Abstract

An all-normal dispersion supercontinuum generation in the range of 950 ÷ 1100 nm in photonic crystal fiber with core infiltrated with toluene is reported. The regular lattice hollow core photonic crystal fiber with a large core of 12 μm was designed and developed. The photonic crystal fiber core was selectively filled with toluene. The investigated fiber has normal dispersion in the wavelength range of 0.5 ÷ 2μm, while the absolute value of dispersion varies from 150 to 5 ps/nm/km in the range of 1 ÷ 2µm wavelength. The fiber nonlinear coefficient is 130 W−1km−1 as a result of the trade-off of high nonlinearity of toluene and a large mode area of the fundamental mode. The large mode area is required for the efficient delivery of high power pulses from large mode area input fiber in an all fiber system. As a pump source, a standard subpicosecond fiber laser emitting at 1030 nm with 10nJ pulse energy was used.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dispersion engineering in nonlinear soft glass photonic crystal fibers infiltrated with liquids

Jacek Pniewski, Tomasz Stefaniuk, Hieu Le Van, Van Cao Long, Lanh Chu Van, Rafał Kasztelanic, Grzegorz Stępniewski, Aleksandr Ramaniuk, Marek Trippenbach, and Ryszard Buczyński
Appl. Opt. 55(19) 5033-5040 (2016)

Femtosecond laser-assisted selective infiltration of microstructured optical fibers

Ying Wang, C. R. Liao, and D. N. Wang
Opt. Express 18(17) 18056-18060 (2010)

Optimization of optical properties of photonic crystal fibers infiltrated with carbon tetrachloride for supercontinuum generation with subnanojoule femtosecond pulses

