Abstract

We propose a dynamically tunable broadband linear-to-circular cross polarization converter based on Dirac semimetals. The proposed converter unit cell consists of a center-cut cross-shaped metallic patterned structure with a sandwiched Dirac semimetal ribbon on a polyimide substrate bottomed with gold. The proposed system converts linear waves to right-hand circular polarized waves in the frequency ranges of 1.5–2.8 THz or to left-hand circular polarized waves in two narrow frequency ranges of 1.20–1.25 and 3.04–3.07 THz. The polarization conversion is dynamically tunable by varying the Fermi energy without re-optimizing the microstructures, which may further tunable polarizers and polarization switchers developments.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies

Yannan Jiang, Lei Wang, Jiao Wang, Charles Nwakanma Akwuruoha, and Weiping Cao
Opt. Express 25(22) 27616-27623 (2017)

Dual-band superposition induced broadband terahertz linear-to-circular polarization converter

Xiao-Fei Zang, Su-Ji Liu, Han-Hong Gong, Yajun Wang, and Yi-Ming Zhu
J. Opt. Soc. Am. B 35(4) 950-957 (2018)

Dirac semimetals based tunable narrowband absorber at terahertz frequencies

Gui-Dong Liu, Xiang Zhai, Hai-Yu Meng, Qi Lin, Yu Huang, Chu-Jun Zhao, and Ling-Ling Wang
Opt. Express 26(9) 11471-11480 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. Jiang, L. Wang, J. Wang, C. N. Akwuruoha, and W. Cao, “Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies,” Opt. Express 25(22), 27616–27623 (2017).
    [Crossref] [PubMed]
  2. H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
    [Crossref]
  3. L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 8, 1600960 (2017).
    [Crossref]
  4. L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6, 22070 (2016).
    [Crossref]
  5. M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” Appl. Phys. 13(56), 1–24 (2018).
  6. J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
    [Crossref] [PubMed]
  7. Y. Jia, Y. Liu, W. Zhang, J. Wang, Y. Wang, S. Gong, and G. Liao, “Ultra-wideband metasurface with linear-to-circular polarization conversion of an electromagnetic wave,” Opt. Mater. Express 8(3), 597–604 (2018).
    [Crossref]
  8. J. Wang and W. Wu, “Cavity-based linear-to-circular polarization converter,” Opt. Express 25(4), 3805–3810 (2017).
    [Crossref] [PubMed]
  9. Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing Broadband and Invertible Linear-to-circular Polarization Converter with Ultrathin Single-layer Metasurface,” Sci. Rep. 5(1), 18106 (2016).
    [Crossref] [PubMed]
  10. L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
    [Crossref]
  11. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
    [Crossref] [PubMed]
  12. Y. Chiang and T. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
    [Crossref]
  13. L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, and W. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys. 14(11), 115013 (2012).
    [Crossref]
  14. L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
    [Crossref]
  15. J. Zhu, Y. Yang, and S. Li, “A photo-excited broadband to dual-band tunable terahertz prefect metamaterial polarization converter,” Opt. Commun. 413, 336–340 (2018).
    [Crossref]
  16. J. Su, Y. Lu, H. Zhang, Z. Li, Y. Lamar Yang, Y. Che, and K. Qi, “Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms,” Sci. Rep. 7, 42283 (2017).
    [Crossref] [PubMed]
  17. Y. Zhang, H. Wang, D. Liao, and W. Fu, “Phase-tuning Metasurface for Circularly Polarized Broadside Radiation in Broadband,” Sci. Rep. 8(1), 2970 (2018).
    [Crossref] [PubMed]
  18. Z. Dong, C. Sun, J. Si, and X. Deng, “Tunable polarization-independent plasmonically induced transparency based on metal-graphene metasurface,” Opt. Express 25(11), 12251–12259 (2017).
    [Crossref] [PubMed]
  19. X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by grapheme-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
    [Crossref]
  20. C. Yang, Y. Luo, J. Guo, Y. Pu, D. He, Y. Jiang, J. Xu, and Z. Liu, “Wideband tunable mid-infrared cross polarization converter using rectangle-shape perforated graphene,” Opt. Express 24(15), 16913–16922 (2016).
    [Crossref] [PubMed]
  21. G. Lovat, G. W. Hanson, R. Araneo, and P. Burghignoli, “Semiclassical spatially dispersive intraband conductivity tensor and quantum capacitance of grapheme,” Phys. Rev. B Condens. Matter Mater. Phys. 87(11), 115429 (2013).
    [Crossref]
  22. J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-Infrared Tunable Dual-Frequency Cross Polarization Converters Using Graphene-Based L-Shaped Nanoslot Array,” Plasmonics 10(2), 351–356 (2015).
    [Crossref]
  23. T. Guo and C. Argyropoulos, “Broadband polarizers based on graphene metasurfaces,” Opt. Lett. 41(23), 5592–5595 (2016).
    [Crossref] [PubMed]
  24. Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
    [Crossref] [PubMed]
  25. L. P. He, X. C. Hong, J. K. Dong, J. Pan, Z. Zhang, J. Zhang, and S. Y. Li, “Quantum Transport Evidence for the Three-Dimensional Dirac Semimetal Phase in Cd3As2,” Phys. Rev. Lett. 113(24), 246402 (2014).
    [Crossref] [PubMed]
  26. S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath, and A. Yazdani, “Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2,” Nat. Mater. 13(9), 851–856 (2014).
    [Crossref] [PubMed]
  27. H. Chen, H. Zhang, M. Liu, Y. Zhao, X. Guo, and Y. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
    [Crossref]
  28. H. Chen, H. Zhang, X. Guo, S. Liu, and Y. Zhang, “Tunable plasmon-induced transparency in H-shaped Dirac semimetal metamaterial,” Appl. Opt. 57(4), 752–756 (2018).
    [Crossref] [PubMed]
  29. H. Chen, H. Zhang, Y. Zhao, S. Liu, M. Cao, and Y. Zhang, “Broadband tunable terahertz plasmon-induced transparency in Dirac semimetals,” Opt. Laser Technol. 104, 210–215 (2018).
    [Crossref]
  30. O. V. Kotov and Yu. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
    [Crossref]
  31. Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
    [Crossref] [PubMed]
  32. Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
    [Crossref] [PubMed]
  33. Y. Su, Q. Lin, X. Zhai, X. Luo, and L. Wang, “Controlling terahertz surface plasmon polaritons in Dirac semimetal sheets,” Opt. Mater. Express 8(4), 884–892 (2018).
    [Crossref]
  34. G. D. Liu, X. Zhai, H. Y. Meng, Q. Lin, Y. Huang, C. J. Zhao, and L. L. Wang, “Dirac semimetals based tunable narrowband absorber at terahertz frequencies,” Opt. Express 26(9), 11471–11480 (2018).
    [Crossref] [PubMed]

