Abstract

We demonstrate a selectively emitting optical Fabry-Pérot resonator based on a few-nm-thin continuous metallic titanium nitride film, separated by a dielectric spacer, which exhibits excellent stability at 1070 K against chemical degradation, thin-film instabilities and melting point depression. The structure paves the way to the design and fabrication of refractory thermal emitters using the well-established processes known from the field of multilayer and rugate optical filters. We demonstrate that a few-nanometer thick films of titanium nitride can be stable under operation at temperatures exceeding 1070 K. This type of selective emitter provides a means towards near-infrared thermal emission that could potentially be tailored to the accuracy level known from rugate optical filters.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

8 November 2018: A typographical correction was made to the title.


OSA Recommended Articles
Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications

Manohar Chirumamilla, Alexander S. Roberts, Fei Ding, Deyong Wang, Peter Kjær Kristensen, Sergey I. Bozhevolnyi, and Kjeld Pedersen
Opt. Mater. Express 6(8) 2704-2714 (2016)

Near-infrared tailored thermal emission from wafer-scale continuous-film resonators

Alexander S. Roberts, Manohar Chirumamilla, Kasper Thilsing-Hansen, Kjeld Pedersen, and Sergey I. Bozhevolnyi
Opt. Express 23(19) A1111-A1119 (2015)

Plasmonic arrays of titanium nitride nanoparticles fabricated from epitaxial thin films

Shunsuke Murai, Koji Fujita, Yohei Daido, Ryuichiro Yasuhara, Ryosuke Kamakura, and Katsuhisa Tanaka
Opt. Express 24(2) 1143-1153 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Romero and A. Steinfeld, “Concentrating solar thermal power and thermochemical fuels,” Energy & Environmental Science 5, 9234–9245 (2012).
    [Crossref]
  2. L. A. Weinstein, J. Loomis, B. Bhatia, D. M. Bierman, E. N. Wang, and G. Chen, “Concentrating solar power,” Chemical Reviews 115, 12797–12838 (2015).
    [Crossref] [PubMed]
  3. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature Nanotechnology 9, 126–130 (2014).
    [Crossref] [PubMed]
  4. M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” Journal of Photonics for Energy 5, 053099 (2015).
    [Crossref]
  5. N. N. Shi, C.-C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in saharan silver ants,” Science 349, 298–301 (2015).
    [Crossref] [PubMed]
  6. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
    [Crossref] [PubMed]
  7. L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1, 32–38 (2014).
    [Crossref]
  8. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” Journal of Applied Physics 32, 510–519 (1961).
    [Crossref]
  9. N.-P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semiconductor Science and Technology 18, S151 (2003).
    [Crossref]
  10. G. Guazzoni, E. Kittl, and S. Shapiro, “Rare earth radiators for thermophotovoltaic energy conversion,” in “Electron Devices Meeting, 1968 International,” (IEEE, 1968), pp. 130.
  11. R. A. Lowe, D. L. Chubb, S. C. Farmer, and B. S. Good, “Rare–earth garnet selective emitter,” Applied Physics Letters 64, 3551–3553 (1994).
    [Crossref]
  12. D. L. Chubb, A. T. Pal, M. O. Patton, and P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” Journal of the European Ceramic Society 19, 2551–2562 (1999).
    [Crossref]
  13. B. Bitnar, W. Durisch, J.-C. Mayor, H. Sigg, and H. Tschudi, “Characterisation of rare earth selective emitters for thermophotovoltaic applications,” Solar Energy Materials and Solar Cells 73, 221–234 (2002).
    [Crossref]
  14. W. Tobler and W. Durisch, “Plasma-spray coated rare-earth oxides on molybdenum disilicide–high temperature stable emitters for thermophotovoltaics,” Applied Energy 85, 371–383 (2008).
    [Crossref]
  15. S. Gourley and P. Lissberger, “Optical scattering in multilayer thin films,” Journal of Modern Optics 26, 117–143 (1979).
  16. P. Bousquet, F. Flory, and P. Roche, “Scattering from multilayer thin films: theory and experiment,” Journal of the Optical Society of America 71, 1115–1123 (1981).
    [Crossref]
  17. B. G. Bovard, “Derivation of a matrix describing a rugate dielectric thin film,” Applied Optics 27, 1998–2005 (1988).
    [Crossref] [PubMed]
  18. B. G. Bovard, “Rugate filter design: the modified fourier transform technique,” Applied Optics 29, 24–30 (1990).
    [Crossref] [PubMed]
  19. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Applied Optics 35, 5493–5508 (1996).
    [Crossref] [PubMed]
  20. A. V. Tikhonravov and M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Applied Optics 51, 7319–7332 (2012).
    [Crossref] [PubMed]
  21. J.-J. Greffet and M. Nieto-Vesperinas, “Field theory for generalized bidirectional reflectivity: derivation of helmholtz’s reciprocity principle and kirchhoff’s law,” Journal of the Optical Society of America A 15, 2735–2744 (1998).
    [Crossref]
  22. M. Yan, “Metal–insulator–metal light absorber: a continuous structure,” Journal of Optics 15, 025006 (2013).
    [Crossref]
  23. D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Applied Physics Letters 104, 221107 (2014).
    [Crossref]
  24. G. Kajtár, M. Kafesaki, E. Economou, and C. Soukoulis, “Theoretical model of homogeneous metal–insulator–metal perfect multi-band absorbers for the visible spectrum,” Journal of Physics D: Applied Physics 49, 055104 (2016).
    [Crossref]
  25. C. Williams, G. Rughoobur, A. J. Flewitt, and T. D. Wilkinson, “Single-step fabrication of thin-film linear variable bandpass filters based on metal–insulator–metal geometry,” Applied Optics 55, 9237–9241 (2016).
    [Crossref]
  26. M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications,” Optical Materials Express 6, 2704–2714 (2016).
    [Crossref]
  27. G. Kenanakis, C. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. Economou, and C. Soukoulis, “Perfect absorbers based on metal–insulator–metal structures in the visible region: a simple approach for practical applications,” Applied Physics A 123, 77 (2017).
    [Crossref]
  28. M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, and et al., “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial,” Laser & Photonics Reviews 9, 120–127 (2015).
    [Crossref]
  29. B. Saha, G. V. Naik, S. Saber, C. Akatay, E. A. Stach, V. M. Shalaev, A. Boltasseva, and T. D. Sands, “TiN/(Al, Sc) N metal/dielectric superlattices and multilayers as hyperbolic metamaterials in the visible spectral range,” Physical Review B 90, 125420 (2014).
    [Crossref]
  30. B. Saha, Y. R. Koh, J. Comparan, S. Sadasivam, J. L. Schroeder, M. Garbrecht, A. Mohammed, J. Birch, T. Fisher, A. Shakouri, and et al., “Cross-plane thermal conductivity of (Ti, W) N/(Al, Sc) N metal/semiconductor superlattices,” Physical Review B 93, 045311 (2016).
    [Crossref]
  31. B. Saha, Y. R. Koh, J. P. Feser, S. Sadasivam, T. S. Fisher, A. Shakouri, and T. D. Sands, “Phonon wave effects in the thermal transport of epitaxial TiN/(Al, Sc) N metal/semiconductor superlattices,” Journal of Applied Physics 121, 015109 (2017).
    [Crossref]
  32. J. L. Schroeder, B. Saha, M. Garbrecht, N. Schell, T. D. Sands, and J. Birch, “Thermal stability of epitaxial cubic-tin/(al, sc) n metal/semiconductor superlattices,” Journal of materials science 50, 3200–3206 (2015).
    [Crossref]
  33. P. Pawlow, “The dependency of the melting point on the surface energy of a solid body,” Zeitschrift für Physikalische Chemie 65, 545–548 (1909).
  34. M. Takagi, “Electron-diffraction study of liquid-solid transition of thin metal films,” Journal of the Physical Society of Japan 9, 359–363 (1954).
    [Crossref]
  35. P. Couchman and W. Jesser, “Thermodynamic theory of size dependence of melting temperature in metals,” Nature 269, 481 (1977).
    [Crossref]
  36. M. Wautelet, “On the shape dependence of the melting temperature of small particles,” Physics Letters A 246, 341–342 (1998).
    [Crossref]
  37. W. Qi, “Size effect on melting temperature of nanosolids,” Physica B: Condensed Matter 368, 46–50 (2005).
    [Crossref]
  38. J. Zhu, Q. Fu, Y. Xue, and Z. Cui, “Accurate thermodynamic relations of the melting temperature of nanocrystals with different shapes and pure theoretical calculation,” Materials Chemistry and Physics 192, 22–28 (2017).
    [Crossref]
  39. A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
    [Crossref] [PubMed]
  40. W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Advanced Materials 26, 7959–7965 (2014).
    [Crossref] [PubMed]
  41. M. Chirumamilla, A. Chirumamilla, Y. Yang, A. S. Roberts, P. K. Kristensen, K. Chaudhuri, A. Boltasseva, D. S. Sutherland, S. I. Bozhevolnyi, and K. Pedersen, “Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3d titanium nitride nanopillars,” Advanced Optical Materials 5, 1700552 (2017).
    [Crossref]
  42. A. S. Roberts, M. Chirumamilla, K. Thilsing-Hansen, K. Pedersen, and S. I. Bozhevolnyi, “Near-infrared tailored thermal emission from wafer-scale continuous-film resonators,” Optics Express 23, A1111–A1119 (2015).
    [Crossref] [PubMed]
  43. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Optical Materials Express 2, 478–489 (2012).
    [Crossref]
  44. H. O. Pierson, Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Apps. (William Andrew, 1996).
  45. P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Materials Science and Engineering: R: Reports 123, 1–55 (2018).
    [Crossref]
  46. P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Physical Review B 6, 4370 (1972).
    [Crossref]
  47. L. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” Journal of Applied Physics 86, 487–496 (1999).
    [Crossref]
  48. A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Broadband plasmonic half-wave plates in reflection,” Optics letters 38, 513–515 (2013).
    [Crossref] [PubMed]
  49. C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Physical Review B 84, 075102 (2011).
    [Crossref]
  50. V. Roberts and J. Quarrington, “Accurate measurements of absorption in indium antimonide and gallium antimonide,” J. Electronics 1, 152–160 (1955).
  51. W. Becker, A. Ramdas, and H. Fan, “Energy band structure of gallium antimonide,” Journal of Applied Physics 32, 2094–2102 (1961).
    [Crossref]

