Abstract

We report on the fabrication and characterization of ridge waveguides in z-cut KTiOPO4 fabricated by Rb-ion exchange and subsequent precise diamond-blade dicing. Low attenuation values of 1.3 dB/cm (1.6 dB/cm) were determined at a wavelength of 1550 nm for TE (TM) polarization. Surface quality obtained by dicing is excellent for side walls of diced ridges and prepared end faces used for light coupling. The dispersion characteristics of the waveguides are determined and the results are compared to simulations. Finally, the nonlinear performance of the ridges is demonstrated by second harmonic generation of ∼1060 nm pump light.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Rb/Ba side-diffused ridge waveguides in KTP

Martin F. Volk, Christian E. Rüter, and Detlef Kip
Opt. Express 25(17) 19872-19877 (2017)

Second harmonic generation of diamond-blade diced KTiOPO4 ridge waveguides

Chen Chen, Christian E. Rüter, Martin F. Volk, Cheng Chen, Zhen Shang, Qingming Lu, Shavkat Akhmadaliev, Shengqiang Zhou, Feng Chen, and Detlef Kip
Opt. Express 24(15) 16434-16439 (2016)

Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing

Martin F. Volk, Sergiy Suntsov, Christian E. Rüter, and Detlef Kip
Opt. Express 24(2) 1386-1391 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Bierlein and H. Vanherzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B 6(4), 622–633 (1989).
    [Crossref]
  2. G. Qiu, H. T. Huang, B. T. Zhang, J. L. He, J. F. Yang, and J. L. Xu, “Highly efficient intracavity frequency doubling 532-nm laser based on the gray tracking resistance KTP crystal,” Laser Phys. 20(4), 777–780 (2010).
    [Crossref]
  3. G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21(12), 13975–13985 (2013).
    [Crossref] [PubMed]
  4. F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84(10), 1644–1646 (2004).
    [Crossref]
  5. M. Rottschalk, J.-P. Ruske, B. Unterschütz, A. Rasch, and V. Gröber, “Single mode integrated-optical wide-band channel waveguides and junction splitters in KTiOPO4 for visible light,” J. Appl. Phys. 81(6), 2504–2510 (1997).
    [Crossref]
  6. S. Müller, T. Calmano, P. W. Metz, C. Kränkel, C. Canalias, C. Liljestrand, F. Laurell, and G. Huber, “Highly efficient continuous wave blue second-harmonic generation in fs-laser written periodically poled Rb:KTiOPO4 waveguides,” Opt. Lett. 39(5), 1274–1277 (2014).
    [Crossref] [PubMed]
  7. N. Dong, F. Chen, and J. R. Vazquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond-laser-inscribed KTP cladding waveguides,” Phys. Stat. Sol. Rap. Res. Lett. 6(7), 306–308 (2012).
  8. Y. Tan, F. Chen, L. Wang, X.-L. Wang, K.-M. Wang, and Q.-M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightw. Technol. 26(10), 1304–1308 (2008).
    [Crossref]
  9. C. Chen, C. E. Rüter, M. F. Volk, C. Chen, Z. Shang, Q. Lu, S. Akhmadaliev, S. Zhou, F. Chen, and D. Kip, “Second harmonic generation of diamond-blade diced KTiOPO4 ridge waveguides,” Opt. Express 24(15), 16434–16439 (2016).
    [Crossref] [PubMed]
  10. M. F. Volk, S. Suntsov, C. E. Rüter, and D. Kip, “Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing,” Opt. Express 24(2), 1386–1391 (2016).
    [Crossref] [PubMed]
  11. Y. Jia, C. E. Rüter, S. Akhmadaliev, S. Zhou, F. Chen, and D. Kip, “Ridge waveguide lasers in Nd:YAG crystals produced by combining swift heavy ion irradiation and precise diamond blade dicing,” Opt. Mater. Express 3(4), 433–438 (2013).
    [Crossref]
  12. S. Usenko, A. Przystawik, M. A. Jakob, L. L. Lazzarino, G. Brenner, S. Toleikis, C. Haunhorst, D. Kip, and T. Laarmann, “Attosecond interferometry with self-amplified spontaneous emission of a free-electron laser,” Nature Commun. 8, 15626 (2017).
    [Crossref]
  13. M. F. Volk, C. E. Rüter, and D. Kip, “Rb/Ba side-diffused ridge waveguides in KTP,” Opt. Express 25(17), 19872–19877 (2017).
    [Crossref] [PubMed]
  14. C. E. Rüter, J. Wisniewski, and D. Kip, “Prism coupling method to excite and analyze Floquet-Bloch modes in linear and nonlinear waveguide arrays,” Opt. Lett. 31(18), 2768–2770 (2006).
    [Crossref] [PubMed]
  15. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14(9), 2268–2294 (1997).
    [Crossref]
  16. J. Vollmer, J. P. Nisius, P. Hertel, and E. Krätzig, “Refractive index profiles of LiNbO3: Ti waveguides,” Appl. Phys. A 32(3), 125–127 (1983).
    [Crossref]