2018 (8)

Y. Jia, Y. Liu, W. Zhang, J. Wang, Y. Wang, S. Gong, and G. Liao, “Ultra-wideband metasurface with linear-to-circular polarization conversion of an electromagnetic wave,” Opt. Mater. Express 8(3), 597–604 (2018).
[Crossref]

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” Appl. Phys. 13(56), 1–24 (2018).

J. Zhu, Y. Yang, and S. Li, “A photo-excited broadband to dual-band tunable terahertz prefect metamaterial polarization converter,” Opt. Commun. 413, 336–340 (2018).
[Crossref]

Y. Zhang, H. Wang, D. Liao, and W. Fu, “Phase-tuning Metasurface for Circularly Polarized Broadside Radiation in Broadband,” Sci. Rep. 8(1), 2970 (2018).
[Crossref] [PubMed]

H. Chen, H. Zhang, X. Guo, S. Liu, and Y. Zhang, “Tunable plasmon-induced transparency in H-shaped Dirac semimetal metamaterial,” Appl. Opt. 57(4), 752–756 (2018).
[Crossref] [PubMed]

H. Chen, H. Zhang, Y. Zhao, S. Liu, M. Cao, and Y. Zhang, “Broadband tunable terahertz plasmon-induced transparency in Dirac semimetals,” Opt. Laser Technol. 104, 210–215 (2018).
[Crossref]

Y. Su, Q. Lin, X. Zhai, X. Luo, and L. Wang, “Controlling terahertz surface plasmon polaritons in Dirac semimetal sheets,” Opt. Mater. Express 8(4), 884–892 (2018).
[Crossref]

