Abstract

The objective of this research is to demonstrate high-quality nanocomposites enabling convenient imprinting of nanopatterned optical devices. The nanocomposite developed contains homogeneously dispersed silicon (Si) nanoparticles in a UV-curable prepolymer host medium. Using an optical adhesive NOA73 as host eliminates surface treatment of the silicone mold due to minimal adhesion between the polymer and mold. Moreover, the chosen materials exhibit low shrinkage, enabling faithful replication of the master templates. Tunable refractive index is realized by mixtures of the host polymer with a refractive index of ~1.56 and nanoparticles with a refractive index of ~3.45. For example, using a ~28% Si fraction, an imprintable material with a refractive index of ~2.1 results. Surface functionalization of nanoparticles with polyvinylpyrolidone is shown to reduce agglomeration. Dynamic light scattering (DLS) and Fourier-transform infrared (FTIR) spectroscopy are employed to investigate the stability of nanocomposites and the efficacy of the surface treatment of nanoparticles, respectively. The quality and physical parameters of the fabricated devices are evaluated by the atomic force microscopy (AFM) and scanning electron microscopy (SEM). The thickness of a homogeneous sublayer underneath a periodic layer in the fabricated optical devices is controlled by employing a channel with precisely managed depth. The example resonant filters show acceptable response as measured in the 1600-1800 nm spectral band and reasonable agreement with theoretical predictions.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tailoring the refractive index of nanoimprint resist by blending with TiO2 nanoparticles

Arfat Pradana, Christian Kluge, and Martina Gerken
Opt. Mater. Express 4(2) 329-337 (2014)

Comparative analysis of direct laser writing and nanoimprint lithography for fabrication of optical phase elements

Shlomi Lightman, Raz Gvishi, Gilad Hurvitz, and Ady Arie
Appl. Opt. 55(34) 9724-9730 (2016)

Low loss high index contrast nanoimprinted polysiloxane waveguides

Ting Han, Steve Madden, Mathew Zhang, Robbie Charters, and Barry Luther-Davies
Opt. Express 17(4) 2623-2630 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C. Sanchez, B. Julian, P. Belleville, and M. Popall, “Applications of hybrid organic-inorganic nanocomposites,” J. Mater. Chem. 15(35-36), 3559–3592 (2005).
    [Crossref]
  2. C. Lü and B. Yang, “High refractive index organic–inorganic nanocomposites: design, synthesis and application,” J. Mater. Chem. 19(19), 2884–2901 (2009).
    [Crossref]
  3. K. Segala, R. L. Dutra, C. V. Franco, A. S. Pereira, and T. Trindade, “In situ and ex situ preparation of ZnO/Poly-{trans-[RuCl2(vpy)4]/styrene} nanocomposites,” J. Braz. Chem. Soc. 21(10), 1986–1991 (2010).
    [Crossref]
  4. I. Denisyuk and M. Fokina, “A review of high nanoparticles concentration composites: semiconductor and high refractive index materials,” in nanocrystals, Y. Masuda, ed. (Sciyo, 2010) Chap. 5.
  5. C. Lu, Z. Cui, Y. Wang, Z. Li, C. Guan, B. Yang, and J. Shen, “Preparation and characterization of ZnS-polymer nanocomposite films with high refractive index,” J. Mater. Chem. 13(9), 2189–2195 (2003).
    [Crossref]
  6. K. Xu and Y. Q. Hu, “Fabrication of transparent PU/ZrO2 nanocomposite coating with high refractive index,” Chin. J. Polym. Sci. 28(1), 13–20 (2010).
    [Crossref]
  7. A. Pradana, C. Kluge, and M. Gerken, “Tailoring the refractive index of nanoimprint resist by blending with TiO2 nanoparticles,” Opt. Mater. Express 4(2), 329–337 (2014).
    [Crossref]
  8. B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express 4(9), 092601 (2011).
    [Crossref]
  9. L. Zimmermann, M. Weibel, W. Caseri, and U. W. Suter, “High refractive index films of polymer nanocomposites,” J. Mater. Res. 8(7), 1742–1748 (1993).
    [Crossref]
  10. C. Lü, C. Guan, Y. Liu, Y. Cheng, and B. Yang, “PbS/polymer nanocomposite optical materials with high refractive index,” Chem. Mater. 17(9), 2448–2454 (2005).
    [Crossref]
  11. W. Caseri, “Nanocomposites of polymers and metals or semiconductors: Historical background and optical properties,” Macromol. Rapid Commun. 21(11), 705–722 (2000).
    [Crossref]
  12. C. Ingrosso, A. Panniello, R. Comparelli, M. L. Curri, and M. Striccoli, “Colloidal inorganic nanocrystal based nanocomposites: functional materials for micro and nanofabrication,” Materials (Basel) 3(2), 1316–1352 (2010).
    [Crossref]
  13. R. A. Sperling and W. J. Parak, “Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles,” Phil. Trans. R. Soc. A 368(1915), 1333– 1383 (2010).
  14. T. Kondo, S. Ura, and R. Magnusson, “Design of guided-mode resonance mirrors for short laser cavities,” J. Opt. Soc. Am. A 32(8), 1454–1458 (2015).
    [Crossref] [PubMed]
  15. D. Wawro, S. Tibuleac, R. Magnusson, and H. Liu, “Optical fiber endface biosensor based on resonances in dielectric waveguide gratings,” Proc. SPIE 3911, 86–94 (2000).
    [Crossref]
  16. K. Jia, D. Zhang, and J. Ma, “Sensitivity of guided mode resonance filter-based biosensor in visible and near infrared ranges,” Sens. Actuators B Chem. 156(1), 194–197 (2011).
    [Crossref]
  17. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [Crossref] [PubMed]
  18. M. Niraula, J. W. Yoon, and R. Magnusson, “Single-layer optical bandpass filter technology,” Opt. Lett. 40(21), 5062–5065 (2015).
    [Crossref] [PubMed]
  19. R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16(5), 3456–3462 (2008).
    [Crossref] [PubMed]
  20. Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99(7), 1823–1848 (1999).
    [Crossref] [PubMed]
  21. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
    [Crossref]
  22. H. Schift, “Nanoimprint lithography: an old story in modern times? A review,” J. Vac. Sci. Technol. B 26(2), 458–480 (2008).
    [Crossref]
  23. L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).
    [Crossref]
  24. K. J. Lee, J. Jin, B.-S. Bae, and R. Magnusson, “Guided-mode resonance filters fabricated with soft lithography,” in Recent Advances in Nanofabrication Techniques and Applications, B. Cui, ed. (InTech, 2011) Chap. 12.
  25. Y. Huang, L. Liu, M. Johnson, A. C Hillier, and M. Lu, “One-step sol-gel imprint lithography for guided-mode resonance structures,” Nanotechnology 27(9), 095302 (2016).
    [Crossref] [PubMed]
  26. J. S. Lin, C. L. Lai, Y. C. Tu, C. H. Wu, and Y. Takeuchi, “A uniform pressure apparatus for micro/nanoimprint lithography equipment,” Int. J. Automot. Technol. 3(1), 84–88 (2009).
    [Crossref]
  27. H. Lee, “Effect of imprinting pressure on residual layer thickness in ultraviolet nanoimprint lithography,” J. Vac. Sci. Technol. B 23(3), 1102–1106 (2005).
    [Crossref]
  28. H. J. Lee, H. W. Ro, C. L. Soles, R. L. Jones, E. K. Lin, W. I. Wu, and D. R. Hines, “Effect of initial resist thickness on residual layer thickness of nanoimprinted structures,” J. Vac. Sci. Technol. B 23(6), 3023–3027 (2005).
    [Crossref]
  29. V. Malyarchuk, F. Hua, N. Mack, V. Velasquez, J. White, R. Nuzzo, and J. Rogers, “High performance plasmonic crystal sensor formed by soft nanoimprint lithography,” Opt. Express 13(15), 5669–5675 (2005).
    [Crossref] [PubMed]
  30. X. Liu, Y. Du, L. Hu, X. Zhou, Y. Li, Z. Dai, and J. Bao, “Understanding the effect of different polymeric surfactants on enhancing the silicon/reduced graphene oxide anode performance,” J. Phys. Chem. C 119(11), 5848–5854 (2015).
    [Crossref]
  31. K. M. Koczkur, S. Mourdikoudis, L. Polavarapu, and S. E. Skrabalak, “Polyvinylpyrrolidone (PVP) in nanoparticle synthesis,” Dalton Trans. 44(41), 17883–17905 (2015).
    [Crossref] [PubMed]
  32. M. D. Tang, A. P. Golden, and J. Tien, “Molding of three-dimensional microstructures of gels,” J. Am. Chem. Soc. 125(43), 12988–12989 (2003).
    [Crossref] [PubMed]
  33. G. Sheppard, T. Oseki, A. Baba, D. Patton, F. Kaneko, L. Mao, and J. Locklin, “Thiolene-based microfluidic flow cells for surface plasmon resonance imaging,” Biomicrofluidics 5(2), 026501 (2011).
    [Crossref] [PubMed]
  34. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995).
    [Crossref]

