Abstract

In this paper, we present a novel design of a dual and broadband metamaterial absorber (MMA) based on a compact meander wire structure resonator in the terahertz (THz) region. The simulation results indicate that the absorbance is greater than 90% around 1.19 THz and 1.64-2.47 THz. The dual and broadband high level absorption mainly originates from the mixtures of the electric and magnetic resonance response with higher-orders of the proposed structure. The high absorption performance can be obtained at large angles of polarization and incidence for both transverse magnetic (TM) and transverse electric (TE) waves. Multiple reflection interference theory is used to analyze the mechanism of the MMA, and the theoretical results agree well with simulations. Furthermore, the absorption properties of the MMA can be adjusted easily by changing the geometric parameters of the unit-cell structure. Owing to its favorable performance, the proposed MMA could find many potential applications in bolometric imaging, stealth and communications in the THz region.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-insensitive broadband terahertz metamaterial absorber based on hybrid structures

Yuying Lu, Jining Li, Shaohua Zhang, Jinhai Sun, and Jian Quan Yao
Appl. Opt. 57(21) 6269-6275 (2018)

Ultra-flexible polarization-insensitive multiband terahertz metamaterial absorber

Xu Chen and Wenhui Fan
Appl. Opt. 54(9) 2376-2382 (2015)

Broadband terahertz metamaterial absorber based on tantalum nitride

Guangsheng Deng, Jun Yang, and Zhiping Yin
Appl. Opt. 56(9) 2449-2454 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Zheludev, “Applied physics: the road ahead for metamaterials,” Science 328(5978), 582–583 (2010).
    [Crossref] [PubMed]
  2. Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
    [Crossref] [PubMed]
  3. S. Salvatore, S. David, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Optical Mater. 2(3), 275–279 (2014).
    [Crossref]
  4. B. Ke, W. T. Zhu, M. Lei, and J. Zhou, “Magnetically tunable wideband microwave filter using ferrite-based metamaterials,” Appl. Phys. Lett. 106(17), 173507 (2015).
    [Crossref]
  5. P. Pushkar and V. R. Gupta, “A metamaterial based tri-band antenna for WiMAX/WLAN application,” Microw. Opt. Technol. Lett. 58(3), 558–561 (2016).
    [Crossref]
  6. X. He, X. Zhong, F. Lin, and W. Shi, “Investigation of graphene assisted tunable terahertz metamaterials absorber,” Opt. Mater. Express 6(2), 331–342 (2016).
    [Crossref]
  7. X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
    [Crossref] [PubMed]
  8. X. He, F. Liu, F. Lin, and W. Shi, “Graphene patterns supported terahertz tunable plasmon induced transparency,” Opt. Express 26(8), 9931–9944 (2018).
    [Crossref] [PubMed]
  9. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  10. Y. Z. Cheng, H. L. Yang, Z. Z. Cheng, and B. X. Xiao, “A planar polarization-insen sitive metamaterial absorber,” Photonics and Nanostructures – Fundamentals and Applications 9(1), 8–14 (2011).
    [Crossref]
  11. Z. W. Mao, S. L. Liu, B. R. Bian, B. Y. Wang, B. Ma, L. Chen, and J. Xu, “Multi-Band polarization insensitive metamaterial absorber based on chinese ancient coin-shaped structures,” J. Appl. Phys. 115(20), 204505 (2014).
    [Crossref]
  12. Q. Y. Wen, W. Z. Hua, Y. S. Xie, Y. Q. Hu, and L. Y. Li, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
    [Crossref]
  13. Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).
    [Crossref]
  14. C. Wu and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37(3), 308–310 (2012).
    [Crossref] [PubMed]
  15. Y. Z. Cheng, Y. Nie, and R. Z. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48(6), 415–421 (2013).
    [Crossref]
  16. B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a four-band and polarization insensitive terahertz metamaterial absorber,” IEEE Photonics J. 115(4), 1187–1192 (2014).
  17. Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut Wires,” ACS Photonics 2(1), 151–156 (2015).
    [Crossref]
  18. Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
    [Crossref] [PubMed]
  19. S. Y. Cao, W. X. Yu, L. T. Zhang, C. Wang, X. M. Zhang, and Y. Q. Fu, “Broadband efficient light absorbing in the visible regime by a metananoring array,” Ann. Phys. (Berlin) 526(1–2), 112–117 (2014).
    [Crossref]
  20. X. Zhang, Y. C. Fan, L. M. Qi, and H. Q. Li, “Broadband plasmonic metamaterial absorber with fish-scale structure at visible frequencies,” Opt. Mater. Express 6(7), 2448–2457 (2016).
    [Crossref]
  21. M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
    [Crossref]
  22. Y. S. Guo, J. S. Li, X. J. Hou, X. L. Lv, H. Liang, and J. Zhou, “A simple topology metamaterial blackbody for visible light,” J. Alloys Compd. 699, 998–1002 (2017).
    [Crossref]
  23. H. Luo and Y. Z. Cheng, “Design of an ultrabroadband visible metamaterial absorber based on three-dimensional metallic nanostructures,” Mod. Phys. Lett. B 31(25), 1750231 (2017).
    [Crossref]
  24. J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
    [Crossref]
  25. S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
    [Crossref]
  26. W. Pan, X. Yu, J. Zhang, and W. Zeng, “A novel design of broadband terahertz metamaterial absorber based on nested circle rings,” IEEE Photonics Technol. Lett. 28(21), 2335–2338 (2016).
    [Crossref]
  27. Y. Peng, X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
    [Crossref] [PubMed]
  28. Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband plasmonic absorber for terahertz waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
    [Crossref]
  29. X. Liu, Q. Zhang, and X. Cui, “Ultra-broadband polarization- independent wide-angle THz absorber based on plasmonic resonances in semiconductor square nut-shaped metamaterials,” Plasmonics 12(4), 1137–1144 (2017).
    [Crossref]
  30. R. Gao, Z. Xu, C. Ding, L. Wu, and J. Yao, “Graphene metamaterial for multiband and broadband terahertz absorber,” Opt. Commun. 356, 400–404 (2015).
    [Crossref]
  31. B. Xiao, M. Gu, and S. Xiao, “Broadband, wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays,” Appl. Opt. 56(19), 5458–5462 (2017).
    [Crossref] [PubMed]
  32. X. Ling, Z. Xiao, X. Zheng, J. Tang, and K. Xu, “A three-dimensional ultra-broadband metamaterial absorber in terahertz region,” Appl. Phys., A Mater. Sci. Process. 122(11), 951 (2016).
    [Crossref]
  33. C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
    [Crossref] [PubMed]
  34. B. X. Wang, “Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–7 (2016).
  35. Y. Z. Cheng, M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, “Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves,” Materials (Basel) 10(6), 591 (2017).
    [Crossref] [PubMed]
  36. X. Zhang, H. Li, Z. Wei, and L. Qi, “Metamaterial for polarization-incident angle independent broadband perfect absorption in the terahertz range,” Opt. Mater. Express 7(9), 3294 (2017).
    [Crossref]
  37. M. A. Joyal and J. J. Laurin, “Analysis and design of thin circular polarizers based on meander lines,” IEEE Trans. Antenn. Propag. 60(6), 3007–3011 (2012).
    [Crossref]
  38. J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
    [Crossref] [PubMed]
  39. P. Fei, Z. Shen, X. Wen, and F. Nian, “A single-layer circular polarizer based on hybrid meander-line and loop configuration,” IEEE Trans. Antenn. Propag. 63(10), 4609–4614 (2015).
    [Crossref]
  40. Y. Z. Cheng, C. Fang, X. S. Mao, R. Z. Gong, and L. Wu, “Design of an ultrabroadband and high-efficiency reflective linear polarization convertor at optical frequency,” IEEE Photonics J. 8(6), 1–9 (2016).
    [Crossref]
  41. N. Bai, C. Feng, Y. Liu, H. G. Fan, C. Shen, and X. Sun, “Integrated microstrip meander line traveling wave tube based on metamaterial absorber,” IEEE Trans. Electron Dev. 99, 1–6 (2017).
  42. T. Niu, W. Withayachumnankul, B. S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Experimental demonstration of reflectarray antennas at terahertz frequencies,” Opt. Express 21(3), 2875–2889 (2013).
    [Crossref] [PubMed]
  43. H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
    [Crossref] [PubMed]
  44. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
    [Crossref] [PubMed]
  45. X. Shen and T. J. Cui, “Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber,” J. Opt. 14(11), 114012 (2012).
    [Crossref]
  46. Y. Shan, L. Chen, C. Shi, Z. Cheng, X. Zang, B. Xu, and Y. Zhu, “Ultrathin flexible dual band terahertz absorber,” Opt. Commun. 350, 63–70 (2015).
    [Crossref]
  47. G. Dayal and S. A. Ramakrishna, “Multipolar localized resonances for multi-band metamaterial perfect absorbers,” J. Opt. 16(9), 094016 (2014).
    [Crossref]
  48. Y. Z. Cheng, Z. Z. Cheng, X. S. Mao, and R. Z. Gong, “Ultra-Thin multi-band polarization-Insensitive microwave metamaterial absorber based on multiple-order responses using a single resonator structure,” Materials (Basel) 10(11), 1241 (2017).
    [Crossref] [PubMed]
  49. Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
    [Crossref] [PubMed]
  50. M. S. Park, K. Bhattarai, D. K. Kim, S. W. Kang, J. O. Kim, J. Zhou, W. Y. Jang, M. Noyola, A. Urbas, Z. Ku, and S. J. Lee, “Enhanced transmission due to antireflection coating layer at surface plasmon resonance wavelengths,” Opt. Express 22(24), 30161–30169 (2014).
    [Crossref] [PubMed]
  51. M. Huang, Y. Cheng, Z. Cheng, H. Chen, X. Mao, and R. Gong, “Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle,” Opt. Commun. 415, 194–201 (2018).
    [Crossref]
  52. Y. Z. Cheng, H. R. Chen, J. C. Cheng, X. S. Mao, and Z. Z. Cheng, “Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves,” Opt. Mater. Express 8(5), 1399–1409 (2018).
    [Crossref]
  53. J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials,” Opt. Express 25(5), 5206–5216 (2017).
    [Crossref] [PubMed]