Quang Ho Dinh, Jacek Pniewski, Hieu Le Van, Aleksandr Ramaniuk, Van Cao Long, Krzysztof Borzycki, Khoa Dinh Xuan, Mariusz Klimczak, and Ryszard Buczyński
Appl. Opt. 57(14) 3738-3746 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Afano, The Supercontinuum Laser Source: The Ultimate White Light (Springer-Verlag, 2016).
  2. C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
    [Crossref]
  3. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
    [Crossref] [PubMed]
  4. J. Rothhardt, S. Demmler, S. Hädrich, J. Limpert, and A. Tünnermann, “Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate,” Opt. Express 20(10), 10870–10878 (2012).
    [Crossref] [PubMed]
  5. J. M. Hodasi, A. Heidt, M. Klimczak, B. Siwicki, and T. Feurer, “Femtosecond seeding of a Tm-Ho fiber amplifier by a broadband coherent supercontinuum pulse from an all-solid all-normal photonic crystal fiber,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (IEEE, 2017), pp.17.
    [Crossref]
  6. C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
    [Crossref]
  7. A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27(3), 550–559 (2010).
    [Crossref]
  8. S. Kedenburg, T. Steinle, F. Mörz, A. Steinmann, and H. Giessen, “High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber,” Opt. Lett. 40(11), 2668–2671 (2015).
    [Crossref] [PubMed]
  9. D. D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu, M. E. Amraoui, Y. Messaddeq, M. Rochette, S. D. Jackson, and A. Fuerbach, “Toward all-fiber supercontinuum spanning the mid-infrared,” Optica 4(10), 1163–1166 (2017).
    [Crossref]
  10. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  11. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B 28(12), A11–A26 (2011).
    [Crossref]
  12. K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, and P. St. J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21(9), 10942–10953 (2013).
    [Crossref] [PubMed]
  13. M. Gebhardt, C. Gaida, F. Stutzki, S. Hädrich, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power nonlinear compression to 4 GW, sub-50 fs pulses at 2 μm wavelength,” Opt. Lett. 42(4), 747–750 (2017).
    [Crossref] [PubMed]
  14. R. M. Carter, F. Yu, W. J. Wadsworth, J. D. Shephard, T. Birks, J. C. Knight, and D. P. Hand, “Measurement of resonant bend loss in anti-resonant hollow core optical fiber,” Opt. Express 25(17), 20612–20621 (2017).
    [Crossref] [PubMed]
  15. P. P. Ho and R. R. Alfano, “Optical Kerr effect in Liquids,” Phys. Rev. A 20(5), 2170–2187 (1979).
    [Crossref]
  16. C. Wohlfarth, Refractive Indices of Pure Liquids and Binary Liquid Mixtures (Supplement to III/38), (Springer-Verlag, 2008).
  17. M. Chemnitz, C. Gaida, M. Gebhardt, F. Stutzki, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt, “Carbon chloride-core fibers for soliton mediated supercontinuum generation,” Opt. Express 26(3), 3221–3235 (2018).
    [Crossref] [PubMed]
  18. D. Churin, T. N. Nguyen, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2,” Opt. Mater. Express 3(9), 1358–1364 (2013).
    [Crossref]
  19. S. Kedenburg, T. Gissibl, T. Steinle, A. Steinmann, and H. Giessen, “Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2-2.4 μm range,” Opt. Express 23(7), 8281–8289 (2015).
    [Crossref] [PubMed]
  20. M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8(1), 42 (2017).
    [Crossref] [PubMed]
  21. M. Chemnitz, R. Scheibinger, C. Gaida, M. Gebhardt, F. Stutzki, S. Pumpe, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt, “Thermodynamic control of soliton dynamics in liquid-core fibers,” Optica 5(6), 695–703 (2018).
    [Crossref]
  22. G. Fanjoux, S. Margueron, J.-C. Beugnot, and T. Sylvestre, “Supercontinuum generation by stimulated Raman–Kerr scattering in a liquid-core optical fiber,” J. Opt. Soc. Am. B 34(8), 1677–1683 (2017).
    [Crossref]
  23. A. Bozolan, C. J. S. de Matos, C. M. B. Cordeiro, E. M. Dos Santos, and J. Travers, “Supercontinuum generation in a water-core photonic crystal fiber,” Opt. Express 16(13), 9671–9676 (2008).
    [Crossref] [PubMed]
  24. J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer, and J. Herrmann, “Two-octave supercontinuum generation in a water-filled photonic crystal fiber,” Opt. Express 18(6), 6230–6240 (2010).
    [Crossref] [PubMed]
  25. M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18(24), 25232–25240 (2010).
    [Crossref] [PubMed]
  26. L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long, M. Trippenbach, and R. Buczyński, “Supercontinuum generation in photonic crystal fibers with core filled with toluene,” J. Opt. 19(12), 125604 (2017).
    [Crossref]
  27. X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, M. Pang, R. Sopalla, M. H. Frosz, S. Poulain, M. Poulain, V. Cardin, J. C. Travers, and P. St J Russell, “Supercontinuum generation in ZBLAN glass photonic crystal fiber with six nanobore cores,” Opt. Lett. 41(18), 4245–4248 (2016).
    [Crossref] [PubMed]
  28. Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
    [Crossref]
  29. F. Wang, W. Yuan, O. Hansen, and O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express 19(18), 17585–17590 (2011).
    [Crossref] [PubMed]
  30. L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express 13(22), 9014–9022 (2005).
    [Crossref] [PubMed]
  31. International labour organization, http://www.ilo.org/dyn/icsc/showcard.home
  32. United States Environmental Protection Agency, https://www.epa.gov/haps/health-effects-notebook-hazardous-air-pollutants
  33. D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Ac.: Tech. 62(4), 667–682 (2014).
    [Crossref]
  34. K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibers,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
    [Crossref]
  35. P. Hlubina, R. Chlebusi, and D. Ciprian, “Differential group refractive index dispersion of glasses of opticalfibers measured by a white-light spectral interferometric technique,” Meas. Sci. Technol. 18(5), 1547–1552 (2007).
    [Crossref]
  36. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  37. P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731, 97310F (2016).
    [Crossref]
  38. P. Zhao, M. Reichert, S. Benis, D. J. Hagan, and E. W. V. Stryland, “Temporal and polarization dependence of the nonlinear optical response of solvents,” Optica 5(5), 583–594 (2018).
    [Crossref]
  39. A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34(4), 764–775 (2017).
    [Crossref]
  40. I. B. Gonzalo and O. Bang, “Role of the Raman gain in the noise dynamics of all-normal dispersion silica fiber supercontinuum generation,” J. Opt. Soc. Am. B 35(9), 2102–2110 (2018).
    [Crossref]
  41. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25(11), 1938–1948 (2008).
    [Crossref]
  42. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
    [Crossref] [PubMed]
  43. Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and W. P. Qin, “Supercontinuum generation covering the entire 0.4–5 μm transmission window in a tapered ultrahigh numerical aperturę all-solid fluorotellurite fiber,” Laser Phys. Lett. 15(2), 025102 (2018).
    [Crossref]