2016 (1)

Y. Huang, L. Liu, M. Johnson, A. C Hillier, and M. Lu, “One-step sol-gel imprint lithography for guided-mode resonance structures,” Nanotechnology 27(9), 095302 (2016).
[Crossref] [PubMed]

2015 (4)

X. Liu, Y. Du, L. Hu, X. Zhou, Y. Li, Z. Dai, and J. Bao, “Understanding the effect of different polymeric surfactants on enhancing the silicon/reduced graphene oxide anode performance,” J. Phys. Chem. C 119(11), 5848–5854 (2015).
[Crossref]

K. M. Koczkur, S. Mourdikoudis, L. Polavarapu, and S. E. Skrabalak, “Polyvinylpyrrolidone (PVP) in nanoparticle synthesis,” Dalton Trans. 44(41), 17883–17905 (2015).
[Crossref] [PubMed]

T. Kondo, S. Ura, and R. Magnusson, “Design of guided-mode resonance mirrors for short laser cavities,” J. Opt. Soc. Am. A 32(8), 1454–1458 (2015).
[Crossref] [PubMed]

M. Niraula, J. W. Yoon, and R. Magnusson, “Single-layer optical bandpass filter technology,” Opt. Lett. 40(21), 5062–5065 (2015).
[Crossref] [PubMed]

2014 (1)

2011 (3)

B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express 4(9), 092601 (2011).
[Crossref]

G. Sheppard, T. Oseki, A. Baba, D. Patton, F. Kaneko, L. Mao, and J. Locklin, “Thiolene-based microfluidic flow cells for surface plasmon resonance imaging,” Biomicrofluidics 5(2), 026501 (2011).
[Crossref] [PubMed]

K. Jia, D. Zhang, and J. Ma, “Sensitivity of guided mode resonance filter-based biosensor in visible and near infrared ranges,” Sens. Actuators B Chem. 156(1), 194–197 (2011).
[Crossref]

2010 (4)

K. Xu and Y. Q. Hu, “Fabrication of transparent PU/ZrO2 nanocomposite coating with high refractive index,” Chin. J. Polym. Sci. 28(1), 13–20 (2010).
[Crossref]

K. Segala, R. L. Dutra, C. V. Franco, A. S. Pereira, and T. Trindade, “In situ and ex situ preparation of ZnO/Poly-{trans-[RuCl2(vpy)4]/styrene} nanocomposites,” J. Braz. Chem. Soc. 21(10), 1986–1991 (2010).
[Crossref]

C. Ingrosso, A. Panniello, R. Comparelli, M. L. Curri, and M. Striccoli, “Colloidal inorganic nanocrystal based nanocomposites: functional materials for micro and nanofabrication,” Materials (Basel) 3(2), 1316–1352 (2010).
[Crossref]

R. A. Sperling and W. J. Parak, “Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles,” Phil. Trans. R. Soc. A 368(1915), 1333– 1383 (2010).