2018 (3)

2017 (9)

J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials,” Opt. Express 25(5), 5206–5216 (2017).
[Crossref] [PubMed]

B. Xiao, M. Gu, and S. Xiao, “Broadband, wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays,” Appl. Opt. 56(19), 5458–5462 (2017).
[Crossref] [PubMed]

X. Zhang, H. Li, Z. Wei, and L. Qi, “Metamaterial for polarization-incident angle independent broadband perfect absorption in the terahertz range,” Opt. Mater. Express 7(9), 3294 (2017).
[Crossref]

Y. Z. Cheng, Z. Z. Cheng, X. S. Mao, and R. Z. Gong, “Ultra-Thin multi-band polarization-Insensitive microwave metamaterial absorber based on multiple-order responses using a single resonator structure,” Materials (Basel) 10(11), 1241 (2017).
[Crossref] [PubMed]

Y. S. Guo, J. S. Li, X. J. Hou, X. L. Lv, H. Liang, and J. Zhou, “A simple topology metamaterial blackbody for visible light,” J. Alloys Compd. 699, 998–1002 (2017).
[Crossref]

H. Luo and Y. Z. Cheng, “Design of an ultrabroadband visible metamaterial absorber based on three-dimensional metallic nanostructures,” Mod. Phys. Lett. B 31(25), 1750231 (2017).
[Crossref]

X. Liu, Q. Zhang, and X. Cui, “Ultra-broadband polarization- independent wide-angle THz absorber based on plasmonic resonances in semiconductor square nut-shaped metamaterials,” Plasmonics 12(4), 1137–1144 (2017).
[Crossref]

Y. Z. Cheng, M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, “Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves,” Materials (Basel) 10(6), 591 (2017).
[Crossref] [PubMed]

N. Bai, C. Feng, Y. Liu, H. G. Fan, C. Shen, and X. Sun, “Integrated microstrip meander line traveling wave tube based on metamaterial absorber,” IEEE Trans. Electron Dev. 99, 1–6 (2017).

2016 (9)

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

Y. Z. Cheng, C. Fang, X. S. Mao, R. Z. Gong, and L. Wu, “Design of an ultrabroadband and high-efficiency reflective linear polarization convertor at optical frequency,” IEEE Photonics J. 8(6), 1–9 (2016).
[Crossref]

X. Ling, Z. Xiao, X. Zheng, J. Tang, and K. Xu, “A three-dimensional ultra-broadband metamaterial absorber in terahertz region,” Appl. Phys., A Mater. Sci. Process. 122(11), 951 (2016).
[Crossref]

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

B. X. Wang, “Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–7 (2016).

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A novel design of broadband terahertz metamaterial absorber based on nested circle rings,” IEEE Photonics Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

P. Pushkar and V. R. Gupta, “A metamaterial based tri-band antenna for WiMAX/WLAN application,” Microw. Opt. Technol. Lett. 58(3), 558–561 (2016).
[Crossref]

X. He, X. Zhong, F. Lin, and W. Shi, “Investigation of graphene assisted tunable terahertz metamaterials absorber,” Opt. Mater. Express 6(2), 331–342 (2016).
[Crossref]

X. Zhang, Y. C. Fan, L. M. Qi, and H. Q. Li, “Broadband plasmonic metamaterial absorber with fish-scale structure at visible frequencies,” Opt. Mater. Express 6(7), 2448–2457 (2016).
[Crossref]

2015 (10)

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

Y. Shan, L. Chen, C. Shi, Z. Cheng, X. Zang, B. Xu, and Y. Zhu, “Ultrathin flexible dual band terahertz absorber,” Opt. Commun. 350, 63–70 (2015).
[Crossref]

Y. Peng, X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
[Crossref] [PubMed]

B. Ke, W. T. Zhu, M. Lei, and J. Zhou, “Magnetically tunable wideband microwave filter using ferrite-based metamaterials,” Appl. Phys. Lett. 106(17), 173507 (2015).
[Crossref]

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband plasmonic absorber for terahertz waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

R. Gao, Z. Xu, C. Ding, L. Wu, and J. Yao, “Graphene metamaterial for multiband and broadband terahertz absorber,” Opt. Commun. 356, 400–404 (2015).
[Crossref]

P. Fei, Z. Shen, X. Wen, and F. Nian, “A single-layer circular polarizer based on hybrid meander-line and loop configuration,” IEEE Trans. Antenn. Propag. 63(10), 4609–4614 (2015).
[Crossref]

2014 (8)

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a four-band and polarization insensitive terahertz metamaterial absorber,” IEEE Photonics J. 115(4), 1187–1192 (2014).