2017 (2)

S. Usenko, A. Przystawik, M. A. Jakob, L. L. Lazzarino, G. Brenner, S. Toleikis, C. Haunhorst, D. Kip, and T. Laarmann, “Attosecond interferometry with self-amplified spontaneous emission of a free-electron laser,” Nature Commun. 8, 15626 (2017).
[Crossref]

M. F. Volk, C. E. Rüter, and D. Kip, “Rb/Ba side-diffused ridge waveguides in KTP,” Opt. Express 25(17), 19872–19877 (2017).
[Crossref] [PubMed]

2016 (2)

2014 (1)

2013 (2)

2012 (1)

N. Dong, F. Chen, and J. R. Vazquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond-laser-inscribed KTP cladding waveguides,” Phys. Stat. Sol. Rap. Res. Lett. 6(7), 306–308 (2012).

2010 (1)

G. Qiu, H. T. Huang, B. T. Zhang, J. L. He, J. F. Yang, and J. L. Xu, “Highly efficient intracavity frequency doubling 532-nm laser based on the gray tracking resistance KTP crystal,” Laser Phys. 20(4), 777–780 (2010).
[Crossref]

2008 (1)

Y. Tan, F. Chen, L. Wang, X.-L. Wang, K.-M. Wang, and Q.-M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightw. Technol. 26(10), 1304–1308 (2008).
[Crossref]

2006 (1)

2004 (1)

F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84(10), 1644–1646 (2004).
[Crossref]

1997 (2)

M. Rottschalk, J.-P. Ruske, B. Unterschütz, A. Rasch, and V. Gröber, “Single mode integrated-optical wide-band channel waveguides and junction splitters in KTiOPO4 for visible light,” J. Appl. Phys. 81(6), 2504–2510 (1997).
[Crossref]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14(9), 2268–2294 (1997).
[Crossref]

1989 (1)

1983 (1)

J. Vollmer, J. P. Nisius, P. Hertel, and E. Krätzig, “Refractive index profiles of LiNbO3: Ti waveguides,” Appl. Phys. A 32(3), 125–127 (1983).
[Crossref]

Akhmadaliev, S.

Ansari, V.

Bierlein, J. D.

Brecht, B.

Brenner, G.

S. Usenko, A. Przystawik, M. A. Jakob, L. L. Lazzarino, G. Brenner, S. Toleikis, C. Haunhorst, D. Kip, and T. Laarmann, “Attosecond interferometry with self-amplified spontaneous emission of a free-electron laser,” Nature Commun. 8, 15626 (2017).
[Crossref]

Calmano, T.

Canalias, C.

Chen, C.

Chen, F.

C. Chen, C. E. Rüter, M. F. Volk, C. Chen, Z. Shang, Q. Lu, S. Akhmadaliev, S. Zhou, F. Chen, and D. Kip, “Second harmonic generation of diamond-blade diced KTiOPO4 ridge waveguides,” Opt. Express 24(15), 16434–16439 (2016).
[Crossref] [PubMed]

Y. Jia, C. E. Rüter, S. Akhmadaliev, S. Zhou, F. Chen, and D. Kip, “Ridge waveguide lasers in Nd:YAG crystals produced by combining swift heavy ion irradiation and precise diamond blade dicing,” Opt. Mater. Express 3(4), 433–438 (2013).
[Crossref]

N. Dong, F. Chen, and J. R. Vazquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond-laser-inscribed KTP cladding waveguides,” Phys. Stat. Sol. Rap. Res. Lett. 6(7), 306–308 (2012).