2009 (2)

C. Lü and B. Yang, “High refractive index organic–inorganic nanocomposites: design, synthesis and application,” J. Mater. Chem. 19(19), 2884–2901 (2009).
[Crossref]

J. S. Lin, C. L. Lai, Y. C. Tu, C. H. Wu, and Y. Takeuchi, “A uniform pressure apparatus for micro/nanoimprint lithography equipment,” Int. J. Automot. Technol. 3(1), 84–88 (2009).
[Crossref]

2008 (2)

H. Schift, “Nanoimprint lithography: an old story in modern times? A review,” J. Vac. Sci. Technol. B 26(2), 458–480 (2008).
[Crossref]

R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16(5), 3456–3462 (2008).
[Crossref] [PubMed]

2007 (1)

L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).
[Crossref]

2005 (5)

H. Lee, “Effect of imprinting pressure on residual layer thickness in ultraviolet nanoimprint lithography,” J. Vac. Sci. Technol. B 23(3), 1102–1106 (2005).
[Crossref]

H. J. Lee, H. W. Ro, C. L. Soles, R. L. Jones, E. K. Lin, W. I. Wu, and D. R. Hines, “Effect of initial resist thickness on residual layer thickness of nanoimprinted structures,” J. Vac. Sci. Technol. B 23(6), 3023–3027 (2005).
[Crossref]

V. Malyarchuk, F. Hua, N. Mack, V. Velasquez, J. White, R. Nuzzo, and J. Rogers, “High performance plasmonic crystal sensor formed by soft nanoimprint lithography,” Opt. Express 13(15), 5669–5675 (2005).
[Crossref] [PubMed]

C. Sanchez, B. Julian, P. Belleville, and M. Popall, “Applications of hybrid organic-inorganic nanocomposites,” J. Mater. Chem. 15(35-36), 3559–3592 (2005).
[Crossref]

C. Lü, C. Guan, Y. Liu, Y. Cheng, and B. Yang, “PbS/polymer nanocomposite optical materials with high refractive index,” Chem. Mater. 17(9), 2448–2454 (2005).
[Crossref]

2003 (2)

C. Lu, Z. Cui, Y. Wang, Z. Li, C. Guan, B. Yang, and J. Shen, “Preparation and characterization of ZnS-polymer nanocomposite films with high refractive index,” J. Mater. Chem. 13(9), 2189–2195 (2003).
[Crossref]

M. D. Tang, A. P. Golden, and J. Tien, “Molding of three-dimensional microstructures of gels,” J. Am. Chem. Soc. 125(43), 12988–12989 (2003).
[Crossref] [PubMed]

2000 (2)

W. Caseri, “Nanocomposites of polymers and metals or semiconductors: Historical background and optical properties,” Macromol. Rapid Commun. 21(11), 705–722 (2000).
[Crossref]

D. Wawro, S. Tibuleac, R. Magnusson, and H. Liu, “Optical fiber endface biosensor based on resonances in dielectric waveguide gratings,” Proc. SPIE 3911, 86–94 (2000).
[Crossref]

1999 (1)

Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99(7), 1823–1848 (1999).
[Crossref] [PubMed]

1996 (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[Crossref]

1995 (1)

1993 (2)

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
[Crossref] [PubMed]

L. Zimmermann, M. Weibel, W. Caseri, and U. W. Suter, “High refractive index films of polymer nanocomposites,” J. Mater. Res. 8(7), 1742–1748 (1993).
[Crossref]

Adschiri, T.

B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express 4(9), 092601 (2011).
[Crossref]

Baba, A.

G. Sheppard, T. Oseki, A. Baba, D. Patton, F. Kaneko, L. Mao, and J. Locklin, “Thiolene-based microfluidic flow cells for surface plasmon resonance imaging,” Biomicrofluidics 5(2), 026501 (2011).
[Crossref] [PubMed]

Bao, J.

X. Liu, Y. Du, L. Hu, X. Zhou, Y. Li, Z. Dai, and J. Bao, “Understanding the effect of different polymeric surfactants on enhancing the silicon/reduced graphene oxide anode performance,” J. Phys. Chem. C 119(11), 5848–5854 (2015).
[Crossref]

Belleville, P.

C. Sanchez, B. Julian, P. Belleville, and M. Popall, “Applications of hybrid organic-inorganic nanocomposites,” J. Mater. Chem. 15(35-36), 3559–3592 (2005).
[Crossref]

C Hillier, A.

Y. Huang, L. Liu, M. Johnson, A. C Hillier, and M. Lu, “One-step sol-gel imprint lithography for guided-mode resonance structures,” Nanotechnology 27(9), 095302 (2016).
[Crossref] [PubMed]

Cai, B.

B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express 4(9), 092601 (2011).
[Crossref]

Caseri, W.

W. Caseri, “Nanocomposites of polymers and metals or semiconductors: Historical background and optical properties,” Macromol. Rapid Commun. 21(11), 705–722 (2000).
[Crossref]

L. Zimmermann, M. Weibel, W. Caseri, and U. W. Suter, “High refractive index films of polymer nanocomposites,” J. Mater. Res. 8(7), 1742–1748 (1993).
[Crossref]

Cheng, Y.

C. Lü, C. Guan, Y. Liu, Y. Cheng, and B. Yang, “PbS/polymer nanocomposite optical materials with high refractive index,” Chem. Mater. 17(9), 2448–2454 (2005).
[Crossref]

Chou, S. Y.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[Crossref]

Comparelli, R.

C. Ingrosso, A. Panniello, R. Comparelli, M. L. Curri, and M. Striccoli, “Colloidal inorganic nanocrystal based nanocomposites: functional materials for micro and nanofabrication,” Materials (Basel) 3(2), 1316–1352 (2010).
[Crossref]

Cui, Z.

C. Lu, Z. Cui, Y. Wang, Z. Li, C. Guan, B. Yang, and J. Shen, “Preparation and characterization of ZnS-polymer nanocomposite films with high refractive index,” J. Mater. Chem. 13(9), 2189–2195 (2003).
[Crossref]

Curri, M. L.