S. Y. Cao, W. X. Yu, L. T. Zhang, C. Wang, X. M. Zhang, and Y. Q. Fu, “Broadband efficient light absorbing in the visible regime by a metananoring array,” Ann. Phys. (Berlin) 526(1–2), 112–117 (2014).
[Crossref]

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

S. Salvatore, S. David, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Optical Mater. 2(3), 275–279 (2014).
[Crossref]

Z. W. Mao, S. L. Liu, B. R. Bian, B. Y. Wang, B. Ma, L. Chen, and J. Xu, “Multi-Band polarization insensitive metamaterial absorber based on chinese ancient coin-shaped structures,” J. Appl. Phys. 115(20), 204505 (2014).
[Crossref]

G. Dayal and S. A. Ramakrishna, “Multipolar localized resonances for multi-band metamaterial perfect absorbers,” J. Opt. 16(9), 094016 (2014).
[Crossref]

M. S. Park, K. Bhattarai, D. K. Kim, S. W. Kang, J. O. Kim, J. Zhou, W. Y. Jang, M. Noyola, A. Urbas, Z. Ku, and S. J. Lee, “Enhanced transmission due to antireflection coating layer at surface plasmon resonance wavelengths,” Opt. Express 22(24), 30161–30169 (2014).
[Crossref] [PubMed]

2013 (3)

T. Niu, W. Withayachumnankul, B. S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Experimental demonstration of reflectarray antennas at terahertz frequencies,” Opt. Express 21(3), 2875–2889 (2013).
[Crossref] [PubMed]

Y. Z. Cheng, Y. Nie, and R. Z. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48(6), 415–421 (2013).
[Crossref]

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

2012 (4)

M. A. Joyal and J. J. Laurin, “Analysis and design of thin circular polarizers based on meander lines,” IEEE Trans. Antenn. Propag. 60(6), 3007–3011 (2012).
[Crossref]

X. Shen and T. J. Cui, “Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber,” J. Opt. 14(11), 114012 (2012).
[Crossref]

C. Wu and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37(3), 308–310 (2012).
[Crossref] [PubMed]

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

2011 (2)

Y. Z. Cheng, H. L. Yang, Z. Z. Cheng, and B. X. Xiao, “A planar polarization-insen sitive metamaterial absorber,” Photonics and Nanostructures – Fundamentals and Applications 9(1), 8–14 (2011).
[Crossref]

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

2010 (3)

N. I. Zheludev, “Applied physics: the road ahead for metamaterials,” Science 328(5978), 582–583 (2010).
[Crossref] [PubMed]

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).
[Crossref]

2009 (1)

Q. Y. Wen, W. Z. Hua, Y. S. Xie, Y. Q. Hu, and L. Y. Li, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Abbott, D.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband plasmonic absorber for terahertz waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

Azad, A. K.

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Bai, N.

N. Bai, C. Feng, Y. Liu, H. G. Fan, C. Shen, and X. Sun, “Integrated microstrip meander line traveling wave tube based on metamaterial absorber,” IEEE Trans. Electron Dev. 99, 1–6 (2017).

Bhaskaran, M.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband plasmonic absorber for terahertz waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

T. Niu, W. Withayachumnankul, B. S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Experimental demonstration of reflectarray antennas at terahertz frequencies,” Opt. Express 21(3), 2875–2889 (2013).
[Crossref] [PubMed]

Bhattarai, K.

Bian, B. R.

Z. W. Mao, S. L. Liu, B. R. Bian, B. Y. Wang, B. Ma, L. Chen, and J. Xu, “Multi-Band polarization insensitive metamaterial absorber based on chinese ancient coin-shaped structures,” J. Appl. Phys. 115(20), 204505 (2014).
[Crossref]

Cai, B.

Cao, S. Y.

S. Y. Cao, W. X. Yu, L. T. Zhang, C. Wang, X. M. Zhang, and Y. Q. Fu, “Broadband efficient light absorbing in the visible regime by a metananoring array,” Ann. Phys. (Berlin) 526(1–2), 112–117 (2014).
[Crossref]

Chen, F.

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Chen, H.

M. Huang, Y. Cheng, Z. Cheng, H. Chen, X. Mao, and R. Gong, “Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle,” Opt. Commun. 415, 194–201 (2018).
[Crossref]

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

Chen, H. R.

Y. Z. Cheng, H. R. Chen, J. C. Cheng, X. S. Mao, and Z. Z. Cheng, “Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves,” Opt. Mater. Express 8(5), 1399–1409 (2018).
[Crossref]

Y. Z. Cheng, M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, “Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves,” Materials (Basel) 10(6), 591 (2017).
[Crossref] [PubMed]

Chen, H. T.

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Chen, L.

Y. Shan, L. Chen, C. Shi, Z. Cheng, X. Zang, B. Xu, and Y. Zhu, “Ultrathin flexible dual band terahertz absorber,” Opt. Commun. 350, 63–70 (2015).
[Crossref]

Y. Peng, X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
[Crossref] [PubMed]

Z. W. Mao, S. L. Liu, B. R. Bian, B. Y. Wang, B. Ma, L. Chen, and J. Xu, “Multi-Band polarization insensitive metamaterial absorber based on chinese ancient coin-shaped structures,” J. Appl. Phys. 115(20), 204505 (2014).
[Crossref]

Cheng, J. C.

Cheng, Y.

M. Huang, Y. Cheng, Z. Cheng, H. Chen, X. Mao, and R. Gong, “Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle,” Opt. Commun. 415, 194–201 (2018).
[Crossref]

Cheng, Y. Z.