G. D. Liu, X. Zhai, H. Y. Meng, Q. Lin, Y. Huang, C. J. Zhao, and L. L. Wang, “Dirac semimetals based tunable narrowband absorber at terahertz frequencies,” Opt. Express 26(9), 11471–11480 (2018).
[Crossref] [PubMed]

2017 (6)

2016 (6)

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6, 22070 (2016).
[Crossref]

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing Broadband and Invertible Linear-to-circular Polarization Converter with Ultrathin Single-layer Metasurface,” Sci. Rep. 5(1), 18106 (2016).
[Crossref] [PubMed]

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by grapheme-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

C. Yang, Y. Luo, J. Guo, Y. Pu, D. He, Y. Jiang, J. Xu, and Z. Liu, “Wideband tunable mid-infrared cross polarization converter using rectangle-shape perforated graphene,” Opt. Express 24(15), 16913–16922 (2016).
[Crossref] [PubMed]

O. V. Kotov and Yu. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
[Crossref]

T. Guo and C. Argyropoulos, “Broadband polarizers based on graphene metasurfaces,” Opt. Lett. 41(23), 5592–5595 (2016).
[Crossref] [PubMed]

2015 (1)

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-Infrared Tunable Dual-Frequency Cross Polarization Converters Using Graphene-Based L-Shaped Nanoslot Array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

2014 (6)

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref] [PubMed]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

L. P. He, X. C. Hong, J. K. Dong, J. Pan, Z. Zhang, J. Zhang, and S. Y. Li, “Quantum Transport Evidence for the Three-Dimensional Dirac Semimetal Phase in Cd3As2,” Phys. Rev. Lett. 113(24), 246402 (2014).
[Crossref] [PubMed]

S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath, and A. Yazdani, “Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2,” Nat. Mater. 13(9), 851–856 (2014).
[Crossref] [PubMed]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
[Crossref] [PubMed]

2013 (5)

G. Lovat, G. W. Hanson, R. Araneo, and P. Burghignoli, “Semiclassical spatially dispersive intraband conductivity tensor and quantum capacitance of grapheme,” Phys. Rev. B Condens. Matter Mater. Phys. 87(11), 115429 (2013).
[Crossref]

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Y. Chiang and T. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

2012 (2)

L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, and W. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys. 14(11), 115013 (2012).
[Crossref]

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

Akwuruoha, C. N.

Araneo, R.

G. Lovat, G. W. Hanson, R. Araneo, and P. Burghignoli, “Semiclassical spatially dispersive intraband conductivity tensor and quantum capacitance of grapheme,” Phys. Rev. B Condens. Matter Mater. Phys. 87(11), 115429 (2013).
[Crossref]

Argyropoulos, C.

Arigong, B.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-Infrared Tunable Dual-Frequency Cross Polarization Converters Using Graphene-Based L-Shaped Nanoslot Array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
[Crossref] [PubMed]

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Bao, Q.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

Burghignoli, P.

G. Lovat, G. W. Hanson, R. Araneo, and P. Burghignoli, “Semiclassical spatially dispersive intraband conductivity tensor and quantum capacitance of grapheme,” Phys. Rev. B Condens. Matter Mater. Phys. 87(11), 115429 (2013).
[Crossref]

Cao, M.

H. Chen, H. Zhang, Y. Zhao, S. Liu, M. Cao, and Y. Zhang, “Broadband tunable terahertz plasmon-induced transparency in Dirac semimetals,” Opt. Laser Technol. 104, 210–215 (2018).
[Crossref]

Cao, W.

Cava, R. J.

S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath, and A. Yazdani, “Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2,” Nat. Mater. 13(9), 851–856 (2014).
[Crossref] [PubMed]

Che, Y.

J. Su, Y. Lu, H. Zhang, Z. Li, Y. Lamar Yang, Y. Che, and K. Qi, “Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms,” Sci. Rep. 7, 42283 (2017).
[Crossref] [PubMed]

Chen, H.

Chen, H. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Chen, L.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 8, 1600960 (2017).
[Crossref]

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6, 22070 (2016).
[Crossref]

Chen, S.

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing Broadband and Invertible Linear-to-circular Polarization Converter with Ultrathin Single-layer Metasurface,” Sci. Rep. 5(1), 18106 (2016).
[Crossref] [PubMed]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Chen, X.

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” Appl. Phys. 13(56), 1–24 (2018).