C. Ingrosso, A. Panniello, R. Comparelli, M. L. Curri, and M. Striccoli, “Colloidal inorganic nanocrystal based nanocomposites: functional materials for micro and nanofabrication,” Materials (Basel) 3(2), 1316–1352 (2010).
[Crossref]

Dai, Z.

X. Liu, Y. Du, L. Hu, X. Zhou, Y. Li, Z. Dai, and J. Bao, “Understanding the effect of different polymeric surfactants on enhancing the silicon/reduced graphene oxide anode performance,” J. Phys. Chem. C 119(11), 5848–5854 (2015).
[Crossref]

Du, Y.

X. Liu, Y. Du, L. Hu, X. Zhou, Y. Li, Z. Dai, and J. Bao, “Understanding the effect of different polymeric surfactants on enhancing the silicon/reduced graphene oxide anode performance,” J. Phys. Chem. C 119(11), 5848–5854 (2015).
[Crossref]

Dutra, R. L.

K. Segala, R. L. Dutra, C. V. Franco, A. S. Pereira, and T. Trindade, “In situ and ex situ preparation of ZnO/Poly-{trans-[RuCl2(vpy)4]/styrene} nanocomposites,” J. Braz. Chem. Soc. 21(10), 1986–1991 (2010).
[Crossref]

Elim, H. I.

B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express 4(9), 092601 (2011).
[Crossref]

Franco, C. V.

K. Segala, R. L. Dutra, C. V. Franco, A. S. Pereira, and T. Trindade, “In situ and ex situ preparation of ZnO/Poly-{trans-[RuCl2(vpy)4]/styrene} nanocomposites,” J. Braz. Chem. Soc. 21(10), 1986–1991 (2010).
[Crossref]

Gaylord, T. K.

Gerken, M.

Golden, A. P.

M. D. Tang, A. P. Golden, and J. Tien, “Molding of three-dimensional microstructures of gels,” J. Am. Chem. Soc. 125(43), 12988–12989 (2003).
[Crossref] [PubMed]

Grann, E. B.

Guan, C.

C. Lü, C. Guan, Y. Liu, Y. Cheng, and B. Yang, “PbS/polymer nanocomposite optical materials with high refractive index,” Chem. Mater. 17(9), 2448–2454 (2005).
[Crossref]

C. Lu, Z. Cui, Y. Wang, Z. Li, C. Guan, B. Yang, and J. Shen, “Preparation and characterization of ZnS-polymer nanocomposite films with high refractive index,” J. Mater. Chem. 13(9), 2189–2195 (2003).
[Crossref]

Guo, L. J.

L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).
[Crossref]

Hines, D. R.

H. J. Lee, H. W. Ro, C. L. Soles, R. L. Jones, E. K. Lin, W. I. Wu, and D. R. Hines, “Effect of initial resist thickness on residual layer thickness of nanoimprinted structures,” J. Vac. Sci. Technol. B 23(6), 3023–3027 (2005).
[Crossref]

Hu, L.

X. Liu, Y. Du, L. Hu, X. Zhou, Y. Li, Z. Dai, and J. Bao, “Understanding the effect of different polymeric surfactants on enhancing the silicon/reduced graphene oxide anode performance,” J. Phys. Chem. C 119(11), 5848–5854 (2015).
[Crossref]

Hu, Y. Q.

K. Xu and Y. Q. Hu, “Fabrication of transparent PU/ZrO2 nanocomposite coating with high refractive index,” Chin. J. Polym. Sci. 28(1), 13–20 (2010).
[Crossref]

Hua, F.

Huang, Y.

Y. Huang, L. Liu, M. Johnson, A. C Hillier, and M. Lu, “One-step sol-gel imprint lithography for guided-mode resonance structures,” Nanotechnology 27(9), 095302 (2016).
[Crossref] [PubMed]

Ingrosso, C.

C. Ingrosso, A. Panniello, R. Comparelli, M. L. Curri, and M. Striccoli, “Colloidal inorganic nanocrystal based nanocomposites: functional materials for micro and nanofabrication,” Materials (Basel) 3(2), 1316–1352 (2010).
[Crossref]

Jia, K.

K. Jia, D. Zhang, and J. Ma, “Sensitivity of guided mode resonance filter-based biosensor in visible and near infrared ranges,” Sens. Actuators B Chem. 156(1), 194–197 (2011).
[Crossref]

Johnson, M.

Y. Huang, L. Liu, M. Johnson, A. C Hillier, and M. Lu, “One-step sol-gel imprint lithography for guided-mode resonance structures,” Nanotechnology 27(9), 095302 (2016).
[Crossref] [PubMed]

Jones, R. L.

H. J. Lee, H. W. Ro, C. L. Soles, R. L. Jones, E. K. Lin, W. I. Wu, and D. R. Hines, “Effect of initial resist thickness on residual layer thickness of nanoimprinted structures,” J. Vac. Sci. Technol. B 23(6), 3023–3027 (2005).
[Crossref]

Julian, B.

C. Sanchez, B. Julian, P. Belleville, and M. Popall, “Applications of hybrid organic-inorganic nanocomposites,” J. Mater. Chem. 15(35-36), 3559–3592 (2005).
[Crossref]

Kaino, T.

B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express 4(9), 092601 (2011).
[Crossref]

Kaneko, F.

G. Sheppard, T. Oseki, A. Baba, D. Patton, F. Kaneko, L. Mao, and J. Locklin, “Thiolene-based microfluidic flow cells for surface plasmon resonance imaging,” Biomicrofluidics 5(2), 026501 (2011).
[Crossref] [PubMed]

Kluge, C.

Koczkur, K. M.

K. M. Koczkur, S. Mourdikoudis, L. Polavarapu, and S. E. Skrabalak, “Polyvinylpyrrolidone (PVP) in nanoparticle synthesis,” Dalton Trans. 44(41), 17883–17905 (2015).
[Crossref] [PubMed]

Kondo, T.

Krauss, P. R.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[Crossref]

Lai, C. L.

