Abstract

With the recent successes of neural networks (NN) to perform machine-learning tasks, photonic-based NN designs may enable high throughput and low power neuromorphic compute paradigms since they bypass the parasitic charging of capacitive wires. Thus, engineering data-information processors capable of executing NN algorithms with high efficiency is of major importance for applications ranging from pattern recognition to classification. Our hypothesis is, therefore, that if the time-limiting electro-optic conversion of current photonic NN designs could be postponed until the very end of the network, then the execution time of the photonic algorithm is simple the delay of the time-of-flight of photons through the NN, which is on the order of picoseconds for integrated photonics. Exploring such all-optical NN, in this work we discuss two independent approaches for implementing the optical perceptron’s nonlinear activation function based on nanophotonic structures exhibiting i) induced transparency and ii) reverse saturated absorption. Our results show that the all-optical nonlinearity provides about 3 and 7 dB extinction ratios for the two systems considered, respectively, and classification accuracies of an exemplary MNIST task of 97% and near 100% are found, which rivals that of software based trained NNs, yet with ignored noise in the network. Together with a developed concept for an all-optical perceptron, these findings point to the possibility of realizing pure photonic NNs with potentially unmatched throughput and even energy consumption for next generation information processing hardware.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Recent progress in semiconductor excitable lasers for photonic spike processing

Paul R. Prucnal, Bhavin J. Shastri, Thomas Ferreira de Lima, Mitchell A. Nahmias, and Alexander N. Tait
Adv. Opt. Photon. 8(2) 228-299 (2016)

Incorporation of liquid-crystal light valve nonlinearities in optical multilayer neural networks

P. D. Moerland, E. Fiesler, and I. Saxena
Appl. Opt. 35(26) 5301-5307 (1996)

Artificial neural networks using complex numbers and phase encoded weights

Howard E. Michel and Abdul Ahad S. Awwal
Appl. Opt. 49(10) B71-B82 (2010)