2018 (1)

P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Materials Science and Engineering: R: Reports 123, 1–55 (2018).
[Crossref]

2017 (4)

J. Zhu, Q. Fu, Y. Xue, and Z. Cui, “Accurate thermodynamic relations of the melting temperature of nanocrystals with different shapes and pure theoretical calculation,” Materials Chemistry and Physics 192, 22–28 (2017).
[Crossref]

M. Chirumamilla, A. Chirumamilla, Y. Yang, A. S. Roberts, P. K. Kristensen, K. Chaudhuri, A. Boltasseva, D. S. Sutherland, S. I. Bozhevolnyi, and K. Pedersen, “Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3d titanium nitride nanopillars,” Advanced Optical Materials 5, 1700552 (2017).
[Crossref]

G. Kenanakis, C. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. Economou, and C. Soukoulis, “Perfect absorbers based on metal–insulator–metal structures in the visible region: a simple approach for practical applications,” Applied Physics A 123, 77 (2017).
[Crossref]

B. Saha, Y. R. Koh, J. P. Feser, S. Sadasivam, T. S. Fisher, A. Shakouri, and T. D. Sands, “Phonon wave effects in the thermal transport of epitaxial TiN/(Al, Sc) N metal/semiconductor superlattices,” Journal of Applied Physics 121, 015109 (2017).
[Crossref]

2016 (4)

B. Saha, Y. R. Koh, J. Comparan, S. Sadasivam, J. L. Schroeder, M. Garbrecht, A. Mohammed, J. Birch, T. Fisher, A. Shakouri, and et al., “Cross-plane thermal conductivity of (Ti, W) N/(Al, Sc) N metal/semiconductor superlattices,” Physical Review B 93, 045311 (2016).
[Crossref]

G. Kajtár, M. Kafesaki, E. Economou, and C. Soukoulis, “Theoretical model of homogeneous metal–insulator–metal perfect multi-band absorbers for the visible spectrum,” Journal of Physics D: Applied Physics 49, 055104 (2016).
[Crossref]

C. Williams, G. Rughoobur, A. J. Flewitt, and T. D. Wilkinson, “Single-step fabrication of thin-film linear variable bandpass filters based on metal–insulator–metal geometry,” Applied Optics 55, 9237–9241 (2016).
[Crossref]

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications,” Optical Materials Express 6, 2704–2714 (2016).
[Crossref]

2015 (6)

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, and et al., “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial,” Laser & Photonics Reviews 9, 120–127 (2015).
[Crossref]

J. L. Schroeder, B. Saha, M. Garbrecht, N. Schell, T. D. Sands, and J. Birch, “Thermal stability of epitaxial cubic-tin/(al, sc) n metal/semiconductor superlattices,” Journal of materials science 50, 3200–3206 (2015).
[Crossref]

M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” Journal of Photonics for Energy 5, 053099 (2015).
[Crossref]

N. N. Shi, C.-C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in saharan silver ants,” Science 349, 298–301 (2015).
[Crossref] [PubMed]

L. A. Weinstein, J. Loomis, B. Bhatia, D. M. Bierman, E. N. Wang, and G. Chen, “Concentrating solar power,” Chemical Reviews 115, 12797–12838 (2015).
[Crossref] [PubMed]

A. S. Roberts, M. Chirumamilla, K. Thilsing-Hansen, K. Pedersen, and S. I. Bozhevolnyi, “Near-infrared tailored thermal emission from wafer-scale continuous-film resonators,” Optics Express 23, A1111–A1119 (2015).
[Crossref] [PubMed]

2014 (6)

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Advanced Materials 26, 7959–7965 (2014).
[Crossref] [PubMed]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature Nanotechnology 9, 126–130 (2014).
[Crossref] [PubMed]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref] [PubMed]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1, 32–38 (2014).
[Crossref]

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Applied Physics Letters 104, 221107 (2014).
[Crossref]

B. Saha, G. V. Naik, S. Saber, C. Akatay, E. A. Stach, V. M. Shalaev, A. Boltasseva, and T. D. Sands, “TiN/(Al, Sc) N metal/dielectric superlattices and multilayers as hyperbolic metamaterials in the visible spectral range,” Physical Review B 90, 125420 (2014).
[Crossref]

2013 (2)

M. Yan, “Metal–insulator–metal light absorber: a continuous structure,” Journal of Optics 15, 025006 (2013).
[Crossref]

A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Broadband plasmonic half-wave plates in reflection,” Optics letters 38, 513–515 (2013).
[Crossref] [PubMed]

2012 (3)

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Optical Materials Express 2, 478–489 (2012).
[Crossref]

A. V. Tikhonravov and M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Applied Optics 51, 7319–7332 (2012).
[Crossref] [PubMed]

M. Romero and A. Steinfeld, “Concentrating solar thermal power and thermochemical fuels,” Energy & Environmental Science 5, 9234–9245 (2012).
[Crossref]

2011 (2)

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref] [PubMed]

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Physical Review B 84, 075102 (2011).
[Crossref]

2008 (1)

W. Tobler and W. Durisch, “Plasma-spray coated rare-earth oxides on molybdenum disilicide–high temperature stable emitters for thermophotovoltaics,” Applied Energy 85, 371–383 (2008).
[Crossref]

2005 (1)

W. Qi, “Size effect on melting temperature of nanosolids,” Physica B: Condensed Matter 368, 46–50 (2005).
[Crossref]

2003 (1)

N.-P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semiconductor Science and Technology 18, S151 (2003).
[Crossref]

2002 (1)

B. Bitnar, W. Durisch, J.-C. Mayor, H. Sigg, and H. Tschudi, “Characterisation of rare earth selective emitters for thermophotovoltaic applications,” Solar Energy Materials and Solar Cells 73, 221–234 (2002).
[Crossref]

1999 (2)

D. L. Chubb, A. T. Pal, M. O. Patton, and P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” Journal of the European Ceramic Society 19, 2551–2562 (1999).
[Crossref]

L. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” Journal of Applied Physics 86, 487–496 (1999).
[Crossref]

1998 (2)

M. Wautelet, “On the shape dependence of the melting temperature of small particles,” Physics Letters A 246, 341–342 (1998).
[Crossref]

J.-J. Greffet and M. Nieto-Vesperinas, “Field theory for generalized bidirectional reflectivity: derivation of helmholtz’s reciprocity principle and kirchhoff’s law,” Journal of the Optical Society of America A 15, 2735–2744 (1998).
[Crossref]

1996 (1)

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Applied Optics 35, 5493–5508 (1996).
[Crossref] [PubMed]

1994 (1)

R. A. Lowe, D. L. Chubb, S. C. Farmer, and B. S. Good, “Rare–earth garnet selective emitter,” Applied Physics Letters 64, 3551–3553 (1994).
[Crossref]

1990 (1)

B. G. Bovard, “Rugate filter design: the modified fourier transform technique,” Applied Optics 29, 24–30 (1990).
[Crossref] [PubMed]

1988 (1)

B. G. Bovard, “Derivation of a matrix describing a rugate dielectric thin film,” Applied Optics 27, 1998–2005 (1988).
[Crossref] [PubMed]

1981 (1)

P. Bousquet, F. Flory, and P. Roche, “Scattering from multilayer thin films: theory and experiment,” Journal of the Optical Society of America 71, 1115–1123 (1981).
[Crossref]

1979 (1)

S. Gourley and P. Lissberger, “Optical scattering in multilayer thin films,” Journal of Modern Optics 26, 117–143 (1979).

