Abstract

Phosphor-converted white light-emitting diodes (pc-WLEDs) are energy efficient and environmentally friendly light sources with a long lifetime, applicable in both display backlights and general lighting. Adding red-emitting phosphors improves the color quality of white LEDs compared to the prototype combination of a blue LED and the yellow Y3Al5O12:Ce3+. Efficient narrow-band red-emitting phosphors like K2SiF6:Mn4+ can meet the market’s needs. This review recapitulates research since 2008 on K2SiF6:Mn4+ as the first and most discussed fluoride phosphor. The limited nephelauxetic effect, typical for fluorides, allows for the tuning of the Mn4+ emission in the red part of the spectrum below 650 nm. This is reflected in the spectroscopic parameters of the crystal field theory. Synthesis methods are described, showing the evolution from etching Si wafers to solution synthesis resulting in consistent luminescent and thermal properties. Though important for applications, long-term stability is often neglected, although (in)organic coatings improving stability emerge. This leads not only to warm-white LEDs with high efficacies and good color rendering, but also to efficient displays with a large color gamut.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly efficient narrow-band green and red phosphors enabling wider color-gamut LED backlight for more brilliant displays

Le Wang, Xiaojun Wang, Takahashi Kohsei, Ken-ichi Yoshimura, Makoto Izumi, Naoto Hirosaki, and Rong-Jun Xie
Opt. Express 23(22) 28707-28717 (2015)

Optical characteristics and longevity of the line-emitting K2SiF6:Mn4+ phosphor for LED application

Ji Wook Moon, Bong Gul Min, Jin Sung Kim, Myoung Su Jang, Kang Min Ok, Kwan-Young Han, and Jae Soo Yoo
Opt. Mater. Express 6(3) 782-792 (2016)

Photoluminescence properties of emission-tunable Ca8MgLa(PO4)7:Eu2+, Mn2+ phosphors for white LEDs