References

  • View by:
  • |
  • |
  • |

  1. F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip,” IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 34(10), 1537–1557 (2015).
    [Crossref]
  2. J. Hasler and B. Marr, “Finding a roadmap to achieve large neuromorphic hardware systems,” Front. Neurosci. 7, 118 (2013).
    [Crossref] [PubMed]
  3. B. Marr, B. Degnan, P. Hasler, and D. Anderson, “Scaling energy per operation via an asynchronous pipeline,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(1), 147–151 (2013).
    [Crossref]
  4. B. J. Shastri, A. N. Tait, T. F. de Lima, M. A. Nahmias, H.-T. Peng, and P. R. Prucnal, “Principles of Neuromorphic Photonics,” arXiv:1801.00016 [physics] 1–37 (2018).
  5. A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
    [Crossref] [PubMed]
  6. M. A. Nahmias, B. J. Shastri, A. N. Tait, T. F. de Lima, and P. R. Prucnal, “Neuromorphic Photonics,” Optics & Photonics News, OPN 29(1), 34–41 (2018).
    [Crossref]
  7. R. Amin, J. George, J. Khurgin, T. El-Ghazawi, P. R. Prucnal, and V. J. Sorger, “Attojoule Modulators for Photonic Neuromorphic Computing,” in Conference on Lasers and Electro-Optics (2018), Paper ATh1Q.4 (Optical Society of America, 2018), p. ATh1Q.4.
  8. R. Amin, S. Khan, C. J. Lee, H. Dalir, and V. J. Sorger, “110 Attojoule-per-bit Efficient Graphene-based Plasmon Modulator on Silicon,” in Conference on Lasers and Electro-Optics (2018), Paper SM1I.5 (Optical Society of America, 2018), p. SM1I.5.
    [Crossref]
  9. J. George, R. Amin, A. Mehrabian, J. Khurgin, T. El-Ghazawi, P. R. Prucnal, and V. J. Sorger, “Electrooptic Nonlinear Activation Functions for Vector Matrix Multiplications in Optical Neural Networks,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF) (OSA, 2018), p. SpW4G.3.
  10. J. George, A. Mehrabian, R. Amin, J. Meng, T. F. de Lima, A. N. Tait, B. J. Shastri, T. El-Ghazawi, P. R. Prucnal, and V. J. Sorger, “Neuromorphic photonics with electro-absorption modulators,” arXiv:1809.03545 [physics] (2018).
  11. A. Dejonckheere, F. Duport, A. Smerieri, L. Fang, J.-L. Oudar, M. Haelterman, and S. Massar, “All-optical reservoir computer based on saturation of absorption,” Opt. Express 22(9), 10868–10881 (2014).
    [Crossref] [PubMed]
  12. Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
    [Crossref]
  13. Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
    [Crossref]
  14. R. W. Schirmer and A. L. Gaeta, “Nonlinear mirror based on two-photon absorption,” J. Opt. Soc. Am. B, J. Opt. Soc. Am. B 14(11), 2865–2868 (1997).
    [Crossref]
  15. M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
    [Crossref] [PubMed]
  16. F. D. Coarer, M. Sciamanna, A. Katumba, M. Freiberger, J. Dambre, P. Bienstman, and D. Rontani, “All-Optical Reservoir Computing on a Photonic Chip Using Silicon-Based Ring Resonators,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–8 (2018).
    [Crossref]
  17. B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Spike processing with a graphene excitable laser,” Sci. Rep. 6(1), 19126 (2016).
    [Crossref] [PubMed]
  18. H. Leng, B. Szychowski, M.-C. Daniel, and M. Pelton, “Dramatic Modification of Coupled-Plasmon Resonances Following Exposure to Electron Beams,” J. Phys. Chem. Lett. 8(15), 3607–3612 (2017).
    [Crossref] [PubMed]
  19. K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun.  7, 11823 (2016).
  20. A. Hatef, S. M. Sadeghi, and M. R. Singh, “Plasmonic electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 23(6), 065701 (2012).
    [Crossref] [PubMed]
  21. X. Wu, S. K. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express 18(23), 23633–23645 (2010).
    [Crossref] [PubMed]
  22. M. Pelton and G. W. Bryant, Introduction to Metal-Nanoparticle Plasmonics (John Wiley & Sons, 2013).
  23. R. A. Shah, N. F. Scherer, M. Pelton, and S. K. Gray, “Ultrafast reversal of a Fano resonance in a plasmon-exciton system,” Phys. Rev. B Condens. Matter Mater. Phys. 88(7), 075411 (2013).
    [Crossref]
  24. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  25. M. P. Lisitsa, L. F. Gudymenko, V. N. Malinko, and S. F. Terekhova, “Dispersion of the Refractive Indices and Birefringence of CdSxSe1−x Single Crystals,” Phys. Status Solidi, B Basic Res. 31(1), 389–399 (1969).
    [Crossref]
  26. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  27. H. Leng, B. Szychowski, M.-C. Daniel, and M. Pelton, “Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons,” Nat. Commun. 9(1), 4012 (2018).
    [Crossref] [PubMed]
  28. V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Plasmon-Induced Enhancement of Quantum Interference Near Metallic Nanostructures,” Phys. Rev. Lett. 103(6), 063602 (2009).
    [Crossref] [PubMed]
  29. C. Li, L. Zhang, R. Wang, Y. Song, and Y. Wang, “Dynamics of reverse saturable absorption and all-optical switching in C60,” J. Opt. Soc. Am. B 11(8), 1356–1360 (1994).
    [Crossref]
  30. W. Su, T. M. Cooper, and M. C. Brant, “Investigation of reverse-saturable absorption in brominated porphyrins,” Chem. Mater. 10(5), 1212–1213 (1998).
    [Crossref]
  31. J. W. Perry, K. Mansour, S. R. Marder, K. J. Perry, D. Alvarez, and I. Choong, “Enhanced reverse saturable absorption and optical limiting in heavy-atom-substituted phthalocyanines,” Opt. Lett. 19(9), 625–627 (1994).
    [Crossref] [PubMed]
  32. Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
    [Crossref]
  33. S. I. Azzam and A. V. Kildishev, “Full-wave analysis of reverse saturable absorption in time-domain,” arXiv:1808.02436 [physics] (2018).
  34. A. Mehrabian, Y. Al-Kabani, V. J. Sorger, and T. El-Ghazawi, “PCNNA: A Photonic Convolutional Neural Network Accelerator,” arXiv:1807.08792 [cs, eess] (2018).
  35. P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for Activation Functions,” arXiv:1710.05941 [cs] (2017).
  36. B. J. Shastri, P. R. Prucnal, “Principles of Neuromorphic Photonics” Encyclopedia of Complexity and Systems Science (Springer, 2017).
  37. M. A. Nahmias, B. J. Shastri, A. N. Tait, T. Ferreira de Lima, and P. R. Prucnal, “Neuromorphic Photonics,” Opt. Photonics News 29(1), 34 (2018).
    [Crossref]

2018 (4)

F. D. Coarer, M. Sciamanna, A. Katumba, M. Freiberger, J. Dambre, P. Bienstman, and D. Rontani, “All-Optical Reservoir Computing on a Photonic Chip Using Silicon-Based Ring Resonators,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–8 (2018).
[Crossref]

M. A. Nahmias, B. J. Shastri, A. N. Tait, T. F. de Lima, and P. R. Prucnal, “Neuromorphic Photonics,” Optics & Photonics News, OPN 29(1), 34–41 (2018).
[Crossref]

H. Leng, B. Szychowski, M.-C. Daniel, and M. Pelton, “Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons,” Nat. Commun. 9(1), 4012 (2018).
[Crossref] [PubMed]

M. A. Nahmias, B. J. Shastri, A. N. Tait, T. Ferreira de Lima, and P. R. Prucnal, “Neuromorphic Photonics,” Opt. Photonics News 29(1), 34 (2018).
[Crossref]

2017 (3)

A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
[Crossref] [PubMed]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

H. Leng, B. Szychowski, M.-C. Daniel, and M. Pelton, “Dramatic Modification of Coupled-Plasmon Resonances Following Exposure to Electron Beams,” J. Phys. Chem. Lett. 8(15), 3607–3612 (2017).
[Crossref] [PubMed]

2016 (2)

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun.  7, 11823 (2016).