2018 (6)

2017 (8)

A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34(4), 764–775 (2017).
[Crossref]

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8(1), 42 (2017).
[Crossref] [PubMed]

L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long, M. Trippenbach, and R. Buczyński, “Supercontinuum generation in photonic crystal fibers with core filled with toluene,” J. Opt. 19(12), 125604 (2017).
[Crossref]

G. Fanjoux, S. Margueron, J.-C. Beugnot, and T. Sylvestre, “Supercontinuum generation by stimulated Raman–Kerr scattering in a liquid-core optical fiber,” J. Opt. Soc. Am. B 34(8), 1677–1683 (2017).
[Crossref]

M. Gebhardt, C. Gaida, F. Stutzki, S. Hädrich, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power nonlinear compression to 4 GW, sub-50 fs pulses at 2 μm wavelength,” Opt. Lett. 42(4), 747–750 (2017).
[Crossref] [PubMed]

R. M. Carter, F. Yu, W. J. Wadsworth, J. D. Shephard, T. Birks, J. C. Knight, and D. P. Hand, “Measurement of resonant bend loss in anti-resonant hollow core optical fiber,” Opt. Express 25(17), 20612–20621 (2017).
[Crossref] [PubMed]

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

D. D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu, M. E. Amraoui, Y. Messaddeq, M. Rochette, S. D. Jackson, and A. Fuerbach, “Toward all-fiber supercontinuum spanning the mid-infrared,” Optica 4(10), 1163–1166 (2017).
[Crossref]

2016 (2)

2015 (2)

2014 (2)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Ac.: Tech. 62(4), 667–682 (2014).
[Crossref]

2013 (2)

2012 (1)

2011 (3)

2010 (3)

2008 (2)

2007 (1)

P. Hlubina, R. Chlebusi, and D. Ciprian, “Differential group refractive index dispersion of glasses of opticalfibers measured by a white-light spectral interferometric technique,” Meas. Sci. Technol. 18(5), 1547–1552 (2007).
[Crossref]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2005 (2)

L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express 13(22), 9014–9022 (2005).
[Crossref] [PubMed]

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibers,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[Crossref]

2004 (1)

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[Crossref]

2002 (1)

1979 (1)

P. P. Ho and R. R. Alfano, “Optical Kerr effect in Liquids,” Phys. Rev. A 20(5), 2170–2187 (1979).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Abdolvand, A.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Alamgir, I.

Alfano, R. R.

P. P. Ho and R. R. Alfano, “Optical Kerr effect in Liquids,” Phys. Rev. A 20(5), 2170–2187 (1979).
[Crossref]

Amraoui, M. E.

Antipov, S.

Anuszkiewicz, A.

L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long, M. Trippenbach, and R. Buczyński, “Supercontinuum generation in photonic crystal fibers with core filled with toluene,” J. Opt. 19(12), 125604 (2017).
[Crossref]

Babic, F.

Bang, O.

I. B. Gonzalo and O. Bang, “Role of the Raman gain in the noise dynamics of all-normal dispersion silica fiber supercontinuum generation,” J. Opt. Soc. Am. B 35(9), 2102–2110 (2018).
[Crossref]

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

F. Wang, W. Yuan, O. Hansen, and O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express 19(18), 17585–17590 (2011).
[Crossref] [PubMed]

Bartelt, H.

Benis, S.

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Bethge, J.

Beugnot, J.-C.

Birks, T.

Bjarklev, A.