Y. Tan, F. Chen, L. Wang, X.-L. Wang, K.-M. Wang, and Q.-M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightw. Technol. 26(10), 1304–1308 (2008).
[Crossref]

Dirmeier, T.

Dong, N.

N. Dong, F. Chen, and J. R. Vazquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond-laser-inscribed KTP cladding waveguides,” Phys. Stat. Sol. Rap. Res. Lett. 6(7), 306–308 (2012).

Gröber, V.

M. Rottschalk, J.-P. Ruske, B. Unterschütz, A. Rasch, and V. Gröber, “Single mode integrated-optical wide-band channel waveguides and junction splitters in KTiOPO4 for visible light,” J. Appl. Phys. 81(6), 2504–2510 (1997).
[Crossref]

Harder, G.

Haunhorst, C.

S. Usenko, A. Przystawik, M. A. Jakob, L. L. Lazzarino, G. Brenner, S. Toleikis, C. Haunhorst, D. Kip, and T. Laarmann, “Attosecond interferometry with self-amplified spontaneous emission of a free-electron laser,” Nature Commun. 8, 15626 (2017).
[Crossref]

He, J. L.

G. Qiu, H. T. Huang, B. T. Zhang, J. L. He, J. F. Yang, and J. L. Xu, “Highly efficient intracavity frequency doubling 532-nm laser based on the gray tracking resistance KTP crystal,” Laser Phys. 20(4), 777–780 (2010).
[Crossref]

Hertel, P.

J. Vollmer, J. P. Nisius, P. Hertel, and E. Krätzig, “Refractive index profiles of LiNbO3: Ti waveguides,” Appl. Phys. A 32(3), 125–127 (1983).
[Crossref]

Huang, H. T.

G. Qiu, H. T. Huang, B. T. Zhang, J. L. He, J. F. Yang, and J. L. Xu, “Highly efficient intracavity frequency doubling 532-nm laser based on the gray tracking resistance KTP crystal,” Laser Phys. 20(4), 777–780 (2010).
[Crossref]

Huber, G.

Ito, R.

Jakob, M. A.

S. Usenko, A. Przystawik, M. A. Jakob, L. L. Lazzarino, G. Brenner, S. Toleikis, C. Haunhorst, D. Kip, and T. Laarmann, “Attosecond interferometry with self-amplified spontaneous emission of a free-electron laser,” Nature Commun. 8, 15626 (2017).
[Crossref]

Jia, Y.

Kip, D.

Kitamoto, A.

Kondo, T.

König, F.

F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84(10), 1644–1646 (2004).
[Crossref]

Kränkel, C.

Krätzig, E.

J. Vollmer, J. P. Nisius, P. Hertel, and E. Krätzig, “Refractive index profiles of LiNbO3: Ti waveguides,” Appl. Phys. A 32(3), 125–127 (1983).
[Crossref]

Laarmann, T.

S. Usenko, A. Przystawik, M. A. Jakob, L. L. Lazzarino, G. Brenner, S. Toleikis, C. Haunhorst, D. Kip, and T. Laarmann, “Attosecond interferometry with self-amplified spontaneous emission of a free-electron laser,” Nature Commun. 8, 15626 (2017).
[Crossref]

Laurell, F.

Lazzarino, L. L.

S. Usenko, A. Przystawik, M. A. Jakob, L. L. Lazzarino, G. Brenner, S. Toleikis, C. Haunhorst, D. Kip, and T. Laarmann, “Attosecond interferometry with self-amplified spontaneous emission of a free-electron laser,” Nature Commun. 8, 15626 (2017).
[Crossref]

Liljestrand, C.

Lu, Q.

Lu, Q.-M.

Y. Tan, F. Chen, L. Wang, X.-L. Wang, K.-M. Wang, and Q.-M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightw. Technol. 26(10), 1304–1308 (2008).
[Crossref]

Marquardt, C.

Metz, P. W.

Müller, S.

Nisius, J. P.

J. Vollmer, J. P. Nisius, P. Hertel, and E. Krätzig, “Refractive index profiles of LiNbO3: Ti waveguides,” Appl. Phys. A 32(3), 125–127 (1983).
[Crossref]

Przystawik, A.