1977 (1)

P. Couchman and W. Jesser, “Thermodynamic theory of size dependence of melting temperature in metals,” Nature 269, 481 (1977).
[Crossref]

1972 (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Physical Review B 6, 4370 (1972).
[Crossref]

1961 (2)

W. Becker, A. Ramdas, and H. Fan, “Energy band structure of gallium antimonide,” Journal of Applied Physics 32, 2094–2102 (1961).
[Crossref]

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” Journal of Applied Physics 32, 510–519 (1961).
[Crossref]

1955 (1)

V. Roberts and J. Quarrington, “Accurate measurements of absorption in indium antimonide and gallium antimonide,” J. Electronics 1, 152–160 (1955).

1954 (1)

M. Takagi, “Electron-diffraction study of liquid-solid transition of thin metal films,” Journal of the Physical Society of Japan 9, 359–363 (1954).
[Crossref]

1909 (1)

P. Pawlow, “The dependency of the melting point on the surface energy of a solid body,” Zeitschrift für Physikalische Chemie 65, 545–548 (1909).

Abadias, G.

P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Materials Science and Engineering: R: Reports 123, 1–55 (2018).
[Crossref]

Akatay, C.

B. Saha, G. V. Naik, S. Saber, C. Akatay, E. A. Stach, V. M. Shalaev, A. Boltasseva, and T. D. Sands, “TiN/(Al, Sc) N metal/dielectric superlattices and multilayers as hyperbolic metamaterials in the visible spectral range,” Physical Review B 90, 125420 (2014).
[Crossref]

Akimov, A. V.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, and et al., “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial,” Laser & Photonics Reviews 9, 120–127 (2015).
[Crossref]

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref] [PubMed]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1, 32–38 (2014).
[Crossref]

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref] [PubMed]

Becker, W.

W. Becker, A. Ramdas, and H. Fan, “Energy band structure of gallium antimonide,” Journal of Applied Physics 32, 2094–2102 (1961).
[Crossref]

Bellas, D.

P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Materials Science and Engineering: R: Reports 123, 1–55 (2018).
[Crossref]

Bernard, G. D.

N. N. Shi, C.-C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in saharan silver ants,” Science 349, 298–301 (2015).
[Crossref] [PubMed]

Bhatia, B.

L. A. Weinstein, J. Loomis, B. Bhatia, D. M. Bierman, E. N. Wang, and G. Chen, “Concentrating solar power,” Chemical Reviews 115, 12797–12838 (2015).
[Crossref] [PubMed]

Bierman, D. M.

L. A. Weinstein, J. Loomis, B. Bhatia, D. M. Bierman, E. N. Wang, and G. Chen, “Concentrating solar power,” Chemical Reviews 115, 12797–12838 (2015).
[Crossref] [PubMed]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature Nanotechnology 9, 126–130 (2014).
[Crossref] [PubMed]

Birch, J.

B. Saha, Y. R. Koh, J. Comparan, S. Sadasivam, J. L. Schroeder, M. Garbrecht, A. Mohammed, J. Birch, T. Fisher, A. Shakouri, and et al., “Cross-plane thermal conductivity of (Ti, W) N/(Al, Sc) N metal/semiconductor superlattices,” Physical Review B 93, 045311 (2016).
[Crossref]

J. L. Schroeder, B. Saha, M. Garbrecht, N. Schell, T. D. Sands, and J. Birch, “Thermal stability of epitaxial cubic-tin/(al, sc) n metal/semiconductor superlattices,” Journal of materials science 50, 3200–3206 (2015).
[Crossref]

Bitnar, B.

B. Bitnar, W. Durisch, J.-C. Mayor, H. Sigg, and H. Tschudi, “Characterisation of rare earth selective emitters for thermophotovoltaic applications,” Solar Energy Materials and Solar Cells 73, 221–234 (2002).
[Crossref]

Boltasseva, A.

M. Chirumamilla, A. Chirumamilla, Y. Yang, A. S. Roberts, P. K. Kristensen, K. Chaudhuri, A. Boltasseva, D. S. Sutherland, S. I. Bozhevolnyi, and K. Pedersen, “Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3d titanium nitride nanopillars,” Advanced Optical Materials 5, 1700552 (2017).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Advanced Materials 26, 7959–7965 (2014).
[Crossref] [PubMed]

B. Saha, G. V. Naik, S. Saber, C. Akatay, E. A. Stach, V. M. Shalaev, A. Boltasseva, and T. D. Sands, “TiN/(Al, Sc) N metal/dielectric superlattices and multilayers as hyperbolic metamaterials in the visible spectral range,” Physical Review B 90, 125420 (2014).
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Optical Materials Express 2, 478–489 (2012).
[Crossref]

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref] [PubMed]

Bousquet, P.

P. Bousquet, F. Flory, and P. Roche, “Scattering from multilayer thin films: theory and experiment,” Journal of the Optical Society of America 71, 1115–1123 (1981).
[Crossref]

Bovard, B. G.

B. G. Bovard, “Rugate filter design: the modified fourier transform technique,” Applied Optics 29, 24–30 (1990).
[Crossref] [PubMed]

B. G. Bovard, “Derivation of a matrix describing a rugate dielectric thin film,” Applied Optics 27, 1998–2005 (1988).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

M. Chirumamilla, A. Chirumamilla, Y. Yang, A. S. Roberts, P. K. Kristensen, K. Chaudhuri, A. Boltasseva, D. S. Sutherland, S. I. Bozhevolnyi, and K. Pedersen, “Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3d titanium nitride nanopillars,” Advanced Optical Materials 5, 1700552 (2017).
[Crossref]

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications,” Optical Materials Express 6, 2704–2714 (2016).
[Crossref]

A. S. Roberts, M. Chirumamilla, K. Thilsing-Hansen, K. Pedersen, and S. I. Bozhevolnyi, “Near-infrared tailored thermal emission from wafer-scale continuous-film resonators,” Optics Express 23, A1111–A1119 (2015).
[Crossref] [PubMed]

A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Broadband plasmonic half-wave plates in reflection,” Optics letters 38, 513–515 (2013).
[Crossref] [PubMed]

Burton Neuner, I.

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Physical Review B 84, 075102 (2011).
[Crossref]

Camino, F.

N. N. Shi, C.-C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in saharan silver ants,” Science 349, 298–301 (2015).
[Crossref] [PubMed]

Celanovic, I.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature Nanotechnology 9, 126–130 (2014).
[Crossref] [PubMed]

Chan, W. R.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature Nanotechnology 9, 126–130 (2014).
[Crossref] [PubMed]

Chaudhuri, K.

M. Chirumamilla, A. Chirumamilla, Y. Yang, A. S. Roberts, P. K. Kristensen, K. Chaudhuri, A. Boltasseva, D. S. Sutherland, S. I. Bozhevolnyi, and K. Pedersen, “Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3d titanium nitride nanopillars,” Advanced Optical Materials 5, 1700552 (2017).
[Crossref]

Chen, G.

L. A. Weinstein, J. Loomis, B. Bhatia, D. M. Bierman, E. N. Wang, and G. Chen, “Concentrating solar power,” Chemical Reviews 115, 12797–12838 (2015).
[Crossref] [PubMed]

Chen, X.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Applied Physics Letters 104, 221107 (2014).
[Crossref]

Chen, Y.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Applied Physics Letters 104, 221107 (2014).
[Crossref]

Chirumamilla, A.

M. Chirumamilla, A. Chirumamilla, Y. Yang, A. S. Roberts, P. K. Kristensen, K. Chaudhuri, A. Boltasseva, D. S. Sutherland, S. I. Bozhevolnyi, and K. Pedersen, “Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3d titanium nitride nanopillars,” Advanced Optical Materials 5, 1700552 (2017).
[Crossref]

Chirumamilla, M.

M. Chirumamilla, A. Chirumamilla, Y. Yang, A. S. Roberts, P. K. Kristensen, K. Chaudhuri, A. Boltasseva, D. S. Sutherland, S. I. Bozhevolnyi, and K. Pedersen, “Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3d titanium nitride nanopillars,” Advanced Optical Materials 5, 1700552 (2017).
[Crossref]

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications,” Optical Materials Express 6, 2704–2714 (2016).
[Crossref]

A. S. Roberts, M. Chirumamilla, K. Thilsing-Hansen, K. Pedersen, and S. I. Bozhevolnyi, “Near-infrared tailored thermal emission from wafer-scale continuous-film resonators,” Optics Express 23, A1111–A1119 (2015).
[Crossref] [PubMed]

Christy, R.-W.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Physical Review B 6, 4370 (1972).
[Crossref]

Chubb, D. L.

D. L. Chubb, A. T. Pal, M. O. Patton, and P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” Journal of the European Ceramic Society 19, 2551–2562 (1999).
[Crossref]

R. A. Lowe, D. L. Chubb, S. C. Farmer, and B. S. Good, “Rare–earth garnet selective emitter,” Applied Physics Letters 64, 3551–3553 (1994).
[Crossref]

Comparan, J.

B. Saha, Y. R. Koh, J. Comparan, S. Sadasivam, J. L. Schroeder, M. Garbrecht, A. Mohammed, J. Birch, T. Fisher, A. Shakouri, and et al., “Cross-plane thermal conductivity of (Ti, W) N/(Al, Sc) N metal/semiconductor superlattices,” Physical Review B 93, 045311 (2016).
[Crossref]

Couchman, P.