B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Spike processing with a graphene excitable laser,” Sci. Rep. 6(1), 19126 (2016).
[Crossref] [PubMed]

2015 (1)

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip,” IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 34(10), 1537–1557 (2015).
[Crossref]

2014 (1)

2013 (3)

J. Hasler and B. Marr, “Finding a roadmap to achieve large neuromorphic hardware systems,” Front. Neurosci. 7, 118 (2013).
[Crossref] [PubMed]

B. Marr, B. Degnan, P. Hasler, and D. Anderson, “Scaling energy per operation via an asynchronous pipeline,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(1), 147–151 (2013).
[Crossref]

R. A. Shah, N. F. Scherer, M. Pelton, and S. K. Gray, “Ultrafast reversal of a Fano resonance in a plasmon-exciton system,” Phys. Rev. B Condens. Matter Mater. Phys. 88(7), 075411 (2013).
[Crossref]

2012 (1)

A. Hatef, S. M. Sadeghi, and M. R. Singh, “Plasmonic electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 23(6), 065701 (2012).
[Crossref] [PubMed]

2011 (1)

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

2010 (2)

X. Wu, S. K. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express 18(23), 23633–23645 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

2009 (1)

V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Plasmon-Induced Enhancement of Quantum Interference Near Metallic Nanostructures,” Phys. Rev. Lett. 103(6), 063602 (2009).
[Crossref] [PubMed]

2005 (1)

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[Crossref]

2002 (1)

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[Crossref] [PubMed]

1998 (1)

W. Su, T. M. Cooper, and M. C. Brant, “Investigation of reverse-saturable absorption in brominated porphyrins,” Chem. Mater. 10(5), 1212–1213 (1998).
[Crossref]

1997 (1)

R. W. Schirmer and A. L. Gaeta, “Nonlinear mirror based on two-photon absorption,” J. Opt. Soc. Am. B, J. Opt. Soc. Am. B 14(11), 2865–2868 (1997).
[Crossref]

1994 (2)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1969 (1)

M. P. Lisitsa, L. F. Gudymenko, V. N. Malinko, and S. F. Terekhova, “Dispersion of the Refractive Indices and Birefringence of CdSxSe1−x Single Crystals,” Phys. Status Solidi, B Basic Res. 31(1), 389–399 (1969).
[Crossref]

Akopyan, F.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip,” IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 34(10), 1537–1557 (2015).
[Crossref]

Alvarez, D.

Alvarez-Icaza, R.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip,” IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 34(10), 1537–1557 (2015).
[Crossref]

Anderson, D.

B. Marr, B. Degnan, P. Hasler, and D. Anderson, “Scaling energy per operation via an asynchronous pipeline,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(1), 147–151 (2013).
[Crossref]

Arthur, J.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip,” IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 34(10), 1537–1557 (2015).
[Crossref]

Baehr-Jones, T.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Bao, Q.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Beakes, M.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip,” IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 34(10), 1537–1557 (2015).
[Crossref]

Bienstman, P.

F. D. Coarer, M. Sciamanna, A. Katumba, M. Freiberger, J. Dambre, P. Bienstman, and D. Rontani, “All-Optical Reservoir Computing on a Photonic Chip Using Silicon-Based Ring Resonators,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–8 (2018).
[Crossref]

Bitton, O.

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun.  7, 11823 (2016).

Brant, M. C.

W. Su, T. M. Cooper, and M. C. Brant, “Investigation of reverse-saturable absorption in brominated porphyrins,” Chem. Mater. 10(5), 1212–1213 (1998).
[Crossref]

Brezzo, B.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip,” IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 34(10), 1537–1557 (2015).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Cassidy, A.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip,” IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 34(10), 1537–1557 (2015).
[Crossref]

Chang, Q.

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[Crossref]

Choong, I.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chuntonov, L.

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun.  7, 11823 (2016).

Coarer, F. D.

F. D. Coarer, M. Sciamanna, A. Katumba, M. Freiberger, J. Dambre, P. Bienstman, and D. Rontani, “All-Optical Reservoir Computing on a Photonic Chip Using Silicon-Based Ring Resonators,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–8 (2018).
[Crossref]

Cooper, T. M.

W. Su, T. M. Cooper, and M. C. Brant, “Investigation of reverse-saturable absorption in brominated porphyrins,” Chem. Mater. 10(5), 1212–1213 (1998).
[Crossref]

Dambre, J.

F. D. Coarer, M. Sciamanna, A. Katumba, M. Freiberger, J. Dambre, P. Bienstman, and D. Rontani, “All-Optical Reservoir Computing on a Photonic Chip Using Silicon-Based Ring Resonators,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–8 (2018).
[Crossref]

Daniel, M.-C.