S. Usenko, A. Przystawik, M. A. Jakob, L. L. Lazzarino, G. Brenner, S. Toleikis, C. Haunhorst, D. Kip, and T. Laarmann, “Attosecond interferometry with self-amplified spontaneous emission of a free-electron laser,” Nature Commun. 8, 15626 (2017).
[Crossref]

Qiu, G.

G. Qiu, H. T. Huang, B. T. Zhang, J. L. He, J. F. Yang, and J. L. Xu, “Highly efficient intracavity frequency doubling 532-nm laser based on the gray tracking resistance KTP crystal,” Laser Phys. 20(4), 777–780 (2010).
[Crossref]

Rasch, A.

M. Rottschalk, J.-P. Ruske, B. Unterschütz, A. Rasch, and V. Gröber, “Single mode integrated-optical wide-band channel waveguides and junction splitters in KTiOPO4 for visible light,” J. Appl. Phys. 81(6), 2504–2510 (1997).
[Crossref]

Rottschalk, M.

M. Rottschalk, J.-P. Ruske, B. Unterschütz, A. Rasch, and V. Gröber, “Single mode integrated-optical wide-band channel waveguides and junction splitters in KTiOPO4 for visible light,” J. Appl. Phys. 81(6), 2504–2510 (1997).
[Crossref]

Ruske, J.-P.

M. Rottschalk, J.-P. Ruske, B. Unterschütz, A. Rasch, and V. Gröber, “Single mode integrated-optical wide-band channel waveguides and junction splitters in KTiOPO4 for visible light,” J. Appl. Phys. 81(6), 2504–2510 (1997).
[Crossref]

Rüter, C. E.

Shang, Z.

Shirane, M.

Shoji, I.

Silberhorn, C.

Suntsov, S.

Tan, Y.

Y. Tan, F. Chen, L. Wang, X.-L. Wang, K.-M. Wang, and Q.-M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightw. Technol. 26(10), 1304–1308 (2008).
[Crossref]

Toleikis, S.

S. Usenko, A. Przystawik, M. A. Jakob, L. L. Lazzarino, G. Brenner, S. Toleikis, C. Haunhorst, D. Kip, and T. Laarmann, “Attosecond interferometry with self-amplified spontaneous emission of a free-electron laser,” Nature Commun. 8, 15626 (2017).
[Crossref]

Unterschütz, B.

M. Rottschalk, J.-P. Ruske, B. Unterschütz, A. Rasch, and V. Gröber, “Single mode integrated-optical wide-band channel waveguides and junction splitters in KTiOPO4 for visible light,” J. Appl. Phys. 81(6), 2504–2510 (1997).
[Crossref]

Usenko, S.

S. Usenko, A. Przystawik, M. A. Jakob, L. L. Lazzarino, G. Brenner, S. Toleikis, C. Haunhorst, D. Kip, and T. Laarmann, “Attosecond interferometry with self-amplified spontaneous emission of a free-electron laser,” Nature Commun. 8, 15626 (2017).
[Crossref]

Vanherzeele, H.

Vazquez de Aldana, J. R.

N. Dong, F. Chen, and J. R. Vazquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond-laser-inscribed KTP cladding waveguides,” Phys. Stat. Sol. Rap. Res. Lett. 6(7), 306–308 (2012).

Volk, M. F.

Vollmer, J.

J. Vollmer, J. P. Nisius, P. Hertel, and E. Krätzig, “Refractive index profiles of LiNbO3: Ti waveguides,” Appl. Phys. A 32(3), 125–127 (1983).
[Crossref]

Wang, K.-M.

Y. Tan, F. Chen, L. Wang, X.-L. Wang, K.-M. Wang, and Q.-M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightw. Technol. 26(10), 1304–1308 (2008).
[Crossref]

Wang, L.

Y. Tan, F. Chen, L. Wang, X.-L. Wang, K.-M. Wang, and Q.-M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightw. Technol. 26(10), 1304–1308 (2008).
[Crossref]

Wang, X.-L.

Y. Tan, F. Chen, L. Wang, X.-L. Wang, K.-M. Wang, and Q.-M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightw. Technol. 26(10), 1304–1308 (2008).
[Crossref]

Wisniewski, J.

Wong, F. N. C.

F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84(10), 1644–1646 (2004).
[Crossref]

Xu, J. L.