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibers,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[Crossref]

Bosman, G. W.

Bozolan, A.

Buczynski, R.

L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long, M. Trippenbach, and R. Buczyński, “Supercontinuum generation in photonic crystal fibers with core filled with toluene,” J. Opt. 19(12), 125604 (2017).
[Crossref]

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Ac.: Tech. 62(4), 667–682 (2014).
[Crossref]

Buzniak, J.

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Ac.: Tech. 62(4), 667–682 (2014).
[Crossref]

Cardin, V.

Carter, R. M.

Chang, W.

Chemnitz, M.

Chlebusi, R.

P. Hlubina, R. Chlebusi, and D. Ciprian, “Differential group refractive index dispersion of glasses of opticalfibers measured by a white-light spectral interferometric technique,” Meas. Sci. Technol. 18(5), 1547–1552 (2007).
[Crossref]

Churin, D.

Ciprian, D.

P. Hlubina, R. Chlebusi, and D. Ciprian, “Differential group refractive index dispersion of glasses of opticalfibers measured by a white-light spectral interferometric technique,” Meas. Sci. Technol. 18(5), 1547–1552 (2007).
[Crossref]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
[Crossref] [PubMed]

Cordeiro, C. M. B.

de Matos, C. J. S.

Demmler, S.

Demokan, M.

Dos Santos, E. M.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
[Crossref] [PubMed]

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Eggleton, B. J.

Ensley, T. R.

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731, 97310F (2016).
[Crossref]

Fanjoux, G.

Feehan, J. S.

Feurer, T.

A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34(4), 764–775 (2017).
[Crossref]

J. M. Hodasi, A. Heidt, M. Klimczak, B. Siwicki, and T. Feurer, “Femtosecond seeding of a Tm-Ho fiber amplifier by a broadband coherent supercontinuum pulse from an all-solid all-normal photonic crystal fiber,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (IEEE, 2017), pp.17.
[Crossref]

Filipkowski, A.

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Ac.: Tech. 62(4), 667–682 (2014).
[Crossref]

Finger, M. A.

Finot, C.

Franczyk, M.

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Ac.: Tech. 62(4), 667–682 (2014).
[Crossref]

Frosz, M. H.

Fuerbach, A.

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Gaida, C.

Gebhardt, M.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Giessen, H.

Gissibl, T.

Gonzalo, I. B.

Griebner, U.

Hädrich, S.

Hagan, D. J.

P. Zhao, M. Reichert, S. Benis, D. J. Hagan, and E. W. V. Stryland, “Temporal and polarization dependence of the nonlinear optical response of solvents,” Optica 5(5), 583–594 (2018).
[Crossref]

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731, 97310F (2016).
[Crossref]

Hand, D. P.

Hansen, O.

Hansen, T. P.

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibers,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[Crossref]

Harasny, K.

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Ac.: Tech. 62(4), 667–682 (2014).
[Crossref]

Hartung, A.

Heidt, A.

J. M. Hodasi, A. Heidt, M. Klimczak, B. Siwicki, and T. Feurer, “Femtosecond seeding of a Tm-Ho fiber amplifier by a broadband coherent supercontinuum pulse from an all-solid all-normal photonic crystal fiber,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (IEEE, 2017), pp.17.
[Crossref]

Heidt, A. M.

Herrmann, J.

Hlubina, P.

P. Hlubina, R. Chlebusi, and D. Ciprian, “Differential group refractive index dispersion of glasses of opticalfibers measured by a white-light spectral interferometric technique,” Meas. Sci. Technol. 18(5), 1547–1552 (2007).
[Crossref]

Ho, H.

Ho, P. P.

P. P. Ho and R. R. Alfano, “Optical Kerr effect in Liquids,” Phys. Rev. A 20(5), 2170–2187 (1979).
[Crossref]

Hodasi, J. M.

J. M. Hodasi, A. Heidt, M. Klimczak, B. Siwicki, and T. Feurer, “Femtosecond seeding of a Tm-Ho fiber amplifier by a broadband coherent supercontinuum pulse from an all-solid all-normal photonic crystal fiber,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (IEEE, 2017), pp.17.
[Crossref]

Hölzer, P.