Chen, Y. L.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref] [PubMed]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Cheng, H.

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing Broadband and Invertible Linear-to-circular Polarization Converter with Ultrathin Single-layer Metasurface,” Sci. Rep. 5(1), 18106 (2016).
[Crossref] [PubMed]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Cheng, Y.

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Chiang, Y.

Y. Chiang and T. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
[Crossref]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Cong, L.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, and W. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys. 14(11), 115013 (2012).
[Crossref]

Cui, T.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 8, 1600960 (2017).
[Crossref]

Dai, X.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref] [PubMed]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Dalvit, D. A. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Deng, X.

Ding, J.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-Infrared Tunable Dual-Frequency Cross Polarization Converters Using Graphene-Based L-Shaped Nanoslot Array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
[Crossref] [PubMed]

Dong, J. K.

L. P. He, X. C. Hong, J. K. Dong, J. Pan, Z. Zhang, J. Zhang, and S. Y. Li, “Quantum Transport Evidence for the Three-Dimensional Dirac Semimetal Phase in Cd3As2,” Phys. Rev. Lett. 113(24), 246402 (2014).
[Crossref] [PubMed]

Dong, Z.

Duan, J.

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Dudin, P.

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Fang, Z.

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref] [PubMed]

Feldman, B. E.

S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath, and A. Yazdani, “Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2,” Nat. Mater. 13(9), 851–856 (2014).
[Crossref] [PubMed]

Feng, D. L.

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Fu, W.

Y. Zhang, H. Wang, D. Liao, and W. Fu, “Phase-tuning Metasurface for Circularly Polarized Broadside Radiation in Broadband,” Sci. Rep. 8(1), 2970 (2018).
[Crossref] [PubMed]

Gao, X.

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by grapheme-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Gibson, Q. D.

S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath, and A. Yazdani, “Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2,” Nat. Mater. 13(9), 851–856 (2014).
[Crossref] [PubMed]

Gong, R.

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Gong, S.

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Gu, J.

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” Appl. Phys. 13(56), 1–24 (2018).

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, and W. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys. 14(11), 115013 (2012).
[Crossref]

Guo, J.

Guo, T.

Guo, X.

Gyenis, A.

S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath, and A. Yazdani, “Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2,” Nat. Mater. 13(9), 851–856 (2014).
[Crossref] [PubMed]

Han, J.

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” Appl. Phys. 13(56), 1–24 (2018).

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, and W. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys. 14(11), 115013 (2012).
[Crossref]

Hanson, G. W.

G. Lovat, G. W. Hanson, R. Araneo, and P. Burghignoli, “Semiclassical spatially dispersive intraband conductivity tensor and quantum capacitance of grapheme,” Phys. Rev. B Condens. Matter Mater. Phys. 87(11), 115429 (2013).
[Crossref]

He, D.

He, L. P.

L. P. He, X. C. Hong, J. K. Dong, J. Pan, Z. Zhang, J. Zhang, and S. Y. Li, “Quantum Transport Evidence for the Three-Dimensional Dirac Semimetal Phase in Cd3As2,” Phys. Rev. Lett. 113(24), 246402 (2014).
[Crossref] [PubMed]

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Hoesch, M.

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Hong, X. C.

L. P. He, X. C. Hong, J. K. Dong, J. Pan, Z. Zhang, J. Zhang, and S. Y. Li, “Quantum Transport Evidence for the Three-Dimensional Dirac Semimetal Phase in Cd3As2,” Phys. Rev. Lett. 113(24), 246402 (2014).
[Crossref] [PubMed]

Huang, Y.

Hussain, Z.

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref] [PubMed]

Jeon, S.

S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath, and A. Yazdani, “Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2,” Nat. Mater. 13(9), 851–856 (2014).
[Crossref] [PubMed]

Jia, Y.

Jiang, J.

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Jiang, Y.

Kim, T.

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Kimchi, I.

S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath, and A. Yazdani, “Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2,” Nat. Mater. 13(9), 851–856 (2014).
[Crossref] [PubMed]

Kotov, O. V.

O. V. Kotov and Yu. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
[Crossref]

Lamar Yang, Y.

J. Su, Y. Lu, H. Zhang, Z. Li, Y. Lamar Yang, Y. Che, and K. Qi, “Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms,” Sci. Rep. 7, 42283 (2017).
[Crossref] [PubMed]

Li, J.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Li, S.