Y. Z. Cheng, H. R. Chen, J. C. Cheng, X. S. Mao, and Z. Z. Cheng, “Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves,” Opt. Mater. Express 8(5), 1399–1409 (2018).
[Crossref]

Y. Z. Cheng, Z. Z. Cheng, X. S. Mao, and R. Z. Gong, “Ultra-Thin multi-band polarization-Insensitive microwave metamaterial absorber based on multiple-order responses using a single resonator structure,” Materials (Basel) 10(11), 1241 (2017).
[Crossref] [PubMed]

H. Luo and Y. Z. Cheng, “Design of an ultrabroadband visible metamaterial absorber based on three-dimensional metallic nanostructures,” Mod. Phys. Lett. B 31(25), 1750231 (2017).
[Crossref]

Y. Z. Cheng, M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, “Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves,” Materials (Basel) 10(6), 591 (2017).
[Crossref] [PubMed]

Y. Z. Cheng, C. Fang, X. S. Mao, R. Z. Gong, and L. Wu, “Design of an ultrabroadband and high-efficiency reflective linear polarization convertor at optical frequency,” IEEE Photonics J. 8(6), 1–9 (2016).
[Crossref]

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband plasmonic absorber for terahertz waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

Y. Z. Cheng, Y. Nie, and R. Z. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48(6), 415–421 (2013).
[Crossref]

Y. Z. Cheng, H. L. Yang, Z. Z. Cheng, and B. X. Xiao, “A planar polarization-insen sitive metamaterial absorber,” Photonics and Nanostructures – Fundamentals and Applications 9(1), 8–14 (2011).
[Crossref]

Cheng, Z.

M. Huang, Y. Cheng, Z. Cheng, H. Chen, X. Mao, and R. Gong, “Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle,” Opt. Commun. 415, 194–201 (2018).
[Crossref]

Y. Shan, L. Chen, C. Shi, Z. Cheng, X. Zang, B. Xu, and Y. Zhu, “Ultrathin flexible dual band terahertz absorber,” Opt. Commun. 350, 63–70 (2015).
[Crossref]

Cheng, Z. Z.

Y. Z. Cheng, H. R. Chen, J. C. Cheng, X. S. Mao, and Z. Z. Cheng, “Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves,” Opt. Mater. Express 8(5), 1399–1409 (2018).
[Crossref]

Y. Z. Cheng, Z. Z. Cheng, X. S. Mao, and R. Z. Gong, “Ultra-Thin multi-band polarization-Insensitive microwave metamaterial absorber based on multiple-order responses using a single resonator structure,” Materials (Basel) 10(11), 1241 (2017).
[Crossref] [PubMed]

Y. Z. Cheng, H. L. Yang, Z. Z. Cheng, and B. X. Xiao, “A planar polarization-insen sitive metamaterial absorber,” Photonics and Nanostructures – Fundamentals and Applications 9(1), 8–14 (2011).
[Crossref]

Cui, T. J.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

X. Shen and T. J. Cui, “Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber,” J. Opt. 14(11), 114012 (2012).
[Crossref]

Cui, X.

X. Liu, Q. Zhang, and X. Cui, “Ultra-broadband polarization- independent wide-angle THz absorber based on plasmonic resonances in semiconductor square nut-shaped metamaterials,” Plasmonics 12(4), 1137–1144 (2017).
[Crossref]

David, S.

S. Salvatore, S. David, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Optical Mater. 2(3), 275–279 (2014).
[Crossref]

Dayal, G.

G. Dayal and S. A. Ramakrishna, “Multipolar localized resonances for multi-band metamaterial perfect absorbers,” J. Opt. 16(9), 094016 (2014).
[Crossref]

Ding, C.

R. Gao, Z. Xu, C. Ding, L. Wu, and J. Yao, “Graphene metamaterial for multiband and broadband terahertz absorber,” Opt. Commun. 356, 400–404 (2015).
[Crossref]

Ding, F.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Elbahri, M.

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
[Crossref]

Fan, H. G.

N. Bai, C. Feng, Y. Liu, H. G. Fan, C. Shen, and X. Sun, “Integrated microstrip meander line traveling wave tube based on metamaterial absorber,” IEEE Trans. Electron Dev. 99, 1–6 (2017).

Fan, Y.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Fan, Y. C.

X. Zhang, Y. C. Fan, L. M. Qi, and H. Q. Li, “Broadband plasmonic metamaterial absorber with fish-scale structure at visible frequencies,” Opt. Mater. Express 6(7), 2448–2457 (2016).
[Crossref]

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Fang, C.

Y. Z. Cheng, C. Fang, X. S. Mao, R. Z. Gong, and L. Wu, “Design of an ultrabroadband and high-efficiency reflective linear polarization convertor at optical frequency,” IEEE Photonics J. 8(6), 1–9 (2016).
[Crossref]

Faupel, F.

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
[Crossref]

Fei, P.

P. Fei, Z. Shen, X. Wen, and F. Nian, “A single-layer circular polarizer based on hybrid meander-line and loop configuration,” IEEE Trans. Antenn. Propag. 63(10), 4609–4614 (2015).
[Crossref]

Feng, C.

N. Bai, C. Feng, Y. Liu, H. G. Fan, C. Shen, and X. Sun, “Integrated microstrip meander line traveling wave tube based on metamaterial absorber,” IEEE Trans. Electron Dev. 99, 1–6 (2017).

Fernández-Domínguez, A. I.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

Fu, Q.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Fu, Y. Q.

S. Y. Cao, W. X. Yu, L. T. Zhang, C. Wang, X. M. Zhang, and Y. Q. Fu, “Broadband efficient light absorbing in the visible regime by a metananoring array,” Ann. Phys. (Berlin) 526(1–2), 112–117 (2014).
[Crossref]

Fumeaux, C.

Gao, P.

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

Gao, R.

R. Gao, Z. Xu, C. Ding, L. Wu, and J. Yao, “Graphene metamaterial for multiband and broadband terahertz absorber,” Opt. Commun. 356, 400–404 (2015).
[Crossref]

Gong, C.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Gong, R.

M. Huang, Y. Cheng, Z. Cheng, H. Chen, X. Mao, and R. Gong, “Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle,” Opt. Commun. 415, 194–201 (2018).
[Crossref]

Gong, R. Z.

Y. Z. Cheng, Z. Z. Cheng, X. S. Mao, and R. Z. Gong, “Ultra-Thin multi-band polarization-Insensitive microwave metamaterial absorber based on multiple-order responses using a single resonator structure,” Materials (Basel) 10(11), 1241 (2017).
[Crossref] [PubMed]

Y. Z. Cheng, M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, “Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves,” Materials (Basel) 10(6), 591 (2017).
[Crossref] [PubMed]

Y. Z. Cheng, C. Fang, X. S. Mao, R. Z. Gong, and L. Wu, “Design of an ultrabroadband and high-efficiency reflective linear polarization convertor at optical frequency,” IEEE Photonics J. 8(6), 1–9 (2016).
[Crossref]

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband plasmonic absorber for terahertz waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

Y. Z. Cheng, Y. Nie, and R. Z. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48(6), 415–421 (2013).
[Crossref]

Gu, C.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Gu, M.

Guo, Y. S.

Y. S. Guo, J. S. Li, X. J. Hou, X. L. Lv, H. Liang, and J. Zhou, “A simple topology metamaterial blackbody for visible light,” J. Alloys Compd. 699, 998–1002 (2017).
[Crossref]

Guo, Z. Z.

Y. Z. Cheng, M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, “Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves,” Materials (Basel) 10(6), 591 (2017).
[Crossref] [PubMed]

Gupta, V. R.