Hoo, Y.

Hooper, L.

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

Hu, L. L.

Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and W. P. Qin, “Supercontinuum generation covering the entire 0.4–5 μm transmission window in a tapered ultrahigh numerical aperturę all-solid fluorotellurite fiber,” Laser Phys. Lett. 15(2), 025102 (2018).
[Crossref]

Hu, T.

Huang, Y.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[Crossref]

Hudson, D. D.

Huot, L.

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

Husakou, A.

Jackson, S. D.

Jauregui, C.

Jia, S. J.

Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and W. P. Qin, “Supercontinuum generation covering the entire 0.4–5 μm transmission window in a tapered ultrahigh numerical aperturę all-solid fluorotellurite fiber,” Laser Phys. Lett. 15(2), 025102 (2018).
[Crossref]

Jia, Z. X.

Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and W. P. Qin, “Supercontinuum generation covering the entire 0.4–5 μm transmission window in a tapered ultrahigh numerical aperturę all-solid fluorotellurite fiber,” Laser Phys. Lett. 15(2), 025102 (2018).
[Crossref]

Jiang, X.

Jin, W.

Joly, N. Y.

Kasztelanic, R.

L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long, M. Trippenbach, and R. Buczyński, “Supercontinuum generation in photonic crystal fibers with core filled with toluene,” J. Opt. 19(12), 125604 (2017).
[Crossref]

Kedenburg, S.

Kibler, B.

Kieu, K.

Klimczak, M.

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Ac.: Tech. 62(4), 667–682 (2014).
[Crossref]

J. M. Hodasi, A. Heidt, M. Klimczak, B. Siwicki, and T. Feurer, “Femtosecond seeding of a Tm-Ho fiber amplifier by a broadband coherent supercontinuum pulse from an all-solid all-normal photonic crystal fiber,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (IEEE, 2017), pp.17.
[Crossref]

Knight, J. C.

Kobelke, J.

Kociszewski, L.

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Ac.: Tech. 62(4), 667–682 (2014).
[Crossref]

Krok, P.

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Kuhlmey, B. T.

Kujawa, I.

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Ac.: Tech. 62(4), 667–682 (2014).
[Crossref]

Li, L.

Liao, M. S.

Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and W. P. Qin, “Supercontinuum generation covering the entire 0.4–5 μm transmission window in a tapered ultrahigh numerical aperturę all-solid fluorotellurite fiber,” Laser Phys. Lett. 15(2), 025102 (2018).
[Crossref]

Limpert, J.

Long, V. C.

L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long, M. Trippenbach, and R. Buczyński, “Supercontinuum generation in photonic crystal fibers with core filled with toluene,” J. Opt. 19(12), 125604 (2017).
[Crossref]

Mak, K. F.

Margueron, S.

Markos, C.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Messaddeq, Y.

Mitschke, F.

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Mörz, F.

Moselund, P. M.

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

Mott, A. G.

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731, 97310F (2016).
[Crossref]

Nguyen, T. N.

Nielsen, K.

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibers,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[Crossref]

Noack, F.

Nold, J.

Noordegraaf, D.

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibers,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[Crossref]

Norwood, R. A.

Ohishi, Y.

Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and W. P. Qin, “Supercontinuum generation covering the entire 0.4–5 μm transmission window in a tapered ultrahigh numerical aperturę all-solid fluorotellurite fiber,” Laser Phys. Lett. 15(2), 025102 (2018).
[Crossref]

Pang, M.

Petersen, C. R.

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Peyghambarian, N.

Poulain, M.

Poulain, S.

Price, J. H. V.

Pricking, S.

Provost, L.

Pumpe, S.

Pysz, D.

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Ac.: Tech. 62(4), 667–682 (2014).
[Crossref]

Qin, G. S.

Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and W. P. Qin, “Supercontinuum generation covering the entire 0.4–5 μm transmission window in a tapered ultrahigh numerical aperturę all-solid fluorotellurite fiber,” Laser Phys. Lett. 15(2), 025102 (2018).
[Crossref]

Qin, W. P.

Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and W. P. Qin, “Supercontinuum generation covering the entire 0.4–5 μm transmission window in a tapered ultrahigh numerical aperturę all-solid fluorotellurite fiber,” Laser Phys. Lett. 15(2), 025102 (2018).
[Crossref]

Ramaniuk, A.

L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long, M. Trippenbach, and R. Buczyński, “Supercontinuum generation in photonic crystal fibers with core filled with toluene,” J. Opt. 19(12), 125604 (2017).
[Crossref]

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Reichert, M.

P. Zhao, M. Reichert, S. Benis, D. J. Hagan, and E. W. V. Stryland, “Temporal and polarization dependence of the nonlinear optical response of solvents,” Optica 5(5), 583–594 (2018).
[Crossref]

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731, 97310F (2016).
[Crossref]

Rochette, M.

Rohwer, E. G.

Rothhardt, J.

Russell, P. St. J.

Scheibinger, R.

Schmidt, M. A.

Schwoerer, H.

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Shensky, W. M.

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731, 97310F (2016).
[Crossref]

Shephard, J. D.

Siwicki, B.

J. M. Hodasi, A. Heidt, M. Klimczak, B. Siwicki, and T. Feurer, “Femtosecond seeding of a Tm-Ho fiber amplifier by a broadband coherent supercontinuum pulse from an all-solid all-normal photonic crystal fiber,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (IEEE, 2017), pp.17.
[Crossref]

Sopalla, R.

Sørensen, T.

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibers,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[Crossref]

St J Russell, P.

Steinle, T.

Steinmann, A.

Steinmeyer, G.

Stepien, R.

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Ac.: Tech. 62(4), 667–682 (2014).
[Crossref]

Stryland, E. W. V.

Stutzki, F.

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Sylvestre, T.

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Travers, J.

Travers, J. C.

Trippenbach, M.

L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long, M. Trippenbach, and R. Buczyński, “Supercontinuum generation in photonic crystal fibers with core filled with toluene,” J. Opt. 19(12), 125604 (2017).
[Crossref]

Tünnermann, A.

Van, L. C.

L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long, M. Trippenbach, and R. Buczyński, “Supercontinuum generation in photonic crystal fibers with core filled with toluene,” J. Opt. 19(12), 125604 (2017).
[Crossref]

Van Stryland, E. W.

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731, 97310F (2016).
[Crossref]

Vieweg, M.

Wabnitz, S.

Wadsworth, W. J.

Wang, F.

Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and W. P. Qin, “Supercontinuum generation covering the entire 0.4–5 μm transmission window in a tapered ultrahigh numerical aperturę all-solid fluorotellurite fiber,” Laser Phys. Lett. 15(2), 025102 (2018).
[Crossref]

F. Wang, W. Yuan, O. Hansen, and O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express 19(18), 17585–17590 (2011).
[Crossref] [PubMed]

Wang, S. B.

Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and W. P. Qin, “Supercontinuum generation covering the entire 0.4–5 μm transmission window in a tapered ultrahigh numerical aperturę all-solid fluorotellurite fiber,” Laser Phys. Lett. 15(2), 025102 (2018).
[Crossref]

Wu, D. C.

Xiao, L.

Xu, Y.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[Crossref]

Xuan, K. D.

L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long, M. Trippenbach, and R. Buczyński, “Supercontinuum generation in photonic crystal fibers with core filled with toluene,” J. Opt. 19(12), 125604 (2017).
[Crossref]

Yao, C. F.

Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and W. P. Qin, “Supercontinuum generation covering the entire 0.4–5 μm transmission window in a tapered ultrahigh numerical aperturę all-solid fluorotellurite fiber,” Laser Phys. Lett. 15(2), 025102 (2018).
[Crossref]

Yariv, A.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[Crossref]

Yu, F.

Yuan, W.

Zhao, C.

Zhao, P.

P. Zhao, M. Reichert, S. Benis, D. J. Hagan, and E. W. V. Stryland, “Temporal and polarization dependence of the nonlinear optical response of solvents,” Optica 5(5), 583–594 (2018).
[Crossref]

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731, 97310F (2016).
[Crossref]

Zhao, Z. P.

Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and W. P. Qin, “Supercontinuum generation covering the entire 0.4–5 μm transmission window in a tapered ultrahigh numerical aperturę all-solid fluorotellurite fiber,” Laser Phys. Lett. 15(2), 025102 (2018).
[Crossref]

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Appl. Phys. Lett. (1)

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[Crossref]

Bull. Pol. Ac.: Tech. (1)

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Ac.: Tech. 62(4), 667–682 (2014).
[Crossref]

Infrared Phys. Technol. (1)

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

J. Opt. (1)

L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long, M. Trippenbach, and R. Buczyński, “Supercontinuum generation in photonic crystal fibers with core filled with toluene,” J. Opt. 19(12), 125604 (2017).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibers,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[Crossref]

J. Opt. Soc. Am. B (6)

Laser Phys. Lett. (1)

Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and W. P. Qin, “Supercontinuum generation covering the entire 0.4–5 μm transmission window in a tapered ultrahigh numerical aperturę all-solid fluorotellurite fiber,” Laser Phys. Lett. 15(2), 025102 (2018).
[Crossref]

Meas. Sci. Technol. (1)

P. Hlubina, R. Chlebusi, and D. Ciprian, “Differential group refractive index dispersion of glasses of opticalfibers measured by a white-light spectral interferometric technique,” Meas. Sci. Technol. 18(5), 1547–1552 (2007).
[Crossref]

Nat. Commun. (1)

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8(1), 42 (2017).
[Crossref] [PubMed]

Nat. Photonics (1)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Opt. Express (11)

S. Kedenburg, T. Gissibl, T. Steinle, A. Steinmann, and H. Giessen, “Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2-2.4 μm range,” Opt. Express 23(7), 8281–8289 (2015).
[Crossref] [PubMed]

M. Chemnitz, C. Gaida, M. Gebhardt, F. Stutzki, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt, “Carbon chloride-core fibers for soliton mediated supercontinuum generation,” Opt. Express 26(3), 3221–3235 (2018).
[Crossref] [PubMed]

K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, and P. St. J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21(9), 10942–10953 (2013).
[Crossref] [PubMed]

R. M. Carter, F. Yu, W. J. Wadsworth, J. D. Shephard, T. Birks, J. C. Knight, and D. P. Hand, “Measurement of resonant bend loss in anti-resonant hollow core optical fiber,” Opt. Express 25(17), 20612–20621 (2017).
[Crossref] [PubMed]

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
[Crossref] [PubMed]

J. Rothhardt, S. Demmler, S. Hädrich, J. Limpert, and A. Tünnermann, “Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate,” Opt. Express 20(10), 10870–10878 (2012).
[Crossref] [PubMed]

A. Bozolan, C. J. S. de Matos, C. M. B. Cordeiro, E. M. Dos Santos, and J. Travers, “Supercontinuum generation in a water-core photonic crystal fiber,” Opt. Express 16(13), 9671–9676 (2008).
[Crossref] [PubMed]

J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer, and J. Herrmann, “Two-octave supercontinuum generation in a water-filled photonic crystal fiber,” Opt. Express 18(6), 6230–6240 (2010).
[Crossref] [PubMed]

M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18(24), 25232–25240 (2010).
[Crossref] [PubMed]

F. Wang, W. Yuan, O. Hansen, and O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express 19(18), 17585–17590 (2011).
[Crossref] [PubMed]

L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express 13(22), 9014–9022 (2005).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Mater. Express (1)

Optica (3)

Phys. Rev. A (1)

P. P. Ho and R. R. Alfano, “Optical Kerr effect in Liquids,” Phys. Rev. A 20(5), 2170–2187 (1979).
[Crossref]

Proc. SPIE (1)

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731, 97310F (2016).
[Crossref]

Rev. Mod. Phys. (2)

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Other (5)

International labour organization, http://www.ilo.org/dyn/icsc/showcard.home

United States Environmental Protection Agency, https://www.epa.gov/haps/health-effects-notebook-hazardous-air-pollutants