G. Qiu, H. T. Huang, B. T. Zhang, J. L. He, J. F. Yang, and J. L. Xu, “Highly efficient intracavity frequency doubling 532-nm laser based on the gray tracking resistance KTP crystal,” Laser Phys. 20(4), 777–780 (2010).
[Crossref]

Yang, J. F.

G. Qiu, H. T. Huang, B. T. Zhang, J. L. He, J. F. Yang, and J. L. Xu, “Highly efficient intracavity frequency doubling 532-nm laser based on the gray tracking resistance KTP crystal,” Laser Phys. 20(4), 777–780 (2010).
[Crossref]

Zhang, B. T.

G. Qiu, H. T. Huang, B. T. Zhang, J. L. He, J. F. Yang, and J. L. Xu, “Highly efficient intracavity frequency doubling 532-nm laser based on the gray tracking resistance KTP crystal,” Laser Phys. 20(4), 777–780 (2010).
[Crossref]

Zhou, S.

Appl. Phys. A (1)

J. Vollmer, J. P. Nisius, P. Hertel, and E. Krätzig, “Refractive index profiles of LiNbO3: Ti waveguides,” Appl. Phys. A 32(3), 125–127 (1983).
[Crossref]

Appl. Phys. Lett. (1)

F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84(10), 1644–1646 (2004).
[Crossref]

J. Appl. Phys. (1)

M. Rottschalk, J.-P. Ruske, B. Unterschütz, A. Rasch, and V. Gröber, “Single mode integrated-optical wide-band channel waveguides and junction splitters in KTiOPO4 for visible light,” J. Appl. Phys. 81(6), 2504–2510 (1997).
[Crossref]

J. Lightw. Technol. (1)

Y. Tan, F. Chen, L. Wang, X.-L. Wang, K.-M. Wang, and Q.-M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightw. Technol. 26(10), 1304–1308 (2008).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

G. Qiu, H. T. Huang, B. T. Zhang, J. L. He, J. F. Yang, and J. L. Xu, “Highly efficient intracavity frequency doubling 532-nm laser based on the gray tracking resistance KTP crystal,” Laser Phys. 20(4), 777–780 (2010).
[Crossref]

Nature Commun. (1)

S. Usenko, A. Przystawik, M. A. Jakob, L. L. Lazzarino, G. Brenner, S. Toleikis, C. Haunhorst, D. Kip, and T. Laarmann, “Attosecond interferometry with self-amplified spontaneous emission of a free-electron laser,” Nature Commun. 8, 15626 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Stat. Sol. Rap. Res. Lett. (1)

N. Dong, F. Chen, and J. R. Vazquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond-laser-inscribed KTP cladding waveguides,” Phys. Stat. Sol. Rap. Res. Lett. 6(7), 306–308 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

a) Waveguides are formed in the +z face of KTP by Rb in-diffusion and subsequent ridge definition. b) and c) SEM images of completed ridge waveguides.

Fig. 2
Fig. 2

Confocal microscope images of grooves prepared in the +z face of a KTP substrate using three different resin-based blades (A,B,C) at two different feed rates. Only the top of the substrate is shown and the center of the groove is omitted (white line). The upper edges face the blade-mount and spindle.

Fig. 3
Fig. 3

a) Mode images (intensity) of a 11.3 µm wide waveguide and corresponding simulated modes at 1550 nm; b) spatial overlap between modes of optical SM fiber and ridge waveguides at 1550 nm, calculated from mode images and simulation.

Fig. 4
Fig. 4

Experimentally determined effective indices (symbols) of ridge waveguides of different width and simulation results (solid lines) for a) TE and b) TM polarization at 532 nm.

Fig. 5
Fig. 5

a) Experimental and simulated phasematching wavelength of type-II SHG from fundamental TE00 and TM00 of ∼1060 nm to higher order SH modes for ridges of different width; the grey area indicates the tuning range of the laser; b) measured (black) and calculated (red) phasematching curve of a 7.6 µm wide and 6.6 mm long ridge waveguide for conversion to TE21; the calculated curve’s width is that of bulk KTP and it’s center was fitted to the experiment.

Fig. 6
Fig. 6

Experimental and simulated SH modes of a 6.5 µm (left, middle) and a 9.0 µm wide (right) ridge waveguide.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η theo = P S H P FH 2 L 2 = 8 π 2 d 24 2 S 2 n 3 c ϵ 0 λ FH 2 = 0.35 % / ( Wcm 2 ) .

Metrics