H. Leng, B. Szychowski, M.-C. Daniel, and M. Pelton, “Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons,” Nat. Commun. 9(1), 4012 (2018).
[Crossref] [PubMed]

H. Leng, B. Szychowski, M.-C. Daniel, and M. Pelton, “Dramatic Modification of Coupled-Plasmon Resonances Following Exposure to Electron Beams,” J. Phys. Chem. Lett. 8(15), 3607–3612 (2017).
[Crossref] [PubMed]

Datta, P.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip,” IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 34(10), 1537–1557 (2015).
[Crossref]

de Lima, T. F.

M. A. Nahmias, B. J. Shastri, A. N. Tait, T. F. de Lima, and P. R. Prucnal, “Neuromorphic Photonics,” Optics & Photonics News, OPN 29(1), 34–41 (2018).
[Crossref]

A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
[Crossref] [PubMed]

Degnan, B.

B. Marr, B. Degnan, P. Hasler, and D. Anderson, “Scaling energy per operation via an asynchronous pipeline,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(1), 147–151 (2013).
[Crossref]

Dejonckheere, A.

Duport, F.

Englund, D.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Fang, L.

Ferreira de Lima, T.

M. A. Nahmias, B. J. Shastri, A. N. Tait, T. Ferreira de Lima, and P. R. Prucnal, “Neuromorphic Photonics,” Opt. Photonics News 29(1), 34 (2018).
[Crossref]

Fink, Y.

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[Crossref] [PubMed]

Freiberger, M.

F. D. Coarer, M. Sciamanna, A. Katumba, M. Freiberger, J. Dambre, P. Bienstman, and D. Rontani, “All-Optical Reservoir Computing on a Photonic Chip Using Silicon-Based Ring Resonators,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–8 (2018).
[Crossref]

Gaeta, A. L.

R. W. Schirmer and A. L. Gaeta, “Nonlinear mirror based on two-photon absorption,” J. Opt. Soc. Am. B, J. Opt. Soc. Am. B 14(11), 2865–2868 (1997).
[Crossref]

Gao, Y.

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[Crossref]

Gray, S. K.

R. A. Shah, N. F. Scherer, M. Pelton, and S. K. Gray, “Ultrafast reversal of a Fano resonance in a plasmon-exciton system,” Phys. Rev. B Condens. Matter Mater. Phys. 88(7), 075411 (2013).
[Crossref]

X. Wu, S. K. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express 18(23), 23633–23645 (2010).
[Crossref] [PubMed]

Gudymenko, L. F.

M. P. Lisitsa, L. F. Gudymenko, V. N. Malinko, and S. F. Terekhova, “Dispersion of the Refractive Indices and Birefringence of CdSxSe1−x Single Crystals,” Phys. Status Solidi, B Basic Res. 31(1), 389–399 (1969).
[Crossref]

Haelterman, M.

Haran, G.

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun.  7, 11823 (2016).

Harris, N. C.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Hasler, J.

J. Hasler and B. Marr, “Finding a roadmap to achieve large neuromorphic hardware systems,” Front. Neurosci. 7, 118 (2013).
[Crossref] [PubMed]

Hasler, P.

B. Marr, B. Degnan, P. Hasler, and D. Anderson, “Scaling energy per operation via an asynchronous pipeline,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(1), 147–151 (2013).
[Crossref]

Hatef, A.

A. Hatef, S. M. Sadeghi, and M. R. Singh, “Plasmonic electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 23(6), 065701 (2012).
[Crossref] [PubMed]

Hochberg, M.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Ibanescu, M.

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[Crossref] [PubMed]

Imam, N.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip,” IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 34(10), 1537–1557 (2015).
[Crossref]

Jackson, B.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip,” IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 34(10), 1537–1557 (2015).
[Crossref]

Jiao, W.

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[Crossref]

Joannopoulos, J. D.

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Johnson, S. G.

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[Crossref] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Katumba, A.

F. D. Coarer, M. Sciamanna, A. Katumba, M. Freiberger, J. Dambre, P. Bienstman, and D. Rontani, “All-Optical Reservoir Computing on a Photonic Chip Using Silicon-Based Ring Resonators,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–8 (2018).
[Crossref]

Kuang, J. B.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip,” IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 34(10), 1537–1557 (2015).
[Crossref]

Larochelle, H.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Leng, H.

H. Leng, B. Szychowski, M.-C. Daniel, and M. Pelton, “Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons,” Nat. Commun. 9(1), 4012 (2018).
[Crossref] [PubMed]

H. Leng, B. Szychowski, M.-C. Daniel, and M. Pelton, “Dramatic Modification of Coupled-Plasmon Resonances Following Exposure to Electron Beams,” J. Phys. Chem. Lett. 8(15), 3607–3612 (2017).
[Crossref] [PubMed]

Li, C.

Li, Y.

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[Crossref]

Lisitsa, M. P.

M. P. Lisitsa, L. F. Gudymenko, V. N. Malinko, and S. F. Terekhova, “Dispersion of the Refractive Indices and Birefringence of CdSxSe1−x Single Crystals,” Phys. Status Solidi, B Basic Res. 31(1), 389–399 (1969).
[Crossref]

Liu, H.