P. Pushkar and V. R. Gupta, “A metamaterial based tri-band antenna for WiMAX/WLAN application,” Microw. Opt. Technol. Lett. 58(3), 558–561 (2016).
[Crossref]

He, Q.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

He, S.

He, X.

Headland, D.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband plasmonic absorber for terahertz waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

Hedayati, M. K.

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
[Crossref]

Hou, X. J.

Y. S. Guo, J. S. Li, X. J. Hou, X. L. Lv, H. Liang, and J. Zhou, “A simple topology metamaterial blackbody for visible light,” J. Alloys Compd. 699, 998–1002 (2017).
[Crossref]

Hu, Y. Q.

Q. Y. Wen, W. Z. Hua, Y. S. Xie, Y. Q. Hu, and L. Y. Li, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Hua, W. Z.

Q. Y. Wen, W. Z. Hua, Y. S. Xie, Y. Q. Hu, and L. Y. Li, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Huang, M.

M. Huang, Y. Cheng, Z. Cheng, H. Chen, X. Mao, and R. Gong, “Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle,” Opt. Commun. 415, 194–201 (2018).
[Crossref]

Huang, M. L.

Y. Z. Cheng, M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, “Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves,” Materials (Basel) 10(6), 591 (2017).
[Crossref] [PubMed]

Huang, W. Q.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a four-band and polarization insensitive terahertz metamaterial absorber,” IEEE Photonics J. 115(4), 1187–1192 (2014).

Jang, W. Y.

Jiang, Y.

Jin, Y.

Joyal, M. A.

M. A. Joyal and J. J. Laurin, “Analysis and design of thin circular polarizers based on meander lines,” IEEE Trans. Antenn. Propag. 60(6), 3007–3011 (2012).
[Crossref]

Kang, S. W.

Ke, B.

B. Ke, W. T. Zhu, M. Lei, and J. Zhou, “Magnetically tunable wideband microwave filter using ferrite-based metamaterials,” Appl. Phys. Lett. 106(17), 173507 (2015).
[Crossref]

Kim, D. K.

Kim, J. O.

Koschny, T.

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Ku, Z.

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Laurin, J. J.

M. A. Joyal and J. J. Laurin, “Analysis and design of thin circular polarizers based on meander lines,” IEEE Trans. Antenn. Propag. 60(6), 3007–3011 (2012).
[Crossref]

Lee, S. J.

Lei, M.

B. Ke, W. T. Zhu, M. Lei, and J. Zhou, “Magnetically tunable wideband microwave filter using ferrite-based metamaterials,” Appl. Phys. Lett. 106(17), 173507 (2015).
[Crossref]

Li, H.

X. Zhang, H. Li, Z. Wei, and L. Qi, “Metamaterial for polarization-incident angle independent broadband perfect absorption in the terahertz range,” Opt. Mater. Express 7(9), 3294 (2017).
[Crossref]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Li, H. Q.

Li, J.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Li, J. S.

Y. S. Guo, J. S. Li, X. J. Hou, X. L. Lv, H. Liang, and J. Zhou, “A simple topology metamaterial blackbody for visible light,” J. Alloys Compd. 699, 998–1002 (2017).
[Crossref]

Li, L. Y.

Q. Y. Wen, W. Z. Hua, Y. S. Xie, Y. Q. Hu, and L. Y. Li, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Liang, H.

Y. S. Guo, J. S. Li, X. J. Hou, X. L. Lv, H. Liang, and J. Zhou, “A simple topology metamaterial blackbody for visible light,” J. Alloys Compd. 699, 998–1002 (2017).
[Crossref]

Liao, Z.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

Lin, F.

Ling, X.

X. Ling, Z. Xiao, X. Zheng, J. Tang, and K. Xu, “A three-dimensional ultra-broadband metamaterial absorber in terahertz region,” Appl. Phys., A Mater. Sci. Process. 122(11), 951 (2016).
[Crossref]

Liu, F.

Liu, H.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Liu, S.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

Liu, S. L.

Z. W. Mao, S. L. Liu, B. R. Bian, B. Y. Wang, B. Ma, L. Chen, and J. Xu, “Multi-Band polarization insensitive metamaterial absorber based on chinese ancient coin-shaped structures,” J. Appl. Phys. 115(20), 204505 (2014).
[Crossref]

Liu, W.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Liu, X.

X. Liu, Q. Zhang, and X. Cui, “Ultra-broadband polarization- independent wide-angle THz absorber based on plasmonic resonances in semiconductor square nut-shaped metamaterials,” Plasmonics 12(4), 1137–1144 (2017).
[Crossref]

Liu, Y.

N. Bai, C. Feng, Y. Liu, H. G. Fan, C. Shen, and X. Sun, “Integrated microstrip meander line traveling wave tube based on metamaterial absorber,” IEEE Trans. Electron Dev. 99, 1–6 (2017).

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

Liu, Z.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Luo, H.

H. Luo and Y. Z. Cheng, “Design of an ultrabroadband visible metamaterial absorber based on three-dimensional metallic nanostructures,” Mod. Phys. Lett. B 31(25), 1750231 (2017).
[Crossref]

Luo, Y.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

Lv, X. L.

Y. S. Guo, J. S. Li, X. J. Hou, X. L. Lv, H. Liang, and J. Zhou, “A simple topology metamaterial blackbody for visible light,” J. Alloys Compd. 699, 998–1002 (2017).
[Crossref]

Ma, B.

Z. W. Mao, S. L. Liu, B. R. Bian, B. Y. Wang, B. Ma, L. Chen, and J. Xu, “Multi-Band polarization insensitive metamaterial absorber based on chinese ancient coin-shaped structures,” J. Appl. Phys. 115(20), 204505 (2014).
[Crossref]

Ma, Y.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Ma, Z.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Maier, S. A.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

Mao, X.

M. Huang, Y. Cheng, Z. Cheng, H. Chen, X. Mao, and R. Gong, “Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle,” Opt. Commun. 415, 194–201 (2018).
[Crossref]

Mao, X. S.

Y. Z. Cheng, H. R. Chen, J. C. Cheng, X. S. Mao, and Z. Z. Cheng, “Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves,” Opt. Mater. Express 8(5), 1399–1409 (2018).
[Crossref]

Y. Z. Cheng, Z. Z. Cheng, X. S. Mao, and R. Z. Gong, “Ultra-Thin multi-band polarization-Insensitive microwave metamaterial absorber based on multiple-order responses using a single resonator structure,” Materials (Basel) 10(11), 1241 (2017).
[Crossref] [PubMed]

Y. Z. Cheng, M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, “Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves,” Materials (Basel) 10(6), 591 (2017).
[Crossref] [PubMed]

Y. Z. Cheng, C. Fang, X. S. Mao, R. Z. Gong, and L. Wu, “Design of an ultrabroadband and high-efficiency reflective linear polarization convertor at optical frequency,” IEEE Photonics J. 8(6), 1–9 (2016).
[Crossref]

Mao, Z. W.

Z. W. Mao, S. L. Liu, B. R. Bian, B. Y. Wang, B. Ma, L. Chen, and J. Xu, “Multi-Band polarization insensitive metamaterial absorber based on chinese ancient coin-shaped structures,” J. Appl. Phys. 115(20), 204505 (2014).
[Crossref]

Menekse, H.