P. Couchman and W. Jesser, “Thermodynamic theory of size dependence of melting temperature in metals,” Nature 269, 481 (1977).
[Crossref]

Cui, Z.

J. Zhu, Q. Fu, Y. Xue, and Z. Cui, “Accurate thermodynamic relations of the melting temperature of nanocrystals with different shapes and pure theoretical calculation,” Materials Chemistry and Physics 192, 22–28 (2017).
[Crossref]

DeBell, G. W.

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Applied Optics 35, 5493–5508 (1996).
[Crossref] [PubMed]

Ding, F.

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications,” Optical Materials Express 6, 2704–2714 (2016).
[Crossref]

Durisch, W.

W. Tobler and W. Durisch, “Plasma-spray coated rare-earth oxides on molybdenum disilicide–high temperature stable emitters for thermophotovoltaics,” Applied Energy 85, 371–383 (2008).
[Crossref]

B. Bitnar, W. Durisch, J.-C. Mayor, H. Sigg, and H. Tschudi, “Characterisation of rare earth selective emitters for thermophotovoltaic applications,” Solar Energy Materials and Solar Cells 73, 221–234 (2002).
[Crossref]

Economou, E.

G. Kenanakis, C. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. Economou, and C. Soukoulis, “Perfect absorbers based on metal–insulator–metal structures in the visible region: a simple approach for practical applications,” Applied Physics A 123, 77 (2017).
[Crossref]

G. Kajtár, M. Kafesaki, E. Economou, and C. Soukoulis, “Theoretical model of homogeneous metal–insulator–metal perfect multi-band absorbers for the visible spectrum,” Journal of Physics D: Applied Physics 49, 055104 (2016).
[Crossref]

Fan, H.

W. Becker, A. Ramdas, and H. Fan, “Energy band structure of gallium antimonide,” Journal of Applied Physics 32, 2094–2102 (1961).
[Crossref]

Fan, S.

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1, 32–38 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref] [PubMed]

Farmer, S. C.

R. A. Lowe, D. L. Chubb, S. C. Farmer, and B. S. Good, “Rare–earth garnet selective emitter,” Applied Physics Letters 64, 3551–3553 (1994).
[Crossref]

Ferrera, M.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, and et al., “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial,” Laser & Photonics Reviews 9, 120–127 (2015).
[Crossref]

Feser, J. P.

B. Saha, Y. R. Koh, J. P. Feser, S. Sadasivam, T. S. Fisher, A. Shakouri, and T. D. Sands, “Phonon wave effects in the thermal transport of epitaxial TiN/(Al, Sc) N metal/semiconductor superlattices,” Journal of Applied Physics 121, 015109 (2017).
[Crossref]

Fisher, T.

B. Saha, Y. R. Koh, J. Comparan, S. Sadasivam, J. L. Schroeder, M. Garbrecht, A. Mohammed, J. Birch, T. Fisher, A. Shakouri, and et al., “Cross-plane thermal conductivity of (Ti, W) N/(Al, Sc) N metal/semiconductor superlattices,” Physical Review B 93, 045311 (2016).
[Crossref]

Fisher, T. S.

B. Saha, Y. R. Koh, J. P. Feser, S. Sadasivam, T. S. Fisher, A. Shakouri, and T. D. Sands, “Phonon wave effects in the thermal transport of epitaxial TiN/(Al, Sc) N metal/semiconductor superlattices,” Journal of Applied Physics 121, 015109 (2017).
[Crossref]

Flewitt, A. J.

C. Williams, G. Rughoobur, A. J. Flewitt, and T. D. Wilkinson, “Single-step fabrication of thin-film linear variable bandpass filters based on metal–insulator–metal geometry,” Applied Optics 55, 9237–9241 (2016).
[Crossref]

Flory, F.

P. Bousquet, F. Flory, and P. Roche, “Scattering from multilayer thin films: theory and experiment,” Journal of the Optical Society of America 71, 1115–1123 (1981).
[Crossref]

Fu, Q.

J. Zhu, Q. Fu, Y. Xue, and Z. Cui, “Accurate thermodynamic relations of the melting temperature of nanocrystals with different shapes and pure theoretical calculation,” Materials Chemistry and Physics 192, 22–28 (2017).
[Crossref]

Garbrecht, M.

B. Saha, Y. R. Koh, J. Comparan, S. Sadasivam, J. L. Schroeder, M. Garbrecht, A. Mohammed, J. Birch, T. Fisher, A. Shakouri, and et al., “Cross-plane thermal conductivity of (Ti, W) N/(Al, Sc) N metal/semiconductor superlattices,” Physical Review B 93, 045311 (2016).
[Crossref]

J. L. Schroeder, B. Saha, M. Garbrecht, N. Schell, T. D. Sands, and J. Birch, “Thermal stability of epitaxial cubic-tin/(al, sc) n metal/semiconductor superlattices,” Journal of materials science 50, 3200–3206 (2015).
[Crossref]

Gong, H.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Applied Physics Letters 104, 221107 (2014).
[Crossref]

Good, B. S.

R. A. Lowe, D. L. Chubb, S. C. Farmer, and B. S. Good, “Rare–earth garnet selective emitter,” Applied Physics Letters 64, 3551–3553 (1994).
[Crossref]

Gourley, S.

S. Gourley and P. Lissberger, “Optical scattering in multilayer thin films,” Journal of Modern Optics 26, 117–143 (1979).

Greffet, J.-J.

J.-J. Greffet and M. Nieto-Vesperinas, “Field theory for generalized bidirectional reflectivity: derivation of helmholtz’s reciprocity principle and kirchhoff’s law,” Journal of the Optical Society of America A 15, 2735–2744 (1998).
[Crossref]

Guan, J.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Advanced Materials 26, 7959–7965 (2014).
[Crossref] [PubMed]

Guazzoni, G.

G. Guazzoni, E. Kittl, and S. Shapiro, “Rare earth radiators for thermophotovoltaic energy conversion,” in “Electron Devices Meeting, 1968 International,” (IEEE, 1968), pp. 130.

Guler, U.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Advanced Materials 26, 7959–7965 (2014).
[Crossref] [PubMed]

Harder, N.-P.

N.-P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semiconductor Science and Technology 18, S151 (2003).
[Crossref]

Inganäs, O.

L. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” Journal of Applied Physics 86, 487–496 (1999).
[Crossref]

Irudayaraj, J.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, and et al., “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial,” Laser & Photonics Reviews 9, 120–127 (2015).
[Crossref]

Jenkins, P. P.

D. L. Chubb, A. T. Pal, M. O. Patton, and P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” Journal of the European Ceramic Society 19, 2551–2562 (1999).
[Crossref]

Jesser, W.

P. Couchman and W. Jesser, “Thermodynamic theory of size dependence of melting temperature in metals,” Nature 269, 481 (1977).
[Crossref]

John, J.

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Physical Review B 84, 075102 (2011).
[Crossref]

Johnson, P. B.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Physical Review B 6, 4370 (1972).
[Crossref]

Kafesaki, M.

G. Kenanakis, C. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. Economou, and C. Soukoulis, “Perfect absorbers based on metal–insulator–metal structures in the visible region: a simple approach for practical applications,” Applied Physics A 123, 77 (2017).
[Crossref]

G. Kajtár, M. Kafesaki, E. Economou, and C. Soukoulis, “Theoretical model of homogeneous metal–insulator–metal perfect multi-band absorbers for the visible spectrum,” Journal of Physics D: Applied Physics 49, 055104 (2016).
[Crossref]

Kajtár, G.

G. Kajtár, M. Kafesaki, E. Economou, and C. Soukoulis, “Theoretical model of homogeneous metal–insulator–metal perfect multi-band absorbers for the visible spectrum,” Journal of Physics D: Applied Physics 49, 055104 (2016).
[Crossref]

Kalfagiannis, N.

P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Materials Science and Engineering: R: Reports 123, 1–55 (2018).
[Crossref]

Kassavetis, S.

P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Materials Science and Engineering: R: Reports 123, 1–55 (2018).
[Crossref]

Katsarakis, N.

G. Kenanakis, C. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. Economou, and C. Soukoulis, “Perfect absorbers based on metal–insulator–metal structures in the visible region: a simple approach for practical applications,” Applied Physics A 123, 77 (2017).
[Crossref]

Kenanakis, G.

G. Kenanakis, C. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. Economou, and C. Soukoulis, “Perfect absorbers based on metal–insulator–metal structures in the visible region: a simple approach for practical applications,” Applied Physics A 123, 77 (2017).
[Crossref]

Kildishev, A. V.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, and et al., “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial,” Laser & Photonics Reviews 9, 120–127 (2015).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Advanced Materials 26, 7959–7965 (2014).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Optical Materials Express 2, 478–489 (2012).
[Crossref]

Kinsey, N.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Advanced Materials 26, 7959–7965 (2014).
[Crossref] [PubMed]

Kittl, E.