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[Crossref]

Loh, K. P.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Malinko, V. N.

M. P. Lisitsa, L. F. Gudymenko, V. N. Malinko, and S. F. Terekhova, “Dispersion of the Refractive Indices and Birefringence of CdSxSe1−x Single Crystals,” Phys. Status Solidi, B Basic Res. 31(1), 389–399 (1969).
[Crossref]

Manohar, R.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip,” IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 34(10), 1537–1557 (2015).
[Crossref]

Mansour, K.

Marder, S. R.

Marr, B.

J. Hasler and B. Marr, “Finding a roadmap to achieve large neuromorphic hardware systems,” Front. Neurosci. 7, 118 (2013).
[Crossref] [PubMed]

B. Marr, B. Degnan, P. Hasler, and D. Anderson, “Scaling energy per operation via an asynchronous pipeline,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(1), 147–151 (2013).
[Crossref]

Massar, S.

Merolla, P.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip,” IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 34(10), 1537–1557 (2015).
[Crossref]

Modha, D. S.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip,” IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 34(10), 1537–1557 (2015).
[Crossref]

Nahmias, M. A.

M. A. Nahmias, B. J. Shastri, A. N. Tait, T. F. de Lima, and P. R. Prucnal, “Neuromorphic Photonics,” Optics & Photonics News, OPN 29(1), 34–41 (2018).
[Crossref]

M. A. Nahmias, B. J. Shastri, A. N. Tait, T. Ferreira de Lima, and P. R. Prucnal, “Neuromorphic Photonics,” Opt. Photonics News 29(1), 34 (2018).
[Crossref]

A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
[Crossref] [PubMed]

B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Spike processing with a graphene excitable laser,” Sci. Rep. 6(1), 19126 (2016).
[Crossref] [PubMed]

Nakamura, Y.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip,” IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 34(10), 1537–1557 (2015).
[Crossref]

Nam, G.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip,” IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 34(10), 1537–1557 (2015).
[Crossref]

Ni, Z.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Oudar, J.-L.

Paspalakis, E.

V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Plasmon-Induced Enhancement of Quantum Interference Near Metallic Nanostructures,” Phys. Rev. Lett. 103(6), 063602 (2009).
[Crossref] [PubMed]

Pelton, M.

H. Leng, B. Szychowski, M.-C. Daniel, and M. Pelton, “Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons,” Nat. Commun. 9(1), 4012 (2018).
[Crossref] [PubMed]

H. Leng, B. Szychowski, M.-C. Daniel, and M. Pelton, “Dramatic Modification of Coupled-Plasmon Resonances Following Exposure to Electron Beams,” J. Phys. Chem. Lett. 8(15), 3607–3612 (2017).
[Crossref] [PubMed]

R. A. Shah, N. F. Scherer, M. Pelton, and S. K. Gray, “Ultrafast reversal of a Fano resonance in a plasmon-exciton system,” Phys. Rev. B Condens. Matter Mater. Phys. 88(7), 075411 (2013).
[Crossref]

X. Wu, S. K. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express 18(23), 23633–23645 (2010).
[Crossref] [PubMed]

Perry, J. W.

Perry, K. J.

Polavarapu, L.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Prabhu, M.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Prucnal, P. R.

M. A. Nahmias, B. J. Shastri, A. N. Tait, T. F. de Lima, and P. R. Prucnal, “Neuromorphic Photonics,” Optics & Photonics News, OPN 29(1), 34–41 (2018).
[Crossref]

M. A. Nahmias, B. J. Shastri, A. N. Tait, T. Ferreira de Lima, and P. R. Prucnal, “Neuromorphic Photonics,” Opt. Photonics News 29(1), 34 (2018).
[Crossref]

A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
[Crossref] [PubMed]

B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Spike processing with a graphene excitable laser,” Sci. Rep. 6(1), 19126 (2016).
[Crossref] [PubMed]

Risk, W. P.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip,” IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 34(10), 1537–1557 (2015).
[Crossref]

Rodriguez, A. W.

B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Spike processing with a graphene excitable laser,” Sci. Rep. 6(1), 19126 (2016).
[Crossref] [PubMed]

Rontani, D.

F. D. Coarer, M. Sciamanna, A. Katumba, M. Freiberger, J. Dambre, P. Bienstman, and D. Rontani, “All-Optical Reservoir Computing on a Photonic Chip Using Silicon-Based Ring Resonators,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–8 (2018).
[Crossref]

Sadeghi, S. M.

A. Hatef, S. M. Sadeghi, and M. R. Singh, “Plasmonic electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 23(6), 065701 (2012).
[Crossref] [PubMed]

Santhosh, K.

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun.  7, 11823 (2016).

Sawada, J.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip,” IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 34(10), 1537–1557 (2015).
[Crossref]

Scherer, N. F.

R. A. Shah, N. F. Scherer, M. Pelton, and S. K. Gray, “Ultrafast reversal of a Fano resonance in a plasmon-exciton system,” Phys. Rev. B Condens. Matter Mater. Phys. 88(7), 075411 (2013).
[Crossref]

Schirmer, R. W.

