelínek, M.

Jelínková, H.

V. Jambunathan, L. Horackova, T. Miura, J. Sulc, H. Jelínková, A. Endo, A. Lucianetti, and T. Mocek, “Spectroscopic and lasing characteristics of Yb:YGAG ceramic at cryogenic temperatures,” Opt. Mater. Express 5(6), 1289 (2015).
[Crossref]

J. Šulc, H. Jelínková, V. Jambunathan, T. Miura, A. Endo, A. Lucianetti, and T. Mocek, “Wavelength tunability of laser based on Yb-doped YGAG ceramics,” Proc. SPIE 9342, Solid State Lasers XXIV Technol. Devices 9342, 93421T (2015).

Karsch, S.

S. Klingebiel, C. Wandt, C. Skrobol, I. Ahmad, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, “High energy picosecond Yb : YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers,” 19, 421–427 (2011).

Kaumanns, M.

Klingebiel, S.

S. Klingebiel, C. Wandt, C. Skrobol, I. Ahmad, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, “High energy picosecond Yb : YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers,” 19, 421–427 (2011).

Kohno, N.

Krausz, F.

T. Nubbemeyer, M. Kaumanns, M. Ueffing, M. Gorjan, A. Alismail, H. Fattahi, J. Brons, O. Pronin, H. G. Barros, Z. Major, T. Metzger, D. Sutter, and F. Krausz, “1 kW, 200 mJ picosecond thin-disk laser system,” Opt. Lett. 42(7), 1381–1384 (2017).
[Crossref] [PubMed]

S. Klingebiel, C. Wandt, C. Skrobol, I. Ahmad, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, “High energy picosecond Yb : YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers,” 19, 421–427 (2011).

Kubecek, V.

Lucianetti, A.

V. Jambunathan, L. Horackova, T. Miura, J. Sulc, H. Jelínková, A. Endo, A. Lucianetti, and T. Mocek, “Spectroscopic and lasing characteristics of Yb:YGAG ceramic at cryogenic temperatures,” Opt. Mater. Express 5(6), 1289 (2015).
[Crossref]

J. Šulc, H. Jelínková, V. Jambunathan, T. Miura, A. Endo, A. Lucianetti, and T. Mocek, “Wavelength tunability of laser based on Yb-doped YGAG ceramics,” Proc. SPIE 9342, Solid State Lasers XXIV Technol. Devices 9342, 93421T (2015).

Major, Z.

T. Nubbemeyer, M. Kaumanns, M. Ueffing, M. Gorjan, A. Alismail, H. Fattahi, J. Brons, O. Pronin, H. G. Barros, Z. Major, T. Metzger, D. Sutter, and F. Krausz, “1 kW, 200 mJ picosecond thin-disk laser system,” Opt. Lett. 42(7), 1381–1384 (2017).
[Crossref] [PubMed]

S. Klingebiel, C. Wandt, C. Skrobol, I. Ahmad, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, “High energy picosecond Yb : YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers,” 19, 421–427 (2011).

Maruyama, M.

Metzger, T.

Miura, T.

M. Smrž, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. S. Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in High-Power, Ultrashort Pulse DPSSL Technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

J. Mužík, M. Jelínek, V. Jambunathan, T. Miura, M. Smrž, A. Endo, T. Mocek, and V. Kubeček, “Cryogenically-cooled Yb:YGAG ceramic mode-locked laser,” Opt. Express 24(2), 1402–1408 (2016).
[Crossref] [PubMed]

J. Šulc, H. Jelínková, V. Jambunathan, T. Miura, A. Endo, A. Lucianetti, and T. Mocek, “Wavelength tunability of laser based on Yb-doped YGAG ceramics,” Proc. SPIE 9342, Solid State Lasers XXIV Technol. Devices 9342, 93421T (2015).

V. Jambunathan, L. Horackova, T. Miura, J. Sulc, H. Jelínková, A. Endo, A. Lucianetti, and T. Mocek, “Spectroscopic and lasing characteristics of Yb:YGAG ceramic at cryogenic temperatures,” Opt. Mater. Express 5(6), 1289 (2015).
[Crossref]

Mocek, T.

M. Smrž, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. S. Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in High-Power, Ultrashort Pulse DPSSL Technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

J. Mužík, M. Jelínek, V. Jambunathan, T. Miura, M. Smrž, A. Endo, T. Mocek, and V. Kubeček, “Cryogenically-cooled Yb:YGAG ceramic mode-locked laser,” Opt. Express 24(2), 1402–1408 (2016).
[Crossref] [PubMed]

V. Jambunathan, L. Horackova, T. Miura, J. Sulc, H. Jelínková, A. Endo, A. Lucianetti, and T. Mocek, “Spectroscopic and lasing characteristics of Yb:YGAG ceramic at cryogenic temperatures,” Opt. Mater. Express 5(6), 1289 (2015).
[Crossref]

J. Šulc, H. Jelínková, V. Jambunathan, T. Miura, A. Endo, A. Lucianetti, and T. Mocek, “Wavelength tunability of laser based on Yb-doped YGAG ceramics,” Proc. SPIE 9342, Solid State Lasers XXIV Technol. Devices 9342, 93421T (2015).