G. Guazzoni, E. Kittl, and S. Shapiro, “Rare earth radiators for thermophotovoltaic energy conversion,” in “Electron Devices Meeting, 1968 International,” (IEEE, 1968), pp. 130.

Klimov, V. V.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, and et al., “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial,” Laser & Photonics Reviews 9, 120–127 (2015).
[Crossref]

Koh, Y. R.

B. Saha, Y. R. Koh, J. P. Feser, S. Sadasivam, T. S. Fisher, A. Shakouri, and T. D. Sands, “Phonon wave effects in the thermal transport of epitaxial TiN/(Al, Sc) N metal/semiconductor superlattices,” Journal of Applied Physics 121, 015109 (2017).
[Crossref]

B. Saha, Y. R. Koh, J. Comparan, S. Sadasivam, J. L. Schroeder, M. Garbrecht, A. Mohammed, J. Birch, T. Fisher, A. Shakouri, and et al., “Cross-plane thermal conductivity of (Ti, W) N/(Al, Sc) N metal/semiconductor superlattices,” Physical Review B 93, 045311 (2016).
[Crossref]

Kohiyama, A.

M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” Journal of Photonics for Energy 5, 053099 (2015).
[Crossref]

Kristensen, P. K.

M. Chirumamilla, A. Chirumamilla, Y. Yang, A. S. Roberts, P. K. Kristensen, K. Chaudhuri, A. Boltasseva, D. S. Sutherland, S. I. Bozhevolnyi, and K. Pedersen, “Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3d titanium nitride nanopillars,” Advanced Optical Materials 5, 1700552 (2017).
[Crossref]

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications,” Optical Materials Express 6, 2704–2714 (2016).
[Crossref]

Lagutchev, A.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, and et al., “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial,” Laser & Photonics Reviews 9, 120–127 (2015).
[Crossref]

Lekka, C.

P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Materials Science and Engineering: R: Reports 123, 1–55 (2018).
[Crossref]

Lenert, A.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature Nanotechnology 9, 126–130 (2014).
[Crossref] [PubMed]

Li, Q.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Applied Physics Letters 104, 221107 (2014).
[Crossref]

Li, W.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Advanced Materials 26, 7959–7965 (2014).
[Crossref] [PubMed]

Lidorikis, E.

P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Materials Science and Engineering: R: Reports 123, 1–55 (2018).
[Crossref]

Lissberger, P.

S. Gourley and P. Lissberger, “Optical scattering in multilayer thin films,” Journal of Modern Optics 26, 117–143 (1979).

Liu, J.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, and et al., “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial,” Laser & Photonics Reviews 9, 120–127 (2015).
[Crossref]

Loomis, J.

L. A. Weinstein, J. Loomis, B. Bhatia, D. M. Bierman, E. N. Wang, and G. Chen, “Concentrating solar power,” Chemical Reviews 115, 12797–12838 (2015).
[Crossref] [PubMed]

Lowe, R. A.

R. A. Lowe, D. L. Chubb, S. C. Farmer, and B. S. Good, “Rare–earth garnet selective emitter,” Applied Physics Letters 64, 3551–3553 (1994).
[Crossref]

Mavidis, C. P.

G. Kenanakis, C. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. Economou, and C. Soukoulis, “Perfect absorbers based on metal–insulator–metal structures in the visible region: a simple approach for practical applications,” Applied Physics A 123, 77 (2017).
[Crossref]

Mayor, J.-C.

B. Bitnar, W. Durisch, J.-C. Mayor, H. Sigg, and H. Tschudi, “Characterisation of rare earth selective emitters for thermophotovoltaic applications,” Solar Energy Materials and Solar Cells 73, 221–234 (2002).
[Crossref]

Meng, L.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Applied Physics Letters 104, 221107 (2014).
[Crossref]

Milder, A.

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Physical Review B 84, 075102 (2011).
[Crossref]

Mohammed, A.

B. Saha, Y. R. Koh, J. Comparan, S. Sadasivam, J. L. Schroeder, M. Garbrecht, A. Mohammed, J. Birch, T. Fisher, A. Shakouri, and et al., “Cross-plane thermal conductivity of (Ti, W) N/(Al, Sc) N metal/semiconductor superlattices,” Physical Review B 93, 045311 (2016).
[Crossref]

Naik, G. V.

B. Saha, G. V. Naik, S. Saber, C. Akatay, E. A. Stach, V. M. Shalaev, A. Boltasseva, and T. D. Sands, “TiN/(Al, Sc) N metal/dielectric superlattices and multilayers as hyperbolic metamaterials in the visible spectral range,” Physical Review B 90, 125420 (2014).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Advanced Materials 26, 7959–7965 (2014).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Optical Materials Express 2, 478–489 (2012).
[Crossref]

Nam, Y.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature Nanotechnology 9, 126–130 (2014).
[Crossref] [PubMed]

Ni, X.

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Optical Materials Express 2, 478–489 (2012).
[Crossref]

Nielsen, M. G.

A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Broadband plasmonic half-wave plates in reflection,” Optics letters 38, 513–515 (2013).
[Crossref] [PubMed]

Nieto-Vesperinas, M.

J.-J. Greffet and M. Nieto-Vesperinas, “Field theory for generalized bidirectional reflectivity: derivation of helmholtz’s reciprocity principle and kirchhoff’s law,” Journal of the Optical Society of America A 15, 2735–2744 (1998).
[Crossref]

Pal, A. T.

D. L. Chubb, A. T. Pal, M. O. Patton, and P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” Journal of the European Ceramic Society 19, 2551–2562 (1999).
[Crossref]

Patsalas, P.

P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Materials Science and Engineering: R: Reports 123, 1–55 (2018).
[Crossref]

Patton, M. O.

D. L. Chubb, A. T. Pal, M. O. Patton, and P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” Journal of the European Ceramic Society 19, 2551–2562 (1999).
[Crossref]

Pawlow, P.

P. Pawlow, “The dependency of the melting point on the surface energy of a solid body,” Zeitschrift für Physikalische Chemie 65, 545–548 (1909).

Pedersen, K.

M. Chirumamilla, A. Chirumamilla, Y. Yang, A. S. Roberts, P. K. Kristensen, K. Chaudhuri, A. Boltasseva, D. S. Sutherland, S. I. Bozhevolnyi, and K. Pedersen, “Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3d titanium nitride nanopillars,” Advanced Optical Materials 5, 1700552 (2017).
[Crossref]

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications,” Optical Materials Express 6, 2704–2714 (2016).
[Crossref]

A. S. Roberts, M. Chirumamilla, K. Thilsing-Hansen, K. Pedersen, and S. I. Bozhevolnyi, “Near-infrared tailored thermal emission from wafer-scale continuous-film resonators,” Optics Express 23, A1111–A1119 (2015).
[Crossref] [PubMed]

Pettersson, L. A.

L. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” Journal of Applied Physics 86, 487–496 (1999).
[Crossref]

Pierson, H. O.

H. O. Pierson, Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Apps. (William Andrew, 1996).

Pors, A.

A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Broadband plasmonic half-wave plates in reflection,” Optics letters 38, 513–515 (2013).
[Crossref] [PubMed]

Qi, W.

W. Qi, “Size effect on melting temperature of nanosolids,” Physica B: Condensed Matter 368, 46–50 (2005).
[Crossref]

Qiu, M.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Applied Physics Letters 104, 221107 (2014).
[Crossref]

Quarrington, J.

V. Roberts and J. Quarrington, “Accurate measurements of absorption in indium antimonide and gallium antimonide,” J. Electronics 1, 152–160 (1955).

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” Journal of Applied Physics 32, 510–519 (1961).
[Crossref]

Raman, A.

Raman, A. P.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref] [PubMed]

Ramdas, A.

W. Becker, A. Ramdas, and H. Fan, “Energy band structure of gallium antimonide,” Journal of Applied Physics 32, 2094–2102 (1961).
[Crossref]

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref] [PubMed]

Roberts, A. S.

M. Chirumamilla, A. Chirumamilla, Y. Yang, A. S. Roberts, P. K. Kristensen, K. Chaudhuri, A. Boltasseva, D. S. Sutherland, S. I. Bozhevolnyi, and K. Pedersen, “Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3d titanium nitride nanopillars,” Advanced Optical Materials 5, 1700552 (2017).
[Crossref]

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications,” Optical Materials Express 6, 2704–2714 (2016).
[Crossref]

A. S. Roberts, M. Chirumamilla, K. Thilsing-Hansen, K. Pedersen, and S. I. Bozhevolnyi, “Near-infrared tailored thermal emission from wafer-scale continuous-film resonators,” Optics Express 23, A1111–A1119 (2015).
[Crossref] [PubMed]

Roberts, V.

V. Roberts and J. Quarrington, “Accurate measurements of absorption in indium antimonide and gallium antimonide,” J. Electronics 1, 152–160 (1955).

Roche, P.

P. Bousquet, F. Flory, and P. Roche, “Scattering from multilayer thin films: theory and experiment,” Journal of the Optical Society of America 71, 1115–1123 (1981).
[Crossref]

Roman, L. S.

L. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” Journal of Applied Physics 86, 487–496 (1999).
[Crossref]

Romero, M.