R. W. Schirmer and A. L. Gaeta, “Nonlinear mirror based on two-photon absorption,” J. Opt. Soc. Am. B, J. Opt. Soc. Am. B 14(11), 2865–2868 (1997).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Sciamanna, M.

F. D. Coarer, M. Sciamanna, A. Katumba, M. Freiberger, J. Dambre, P. Bienstman, and D. Rontani, “All-Optical Reservoir Computing on a Photonic Chip Using Silicon-Based Ring Resonators,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–8 (2018).
[Crossref]

Shah, R. A.

R. A. Shah, N. F. Scherer, M. Pelton, and S. K. Gray, “Ultrafast reversal of a Fano resonance in a plasmon-exciton system,” Phys. Rev. B Condens. Matter Mater. Phys. 88(7), 075411 (2013).
[Crossref]

Shastri, B. J.

M. A. Nahmias, B. J. Shastri, A. N. Tait, T. Ferreira de Lima, and P. R. Prucnal, “Neuromorphic Photonics,” Opt. Photonics News 29(1), 34 (2018).
[Crossref]

M. A. Nahmias, B. J. Shastri, A. N. Tait, T. F. de Lima, and P. R. Prucnal, “Neuromorphic Photonics,” Optics & Photonics News, OPN 29(1), 34–41 (2018).
[Crossref]

A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
[Crossref] [PubMed]

B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Spike processing with a graphene excitable laser,” Sci. Rep. 6(1), 19126 (2016).
[Crossref] [PubMed]

Shen, Y.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Shen, Z.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Singh, M. R.

A. Hatef, S. M. Sadeghi, and M. R. Singh, “Plasmonic electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 23(6), 065701 (2012).
[Crossref] [PubMed]

Skirlo, S.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Smerieri, A.

Soljacic, M.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[Crossref] [PubMed]

Song, Y.

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[Crossref]

C. Li, L. Zhang, R. Wang, Y. Song, and Y. Wang, “Dynamics of reverse saturable absorption and all-optical switching in C60,” J. Opt. Soc. Am. B 11(8), 1356–1360 (1994).
[Crossref]

Su, W.

W. Su, T. M. Cooper, and M. C. Brant, “Investigation of reverse-saturable absorption in brominated porphyrins,” Chem. Mater. 10(5), 1212–1213 (1998).
[Crossref]

Sun, X.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Szychowski, B.

H. Leng, B. Szychowski, M.-C. Daniel, and M. Pelton, “Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons,” Nat. Commun. 9(1), 4012 (2018).
[Crossref] [PubMed]

H. Leng, B. Szychowski, M.-C. Daniel, and M. Pelton, “Dramatic Modification of Coupled-Plasmon Resonances Following Exposure to Electron Beams,” J. Phys. Chem. Lett. 8(15), 3607–3612 (2017).
[Crossref] [PubMed]

Taba, B.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip,” IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 34(10), 1537–1557 (2015).
[Crossref]

Tait, A. N.

M. A. Nahmias, B. J. Shastri, A. N. Tait, T. F. de Lima, and P. R. Prucnal, “Neuromorphic Photonics,” Optics & Photonics News, OPN 29(1), 34–41 (2018).
[Crossref]

M. A. Nahmias, B. J. Shastri, A. N. Tait, T. Ferreira de Lima, and P. R. Prucnal, “Neuromorphic Photonics,” Opt. Photonics News 29(1), 34 (2018).
[Crossref]

A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
[Crossref] [PubMed]

B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Spike processing with a graphene excitable laser,” Sci. Rep. 6(1), 19126 (2016).
[Crossref] [PubMed]

Tang, D.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Terekhova, S. F.

M. P. Lisitsa, L. F. Gudymenko, V. N. Malinko, and S. F. Terekhova, “Dispersion of the Refractive Indices and Birefringence of CdSxSe1−x Single Crystals,” Phys. Status Solidi, B Basic Res. 31(1), 389–399 (1969).
[Crossref]

Vitanov, N. V.

V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Plasmon-Induced Enhancement of Quantum Interference Near Metallic Nanostructures,” Phys. Rev. Lett. 103(6), 063602 (2009).
[Crossref] [PubMed]

Wang, R.

Wang, Y.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[Crossref]

C. Li, L. Zhang, R. Wang, Y. Song, and Y. Wang, “Dynamics of reverse saturable absorption and all-optical switching in C60,” J. Opt. Soc. Am. B 11(8), 1356–1360 (1994).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Wu, A. X.

A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
[Crossref] [PubMed]

Wu, B.

B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Spike processing with a graphene excitable laser,” Sci. Rep. 6(1), 19126 (2016).
[Crossref] [PubMed]

Wu, X.

Xu, Q.-H.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Yannopapas, V.

V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Plasmon-Induced Enhancement of Quantum Interference Near Metallic Nanostructures,” Phys. Rev. Lett. 103(6), 063602 (2009).
[Crossref] [PubMed]

Zhang, H.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Zhang, L.