Mori, M.

Mortier, M.

J. Sarthou, J.-Y. Duquesne, L. Becerra, P. Gredin, and M. Mortier, “Thermal conductivity measurements of Yb:CaF 2 transparent ceramics using the 3 ω method,” J. Appl. Phys. 121(24), 245108 (2017).
[Crossref]

Mottay, E.

J. Pouysegur, M. Delaigue, C. Hoenninger, Y. Zaouter, P. Georges, F. Druon, and E. Mottay, “Numerical and experimental analysis of nonlinear regenerative amplifiers overcoming the gain bandwidth limitation,” IEEE J. Sel. Top. Quantum Electron. 21, 1 (2014).

Mužík, J.

M. Smrž, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. S. Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in High-Power, Ultrashort Pulse DPSSL Technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

J. Mužík, M. Jelínek, V. Jambunathan, T. Miura, M. Smrž, A. Endo, T. Mocek, and V. Kubeček, “Cryogenically-cooled Yb:YGAG ceramic mode-locked laser,” Opt. Express 24(2), 1402–1408 (2016).
[Crossref] [PubMed]

Nagashima, K.

Nagisetty, S. S.

M. Smrž, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. S. Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in High-Power, Ultrashort Pulse DPSSL Technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

Novák, O.

M. Smrž, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. S. Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in High-Power, Ultrashort Pulse DPSSL Technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

Nubbemeyer, T.

Ochi, Y.

Ochoa, J. R.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Osiko, V. V.

P. A. Popov, P. P. Fedorov, and V. V. Osiko, “Thermal conductivity of single crystals of the Ca1 − x Y x F2 + x solid solution,” Dokl. Phys. 59(5), 199–202 (2014).
[Crossref]

Popov, P. A.

P. A. Popov, P. P. Fedorov, and V. V. Osiko, “Thermal conductivity of single crystals of the Ca1 − x Y x F2 + x solid solution,” Dokl. Phys. 59(5), 199–202 (2014).
[Crossref]

Pouysegur, J.

J. Pouysegur, M. Delaigue, C. Hoenninger, Y. Zaouter, P. Georges, F. Druon, and E. Mottay, “Numerical and experimental analysis of nonlinear regenerative amplifiers overcoming the gain bandwidth limitation,” IEEE J. Sel. Top. Quantum Electron. 21, 1 (2014).

Pranovich, A.

M. Smrž, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. S. Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in High-Power, Ultrashort Pulse DPSSL Technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

Pronin, O.

Ripin, D. J.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Roškot, L.

M. Smrž, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. S. Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in High-Power, Ultrashort Pulse DPSSL Technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

Sarthou, J.

J. Sarthou, J.-Y. Duquesne, L. Becerra, P. Gredin, and M. Mortier, “Thermal conductivity measurements of Yb:CaF 2 transparent ceramics using the 3 ω method,” J. Appl. Phys. 121(24), 245108 (2017).
[Crossref]

Sato, Y.

Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater. (Amst) 31(5), 720–724 (2009).
[Crossref]

Severová, P.

M. Smrž, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. S. Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in High-Power, Ultrashort Pulse DPSSL Technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

Sikocinski, P.

M. Smrž, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. S. Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in High-Power, Ultrashort Pulse DPSSL Technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

Skrobol, C.

S. Klingebiel, C. Wandt, C. Skrobol, I. Ahmad, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, “High energy picosecond Yb : YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers,” 19, 421–427 (2011).

Smrž, M.

M. Smrž, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. S. Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in High-Power, Ultrashort Pulse DPSSL Technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

J. Mužík, M. Jelínek, V. Jambunathan, T. Miura, M. Smrž, A. Endo, T. Mocek, and V. Kubeček, “Cryogenically-cooled Yb:YGAG ceramic mode-locked laser,” Opt. Express 24(2), 1402–1408 (2016).
[Crossref] [PubMed]

Sugiyama, A.

Sulc, J.

Šulc, J.

J. Šulc, H. Jelínková, V. Jambunathan, T. Miura, A. Endo, A. Lucianetti, and T. Mocek, “Wavelength tunability of laser based on Yb-doped YGAG ceramics,” Proc. SPIE 9342, Solid State Lasers XXIV Technol. Devices 9342, 93421T (2015).

Sutter, D.

Taira, T.

Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater. (Amst) 31(5), 720–724 (2009).
[Crossref]

Treacy, E. B.

E. B. Treacy, “Optical Pulse Compression With Diffraction Gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

Trushin, S. A.

S. Klingebiel, C. Wandt, C. Skrobol, I. Ahmad, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, “High energy picosecond Yb : YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers,” 19, 421–427 (2011).

Tsubouchi, M.

Turcicová, H.

M. Smrž, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. S. Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in High-Power, Ultrashort Pulse DPSSL Technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

Ueffing, M.

Vyvlecka, M.

M. Smrž, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. S. Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in High-Power, Ultrashort Pulse DPSSL Technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

Walsh, B. M.

Wandt, C.