M. Romero and A. Steinfeld, “Concentrating solar thermal power and thermochemical fuels,” Energy & Environmental Science 5, 9234–9245 (2012).
[Crossref]

Rughoobur, G.

C. Williams, G. Rughoobur, A. J. Flewitt, and T. D. Wilkinson, “Single-step fabrication of thin-film linear variable bandpass filters based on metal–insulator–metal geometry,” Applied Optics 55, 9237–9241 (2016).
[Crossref]

Saber, S.

B. Saha, G. V. Naik, S. Saber, C. Akatay, E. A. Stach, V. M. Shalaev, A. Boltasseva, and T. D. Sands, “TiN/(Al, Sc) N metal/dielectric superlattices and multilayers as hyperbolic metamaterials in the visible spectral range,” Physical Review B 90, 125420 (2014).
[Crossref]

Sadasivam, S.

B. Saha, Y. R. Koh, J. P. Feser, S. Sadasivam, T. S. Fisher, A. Shakouri, and T. D. Sands, “Phonon wave effects in the thermal transport of epitaxial TiN/(Al, Sc) N metal/semiconductor superlattices,” Journal of Applied Physics 121, 015109 (2017).
[Crossref]

B. Saha, Y. R. Koh, J. Comparan, S. Sadasivam, J. L. Schroeder, M. Garbrecht, A. Mohammed, J. Birch, T. Fisher, A. Shakouri, and et al., “Cross-plane thermal conductivity of (Ti, W) N/(Al, Sc) N metal/semiconductor superlattices,” Physical Review B 93, 045311 (2016).
[Crossref]

Saha, B.

B. Saha, Y. R. Koh, J. P. Feser, S. Sadasivam, T. S. Fisher, A. Shakouri, and T. D. Sands, “Phonon wave effects in the thermal transport of epitaxial TiN/(Al, Sc) N metal/semiconductor superlattices,” Journal of Applied Physics 121, 015109 (2017).
[Crossref]

B. Saha, Y. R. Koh, J. Comparan, S. Sadasivam, J. L. Schroeder, M. Garbrecht, A. Mohammed, J. Birch, T. Fisher, A. Shakouri, and et al., “Cross-plane thermal conductivity of (Ti, W) N/(Al, Sc) N metal/semiconductor superlattices,” Physical Review B 93, 045311 (2016).
[Crossref]

J. L. Schroeder, B. Saha, M. Garbrecht, N. Schell, T. D. Sands, and J. Birch, “Thermal stability of epitaxial cubic-tin/(al, sc) n metal/semiconductor superlattices,” Journal of materials science 50, 3200–3206 (2015).
[Crossref]

B. Saha, G. V. Naik, S. Saber, C. Akatay, E. A. Stach, V. M. Shalaev, A. Boltasseva, and T. D. Sands, “TiN/(Al, Sc) N metal/dielectric superlattices and multilayers as hyperbolic metamaterials in the visible spectral range,” Physical Review B 90, 125420 (2014).
[Crossref]

Sands, T. D.

B. Saha, Y. R. Koh, J. P. Feser, S. Sadasivam, T. S. Fisher, A. Shakouri, and T. D. Sands, “Phonon wave effects in the thermal transport of epitaxial TiN/(Al, Sc) N metal/semiconductor superlattices,” Journal of Applied Physics 121, 015109 (2017).
[Crossref]

J. L. Schroeder, B. Saha, M. Garbrecht, N. Schell, T. D. Sands, and J. Birch, “Thermal stability of epitaxial cubic-tin/(al, sc) n metal/semiconductor superlattices,” Journal of materials science 50, 3200–3206 (2015).
[Crossref]

B. Saha, G. V. Naik, S. Saber, C. Akatay, E. A. Stach, V. M. Shalaev, A. Boltasseva, and T. D. Sands, “TiN/(Al, Sc) N metal/dielectric superlattices and multilayers as hyperbolic metamaterials in the visible spectral range,” Physical Review B 90, 125420 (2014).
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Optical Materials Express 2, 478–489 (2012).
[Crossref]

Savoy, S.

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Physical Review B 84, 075102 (2011).
[Crossref]

Schell, N.

J. L. Schroeder, B. Saha, M. Garbrecht, N. Schell, T. D. Sands, and J. Birch, “Thermal stability of epitaxial cubic-tin/(al, sc) n metal/semiconductor superlattices,” Journal of materials science 50, 3200–3206 (2015).
[Crossref]

Schroeder, J. L.

B. Saha, Y. R. Koh, J. Comparan, S. Sadasivam, J. L. Schroeder, M. Garbrecht, A. Mohammed, J. Birch, T. Fisher, A. Shakouri, and et al., “Cross-plane thermal conductivity of (Ti, W) N/(Al, Sc) N metal/semiconductor superlattices,” Physical Review B 93, 045311 (2016).
[Crossref]

J. L. Schroeder, B. Saha, M. Garbrecht, N. Schell, T. D. Sands, and J. Birch, “Thermal stability of epitaxial cubic-tin/(al, sc) n metal/semiconductor superlattices,” Journal of materials science 50, 3200–3206 (2015).
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Optical Materials Express 2, 478–489 (2012).
[Crossref]

Shakouri, A.

B. Saha, Y. R. Koh, J. P. Feser, S. Sadasivam, T. S. Fisher, A. Shakouri, and T. D. Sands, “Phonon wave effects in the thermal transport of epitaxial TiN/(Al, Sc) N metal/semiconductor superlattices,” Journal of Applied Physics 121, 015109 (2017).
[Crossref]

B. Saha, Y. R. Koh, J. Comparan, S. Sadasivam, J. L. Schroeder, M. Garbrecht, A. Mohammed, J. Birch, T. Fisher, A. Shakouri, and et al., “Cross-plane thermal conductivity of (Ti, W) N/(Al, Sc) N metal/semiconductor superlattices,” Physical Review B 93, 045311 (2016).
[Crossref]

Shalaev, V. M.

B. Saha, G. V. Naik, S. Saber, C. Akatay, E. A. Stach, V. M. Shalaev, A. Boltasseva, and T. D. Sands, “TiN/(Al, Sc) N metal/dielectric superlattices and multilayers as hyperbolic metamaterials in the visible spectral range,” Physical Review B 90, 125420 (2014).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Advanced Materials 26, 7959–7965 (2014).
[Crossref] [PubMed]

Shalaginov, M. Y.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, and et al., “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial,” Laser & Photonics Reviews 9, 120–127 (2015).
[Crossref]

Shapiro, S.

G. Guazzoni, E. Kittl, and S. Shapiro, “Rare earth radiators for thermophotovoltaic energy conversion,” in “Electron Devices Meeting, 1968 International,” (IEEE, 1968), pp. 130.

Shi, N. N.

N. N. Shi, C.-C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in saharan silver ants,” Science 349, 298–301 (2015).
[Crossref] [PubMed]

Shimizu, M.

M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” Journal of Photonics for Energy 5, 053099 (2015).
[Crossref]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” Journal of Applied Physics 32, 510–519 (1961).
[Crossref]

Shvets, G.

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Physical Review B 84, 075102 (2011).
[Crossref]

Sigg, H.

B. Bitnar, W. Durisch, J.-C. Mayor, H. Sigg, and H. Tschudi, “Characterisation of rare earth selective emitters for thermophotovoltaic applications,” Solar Energy Materials and Solar Cells 73, 221–234 (2002).
[Crossref]

Smolyaninov, A. N.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, and et al., “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial,” Laser & Photonics Reviews 9, 120–127 (2015).
[Crossref]

Soljacic, M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature Nanotechnology 9, 126–130 (2014).
[Crossref] [PubMed]

Soukoulis, C.

G. Kenanakis, C. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. Economou, and C. Soukoulis, “Perfect absorbers based on metal–insulator–metal structures in the visible region: a simple approach for practical applications,” Applied Physics A 123, 77 (2017).
[Crossref]

G. Kajtár, M. Kafesaki, E. Economou, and C. Soukoulis, “Theoretical model of homogeneous metal–insulator–metal perfect multi-band absorbers for the visible spectrum,” Journal of Physics D: Applied Physics 49, 055104 (2016).
[Crossref]

Stach, E. A.

B. Saha, G. V. Naik, S. Saber, C. Akatay, E. A. Stach, V. M. Shalaev, A. Boltasseva, and T. D. Sands, “TiN/(Al, Sc) N metal/dielectric superlattices and multilayers as hyperbolic metamaterials in the visible spectral range,” Physical Review B 90, 125420 (2014).
[Crossref]

Steinfeld, A.

M. Romero and A. Steinfeld, “Concentrating solar thermal power and thermochemical fuels,” Energy & Environmental Science 5, 9234–9245 (2012).
[Crossref]

Sutherland, D. S.

M. Chirumamilla, A. Chirumamilla, Y. Yang, A. S. Roberts, P. K. Kristensen, K. Chaudhuri, A. Boltasseva, D. S. Sutherland, S. I. Bozhevolnyi, and K. Pedersen, “Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3d titanium nitride nanopillars,” Advanced Optical Materials 5, 1700552 (2017).
[Crossref]

Takagi, M.