Zhang, X.

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[Crossref]

Zhao, S.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Zhou, E.

A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
[Crossref] [PubMed]

Chem. Mater. (1)

W. Su, T. M. Cooper, and M. C. Brant, “Investigation of reverse-saturable absorption in brominated porphyrins,” Chem. Mater. 10(5), 1212–1213 (1998).
[Crossref]

Front. Neurosci. (1)

J. Hasler and B. Marr, “Finding a roadmap to achieve large neuromorphic hardware systems,” Front. Neurosci. 7, 118 (2013).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

F. D. Coarer, M. Sciamanna, A. Katumba, M. Freiberger, J. Dambre, P. Bienstman, and D. Rontani, “All-Optical Reservoir Computing on a Photonic Chip Using Silicon-Based Ring Resonators,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–8 (2018).
[Crossref]

IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. (1)

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip,” IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 34(10), 1537–1557 (2015).
[Crossref]

IEEE Trans. Very Large Scale Integr. (VLSI) Syst. (1)

B. Marr, B. Degnan, P. Hasler, and D. Anderson, “Scaling energy per operation via an asynchronous pipeline,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(1), 147–151 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Am. B, J. Opt. Soc. Am. B (1)

R. W. Schirmer and A. L. Gaeta, “Nonlinear mirror based on two-photon absorption,” J. Opt. Soc. Am. B, J. Opt. Soc. Am. B 14(11), 2865–2868 (1997).
[Crossref]

J. Phys. Chem. Lett. (1)

H. Leng, B. Szychowski, M.-C. Daniel, and M. Pelton, “Dramatic Modification of Coupled-Plasmon Resonances Following Exposure to Electron Beams,” J. Phys. Chem. Lett. 8(15), 3607–3612 (2017).
[Crossref] [PubMed]

Nano Res. (1)

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Nanotechnology (1)

A. Hatef, S. M. Sadeghi, and M. R. Singh, “Plasmonic electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 23(6), 065701 (2012).
[Crossref] [PubMed]

Nat. Commun (1)

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun.  7, 11823 (2016).

Nat. Commun. (1)

H. Leng, B. Szychowski, M.-C. Daniel, and M. Pelton, “Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons,” Nat. Commun. 9(1), 4012 (2018).
[Crossref] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Opt. Commun. (1)

Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251(4-6), 429–433 (2005).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Photonics News (1)

M. A. Nahmias, B. J. Shastri, A. N. Tait, T. Ferreira de Lima, and P. R. Prucnal, “Neuromorphic Photonics,” Opt. Photonics News 29(1), 34 (2018).
[Crossref]

Optics & Photonics News, OPN (1)

M. A. Nahmias, B. J. Shastri, A. N. Tait, T. F. de Lima, and P. R. Prucnal, “Neuromorphic Photonics,” Optics & Photonics News, OPN 29(1), 34–41 (2018).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

R. A. Shah, N. F. Scherer, M. Pelton, and S. K. Gray, “Ultrafast reversal of a Fano resonance in a plasmon-exciton system,” Phys. Rev. B Condens. Matter Mater. Phys. 88(7), 075411 (2013).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Plasmon-Induced Enhancement of Quantum Interference Near Metallic Nanostructures,” Phys. Rev. Lett. 103(6), 063602 (2009).
[Crossref] [PubMed]

Phys. Status Solidi, B Basic Res. (1)

M. P. Lisitsa, L. F. Gudymenko, V. N. Malinko, and S. F. Terekhova, “Dispersion of the Refractive Indices and Birefringence of CdSxSe1−x Single Crystals,” Phys. Status Solidi, B Basic Res. 31(1), 389–399 (1969).
[Crossref]

Sci. Rep. (2)

B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Spike processing with a graphene excitable laser,” Sci. Rep. 6(1), 19126 (2016).
[Crossref] [PubMed]

A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
[Crossref] [PubMed]

Other (10)

B. J. Shastri, A. N. Tait, T. F. de Lima, M. A. Nahmias, H.-T. Peng, and P. R. Prucnal, “Principles of Neuromorphic Photonics,” arXiv:1801.00016 [physics] 1–37 (2018).

R. Amin, J. George, J. Khurgin, T. El-Ghazawi, P. R. Prucnal, and V. J. Sorger, “Attojoule Modulators for Photonic Neuromorphic Computing,” in Conference on Lasers and Electro-Optics (2018), Paper ATh1Q.4 (Optical Society of America, 2018), p. ATh1Q.4.

R. Amin, S. Khan, C. J. Lee, H. Dalir, and V. J. Sorger, “110 Attojoule-per-bit Efficient Graphene-based Plasmon Modulator on Silicon,” in Conference on Lasers and Electro-Optics (2018), Paper SM1I.5 (Optical Society of America, 2018), p. SM1I.5.
[Crossref]

J. George, R. Amin, A. Mehrabian, J. Khurgin, T. El-Ghazawi, P. R. Prucnal, and V. J. Sorger, “Electrooptic Nonlinear Activation Functions for Vector Matrix Multiplications in Optical Neural Networks,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF) (OSA, 2018), p. SpW4G.3.