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Nian, F.

P. Fei, Z. Shen, X. Wen, and F. Nian, “A single-layer circular polarizer based on hybrid meander-line and loop configuration,” IEEE Trans. Antenn. Propag. 63(10), 4609–4614 (2015).
[Crossref]

Nie, Y.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband plasmonic absorber for terahertz waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

Y. Z. Cheng, Y. Nie, and R. Z. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48(6), 415–421 (2013).
[Crossref]

Niu, T.

Noyola, M.

O’Hara, J. F.

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Ou, J. Y.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Padilla, W. J.

S. Salvatore, S. David, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Optical Mater. 2(3), 275–279 (2014).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Pan, W.

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A novel design of broadband terahertz metamaterial absorber based on nested circle rings,” IEEE Photonics Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

Park, M. S.

Peng, Y.

Plum, E.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Pushkar, P.

P. Pushkar and V. R. Gupta, “A metamaterial based tri-band antenna for WiMAX/WLAN application,” Microw. Opt. Technol. Lett. 58(3), 558–561 (2016).
[Crossref]

Qi, L.

Qi, L. M.

Ramakrishna, S. A.

G. Dayal and S. A. Ramakrishna, “Multipolar localized resonances for multi-band metamaterial perfect absorbers,” J. Opt. 16(9), 094016 (2014).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Salvatore, S.

S. Salvatore, S. David, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Optical Mater. 2(3), 275–279 (2014).
[Crossref]

Shan, Y.

Y. Shan, L. Chen, C. Shi, Z. Cheng, X. Zang, B. Xu, and Y. Zhu, “Ultrathin flexible dual band terahertz absorber,” Opt. Commun. 350, 63–70 (2015).
[Crossref]

Shen, C.

N. Bai, C. Feng, Y. Liu, H. G. Fan, C. Shen, and X. Sun, “Integrated microstrip meander line traveling wave tube based on metamaterial absorber,” IEEE Trans. Electron Dev. 99, 1–6 (2017).

Shen, N. H.

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Shen, X.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

X. Shen and T. J. Cui, “Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber,” J. Opt. 14(11), 114012 (2012).
[Crossref]

Shen, Z.

P. Fei, Z. Shen, X. Wen, and F. Nian, “A single-layer circular polarizer based on hybrid meander-line and loop configuration,” IEEE Trans. Antenn. Propag. 63(10), 4609–4614 (2015).
[Crossref]

Shi, C.

Shi, W.

Shvets, G.

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Soukoulis, C. M.

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Sriram, S.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband plasmonic absorber for terahertz waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

T. Niu, W. Withayachumnankul, B. S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Experimental demonstration of reflectarray antennas at terahertz frequencies,” Opt. Express 21(3), 2875–2889 (2013).
[Crossref] [PubMed]

Strunskus, T.

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
[Crossref]

Sun, W.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Sun, X.

N. Bai, C. Feng, Y. Liu, H. G. Fan, C. Shen, and X. Sun, “Integrated microstrip meander line traveling wave tube based on metamaterial absorber,” IEEE Trans. Electron Dev. 99, 1–6 (2017).

Tang, J.

X. Ling, Z. Xiao, X. Zheng, J. Tang, and K. Xu, “A three-dimensional ultra-broadband metamaterial absorber in terahertz region,” Appl. Phys., A Mater. Sci. Process. 122(11), 951 (2016).
[Crossref]

Taylor, A. J.

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Ung, B. S.-Y.

Upadhyay, A.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband plasmonic absorber for terahertz waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

Urbas, A.

Wang, B. X.

B. X. Wang, “Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–7 (2016).

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a four-band and polarization insensitive terahertz metamaterial absorber,” IEEE Photonics J. 115(4), 1187–1192 (2014).

Wang, B. Y.

Z. W. Mao, S. L. Liu, B. R. Bian, B. Y. Wang, B. Ma, L. Chen, and J. Xu, “Multi-Band polarization insensitive metamaterial absorber based on chinese ancient coin-shaped structures,” J. Appl. Phys. 115(20), 204505 (2014).
[Crossref]

Wang, C.

S. Y. Cao, W. X. Yu, L. T. Zhang, C. Wang, X. M. Zhang, and Y. Q. Fu, “Broadband efficient light absorbing in the visible regime by a metananoring array,” Ann. Phys. (Berlin) 526(1–2), 112–117 (2014).
[Crossref]

Wang, G. Z.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a four-band and polarization insensitive terahertz metamaterial absorber,” IEEE Photonics J. 115(4), 1187–1192 (2014).

Wang, J.

Wang, L. L.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a four-band and polarization insensitive terahertz metamaterial absorber,” IEEE Photonics J. 115(4), 1187–1192 (2014).

Wang, Z.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Wei, Z.

X. Zhang, H. Li, Z. Wei, and L. Qi, “Metamaterial for polarization-incident angle independent broadband perfect absorption in the terahertz range,” Opt. Mater. Express 7(9), 3294 (2017).
[Crossref]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Wen, Q. Y.

Q. Y. Wen, W. Z. Hua, Y. S. Xie, Y. Q. Hu, and L. Y. Li, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Wen, X.

P. Fei, Z. Shen, X. Wen, and F. Nian, “A single-layer circular polarizer based on hybrid meander-line and loop configuration,” IEEE Trans. Antenn. Propag. 63(10), 4609–4614 (2015).
[Crossref]

Withayachumnankul, W.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband plasmonic absorber for terahertz waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

T. Niu, W. Withayachumnankul, B. S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Experimental demonstration of reflectarray antennas at terahertz frequencies,” Opt. Express 21(3), 2875–2889 (2013).
[Crossref] [PubMed]

Wu, C.

Wu, L.

Y. Z. Cheng, C. Fang, X. S. Mao, R. Z. Gong, and L. Wu, “Design of an ultrabroadband and high-efficiency reflective linear polarization convertor at optical frequency,” IEEE Photonics J. 8(6), 1–9 (2016).
[Crossref]

R. Gao, Z. Xu, C. Ding, L. Wu, and J. Yao, “Graphene metamaterial for multiband and broadband terahertz absorber,” Opt. Commun. 356, 400–404 (2015).
[Crossref]

Xiao, B.

Xiao, B. X.

Y. Z. Cheng, H. L. Yang, Z. Z. Cheng, and B. X. Xiao, “A planar polarization-insen sitive metamaterial absorber,” Photonics and Nanostructures – Fundamentals and Applications 9(1), 8–14 (2011).
[Crossref]

Xiao, S.

Xiao, Z.

X. Ling, Z. Xiao, X. Zheng, J. Tang, and K. Xu, “A three-dimensional ultra-broadband metamaterial absorber in terahertz region,” Appl. Phys., A Mater. Sci. Process. 122(11), 951 (2016).
[Crossref]

Xie, Y. S.