M. Takagi, “Electron-diffraction study of liquid-solid transition of thin metal films,” Journal of the Physical Society of Japan 9, 359–363 (1954).
[Crossref]

Thilsing-Hansen, K.

A. S. Roberts, M. Chirumamilla, K. Thilsing-Hansen, K. Pedersen, and S. I. Bozhevolnyi, “Near-infrared tailored thermal emission from wafer-scale continuous-film resonators,” Optics Express 23, A1111–A1119 (2015).
[Crossref] [PubMed]

Tikhonravov, A. V.

A. V. Tikhonravov and M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Applied Optics 51, 7319–7332 (2012).
[Crossref] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Applied Optics 35, 5493–5508 (1996).
[Crossref] [PubMed]

Tobler, W.

W. Tobler and W. Durisch, “Plasma-spray coated rare-earth oxides on molybdenum disilicide–high temperature stable emitters for thermophotovoltaics,” Applied Energy 85, 371–383 (2008).
[Crossref]

Trubetskov, M. K.

A. V. Tikhonravov and M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Applied Optics 51, 7319–7332 (2012).
[Crossref] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Applied Optics 35, 5493–5508 (1996).
[Crossref] [PubMed]

Tsai, C.-C.

N. N. Shi, C.-C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in saharan silver ants,” Science 349, 298–301 (2015).
[Crossref] [PubMed]

Tschudi, H.

B. Bitnar, W. Durisch, J.-C. Mayor, H. Sigg, and H. Tschudi, “Characterisation of rare earth selective emitters for thermophotovoltaic applications,” Solar Energy Materials and Solar Cells 73, 221–234 (2002).
[Crossref]

Vasilaki, E.

G. Kenanakis, C. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. Economou, and C. Soukoulis, “Perfect absorbers based on metal–insulator–metal structures in the visible region: a simple approach for practical applications,” Applied Physics A 123, 77 (2017).
[Crossref]

Vorobyov, V. V.

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, and et al., “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial,” Laser & Photonics Reviews 9, 120–127 (2015).
[Crossref]

Wang, D.

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications,” Optical Materials Express 6, 2704–2714 (2016).
[Crossref]

Wang, E. N.

L. A. Weinstein, J. Loomis, B. Bhatia, D. M. Bierman, E. N. Wang, and G. Chen, “Concentrating solar power,” Chemical Reviews 115, 12797–12838 (2015).
[Crossref] [PubMed]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature Nanotechnology 9, 126–130 (2014).
[Crossref] [PubMed]

Wang, K. X.

Wautelet, M.

M. Wautelet, “On the shape dependence of the melting temperature of small particles,” Physics Letters A 246, 341–342 (1998).
[Crossref]

Wehner, R.

N. N. Shi, C.-C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in saharan silver ants,” Science 349, 298–301 (2015).
[Crossref] [PubMed]

Weinstein, L. A.

L. A. Weinstein, J. Loomis, B. Bhatia, D. M. Bierman, E. N. Wang, and G. Chen, “Concentrating solar power,” Chemical Reviews 115, 12797–12838 (2015).
[Crossref] [PubMed]

Wilkinson, T. D.

C. Williams, G. Rughoobur, A. J. Flewitt, and T. D. Wilkinson, “Single-step fabrication of thin-film linear variable bandpass filters based on metal–insulator–metal geometry,” Applied Optics 55, 9237–9241 (2016).
[Crossref]

Williams, C.

C. Williams, G. Rughoobur, A. J. Flewitt, and T. D. Wilkinson, “Single-step fabrication of thin-film linear variable bandpass filters based on metal–insulator–metal geometry,” Applied Optics 55, 9237–9241 (2016).
[Crossref]

Wu, C.

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Physical Review B 84, 075102 (2011).
[Crossref]

Würfel, P.

N.-P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semiconductor Science and Technology 18, S151 (2003).
[Crossref]

Xue, Y.

J. Zhu, Q. Fu, Y. Xue, and Z. Cui, “Accurate thermodynamic relations of the melting temperature of nanocrystals with different shapes and pure theoretical calculation,” Materials Chemistry and Physics 192, 22–28 (2017).
[Crossref]

Yan, M.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Applied Physics Letters 104, 221107 (2014).
[Crossref]

M. Yan, “Metal–insulator–metal light absorber: a continuous structure,” Journal of Optics 15, 025006 (2013).
[Crossref]

Yang, Y.

M. Chirumamilla, A. Chirumamilla, Y. Yang, A. S. Roberts, P. K. Kristensen, K. Chaudhuri, A. Boltasseva, D. S. Sutherland, S. I. Bozhevolnyi, and K. Pedersen, “Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3d titanium nitride nanopillars,” Advanced Optical Materials 5, 1700552 (2017).
[Crossref]

Yu, N.

N. N. Shi, C.-C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in saharan silver ants,” Science 349, 298–301 (2015).
[Crossref] [PubMed]

Yugami, H.

M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” Journal of Photonics for Energy 5, 053099 (2015).
[Crossref]

Zhao, D.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Applied Physics Letters 104, 221107 (2014).
[Crossref]

Zhu, J.

J. Zhu, Q. Fu, Y. Xue, and Z. Cui, “Accurate thermodynamic relations of the melting temperature of nanocrystals with different shapes and pure theoretical calculation,” Materials Chemistry and Physics 192, 22–28 (2017).
[Crossref]

Zhu, L.

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1, 32–38 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref] [PubMed]

Zollars, B.

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Physical Review B 84, 075102 (2011).
[Crossref]

Advanced Materials (1)

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Advanced Materials 26, 7959–7965 (2014).
[Crossref] [PubMed]

Advanced Optical Materials (1)

M. Chirumamilla, A. Chirumamilla, Y. Yang, A. S. Roberts, P. K. Kristensen, K. Chaudhuri, A. Boltasseva, D. S. Sutherland, S. I. Bozhevolnyi, and K. Pedersen, “Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3d titanium nitride nanopillars,” Advanced Optical Materials 5, 1700552 (2017).
[Crossref]

Applied Energy (1)

W. Tobler and W. Durisch, “Plasma-spray coated rare-earth oxides on molybdenum disilicide–high temperature stable emitters for thermophotovoltaics,” Applied Energy 85, 371–383 (2008).
[Crossref]

Applied Optics (5)

B. G. Bovard, “Derivation of a matrix describing a rugate dielectric thin film,” Applied Optics 27, 1998–2005 (1988).
[Crossref] [PubMed]

B. G. Bovard, “Rugate filter design: the modified fourier transform technique,” Applied Optics 29, 24–30 (1990).
[Crossref] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Applied Optics 35, 5493–5508 (1996).
[Crossref] [PubMed]

A. V. Tikhonravov and M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Applied Optics 51, 7319–7332 (2012).
[Crossref] [PubMed]

C. Williams, G. Rughoobur, A. J. Flewitt, and T. D. Wilkinson, “Single-step fabrication of thin-film linear variable bandpass filters based on metal–insulator–metal geometry,” Applied Optics 55, 9237–9241 (2016).
[Crossref]

Applied Physics A (1)

G. Kenanakis, C. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. Economou, and C. Soukoulis, “Perfect absorbers based on metal–insulator–metal structures in the visible region: a simple approach for practical applications,” Applied Physics A 123, 77 (2017).
[Crossref]

Applied Physics Letters (2)

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Applied Physics Letters 104, 221107 (2014).
[Crossref]

R. A. Lowe, D. L. Chubb, S. C. Farmer, and B. S. Good, “Rare–earth garnet selective emitter,” Applied Physics Letters 64, 3551–3553 (1994).
[Crossref]

Chemical Reviews (1)

L. A. Weinstein, J. Loomis, B. Bhatia, D. M. Bierman, E. N. Wang, and G. Chen, “Concentrating solar power,” Chemical Reviews 115, 12797–12838 (2015).
[Crossref] [PubMed]

Energy & Environmental Science (1)

M. Romero and A. Steinfeld, “Concentrating solar thermal power and thermochemical fuels,” Energy & Environmental Science 5, 9234–9245 (2012).
[Crossref]

J. Electronics (1)

V. Roberts and J. Quarrington, “Accurate measurements of absorption in indium antimonide and gallium antimonide,” J. Electronics 1, 152–160 (1955).

Journal of Applied Physics (4)

W. Becker, A. Ramdas, and H. Fan, “Energy band structure of gallium antimonide,” Journal of Applied Physics 32, 2094–2102 (1961).
[Crossref]

L. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” Journal of Applied Physics 86, 487–496 (1999).
[Crossref]

B. Saha, Y. R. Koh, J. P. Feser, S. Sadasivam, T. S. Fisher, A. Shakouri, and T. D. Sands, “Phonon wave effects in the thermal transport of epitaxial TiN/(Al, Sc) N metal/semiconductor superlattices,” Journal of Applied Physics 121, 015109 (2017).
[Crossref]

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” Journal of Applied Physics 32, 510–519 (1961).
[Crossref]

Journal of materials science (1)

J. L. Schroeder, B. Saha, M. Garbrecht, N. Schell, T. D. Sands, and J. Birch, “Thermal stability of epitaxial cubic-tin/(al, sc) n metal/semiconductor superlattices,” Journal of materials science 50, 3200–3206 (2015).
[Crossref]

Journal of Modern Optics (1)

S. Gourley and P. Lissberger, “Optical scattering in multilayer thin films,” Journal of Modern Optics 26, 117–143 (1979).