J. George, A. Mehrabian, R. Amin, J. Meng, T. F. de Lima, A. N. Tait, B. J. Shastri, T. El-Ghazawi, P. R. Prucnal, and V. J. Sorger, “Neuromorphic photonics with electro-absorption modulators,” arXiv:1809.03545 [physics] (2018).

M. Pelton and G. W. Bryant, Introduction to Metal-Nanoparticle Plasmonics (John Wiley & Sons, 2013).

S. I. Azzam and A. V. Kildishev, “Full-wave analysis of reverse saturable absorption in time-domain,” arXiv:1808.02436 [physics] (2018).

A. Mehrabian, Y. Al-Kabani, V. J. Sorger, and T. El-Ghazawi, “PCNNA: A Photonic Convolutional Neural Network Accelerator,” arXiv:1807.08792 [cs, eess] (2018).

P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for Activation Functions,” arXiv:1710.05941 [cs] (2017).

B. J. Shastri, P. R. Prucnal, “Principles of Neuromorphic Photonics” Encyclopedia of Complexity and Systems Science (Springer, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Physical modeling and material characterization: a) Phenomenological description system. Two coupled oscillators that provides a classical analogue of the plasmon-exciton coupling induced transparency in the represented system and schematic representation of the MNPs/QD system consisting of a single quantum dot (QD) between a pair of gold nanoparticles (MNP). b) Normalized electric field distribution of the hybrid system computed for a 2.04 eV impinging plane wave. Scale bar 20 nm. c) Calculated absorption spectra for a system illustrated in the inset of (a) taken from [23]. The different curves show the response of the system for different amounts of energy in an incident laser pulse. d) Extinction cross section (left y-axis) and imaginary part of the refractive index (right y-axis) of the MNPs/QD system, as function of the input power density.
Fig. 2
Fig. 2 Hybrid-Nanoparticle waveguide integration for an all-optical nonlinearity for photonic neural networks: a-c) Schematic representation of waveguide and MNPs/QD system coupling. The MNPs/QD system placed in the middle (a) and top (c). b-d) Normalized electric field distribution for a middle horizontal cut plane of the waveguide considering the assembly being placed in the middle (b) and on top (d), for its maximum absorption (highest k). c) Computed transmittance of the waveguide as function of the tunable absorption of a MNPs/QD system placed in the middle (Black solid line) and on top of the waveguide (Red solid line). d) Computed waveguide transmittance as function of the input power density and respective nonlinear modulation ranges in dB.
Fig. 3
Fig. 3 Engineering the all-optical nonlinearity via array: a-b) Normalized electric field distribution for a middle horizontal cut plane of the waveguide, considering an array of closely spaced hybrid-structures, being in the middle (a) and on top (b) of the waveguide, for their maximum absorption (largest k). (c) Transmittance as function of the input power density.
Fig. 4
Fig. 4 Optical NL in a Reverse Saturable Absorber. Nonlinear transmission of a reverse saturable absorber made of high-concentration C60 in a PVA host thin film. (a) The simplified band-diagram of the reverse saturable absorber modeled by a five-level system. (b) Transmission vs. input fluence at 532 nm. Pump/Probe parameters: full-width at half maximum of the pump pulse = 1 ps and of the probe = 5 fs. Both pump and probe are centered at a wavelength of 532 nm. The lifetimes, τS1 = 30 ns, τT1 = 280 μs, τISC = 1.2 ns, τS2 = τT2 = 1ps.
Fig. 5
Fig. 5 Design of an AO neuron and evaluation of the Neural Network performance a) Schematic of an all-optical neuron. b) Representation of the emulated NN (b). c) Different activation functions, VIN to VOUT, ReLU (light blue dashed line), Sigmoid (blue dashed line), hyperbolic tangent (dark blue line) and the 2 proposed NL function, top (solid orange) and middle (solid red) d-e) Prediction accuracy as function of epoch for the training (d) and validation (e) phase of the network.
Fig. 6
Fig. 6 Comparison of computational energy efficiency and processing speed between existing electronic neuromorphic demonstrations and our proposed programmable photonic platform. NN = neural network, AONN = all-optical NN, GPU = graphical processing unit.

Tables (1)

Tables Icon

Table 1 Comparison of different neuromorphic technologies in terms of computing speed and power efficiency per MAC, i.e. per neuron. This speed is the time delay to ‘active’ or ‘use’ one neuron, and does not equal the system delay, which depends on the number of neurons and would make the comparison arbitrary. In van Neumann architectures the neuron delay is set by the clock cycle speed (100’s MHz to few GHz). For electro-optic integrated photonic-based NN, this delay is the sum of the electro-optic components plus the waveguide propagation delay of the weights such as MZIs or tunable ring filters (10's-100 GHz). In an all-optical version al electronic delays are not-present and the delay depends only on the photons time of flight (~1ps) given by the neuron dimensions of hundreds of micrometers and an optical waveguide index = 3.