Q. Y. Wen, W. Z. Hua, Y. S. Xie, Y. Q. Hu, and L. Y. Li, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Xu, B.

Y. Shan, L. Chen, C. Shi, Z. Cheng, X. Zang, B. Xu, and Y. Zhu, “Ultrathin flexible dual band terahertz absorber,” Opt. Commun. 350, 63–70 (2015).
[Crossref]

Xu, J.

Z. W. Mao, S. L. Liu, B. R. Bian, B. Y. Wang, B. Ma, L. Chen, and J. Xu, “Multi-Band polarization insensitive metamaterial absorber based on chinese ancient coin-shaped structures,” J. Appl. Phys. 115(20), 204505 (2014).
[Crossref]

Xu, K.

X. Ling, Z. Xiao, X. Zheng, J. Tang, and K. Xu, “A three-dimensional ultra-broadband metamaterial absorber in terahertz region,” Appl. Phys., A Mater. Sci. Process. 122(11), 951 (2016).
[Crossref]

Xu, Z.

R. Gao, Z. Xu, C. Ding, L. Wu, and J. Yao, “Graphene metamaterial for multiband and broadband terahertz absorber,” Opt. Commun. 356, 400–404 (2015).
[Crossref]

Yang, H. L.

Y. Z. Cheng, H. L. Yang, Z. Z. Cheng, and B. X. Xiao, “A planar polarization-insen sitive metamaterial absorber,” Photonics and Nanostructures – Fundamentals and Applications 9(1), 8–14 (2011).
[Crossref]

Yang, J.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Yao, J.

R. Gao, Z. Xu, C. Ding, L. Wu, and J. Yao, “Graphene metamaterial for multiband and broadband terahertz absorber,” Opt. Commun. 356, 400–404 (2015).
[Crossref]

Ye, Y. Q.

Yu, W. X.

S. Y. Cao, W. X. Yu, L. T. Zhang, C. Wang, X. M. Zhang, and Y. Q. Fu, “Broadband efficient light absorbing in the visible regime by a metananoring array,” Ann. Phys. (Berlin) 526(1–2), 112–117 (2014).
[Crossref]

Yu, X.

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A novel design of broadband terahertz metamaterial absorber based on nested circle rings,” IEEE Photonics Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

Zang, X.

Zeng, W.

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A novel design of broadband terahertz metamaterial absorber based on nested circle rings,” IEEE Photonics Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

Zhai, X.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a four-band and polarization insensitive terahertz metamaterial absorber,” IEEE Photonics J. 115(4), 1187–1192 (2014).

Zhan, M.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Zhang, F.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Zhang, J.

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A novel design of broadband terahertz metamaterial absorber based on nested circle rings,” IEEE Photonics Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Zhang, L. T.

S. Y. Cao, W. X. Yu, L. T. Zhang, C. Wang, X. M. Zhang, and Y. Q. Fu, “Broadband efficient light absorbing in the visible regime by a metananoring array,” Ann. Phys. (Berlin) 526(1–2), 112–117 (2014).
[Crossref]

Zhang, Q.

X. Liu, Q. Zhang, and X. Cui, “Ultra-broadband polarization- independent wide-angle THz absorber based on plasmonic resonances in semiconductor square nut-shaped metamaterials,” Plasmonics 12(4), 1137–1144 (2017).
[Crossref]

Zhang, X.

Zhang, X. M.

S. Y. Cao, W. X. Yu, L. T. Zhang, C. Wang, X. M. Zhang, and Y. Q. Fu, “Broadband efficient light absorbing in the visible regime by a metananoring array,” Ann. Phys. (Berlin) 526(1–2), 112–117 (2014).
[Crossref]

Zhao, Q.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Zhao, Y.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Zheludev, N. I.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

N. I. Zheludev, “Applied physics: the road ahead for metamaterials,” Science 328(5978), 582–583 (2010).
[Crossref] [PubMed]

Zheng, X.

X. Ling, Z. Xiao, X. Zheng, J. Tang, and K. Xu, “A three-dimensional ultra-broadband metamaterial absorber in terahertz region,” Appl. Phys., A Mater. Sci. Process. 122(11), 951 (2016).
[Crossref]

Zhong, X.

Zhou, J.

Y. S. Guo, J. S. Li, X. J. Hou, X. L. Lv, H. Liang, and J. Zhou, “A simple topology metamaterial blackbody for visible light,” J. Alloys Compd. 699, 998–1002 (2017).
[Crossref]

B. Ke, W. T. Zhu, M. Lei, and J. Zhou, “Magnetically tunable wideband microwave filter using ferrite-based metamaterials,” Appl. Phys. Lett. 106(17), 173507 (2015).
[Crossref]

M. S. Park, K. Bhattarai, D. K. Kim, S. W. Kang, J. O. Kim, J. Zhou, W. Y. Jang, M. Noyola, A. Urbas, Z. Ku, and S. J. Lee, “Enhanced transmission due to antireflection coating layer at surface plasmon resonance wavelengths,” Opt. Express 22(24), 30161–30169 (2014).
[Crossref] [PubMed]

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Zhou, L.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Zhu, J.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Zhu, W. T.

B. Ke, W. T. Zhu, M. Lei, and J. Zhou, “Magnetically tunable wideband microwave filter using ferrite-based metamaterials,” Appl. Phys. Lett. 106(17), 173507 (2015).
[Crossref]

Zhu, Y.

Zhuang, S.

Zillohu, A. U.

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
[Crossref]

ACS Photonics (1)

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Adv. Opt. Mater. (1)

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband plasmonic absorber for terahertz waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

Adv. Optical Mater. (1)

S. Salvatore, S. David, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Optical Mater. 2(3), 275–279 (2014).
[Crossref]

Ann. Phys. (Berlin) (1)

S. Y. Cao, W. X. Yu, L. T. Zhang, C. Wang, X. M. Zhang, and Y. Q. Fu, “Broadband efficient light absorbing in the visible regime by a metananoring array,” Ann. Phys. (Berlin) 526(1–2), 112–117 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

B. Ke, W. T. Zhu, M. Lei, and J. Zhou, “Magnetically tunable wideband microwave filter using ferrite-based metamaterials,” Appl. Phys. Lett. 106(17), 173507 (2015).
[Crossref]

Q. Y. Wen, W. Z. Hua, Y. S. Xie, Y. Q. Hu, and L. Y. Li, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

X. Ling, Z. Xiao, X. Zheng, J. Tang, and K. Xu, “A three-dimensional ultra-broadband metamaterial absorber in terahertz region,” Appl. Phys., A Mater. Sci. Process. 122(11), 951 (2016).
[Crossref]

Chem. Soc. Rev. (1)

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

B. X. Wang, “Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–7 (2016).

IEEE Photonics J. (2)

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a four-band and polarization insensitive terahertz metamaterial absorber,” IEEE Photonics J. 115(4), 1187–1192 (2014).