J. Zhu, Y. Yang, and S. Li, “A photo-excited broadband to dual-band tunable terahertz prefect metamaterial polarization converter,” Opt. Commun. 413, 336–340 (2018).
[Crossref]

Li, S. Y.

L. P. He, X. C. Hong, J. K. Dong, J. Pan, Z. Zhang, J. Zhang, and S. Y. Li, “Quantum Transport Evidence for the Three-Dimensional Dirac Semimetal Phase in Cd3As2,” Phys. Rev. Lett. 113(24), 246402 (2014).
[Crossref] [PubMed]

Li, Z.

J. Su, Y. Lu, H. Zhang, Z. Li, Y. Lamar Yang, Y. Che, and K. Qi, “Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms,” Sci. Rep. 7, 42283 (2017).
[Crossref] [PubMed]

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing Broadband and Invertible Linear-to-circular Polarization Converter with Ultrathin Single-layer Metasurface,” Sci. Rep. 5(1), 18106 (2016).
[Crossref] [PubMed]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Liao, D.

Y. Zhang, H. Wang, D. Liao, and W. Fu, “Phase-tuning Metasurface for Circularly Polarized Broadside Radiation in Broadband,” Sci. Rep. 8(1), 2970 (2018).
[Crossref] [PubMed]

Liao, G.

Lin, Q.

Lin, Y.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-Infrared Tunable Dual-Frequency Cross Polarization Converters Using Graphene-Based L-Shaped Nanoslot Array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
[Crossref] [PubMed]

Liu, G. D.

Liu, M.

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” Appl. Phys. 13(56), 1–24 (2018).

H. Chen, H. Zhang, M. Liu, Y. Zhao, X. Guo, and Y. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
[Crossref]

Liu, S.

H. Chen, H. Zhang, X. Guo, S. Liu, and Y. Zhang, “Tunable plasmon-induced transparency in H-shaped Dirac semimetal metamaterial,” Appl. Opt. 57(4), 752–756 (2018).
[Crossref] [PubMed]

H. Chen, H. Zhang, Y. Zhao, S. Liu, M. Cao, and Y. Zhang, “Broadband tunable terahertz plasmon-induced transparency in Dirac semimetals,” Opt. Laser Technol. 104, 210–215 (2018).
[Crossref]

Liu, W.

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing Broadband and Invertible Linear-to-circular Polarization Converter with Ultrathin Single-layer Metasurface,” Sci. Rep. 5(1), 18106 (2016).
[Crossref] [PubMed]

Liu, Y.

Liu, Z.

Liu, Z. K.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref] [PubMed]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Loh, K. P.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

Lovat, G.

G. Lovat, G. W. Hanson, R. Araneo, and P. Burghignoli, “Semiclassical spatially dispersive intraband conductivity tensor and quantum capacitance of grapheme,” Phys. Rev. B Condens. Matter Mater. Phys. 87(11), 115429 (2013).
[Crossref]

Lozovik, Yu. E.

O. V. Kotov and Yu. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
[Crossref]

Lu, Y.

J. Su, Y. Lu, H. Zhang, Z. Li, Y. Lamar Yang, Y. Che, and K. Qi, “Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms,” Sci. Rep. 7, 42283 (2017).
[Crossref] [PubMed]

Luo, X.

Luo, Y.

Meng, H. Y.

Mo, S.-K.

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref] [PubMed]

Ouyang, C.

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” Appl. Phys. 13(56), 1–24 (2018).

Pan, J.

L. P. He, X. C. Hong, J. K. Dong, J. Pan, Z. Zhang, J. Zhang, and S. Y. Li, “Quantum Transport Evidence for the Three-Dimensional Dirac Semimetal Phase in Cd3As2,” Phys. Rev. Lett. 113(24), 246402 (2014).
[Crossref] [PubMed]

Peng, H.

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Potter, A. C.

S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath, and A. Yazdani, “Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2,” Nat. Mater. 13(9), 851–856 (2014).
[Crossref] [PubMed]

Prabhakaran, D.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref] [PubMed]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Pu, Y.

Qi, K.

J. Su, Y. Lu, H. Zhang, Z. Li, Y. Lamar Yang, Y. Che, and K. Qi, “Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms,” Sci. Rep. 7, 42283 (2017).
[Crossref] [PubMed]

Qiao, W.