Jia Zhang and Cheng Jiang
Opt. Mater. Express 4(10) 2102-2107 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. B. Nobel Media, “The 2014 Nobel Prize in Physics - Press Release,” http://www.nobelprize.org/nobel_prizes/physics/laureates/2014/press.html .
  2. S. Abe, J. J. Joos, L. I. Martin, Z. Hens, and P. F. Smet, “Hybrid remote quantum dot/powder phosphor designs for display backlights,” Light Sci. Appl. 6(6), e16271 (2017).
    [Crossref]
  3. P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
    [Crossref]
  4. H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors,” IEEE Photonics Technol. Lett. 17(6), 1160–1162 (2005).
    [Crossref]
  5. J. J. Joos, K. W. Meert, A. B. Parmentier, D. Poelman, and P. F. Smet, “Thermal quenching and luminescence lifetime of saturated green Sr1−xEuxGa2S4 phosphors,” Opt. Mater. 34(11), 1902–1907 (2012).
    [Crossref]
  6. R. Mueller-Mach, G. Mueller, M. R. Krames, H. A. Höppe, F. Stadler, W. Schnick, T. Juestel, and P. Schmidt, “Highly efficient all-nitride phosphor-converted white light emitting diode,” Phys. Status Solidi 202(9), 1727–1732 (2005).
    [Crossref]
  7. T. Horikawa, X. Q. Piao, M. Fujitani, H. Hanzawa, and K. Machida, “Preparation of Sr2Si5N8:Eu2+ phosphors using various novel reducing agents and their luminescent properties,” IOP Conf. Ser. Mater. Sci. Eng. 1(1), 12024 (2009).
    [Crossref]
  8. Y. Hu, W. Zhuang, H. Ye, S. Zhang, Y. Fang, and X. Huang, “Preparation and luminescent properties of (Ca1-x,Srx)S:Eu2+ red-emitting phosphor for white LED,” J. Lumin. 111(3), 139–145 (2005).
    [Crossref]
  9. K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3:Eu2+, for White Light-Emitting Diodes,” Electrochem. Solid-State Lett. 9(4), H22 (2006).
    [Crossref]
  10. P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
    [Crossref] [PubMed]
  11. C. J. Duan, A. C. A. Delsing, and H. T. Hintzen, “Photoluminescence Properties of Novel Red-Emitting Mn2+-Activated MZnOS (M = Ca, Ba) Phosphors,” Chem. Mater. 21(6), 1010–1016 (2009).
    [Crossref]
  12. J. J. Joos, K. Lejaeghere, K. Korthout, A. Feng, D. Poelman, and P. F. Smet, “Charge transfer induced energy storage in CaZnOS:Mn - insight from experimental and computational spectroscopy,” Phys. Chem. Chem. Phys. 19(13), 9075–9085 (2017).
    [Crossref] [PubMed]
  13. A. A. Setlur, E. V. Radkov, C. S. Henderson, J.-H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, A. R. Deshpande, B. Kolodin, S. G. Ljudmil, and U. Happek, “Energy-efficient, high-color-rendering LED lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22(13), 4076–4082 (2010).
    [Crossref]
  14. H. F. Sijbom, J. J. Joos, L. I. D. J. Martin, K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Luminescent behavior of the K2SiF6:Mn4+ red phosphor at high fluxes and at the microscopic level,” ECS J. Solid State Sci. Technol. 5(1), R3040–R3048 (2016).
    [Crossref]
  15. W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
    [Crossref]
  16. D. Nickerson and C. W. Jerome, “Color rendering of light sources: CIE method of specification and its application,” Illum. Eng. 60(4), 262 (1965).
  17. Radiocommunication Sector of ITU (ITU-R), Parameter Values for Ultra-High Definition Television Systems for Production and International Programme Exchange (2015).
  18. J. J. Joos, J. Botterman, and P. F. Smet, “Evaluating the use of blue phosphors in white LEDs: the case of Sr0.25Ba0.75Si2O2N2:Eu2+,” J. Solid State Light. 1(1), 6 (2014).
    [Crossref]
  19. Y. Q. Li, J. E. J. van Steen, J. W. H. van Krevel, G. Botty, A. C. A. Delsing, F. J. DiSalvo, G. de With, and H. T. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca, Sr, Ba) LED conversion phosphors,” J. Alloys Compd. 417(1–2), 273–279 (2006).
    [Crossref]
  20. X. Piao, T. Horikawa, H. Hanzawa, and K. Machida, “Characterization and luminescence properties of Sr2Si5N8:Eu2+ phosphor for white light-emitting-diode illumination,” Appl. Phys. Lett. 88(16), 2004–2007 (2006).
    [Crossref]
  21. S. E. Brinkley, N. Pfaff, K. A. Denault, Z. Zhang, H. T. Hintzen, R. Seshadri, S. Nakamura, and S. P. Denbaars, “Robust thermal performance of Sr2Si5N8:Eu2+: An efficient red emitting phosphor for light emitting diode based white lighting,” Appl. Phys. Lett. 99, 241106 (2011).
    [Crossref]
  22. X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
    [Crossref]
  23. J. H. Oh, H. Kang, Y. J. Eo, H. K. Park, and Y. R. Do, “Synthesis of narrow-band red-emitting K2SiF6:Mn4+ phosphors for a deep red monochromatic LED and ultrahigh color quality warm-white LEDs,” J. Mater. Chem. C 3(3), 607–615 (2015).
    [Crossref]