Y. Z. Cheng, C. Fang, X. S. Mao, R. Z. Gong, and L. Wu, “Design of an ultrabroadband and high-efficiency reflective linear polarization convertor at optical frequency,” IEEE Photonics J. 8(6), 1–9 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A novel design of broadband terahertz metamaterial absorber based on nested circle rings,” IEEE Photonics Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

IEEE Trans. Antenn. Propag. (2)

M. A. Joyal and J. J. Laurin, “Analysis and design of thin circular polarizers based on meander lines,” IEEE Trans. Antenn. Propag. 60(6), 3007–3011 (2012).
[Crossref]

P. Fei, Z. Shen, X. Wen, and F. Nian, “A single-layer circular polarizer based on hybrid meander-line and loop configuration,” IEEE Trans. Antenn. Propag. 63(10), 4609–4614 (2015).
[Crossref]

IEEE Trans. Electron Dev. (1)

N. Bai, C. Feng, Y. Liu, H. G. Fan, C. Shen, and X. Sun, “Integrated microstrip meander line traveling wave tube based on metamaterial absorber,” IEEE Trans. Electron Dev. 99, 1–6 (2017).

J. Alloys Compd. (1)

Y. S. Guo, J. S. Li, X. J. Hou, X. L. Lv, H. Liang, and J. Zhou, “A simple topology metamaterial blackbody for visible light,” J. Alloys Compd. 699, 998–1002 (2017).
[Crossref]

J. Appl. Phys. (1)

Z. W. Mao, S. L. Liu, B. R. Bian, B. Y. Wang, B. Ma, L. Chen, and J. Xu, “Multi-Band polarization insensitive metamaterial absorber based on chinese ancient coin-shaped structures,” J. Appl. Phys. 115(20), 204505 (2014).
[Crossref]

J. Opt. (2)

X. Shen and T. J. Cui, “Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber,” J. Opt. 14(11), 114012 (2012).
[Crossref]

G. Dayal and S. A. Ramakrishna, “Multipolar localized resonances for multi-band metamaterial perfect absorbers,” J. Opt. 16(9), 094016 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

Materials (Basel) (2)

Y. Z. Cheng, M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, “Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves,” Materials (Basel) 10(6), 591 (2017).
[Crossref] [PubMed]

Y. Z. Cheng, Z. Z. Cheng, X. S. Mao, and R. Z. Gong, “Ultra-Thin multi-band polarization-Insensitive microwave metamaterial absorber based on multiple-order responses using a single resonator structure,” Materials (Basel) 10(11), 1241 (2017).
[Crossref] [PubMed]

Microw. Opt. Technol. Lett. (1)

P. Pushkar and V. R. Gupta, “A metamaterial based tri-band antenna for WiMAX/WLAN application,” Microw. Opt. Technol. Lett. 58(3), 558–561 (2016).
[Crossref]

Mod. Phys. Lett. B (1)

H. Luo and Y. Z. Cheng, “Design of an ultrabroadband visible metamaterial absorber based on three-dimensional metallic nanostructures,” Mod. Phys. Lett. B 31(25), 1750231 (2017).
[Crossref]

Nanoscale (1)

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Opt. Commun. (3)

M. Huang, Y. Cheng, Z. Cheng, H. Chen, X. Mao, and R. Gong, “Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle,” Opt. Commun. 415, 194–201 (2018).
[Crossref]

Y. Shan, L. Chen, C. Shi, Z. Cheng, X. Zang, B. Xu, and Y. Zhu, “Ultrathin flexible dual band terahertz absorber,” Opt. Commun. 350, 63–70 (2015).
[Crossref]

R. Gao, Z. Xu, C. Ding, L. Wu, and J. Yao, “Graphene metamaterial for multiband and broadband terahertz absorber,” Opt. Commun. 356, 400–404 (2015).
[Crossref]

Opt. Express (6)

Opt. Laser Technol. (1)

Y. Z. Cheng, Y. Nie, and R. Z. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48(6), 415–421 (2013).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (4)

Photonics and Nanostructures – Fundamentals and Applications (1)

Y. Z. Cheng, H. L. Yang, Z. Z. Cheng, and B. X. Xiao, “A planar polarization-insen sitive metamaterial absorber,” Photonics and Nanostructures – Fundamentals and Applications 9(1), 8–14 (2011).
[Crossref]

Phys. Rev. Lett. (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Plasmonics (1)

X. Liu, Q. Zhang, and X. Cui, “Ultra-broadband polarization- independent wide-angle THz absorber based on plasmonic resonances in semiconductor square nut-shaped metamaterials,” Plasmonics 12(4), 1137–1144 (2017).
[Crossref]

Sci. Rep. (3)

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

Science (1)

N. I. Zheludev, “Applied physics: the road ahead for metamaterials,” Science 328(5978), 582–583 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of the designed THz MMA: (a, b) front and perspective view of the unit-cell structure. The unit-cell is composed of a metallic closed four-fold meander structure above a continuous gold film separated by a dielectric substrate.
Fig. 2
Fig. 2 (a) Shows the absorbance and reflectance spectra of the proposed THz MMA, (b) shows the corresponding relative wave impedance; which indicate a dual and broadband high level absorption and impedance-matched properties.
Fig. 3
Fig. 3 (a-d) Show the electric filed (Ez) distributions of the unit-cell structure of the proposed MMA at different resonant frequencies under the normal x-polarized wave incidence: (a) f1 = 1.19 THz, (b) f2 = 1.87 THz, (c) f3 = 2.17 THz, and (d) f4 = 2.35 THz, respectively.
Fig. 4
Fig. 4 Distributions of surface current the (a1-d1) front and (a2-d2) back layer of the unit-cell structure of the proposed MMA at different resonant frequencies under the normal x-polarized wave incidence: (a1-a2) f1 = 1.19 THz, (b1-b2) f2 = 1.87 THz, (c1-c2) f3 = 2.17 THz, and (d1-d2) f4 = 2.35 THz, respectively. The solid arrow indicates current flow direction.
Fig. 5
Fig. 5 (a,b) and (c,d) show the simulated absorbance for different polarization and incident angles with different modes: (a,c) TE mode, (b,d) TM mode. The polarization angle is varied by a step of 5°from 0° to 90°, and the incident is varied in 5° steps from 0° to 90°.
Fig. 6
Fig. 6 (a) Shows the multiple reflection resonance cavity model of the proposed THz MMA based on Fabry-Pérot interference theory, (b,c) show the simulated magnitude and phase of the complex reflection and transmission coefficients at interface, respectively.
Fig. 7
Fig. 7 Shows the numerical results of absorbance spectra of the designed MMA, which are from the simulation based on FIT and calculation based on Fabry-Pérot interference theory.
Fig. 8
Fig. 8 (a,b) Shows the absorbance spectra of the proposed MMA with different wire length (l): (a) simulation and (b) calculation results. The wire length (l) of the meander wire structure is 48 μm, 50 μm, 52 μm, and 54 μm, respectively.
Fig. 9
Fig. 9 (a,b) Show the absorbance spectra of the proposed MMA with different dielectric substrate thickness (ts): (a) simulation and (b) calculation results. The substrate thickness (ts) is 12 μm, 14 μm, 16 μm, and 18 μm, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r= r 12 t 12 t 21 e i2β 1+ r 21 e i2β