J. S. Lin, C. L. Lai, Y. C. Tu, C. H. Wu, and Y. Takeuchi, “A uniform pressure apparatus for micro/nanoimprint lithography equipment,” Int. J. Automot. Technol. 3(1), 84–88 (2009).
[Crossref]

Lee, H.

H. Lee, “Effect of imprinting pressure on residual layer thickness in ultraviolet nanoimprint lithography,” J. Vac. Sci. Technol. B 23(3), 1102–1106 (2005).
[Crossref]

Lee, H. J.

H. J. Lee, H. W. Ro, C. L. Soles, R. L. Jones, E. K. Lin, W. I. Wu, and D. R. Hines, “Effect of initial resist thickness on residual layer thickness of nanoimprinted structures,” J. Vac. Sci. Technol. B 23(6), 3023–3027 (2005).
[Crossref]

Li, Y.

X. Liu, Y. Du, L. Hu, X. Zhou, Y. Li, Z. Dai, and J. Bao, “Understanding the effect of different polymeric surfactants on enhancing the silicon/reduced graphene oxide anode performance,” J. Phys. Chem. C 119(11), 5848–5854 (2015).
[Crossref]

Li, Z.

C. Lu, Z. Cui, Y. Wang, Z. Li, C. Guan, B. Yang, and J. Shen, “Preparation and characterization of ZnS-polymer nanocomposite films with high refractive index,” J. Mater. Chem. 13(9), 2189–2195 (2003).
[Crossref]

Lin, E. K.

H. J. Lee, H. W. Ro, C. L. Soles, R. L. Jones, E. K. Lin, W. I. Wu, and D. R. Hines, “Effect of initial resist thickness on residual layer thickness of nanoimprinted structures,” J. Vac. Sci. Technol. B 23(6), 3023–3027 (2005).
[Crossref]

Lin, J. S.

J. S. Lin, C. L. Lai, Y. C. Tu, C. H. Wu, and Y. Takeuchi, “A uniform pressure apparatus for micro/nanoimprint lithography equipment,” Int. J. Automot. Technol. 3(1), 84–88 (2009).
[Crossref]

Liu, H.

D. Wawro, S. Tibuleac, R. Magnusson, and H. Liu, “Optical fiber endface biosensor based on resonances in dielectric waveguide gratings,” Proc. SPIE 3911, 86–94 (2000).
[Crossref]

Liu, L.

Y. Huang, L. Liu, M. Johnson, A. C Hillier, and M. Lu, “One-step sol-gel imprint lithography for guided-mode resonance structures,” Nanotechnology 27(9), 095302 (2016).
[Crossref] [PubMed]

Liu, X.

X. Liu, Y. Du, L. Hu, X. Zhou, Y. Li, Z. Dai, and J. Bao, “Understanding the effect of different polymeric surfactants on enhancing the silicon/reduced graphene oxide anode performance,” J. Phys. Chem. C 119(11), 5848–5854 (2015).
[Crossref]

Liu, Y.

C. Lü, C. Guan, Y. Liu, Y. Cheng, and B. Yang, “PbS/polymer nanocomposite optical materials with high refractive index,” Chem. Mater. 17(9), 2448–2454 (2005).
[Crossref]

Locklin, J.

G. Sheppard, T. Oseki, A. Baba, D. Patton, F. Kaneko, L. Mao, and J. Locklin, “Thiolene-based microfluidic flow cells for surface plasmon resonance imaging,” Biomicrofluidics 5(2), 026501 (2011).
[Crossref] [PubMed]

Lu, C.

C. Lu, Z. Cui, Y. Wang, Z. Li, C. Guan, B. Yang, and J. Shen, “Preparation and characterization of ZnS-polymer nanocomposite films with high refractive index,” J. Mater. Chem. 13(9), 2189–2195 (2003).
[Crossref]

Lu, M.

Y. Huang, L. Liu, M. Johnson, A. C Hillier, and M. Lu, “One-step sol-gel imprint lithography for guided-mode resonance structures,” Nanotechnology 27(9), 095302 (2016).
[Crossref] [PubMed]

Lü, C.

C. Lü and B. Yang, “High refractive index organic–inorganic nanocomposites: design, synthesis and application,” J. Mater. Chem. 19(19), 2884–2901 (2009).
[Crossref]

C. Lü, C. Guan, Y. Liu, Y. Cheng, and B. Yang, “PbS/polymer nanocomposite optical materials with high refractive index,” Chem. Mater. 17(9), 2448–2454 (2005).
[Crossref]

Ma, J.

K. Jia, D. Zhang, and J. Ma, “Sensitivity of guided mode resonance filter-based biosensor in visible and near infrared ranges,” Sens. Actuators B Chem. 156(1), 194–197 (2011).
[Crossref]

Mack, N.

Magnusson, R.

Malyarchuk, V.

Mao, L.

G. Sheppard, T. Oseki, A. Baba, D. Patton, F. Kaneko, L. Mao, and J. Locklin, “Thiolene-based microfluidic flow cells for surface plasmon resonance imaging,” Biomicrofluidics 5(2), 026501 (2011).
[Crossref] [PubMed]

Moharam, M. G.

Mourdikoudis, S.

K. M. Koczkur, S. Mourdikoudis, L. Polavarapu, and S. E. Skrabalak, “Polyvinylpyrrolidone (PVP) in nanoparticle synthesis,” Dalton Trans. 44(41), 17883–17905 (2015).
[Crossref] [PubMed]

Niraula, M.

Nuzzo, R.

Oseki, T.

G. Sheppard, T. Oseki, A. Baba, D. Patton, F. Kaneko, L. Mao, and J. Locklin, “Thiolene-based microfluidic flow cells for surface plasmon resonance imaging,” Biomicrofluidics 5(2), 026501 (2011).
[Crossref] [PubMed]

Panniello, A.

C. Ingrosso, A. Panniello, R. Comparelli, M. L. Curri, and M. Striccoli, “Colloidal inorganic nanocrystal based nanocomposites: functional materials for micro and nanofabrication,” Materials (Basel) 3(2), 1316–1352 (2010).
[Crossref]

Parak, W. J.