R. R. Afano, The Supercontinuum Laser Source: The Ultimate White Light (Springer-Verlag, 2016).

J. M. Hodasi, A. Heidt, M. Klimczak, B. Siwicki, and T. Feurer, “Femtosecond seeding of a Tm-Ho fiber amplifier by a broadband coherent supercontinuum pulse from an all-solid all-normal photonic crystal fiber,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (IEEE, 2017), pp.17.
[Crossref]

C. Wohlfarth, Refractive Indices of Pure Liquids and Binary Liquid Mixtures (Supplement to III/38), (Springer-Verlag, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) real part of refractive index of silica and toluene, (b) transmission of toluene in 10mm sample.
Fig. 2
Fig. 2 Dispersion properties of PCF with toluene core for various lattice constants Λ = 1µm (a), Λ = 2µm (b), Λ = 3µm (c), Λ = 4µm (d), Λ = 5µm (e), Λ = 6µm (f), Λ = 7µm (g), Λ = 8µm (h) and various filling factor f (f = d/Λ). Size of toluene core is equal to 2Λ.
Fig. 3
Fig. 3 SEM image of cross-section of the fabricated silica PCF (a), end faced (b) and cross-section (c) of the PCF after thermal collapse of air holes in the photonic cladding.
Fig. 4
Fig. 4 Setup used for observing fiber holes filled with liquid.
Fig. 5
Fig. 5 Image of output of the test fiber illuminated with scattered light when hollow core is filled by air (a), when hollow core is fully filled with toluene (b).
Fig. 6
Fig. 6 Mach-Zehnder interferometer setup for dispersion measurement of toluene core PCF. The pump system is applied to keep to ensure fiber core filling with toluene during measurements.
Fig. 7
Fig. 7 Measured and simulated dispersion D of the investigated fiber.
Fig. 8
Fig. 8 Calculated effective mode area, nonlinear refractive index for developed toluene core PCF (a) and measured losses of tested fiber (b).
Fig. 9
Fig. 9 Modeling of spectrum evolution along pulse energy with 10cm length of the fiber (a), supercontinuum spectrum estimated for 10 cm length of the fiber when pumped with pulses of 400 fs duration, 1030 nm pump wavelength and various pulse energy (b) and coherence degree obtained from 20 individual pairs of pulses with random initial noise seed.
Fig. 10
Fig. 10 Modeling of spectrum evolution along length of the fiber, supercontinuum spectrum estimated for 10 nJ input pulse energy, 400 fs duration, 1030 nm pump wavelength.
Fig. 11
Fig. 11 Setup used for measurement supercontinuum.
Fig. 12
Fig. 12 Experimental results of supercontinuum generation obtained for 10 cm length of the fiber under pumping with pulses of 400 fs duration, and 1030 nm pump wavelength and 4nJ, 10 nJ pulse energy, compared with numerically obtained results assuming similar pump conditions.

Tables (1)

Tables Icon

Table 1 State-of-the-art of experimental results on liquid core optical fiber supercontinuum generation.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

D= λ c d 2 Re( n eff ) d λ 2 ,
γ= 2π n 2 λ A eff ,
z Ã=i β ˜ ( ω )Ã α ˜ ( ω ) 2 Ã+i n 2 ( ω 0 )ω c A eff ( ω ) ( 1+ i ω 0 T )ÃF[ R( t ' ) | A | 2 ( t t ' )d t ' ],
R(t')=[ 2 n el +( n 2l C 2l e t'/ t fl 0 sin( ωt' ) ω g( ω )dω + k=c,d n 2k C 2k ( 1 e t'/ t rk ) e t'/ t fk )Θ(t') ] 1 N ,
g( ω )= e ( ( ω ω 0 ) 3 2 σ 2 ) e ( ( ω+ ω 0 ) 3 2 σ 2 )
| g 12 ( 1 ) ( λ, t 1 t 2 =0 ) |=| E 1 * ( λ, t 1 ) E 2 ( λ, t 2 ) [ | E 1 ( λ, t 1 ) | 2 | E 2 ( λ, t 2 ) | 2 ] 1 2 |

Metrics