S. Klingebiel, C. Wandt, C. Skrobol, I. Ahmad, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, “High energy picosecond Yb : YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers,” 19, 421–427 (2011).

Yoshida, F.

Zaouter, Y.

J. Pouysegur, M. Delaigue, C. Hoenninger, Y. Zaouter, P. Georges, F. Druon, and E. Mottay, “Numerical and experimental analysis of nonlinear regenerative amplifiers overcoming the gain bandwidth limitation,” IEEE J. Sel. Top. Quantum Electron. 21, 1 (2014).

Appl. Sci. (1)

M. Smrž, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. S. Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in High-Power, Ultrashort Pulse DPSSL Technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

Dokl. Phys. (1)

P. A. Popov, P. P. Fedorov, and V. V. Osiko, “Thermal conductivity of single crystals of the Ca1 − x Y x F2 + x solid solution,” Dokl. Phys. 59(5), 199–202 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

E. B. Treacy, “Optical Pulse Compression With Diffraction Gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Pouysegur, M. Delaigue, C. Hoenninger, Y. Zaouter, P. Georges, F. Druon, and E. Mottay, “Numerical and experimental analysis of nonlinear regenerative amplifiers overcoming the gain bandwidth limitation,” IEEE J. Sel. Top. Quantum Electron. 21, 1 (2014).

J. Appl. Phys. (2)

J. Sarthou, J.-Y. Duquesne, L. Becerra, P. Gredin, and M. Mortier, “Thermal conductivity measurements of Yb:CaF 2 transparent ceramics using the 3 ω method,” J. Appl. Phys. 121(24), 245108 (2017).
[Crossref]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (Amst) (1)

Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater. (Amst) 31(5), 720–724 (2009).
[Crossref]

Opt. Mater. Express (1)

Proc. SPIE 9342, Solid State Lasers XXIV Technol. Devices (1)

J. Šulc, H. Jelínková, V. Jambunathan, T. Miura, A. Endo, A. Lucianetti, and T. Mocek, “Wavelength tunability of laser based on Yb-doped YGAG ceramics,” Proc. SPIE 9342, Solid State Lasers XXIV Technol. Devices 9342, 93421T (2015).

Other (5)

M. Delaigue, S. Ricaud, C. Hönninger, and E. Mottay, “1.2-ps CPA system using an Yb:YAG thin disk regenerative amplifier,” 2011 Conf. Lasers Electro-Optics Eur. 12th Eur. Quantum Electron. Conf. CLEO Eur. 2011 426, 33600 (2011).
[Crossref]

S. Klingebiel, C. Wandt, C. Skrobol, I. Ahmad, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, “High energy picosecond Yb : YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers,” 19, 421–427 (2011).

M. Schultze, C. Wandt, S. Klingebiel, C. Y. Teisset, M. Häfner, R. Bessing, T. Herzig, S. Prinz, S. Stark, K. Michel, and T. Metzger, “Toward Kilowatt-Level Ultrafast Regenerative Thin-Disk Amplifiers,” in (2016), Vol. 2016, pp. 4–6.
[Crossref]

C-Therm Technologies Ltd, “Thermal Conductivity Instruments - C-Therm - Thermal Conductivity Instruments,” http://www.ctherm.com/products/tci_thermal_conductivity/ .

V. Cardinali, “Matériaux lasers dopés à l ’ ion ytterbium : Performances lasers en pompage par diodes lasers et étude des propriétés thermo-optiques à des températures cryogéniques,” Ecole Polytechnique ParisTech (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Calculated thermal lens focal length as a function of the absorbed pump power. Inset: Calculated OPD and temperature distribution (1-a) and measured thermography image (1-b) of the Yb:YGAG ceramic slab for maximum pump power.

Fig. 2
Fig. 2

(a) Schematic layout of the Yb:YGAG ceramic slab regenerative amplifier. PC: Polarization controller, BFF: Birefringent filter, PBS: Polarization beam splitter, FAR: Faraday rotator, HWP: Half-wave plate, TFP: Thin-film polarizer, QWP: Quarter-wave plate, BBO: BBO Pockels cell, DM: Dichroic mirror, ADL: Achromatic doublet lenses, HR: High reflective mirror, X-TAL: Yb:YGAG slab. (b) Calculated mode diameter inside regenerative cavity for maximum pump power. PCV: Plano-concave mirror.

Fig. 3
Fig. 3

Optical spectrum of output pulses at maximum pump power for seed spectrum modified by a birefringent filter in two different ways. Inset: Input seed spectrum without birefringent filter (black line) and with birefringent filter (red line).

Fig. 4
Fig. 4

(a) Uncompressed output power in CW and pulsed operation as a function of the absorbed pump power. (b) Output pulse energy as a function of the number of roundtrips for input seed pulse energy of 9 pJ.

Fig. 5
Fig. 5

Beam quality M2 measurement and near-field (upper left inset) and far-field (upper right inset) beam profile at maximum output power.

Fig. 6
Fig. 6

SHG autocorrelation traces of the optical pulses at the maximum power in experiments with and without the birefringent filter.

Tables (1)

Tables Icon

Table 1 Thermo-mechanical properties of Yb:YGAG ceramics