R. A. Sperling and W. J. Parak, “Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles,” Phil. Trans. R. Soc. A 368(1915), 1333– 1383 (2010).

Patton, D.

G. Sheppard, T. Oseki, A. Baba, D. Patton, F. Kaneko, L. Mao, and J. Locklin, “Thiolene-based microfluidic flow cells for surface plasmon resonance imaging,” Biomicrofluidics 5(2), 026501 (2011).
[Crossref] [PubMed]

Paul, K. E.

Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99(7), 1823–1848 (1999).
[Crossref] [PubMed]

Pereira, A. S.

K. Segala, R. L. Dutra, C. V. Franco, A. S. Pereira, and T. Trindade, “In situ and ex situ preparation of ZnO/Poly-{trans-[RuCl2(vpy)4]/styrene} nanocomposites,” J. Braz. Chem. Soc. 21(10), 1986–1991 (2010).
[Crossref]

Polavarapu, L.

K. M. Koczkur, S. Mourdikoudis, L. Polavarapu, and S. E. Skrabalak, “Polyvinylpyrrolidone (PVP) in nanoparticle synthesis,” Dalton Trans. 44(41), 17883–17905 (2015).
[Crossref] [PubMed]

Pommet, D. A.

Popall, M.

C. Sanchez, B. Julian, P. Belleville, and M. Popall, “Applications of hybrid organic-inorganic nanocomposites,” J. Mater. Chem. 15(35-36), 3559–3592 (2005).
[Crossref]

Pradana, A.

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[Crossref]

Ro, H. W.

H. J. Lee, H. W. Ro, C. L. Soles, R. L. Jones, E. K. Lin, W. I. Wu, and D. R. Hines, “Effect of initial resist thickness on residual layer thickness of nanoimprinted structures,” J. Vac. Sci. Technol. B 23(6), 3023–3027 (2005).
[Crossref]

Rogers, J.

Rogers, J. A.

Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99(7), 1823–1848 (1999).
[Crossref] [PubMed]

Sanchez, C.

C. Sanchez, B. Julian, P. Belleville, and M. Popall, “Applications of hybrid organic-inorganic nanocomposites,” J. Mater. Chem. 15(35-36), 3559–3592 (2005).
[Crossref]

Schift, H.

H. Schift, “Nanoimprint lithography: an old story in modern times? A review,” J. Vac. Sci. Technol. B 26(2), 458–480 (2008).
[Crossref]

Segala, K.

K. Segala, R. L. Dutra, C. V. Franco, A. S. Pereira, and T. Trindade, “In situ and ex situ preparation of ZnO/Poly-{trans-[RuCl2(vpy)4]/styrene} nanocomposites,” J. Braz. Chem. Soc. 21(10), 1986–1991 (2010).
[Crossref]

Shen, J.

C. Lu, Z. Cui, Y. Wang, Z. Li, C. Guan, B. Yang, and J. Shen, “Preparation and characterization of ZnS-polymer nanocomposite films with high refractive index,” J. Mater. Chem. 13(9), 2189–2195 (2003).
[Crossref]

Sheppard, G.

G. Sheppard, T. Oseki, A. Baba, D. Patton, F. Kaneko, L. Mao, and J. Locklin, “Thiolene-based microfluidic flow cells for surface plasmon resonance imaging,” Biomicrofluidics 5(2), 026501 (2011).
[Crossref] [PubMed]

Shokooh-Saremi, M.

Skrabalak, S. E.

K. M. Koczkur, S. Mourdikoudis, L. Polavarapu, and S. E. Skrabalak, “Polyvinylpyrrolidone (PVP) in nanoparticle synthesis,” Dalton Trans. 44(41), 17883–17905 (2015).
[Crossref] [PubMed]

Soles, C. L.

H. J. Lee, H. W. Ro, C. L. Soles, R. L. Jones, E. K. Lin, W. I. Wu, and D. R. Hines, “Effect of initial resist thickness on residual layer thickness of nanoimprinted structures,” J. Vac. Sci. Technol. B 23(6), 3023–3027 (2005).
[Crossref]

Sperling, R. A.

R. A. Sperling and W. J. Parak, “Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles,” Phil. Trans. R. Soc. A 368(1915), 1333– 1383 (2010).

Striccoli, M.

C. Ingrosso, A. Panniello, R. Comparelli, M. L. Curri, and M. Striccoli, “Colloidal inorganic nanocrystal based nanocomposites: functional materials for micro and nanofabrication,” Materials (Basel) 3(2), 1316–1352 (2010).
[Crossref]

Sugihara, O.

B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express 4(9), 092601 (2011).
[Crossref]

Suter, U. W.

L. Zimmermann, M. Weibel, W. Caseri, and U. W. Suter, “High refractive index films of polymer nanocomposites,” J. Mater. Res. 8(7), 1742–1748 (1993).
[Crossref]

Takeuchi, Y.

J. S. Lin, C. L. Lai, Y. C. Tu, C. H. Wu, and Y. Takeuchi, “A uniform pressure apparatus for micro/nanoimprint lithography equipment,” Int. J. Automot. Technol. 3(1), 84–88 (2009).
[Crossref]

Tang, M. D.

M. D. Tang, A. P. Golden, and J. Tien, “Molding of three-dimensional microstructures of gels,” J. Am. Chem. Soc. 125(43), 12988–12989 (2003).
[Crossref] [PubMed]

Tibuleac, S.

D. Wawro, S. Tibuleac, R. Magnusson, and H. Liu, “Optical fiber endface biosensor based on resonances in dielectric waveguide gratings,” Proc. SPIE 3911, 86–94 (2000).
[Crossref]

Tien, J.

M. D. Tang, A. P. Golden, and J. Tien, “Molding of three-dimensional microstructures of gels,” J. Am. Chem. Soc. 125(43), 12988–12989 (2003).
[Crossref] [PubMed]

Trindade, T.