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by grapheme-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Ren, H.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-Infrared Tunable Dual-Frequency Cross Polarization Converters Using Graphene-Based L-Shaped Nanoslot Array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
[Crossref] [PubMed]

Shao, J.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-Infrared Tunable Dual-Frequency Cross Polarization Converters Using Graphene-Based L-Shaped Nanoslot Array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
[Crossref] [PubMed]

Shen, Z. X.

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref] [PubMed]

Si, J.

Singh, L.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 8, 1600960 (2017).
[Crossref]

Singh, R.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 8, 1600960 (2017).
[Crossref]

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Su, J.

J. Su, Y. Lu, H. Zhang, Z. Li, Y. Lamar Yang, Y. Che, and K. Qi, “Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms,” Sci. Rep. 7, 42283 (2017).
[Crossref] [PubMed]

Su, Y.

Sun, C.

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Tian, J.

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing Broadband and Invertible Linear-to-circular Polarization Converter with Ultrathin Single-layer Metasurface,” Sci. Rep. 5(1), 18106 (2016).
[Crossref] [PubMed]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Tian, Z.

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” Appl. Phys. 13(56), 1–24 (2018).

L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, and W. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys. 14(11), 115013 (2012).
[Crossref]

Vishwanath, A.

S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath, and A. Yazdani, “Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2,” Nat. Mater. 13(9), 851–856 (2014).
[Crossref] [PubMed]

Wang, H.

Y. Zhang, H. Wang, D. Liao, and W. Fu, “Phase-tuning Metasurface for Circularly Polarized Broadside Radiation in Broadband,” Sci. Rep. 8(1), 2970 (2018).
[Crossref] [PubMed]

Wang, J.

Wang, L.

Wang, L. L.

Wang, Y.

Wang, Z. J.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref] [PubMed]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Wei, Y.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6, 22070 (2016).
[Crossref]

Wen, L.

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by grapheme-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Weng, H. M.

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref] [PubMed]

Wu, L.

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Wu, W.

Xie, B.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Xu, J.

Xu, N.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 8, 1600960 (2017).
[Crossref]

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Xu, Q.

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” Appl. Phys. 13(56), 1–24 (2018).

Yang, C.

Yang, Q.

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” Appl. Phys. 13(56), 1–24 (2018).

Yang, W.

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by grapheme-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Yang, Y.

J. Zhu, Y. Yang, and S. Li, “A photo-excited broadband to dual-band tunable terahertz prefect metamaterial polarization converter,” Opt. Commun. 413, 336–340 (2018).
[Crossref]

Yang, Z.

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Yazdani, A.

S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath, and A. Yazdani, “Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2,” Nat. Mater. 13(9), 851–856 (2014).
[Crossref] [PubMed]

Yen, T.

Y. Chiang and T. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
[Crossref]

Yu, P.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Yu, X.

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by grapheme-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Yuan, X.

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Zang, X.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6, 22070 (2016).
[Crossref]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Zhai, X.

Zhang, H.

H. Chen, H. Zhang, X. Guo, S. Liu, and Y. Zhang, “Tunable plasmon-induced transparency in H-shaped Dirac semimetal metamaterial,” Appl. Opt. 57(4), 752–756 (2018).
[Crossref] [PubMed]

H. Chen, H. Zhang, Y. Zhao, S. Liu, M. Cao, and Y. Zhang, “Broadband tunable terahertz plasmon-induced transparency in Dirac semimetals,” Opt. Laser Technol. 104, 210–215 (2018).
[Crossref]

J. Su, Y. Lu, H. Zhang, Z. Li, Y. Lamar Yang, Y. Che, and K. Qi, “Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms,” Sci. Rep. 7, 42283 (2017).
[Crossref] [PubMed]

H. Chen, H. Zhang, M. Liu, Y. Zhao, X. Guo, and Y. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
[Crossref]

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-Infrared Tunable Dual-Frequency Cross Polarization Converters Using Graphene-Based L-Shaped Nanoslot Array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
[Crossref] [PubMed]

Zhang, J.