Journal of Optics (1)

M. Yan, “Metal–insulator–metal light absorber: a continuous structure,” Journal of Optics 15, 025006 (2013).
[Crossref]

Journal of Photonics for Energy (1)

M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” Journal of Photonics for Energy 5, 053099 (2015).
[Crossref]

Journal of Physics D: Applied Physics (1)

G. Kajtár, M. Kafesaki, E. Economou, and C. Soukoulis, “Theoretical model of homogeneous metal–insulator–metal perfect multi-band absorbers for the visible spectrum,” Journal of Physics D: Applied Physics 49, 055104 (2016).
[Crossref]

Journal of the European Ceramic Society (1)

D. L. Chubb, A. T. Pal, M. O. Patton, and P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” Journal of the European Ceramic Society 19, 2551–2562 (1999).
[Crossref]

Journal of the Optical Society of America (1)

P. Bousquet, F. Flory, and P. Roche, “Scattering from multilayer thin films: theory and experiment,” Journal of the Optical Society of America 71, 1115–1123 (1981).
[Crossref]

Journal of the Optical Society of America A (1)

J.-J. Greffet and M. Nieto-Vesperinas, “Field theory for generalized bidirectional reflectivity: derivation of helmholtz’s reciprocity principle and kirchhoff’s law,” Journal of the Optical Society of America A 15, 2735–2744 (1998).
[Crossref]

Journal of the Physical Society of Japan (1)

M. Takagi, “Electron-diffraction study of liquid-solid transition of thin metal films,” Journal of the Physical Society of Japan 9, 359–363 (1954).
[Crossref]

Laser & Photonics Reviews (1)

M. Y. Shalaginov, V. V. Vorobyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudayaraj, A. V. Kildishev, and et al., “Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial,” Laser & Photonics Reviews 9, 120–127 (2015).
[Crossref]

Materials Chemistry and Physics (1)

J. Zhu, Q. Fu, Y. Xue, and Z. Cui, “Accurate thermodynamic relations of the melting temperature of nanocrystals with different shapes and pure theoretical calculation,” Materials Chemistry and Physics 192, 22–28 (2017).
[Crossref]

Materials Science and Engineering: R: Reports (1)

P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. Bellas, C. Lekka, and E. Lidorikis, “Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Materials Science and Engineering: R: Reports 123, 1–55 (2018).
[Crossref]

Nature (2)

P. Couchman and W. Jesser, “Thermodynamic theory of size dependence of melting temperature in metals,” Nature 269, 481 (1977).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref] [PubMed]

Nature Nanotechnology (1)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature Nanotechnology 9, 126–130 (2014).
[Crossref] [PubMed]

Optica (1)

Optical Materials Express (2)

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications,” Optical Materials Express 6, 2704–2714 (2016).
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Optical Materials Express 2, 478–489 (2012).
[Crossref]

Optics Express (1)

A. S. Roberts, M. Chirumamilla, K. Thilsing-Hansen, K. Pedersen, and S. I. Bozhevolnyi, “Near-infrared tailored thermal emission from wafer-scale continuous-film resonators,” Optics Express 23, A1111–A1119 (2015).
[Crossref] [PubMed]

Optics letters (1)

A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Broadband plasmonic half-wave plates in reflection,” Optics letters 38, 513–515 (2013).
[Crossref] [PubMed]

Physica B: Condensed Matter (1)

W. Qi, “Size effect on melting temperature of nanosolids,” Physica B: Condensed Matter 368, 46–50 (2005).
[Crossref]

Physical Review B (4)

C. Wu, I. Burton Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Physical Review B 84, 075102 (2011).
[Crossref]

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Physical Review B 6, 4370 (1972).
[Crossref]

B. Saha, G. V. Naik, S. Saber, C. Akatay, E. A. Stach, V. M. Shalaev, A. Boltasseva, and T. D. Sands, “TiN/(Al, Sc) N metal/dielectric superlattices and multilayers as hyperbolic metamaterials in the visible spectral range,” Physical Review B 90, 125420 (2014).
[Crossref]

B. Saha, Y. R. Koh, J. Comparan, S. Sadasivam, J. L. Schroeder, M. Garbrecht, A. Mohammed, J. Birch, T. Fisher, A. Shakouri, and et al., “Cross-plane thermal conductivity of (Ti, W) N/(Al, Sc) N metal/semiconductor superlattices,” Physical Review B 93, 045311 (2016).
[Crossref]

Physics Letters A (1)

M. Wautelet, “On the shape dependence of the melting temperature of small particles,” Physics Letters A 246, 341–342 (1998).
[Crossref]

Science (2)

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref] [PubMed]

N. N. Shi, C.-C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in saharan silver ants,” Science 349, 298–301 (2015).
[Crossref] [PubMed]

Semiconductor Science and Technology (1)

N.-P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semiconductor Science and Technology 18, S151 (2003).
[Crossref]

Solar Energy Materials and Solar Cells (1)

B. Bitnar, W. Durisch, J.-C. Mayor, H. Sigg, and H. Tschudi, “Characterisation of rare earth selective emitters for thermophotovoltaic applications,” Solar Energy Materials and Solar Cells 73, 221–234 (2002).
[Crossref]

Zeitschrift für Physikalische Chemie (1)

P. Pawlow, “The dependency of the melting point on the surface energy of a solid body,” Zeitschrift für Physikalische Chemie 65, 545–548 (1909).

Other (2)

G. Guazzoni, E. Kittl, and S. Shapiro, “Rare earth radiators for thermophotovoltaic energy conversion,” in “Electron Devices Meeting, 1968 International,” (IEEE, 1968), pp. 130.

H. O. Pierson, Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Apps. (William Andrew, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Dielectric function of a 80 nm TiN film on a sapphire substrate (solid) compared to literature values for gold (dotted) [46]. The TiN film is grown under identical conditions as the back-reflector in the continuous-layer Fabry-Pérot resonator. (b) Wide-angle X-ray diffractogram (Bruker, Cu Kα line) of 80 nm TiN grown on sapphire. Inset: Selected area electron diffraction (SAED) from a region containing an 80 nm film and the substrate onto which it is grown. Diffraction spots marked in red and blue correspond to the planes of TiN and sapphire, respectively.
Fig. 2
Fig. 2 (a) cl-FPR schematic fabricated on a sapphire substrate (not shown). (b) Absorbance of cl-FPRs with different MgO-spacer thicknesses (other thicknesses kept constant; TiN layers 13 nm and 80 nm). (c) Absorbance for varied top layer thickness. The MgO spacer thickness is fixed at 320 nm. (d) Transmission electron micrograph of a focused ion-beam milled cross-section of the cl-FPR after deposition of gold layer for electrical conductance. Scale bar: 50 nm. (e) Transfer matrix method (TMM) calculations, corresponding to (b). (f) TMM calculations corresponding to (c).
Fig. 3
Fig. 3 Absorbance spectra obtained at room temperature from pristine (dotted) cl-FPR selective emitters and identical emitters annealed in nitrogen under atmospheric pressure for an accumulated duration of 2, 4 and 8 hours, respectively (solid) and at temperatures of 873 K (a), 973 K (b), 1073 K (c) and 1173 K (d). Insets: FTIR spectra after 8 hours of annealing, obtained at room temperature.
Fig. 4
Fig. 4 (a) Scanning transmission electron microscopy image (Scale bar: 100 nm), and element mapping images obtained by analysis of the Kα-lines from energy-dispersive x-ray analysis (b–f) for the elements, Ti, N, Mg, O and Si, of the as-fabricated structure. Similarly, for the emitter structure annealed at 1173 K is shown in (g–l). (m) Cross-sectional High resolution transmission electron microscopy image of the emitter structure (at the 80 nm thick TiN interface) annealed at 1173 K. Scale bar: 20 nm (n) Cross-sectional HR-TEM image at the top TiN film for the emitter structure annealed at 1173 K. Scale bar: 20 nm. (o–s) Fast Fourier-transforms of the selected areas marked on the HR-TEM image. Numbers in the lower right corner correspond to the areas marked in (m) and (n).
Fig. 5
Fig. 5 SEM micrographs of cl-FPRs in pristine state (a), annealed at 873 K (b, top), 973 K (b, bottom), 1073 K (c) and 1173 K (d) in N2 atmosphere at normal pressure for a total of 8 hours (1+1+2+4 hours) with 40 K/min temperature ramps and exposure to ambient air after each cycle. Scale bars: 2 μm.
Fig. 6
Fig. 6 cl-FRP reflectivity at room temperature (black) and emissivity measured at 973 K (red).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

m 2 π = ϕ prop . + ϕ r , bottom + ϕ r , top ,