K. Segala, R. L. Dutra, C. V. Franco, A. S. Pereira, and T. Trindade, “In situ and ex situ preparation of ZnO/Poly-{trans-[RuCl2(vpy)4]/styrene} nanocomposites,” J. Braz. Chem. Soc. 21(10), 1986–1991 (2010).
[Crossref]

Tu, Y. C.

J. S. Lin, C. L. Lai, Y. C. Tu, C. H. Wu, and Y. Takeuchi, “A uniform pressure apparatus for micro/nanoimprint lithography equipment,” Int. J. Automot. Technol. 3(1), 84–88 (2009).
[Crossref]

Ura, S.

Velasquez, V.

Wang, S. S.

Wang, Y.

C. Lu, Z. Cui, Y. Wang, Z. Li, C. Guan, B. Yang, and J. Shen, “Preparation and characterization of ZnS-polymer nanocomposite films with high refractive index,” J. Mater. Chem. 13(9), 2189–2195 (2003).
[Crossref]

Wawro, D.

D. Wawro, S. Tibuleac, R. Magnusson, and H. Liu, “Optical fiber endface biosensor based on resonances in dielectric waveguide gratings,” Proc. SPIE 3911, 86–94 (2000).
[Crossref]

Weibel, M.

L. Zimmermann, M. Weibel, W. Caseri, and U. W. Suter, “High refractive index films of polymer nanocomposites,” J. Mater. Res. 8(7), 1742–1748 (1993).
[Crossref]

White, J.

Whitesides, G. M.

Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99(7), 1823–1848 (1999).
[Crossref] [PubMed]

Wu, C. H.

J. S. Lin, C. L. Lai, Y. C. Tu, C. H. Wu, and Y. Takeuchi, “A uniform pressure apparatus for micro/nanoimprint lithography equipment,” Int. J. Automot. Technol. 3(1), 84–88 (2009).
[Crossref]

Wu, W. I.

H. J. Lee, H. W. Ro, C. L. Soles, R. L. Jones, E. K. Lin, W. I. Wu, and D. R. Hines, “Effect of initial resist thickness on residual layer thickness of nanoimprinted structures,” J. Vac. Sci. Technol. B 23(6), 3023–3027 (2005).
[Crossref]

Xia, Y.

Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99(7), 1823–1848 (1999).
[Crossref] [PubMed]

Xu, K.

K. Xu and Y. Q. Hu, “Fabrication of transparent PU/ZrO2 nanocomposite coating with high refractive index,” Chin. J. Polym. Sci. 28(1), 13–20 (2010).
[Crossref]

Yang, B.

C. Lü and B. Yang, “High refractive index organic–inorganic nanocomposites: design, synthesis and application,” J. Mater. Chem. 19(19), 2884–2901 (2009).
[Crossref]

C. Lü, C. Guan, Y. Liu, Y. Cheng, and B. Yang, “PbS/polymer nanocomposite optical materials with high refractive index,” Chem. Mater. 17(9), 2448–2454 (2005).
[Crossref]

C. Lu, Z. Cui, Y. Wang, Z. Li, C. Guan, B. Yang, and J. Shen, “Preparation and characterization of ZnS-polymer nanocomposite films with high refractive index,” J. Mater. Chem. 13(9), 2189–2195 (2003).
[Crossref]

Yoon, J. W.

Zhang, D.

K. Jia, D. Zhang, and J. Ma, “Sensitivity of guided mode resonance filter-based biosensor in visible and near infrared ranges,” Sens. Actuators B Chem. 156(1), 194–197 (2011).
[Crossref]

Zhou, X.

X. Liu, Y. Du, L. Hu, X. Zhou, Y. Li, Z. Dai, and J. Bao, “Understanding the effect of different polymeric surfactants on enhancing the silicon/reduced graphene oxide anode performance,” J. Phys. Chem. C 119(11), 5848–5854 (2015).
[Crossref]

Zimmermann, L.

L. Zimmermann, M. Weibel, W. Caseri, and U. W. Suter, “High refractive index films of polymer nanocomposites,” J. Mater. Res. 8(7), 1742–1748 (1993).
[Crossref]

Adv. Mater. (1)

L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express 4(9), 092601 (2011).
[Crossref]

Biomicrofluidics (1)

G. Sheppard, T. Oseki, A. Baba, D. Patton, F. Kaneko, L. Mao, and J. Locklin, “Thiolene-based microfluidic flow cells for surface plasmon resonance imaging,” Biomicrofluidics 5(2), 026501 (2011).
[Crossref] [PubMed]

Chem. Mater. (1)

C. Lü, C. Guan, Y. Liu, Y. Cheng, and B. Yang, “PbS/polymer nanocomposite optical materials with high refractive index,” Chem. Mater. 17(9), 2448–2454 (2005).
[Crossref]

Chem. Rev. (1)

Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99(7), 1823–1848 (1999).
[Crossref] [PubMed]

Chin. J. Polym. Sci. (1)

K. Xu and Y. Q. Hu, “Fabrication of transparent PU/ZrO2 nanocomposite coating with high refractive index,” Chin. J. Polym. Sci. 28(1), 13–20 (2010).
[Crossref]

Dalton Trans. (1)

K. M. Koczkur, S. Mourdikoudis, L. Polavarapu, and S. E. Skrabalak, “Polyvinylpyrrolidone (PVP) in nanoparticle synthesis,” Dalton Trans. 44(41), 17883–17905 (2015).
[Crossref] [PubMed]

Int. J. Automot. Technol. (1)

J. S. Lin, C. L. Lai, Y. C. Tu, C. H. Wu, and Y. Takeuchi, “A uniform pressure apparatus for micro/nanoimprint lithography equipment,” Int. J. Automot. Technol. 3(1), 84–88 (2009).
[Crossref]

J. Am. Chem. Soc. (1)

M. D. Tang, A. P. Golden, and J. Tien, “Molding of three-dimensional microstructures of gels,” J. Am. Chem. Soc. 125(43), 12988–12989 (2003).
[Crossref] [PubMed]