L. P. He, X. C. Hong, J. K. Dong, J. Pan, Z. Zhang, J. Zhang, and S. Y. Li, “Quantum Transport Evidence for the Three-Dimensional Dirac Semimetal Phase in Cd3As2,” Phys. Rev. Lett. 113(24), 246402 (2014).
[Crossref] [PubMed]

Zhang, W.

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” Appl. Phys. 13(56), 1–24 (2018).

Y. Jia, Y. Liu, W. Zhang, J. Wang, Y. Wang, S. Gong, and G. Liao, “Ultra-wideband metasurface with linear-to-circular polarization conversion of an electromagnetic wave,” Opt. Mater. Express 8(3), 597–604 (2018).
[Crossref]

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 8, 1600960 (2017).
[Crossref]

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, and W. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys. 14(11), 115013 (2012).
[Crossref]

Zhang, X.

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” Appl. Phys. 13(56), 1–24 (2018).

Zhang, Y.

Y. Zhang, H. Wang, D. Liao, and W. Fu, “Phase-tuning Metasurface for Circularly Polarized Broadside Radiation in Broadband,” Sci. Rep. 8(1), 2970 (2018).
[Crossref] [PubMed]

H. Chen, H. Zhang, Y. Zhao, S. Liu, M. Cao, and Y. Zhang, “Broadband tunable terahertz plasmon-induced transparency in Dirac semimetals,” Opt. Laser Technol. 104, 210–215 (2018).
[Crossref]

H. Chen, H. Zhang, X. Guo, S. Liu, and Y. Zhang, “Tunable plasmon-induced transparency in H-shaped Dirac semimetal metamaterial,” Appl. Opt. 57(4), 752–756 (2018).
[Crossref] [PubMed]

H. Chen, H. Zhang, M. Liu, Y. Zhao, X. Guo, and Y. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
[Crossref]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref] [PubMed]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Zhang, Z.

L. P. He, X. C. Hong, J. K. Dong, J. Pan, Z. Zhang, J. Zhang, and S. Y. Li, “Quantum Transport Evidence for the Three-Dimensional Dirac Semimetal Phase in Cd3As2,” Phys. Rev. Lett. 113(24), 246402 (2014).
[Crossref] [PubMed]

Zhao, C. J.

Zhao, M.

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Zhao, Y.

H. Chen, H. Zhang, Y. Zhao, S. Liu, M. Cao, and Y. Zhang, “Broadband tunable terahertz plasmon-induced transparency in Dirac semimetals,” Opt. Laser Technol. 104, 210–215 (2018).
[Crossref]

H. Chen, H. Zhang, M. Liu, Y. Zhao, X. Guo, and Y. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
[Crossref]

Zheng, Y.

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Zhou, B.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref] [PubMed]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Zhou, B. B.

S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath, and A. Yazdani, “Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2,” Nat. Mater. 13(9), 851–856 (2014).
[Crossref] [PubMed]

Zhou, M.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-Infrared Tunable Dual-Frequency Cross Polarization Converters Using Graphene-Based L-Shaped Nanoslot Array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, and H. Zhang, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
[Crossref] [PubMed]

Zhu, J.

J. Zhu, Y. Yang, and S. Li, “A photo-excited broadband to dual-band tunable terahertz prefect metamaterial polarization converter,” Opt. Commun. 413, 336–340 (2018).
[Crossref]

Zhu, Y.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 8, 1600960 (2017).
[Crossref]

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6, 22070 (2016).
[Crossref]

Zhuang, S.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6, 22070 (2016).
[Crossref]

ACS Nano (1)

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 8, 1600960 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. (1)

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” Appl. Phys. 13(56), 1–24 (2018).

Appl. Phys. Lett. (3)

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Y. Chiang and T. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by grapheme-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Laser Photonics Rev. (1)

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Nat. Mater. (2)

S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath, and A. Yazdani, “Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2,” Nat. Mater. 13(9), 851–856 (2014).
[Crossref] [PubMed]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

New J. Phys. (1)

L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, and W. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys. 14(11), 115013 (2012).
[Crossref]

Opt. Commun. (1)

J. Zhu, Y. Yang, and S. Li, “A photo-excited broadband to dual-band tunable terahertz prefect metamaterial polarization converter,” Opt. Commun. 413, 336–340 (2018).
[Crossref]

Opt. Express (6)

Opt. Laser Technol. (1)