J. Braz. Chem. Soc. (1)

K. Segala, R. L. Dutra, C. V. Franco, A. S. Pereira, and T. Trindade, “In situ and ex situ preparation of ZnO/Poly-{trans-[RuCl2(vpy)4]/styrene} nanocomposites,” J. Braz. Chem. Soc. 21(10), 1986–1991 (2010).
[Crossref]

J. Mater. Chem. (3)

C. Sanchez, B. Julian, P. Belleville, and M. Popall, “Applications of hybrid organic-inorganic nanocomposites,” J. Mater. Chem. 15(35-36), 3559–3592 (2005).
[Crossref]

C. Lü and B. Yang, “High refractive index organic–inorganic nanocomposites: design, synthesis and application,” J. Mater. Chem. 19(19), 2884–2901 (2009).
[Crossref]

C. Lu, Z. Cui, Y. Wang, Z. Li, C. Guan, B. Yang, and J. Shen, “Preparation and characterization of ZnS-polymer nanocomposite films with high refractive index,” J. Mater. Chem. 13(9), 2189–2195 (2003).
[Crossref]

J. Mater. Res. (1)

L. Zimmermann, M. Weibel, W. Caseri, and U. W. Suter, “High refractive index films of polymer nanocomposites,” J. Mater. Res. 8(7), 1742–1748 (1993).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Phys. Chem. C (1)

X. Liu, Y. Du, L. Hu, X. Zhou, Y. Li, Z. Dai, and J. Bao, “Understanding the effect of different polymeric surfactants on enhancing the silicon/reduced graphene oxide anode performance,” J. Phys. Chem. C 119(11), 5848–5854 (2015).
[Crossref]

J. Vac. Sci. Technol. B (4)

H. Lee, “Effect of imprinting pressure on residual layer thickness in ultraviolet nanoimprint lithography,” J. Vac. Sci. Technol. B 23(3), 1102–1106 (2005).
[Crossref]

H. J. Lee, H. W. Ro, C. L. Soles, R. L. Jones, E. K. Lin, W. I. Wu, and D. R. Hines, “Effect of initial resist thickness on residual layer thickness of nanoimprinted structures,” J. Vac. Sci. Technol. B 23(6), 3023–3027 (2005).
[Crossref]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[Crossref]

H. Schift, “Nanoimprint lithography: an old story in modern times? A review,” J. Vac. Sci. Technol. B 26(2), 458–480 (2008).
[Crossref]

Macromol. Rapid Commun. (1)

W. Caseri, “Nanocomposites of polymers and metals or semiconductors: Historical background and optical properties,” Macromol. Rapid Commun. 21(11), 705–722 (2000).
[Crossref]

Materials (Basel) (1)

C. Ingrosso, A. Panniello, R. Comparelli, M. L. Curri, and M. Striccoli, “Colloidal inorganic nanocrystal based nanocomposites: functional materials for micro and nanofabrication,” Materials (Basel) 3(2), 1316–1352 (2010).
[Crossref]

Nanotechnology (1)

Y. Huang, L. Liu, M. Johnson, A. C Hillier, and M. Lu, “One-step sol-gel imprint lithography for guided-mode resonance structures,” Nanotechnology 27(9), 095302 (2016).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phil. Trans. R. Soc. A (1)

R. A. Sperling and W. J. Parak, “Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles,” Phil. Trans. R. Soc. A 368(1915), 1333– 1383 (2010).

Proc. SPIE (1)

D. Wawro, S. Tibuleac, R. Magnusson, and H. Liu, “Optical fiber endface biosensor based on resonances in dielectric waveguide gratings,” Proc. SPIE 3911, 86–94 (2000).
[Crossref]

Sens. Actuators B Chem. (1)

K. Jia, D. Zhang, and J. Ma, “Sensitivity of guided mode resonance filter-based biosensor in visible and near infrared ranges,” Sens. Actuators B Chem. 156(1), 194–197 (2011).
[Crossref]

Other (2)

K. J. Lee, J. Jin, B.-S. Bae, and R. Magnusson, “Guided-mode resonance filters fabricated with soft lithography,” in Recent Advances in Nanofabrication Techniques and Applications, B. Cui, ed. (InTech, 2011) Chap. 12.

I. Denisyuk and M. Fokina, “A review of high nanoparticles concentration composites: semiconductor and high refractive index materials,” in nanocrystals, Y. Masuda, ed. (Sciyo, 2010) Chap. 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Nanoimprint device fabrication method. (a) PDMS stamp peeled off from the silicon master. (b) Nanocomposite poured on a glass substrate as spin coating is not applicable. (c) UV curing of the nanocomposite through the PDMS stamp. (d) A final nanoimprinted device with specific physical parameters.

Fig. 2
Fig. 2

DLS measurements of as-sonicated, non-treated, and PVP-treated silicon nanoparticles after 15 minutes.

Fig. 3
Fig. 3

ATR-FTIR measurements for pure-PVP, as-received silicon, and PVP-coated silicon nanoparticles.

Fig. 4
Fig. 4

Distribution of nanoparticles in a nanocomposite containing ~23 vol% Si. (a) Non-treated nanoparticles under slow curing. (b) Non-treated nanoparticles under rapid curing. (c) Surface treated nanoparticles under rapid curing.

Fig. 5
Fig. 5

AFM images of the (a) Silicon master after aluminum deposition. (b) Fabricated nanoimprinted optical filter device. Insets show 3D views of the grating lines.

Fig. 6
Fig. 6

SEM images of (a) top-view of a nanoimprinted resonance device and (b) cross section of a resonance element with a thick and non-uniform homogeneous layer. The inset in (a) shows a cross-sectional view of the grating.

Fig. 7
Fig. 7

(a)-(c) Schematics of the channel fabrication. (d) Cross section of the device fabricated with the channel method to control the thickness of the homogeneous layer.

Fig. 8
Fig. 8

Experimental and calculated transmission spectra at normal incidence with TE-polarized light (electric vector of input light lies along the grating grooves). The fabricated devices have different refractive indices but the same physical parameters of Λ = 1.05 μm, dg = 0.34 μm, dh = 0.95 μm, and F = 0.45.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n nanocomposite = n filler V filler + n matrix V matrix .