H. Chen, H. Zhang, Y. Zhao, S. Liu, M. Cao, and Y. Zhang, “Broadband tunable terahertz plasmon-induced transparency in Dirac semimetals,” Opt. Laser Technol. 104, 210–215 (2018).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (3)

Phys. Rev. B (1)

O. V. Kotov and Yu. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

G. Lovat, G. W. Hanson, R. Araneo, and P. Burghignoli, “Semiclassical spatially dispersive intraband conductivity tensor and quantum capacitance of grapheme,” Phys. Rev. B Condens. Matter Mater. Phys. 87(11), 115429 (2013).
[Crossref]

Phys. Rev. Lett. (1)

L. P. He, X. C. Hong, J. K. Dong, J. Pan, Z. Zhang, J. Zhang, and S. Y. Li, “Quantum Transport Evidence for the Three-Dimensional Dirac Semimetal Phase in Cd3As2,” Phys. Rev. Lett. 113(24), 246402 (2014).
[Crossref] [PubMed]

Plasmonics (1)

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-Infrared Tunable Dual-Frequency Cross Polarization Converters Using Graphene-Based L-Shaped Nanoslot Array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

Sci. Rep. (4)

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing Broadband and Invertible Linear-to-circular Polarization Converter with Ultrathin Single-layer Metasurface,” Sci. Rep. 5(1), 18106 (2016).
[Crossref] [PubMed]

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6, 22070 (2016).
[Crossref]

J. Su, Y. Lu, H. Zhang, Z. Li, Y. Lamar Yang, Y. Che, and K. Qi, “Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms,” Sci. Rep. 7, 42283 (2017).
[Crossref] [PubMed]

Y. Zhang, H. Wang, D. Liao, and W. Fu, “Phase-tuning Metasurface for Circularly Polarized Broadside Radiation in Broadband,” Sci. Rep. 8(1), 2970 (2018).
[Crossref] [PubMed]

Science (2)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 A 3 × 3 unit structure diagram of the proposed polarization converter.
Fig. 2
Fig. 2 (a) The real and (b) imaginary parts of the dynamic conductivity for DS under different Fermi levels in units e 2 / as a function of the normalized frequency ω/ E F . The parameters are set as g = 40, and u=3× 10 4 c m 2 V 1 S 1 (the intrinsic time τ=4.5× 10 13 s).
Fig. 3
Fig. 3 Reflection coefficients for the x-and y-components. (a) Magnitude and (b) phase with the phase difference.
Fig. 4
Fig. 4 (a) Ellipticity of the proposed design when excited by an x-polarized plane wave. (b) The electric field distributions at 1.8 THz for different time phases from 0° to 160° with an increment of 20°. (c) The axis ratio and efficiency of the proposed design with respect to the frequency.
Fig. 5
Fig. 5 (a) Ellipiticity at different Fermi energies from 80 to 130 meV, and the ellipticity at a Fermi energy of 90 meV (b) with different L 1 values and (c) with different L 2 values. The electric distributions at the surface of the polarization converter of the lower resonant mode and the higher resonant mode with a Fermi energy of 90 meV are given in the insets of (a).
Fig. 6
Fig. 6 (a) Magnitudes (b) phase differences (c) AR and (d) η of different substrate thicknesses. (e) Angle of incidence and frequency-dependence of AR.
Fig. 7
Fig. 7 (a) Magnitudes, (b) phases, and phase differences of the reflection coefficients in the uv coordinate system
Fig. 8
Fig. 8 The current distributions (columns 1 and 2 show the u-polarized incident wave, and columns 3 and 4 show the v-polarized incident wave) with the equivalent electric moments (red double-headed arrows) and equivalent magnetic moments (blue circles) at (a)–(e) 1.22 THz, (f)–(j) 1.49 THz, (k)–(o) 2.24 THz, and (p)–(t) 2.64 THz.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Reσ( Ω )= e 2 g k F 24π ΩG(Ω/2) Imσ( Ω )= e 2 g k F 24 π 2 [ 4 Ω ( 1+ π 2 3 ( T E F ) 2 )+8Ω 0 ε c ( G( ε )G(Ω/2) Ω 2 4 ε 2 εdε ) ]
I= | r xx | 2 + | r yx | 2 Q= | r xx | 2 | r yx | 2 U=2| r yx || r xx |cosΔϕ V=2| r yx || r xx |sinΔϕ