  24. J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. Di Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
    [Crossref]
  25. S. H. Park, K. H. Lee, S. Unithrattil, H. S. Yoon, H. G. Jang, and W. Bin Im, “Melilite-structure CaYAl3O7:Eu3+ phosphor: structural and optical characteristics for near-UV LED-based white light,” J. Phys. Chem. C 116(51), 26850–26856 (2012).
    [Crossref]
  26. M. Meneghini, M. Dal Lago, N. Trivellin, G. Meneghesso, and E. Zanoni, “Thermally activated degradation of remote phosphors for application in LED lighting,” IEEE Trans. Device Mater. Reliab. 13(1), 316–318 (2013).
    [Crossref]
  27. J. Li, J. Yan, D. Wen, W. U. Khan, J. Shi, M. Wu, Q. Su, and P. A. Tanner, “Advanced red phosphors for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(37), 8611–8623 (2016).
    [Crossref]
  28. D. Chen, Y. Zhou, and J. Zhong, “A review on Mn4+ activators in solids for warm white light-emitting diodes,” RSC Advances 6(89), 86285–86296 (2016).
    [Crossref]
  29. Z. Zhou, N. Zhou, M. Xia, M. Yokoyama, and H. T. Hintzen, “Research progress and application prospects of transition metal Mn4+-activated luminescent materials,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(39), 9143–9161 (2016).
    [Crossref]
  30. H.-D. Nguyen and R.-S. Liu, “Narrow-band red-emitting Mn4+-doped hexafluoride phosphors: synthesis, optoelectronic properties, and applications in white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(46), 10759–10775 (2016).
    [Crossref]
  31. A. Paulusz, “Efficient Mn (IV) emission in fluorine coordination,” J. Electrochem. Soc. 120(7), 942–947 (1973).
    [Crossref]
  32. J. H. Oh, Y. J. Eo, H. C. Yoon, Y.-D. Huh, and Y. R. Do, “Evaluation of new color metrics: guidelines for developing narrow-band red phosphors for WLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(36), 8326–8348 (2016).
    [Crossref]
  33. N. M. Avram and M. G. Brik, eds., Optical Properties of 3d-Ions in Crystals: Spectroscopy and Crystal Field Analysis (Springer, 2013).
  34. T. Takahashi and S. Adachi, “Mn4+-activated red photoluminescence K2SiF6 phosphor,” J. Electrochem. Soc. 155(12), E183–E188 (2008).
    [Crossref]
  35. M. G. Brik and A. M. Srivastava, “On the optical properties of the Mn4+ ion in solids,” J. Lumin. 133(2013), 63–72 (2013).
  36. M. G. Brik, S. J. Camardello, and A. M. Srivastava, “Influence of covalency on the Mn4+ 2Eg -> 4A2g emission energy in crystals,” ECS J. Solid State Sci. Technol. 4(3), R39–R43 (2014).
    [Crossref]
  37. B. Henderson and G. Imbusch, Optical Spectroscopy of Inorganic Solids (Oxford University Press, 1989).
  38. Z. Bryknar, V. Trepakov, Z. Potůček, and L. Jastrabík, “Luminescence spectra of SrTiO3:Mn4+,” J. Lumin. 87, 605–607 (2000).
    [Crossref]
  39. G. Kemeny and C. H. Haake, “Activator center in magnesium fluorogermanate phosphors,” J. Chem. Phys. 33(3), 783–789 (1960).
    [Crossref]
  40. Y. K. Xu and S. Adachi, “Properties of Na2SiF6:Mn4+ and Na2GeF6:Mn4+ red phosphors synthesized by wet chemical etching,” J. Appl. Phys. 105(1), 013525 (2009).
    [Crossref]
  41. P. H. M. Uylings, A. J. J. Raassen, and J. F. Wyart, “Energies of N equivalent electrons expressed in terms of two-electron energies and independent three-electron parameters : a new complete set of orthogonal operators : II. Application to 3dN configurations,” J. Phys. B At. Mol. Phys. 17(20), 4103–4126 (1984).
    [Crossref]
  42. C. E. Schäffer and C. K. Jørgensen, “The nephelauxetic series of ligands corresponding to increasing tendency of partly covalent bonding,” J. Inorg. Nucl. Chem. 8, 143–148 (1958).
    [Crossref]
  43. C. K. Jørgensen, Modern Aspects of Ligand Field Theory (North-Holland Pub. Co, 1971).
  44. B. Han, B. W. Wessels, and M. P. Ulmer, “Optical investigation of electronic states of Mn4+ ions in p-type GaN,” Appl. Phys. Lett. 86(4),042505 (2005).
    [Crossref]
  45. F. Karel, J. Pastrňák, and J. Rosa, “Thermoluminescent measurements of the trap level spectrum in AlN:Mn4+ phosphors,” Czech. J. Phys. 19(8), 974–982 (1969).
    [Crossref]
  46. V. Baslon, J. P. Harris, C. Reber, H. E. Colmer, T. A. Jackson, A. P. Forshaw, J. M. Smith, R. A. Kinney, and J. Telser, “Near-infrared 2Eg → 4A2g and visible LMCT luminescence from a molecular bis-(tris(carbene)borate) manganese(IV) complex,” Can. J. Chem. 95(5), 547–552 (2017).
    [Crossref]
  47. M. G. Brik, S. J. Camardello, A. M. Srivastava, N. M. Avram, and A. Suchocki, “Spin-forbidden transitions in the spectra of transition metal ions and nephelauxetic effect,” ECS J. Solid State Sci. Technol. 5(1), R3067–R3077 (2016).
    [Crossref]
  48. M. G. Brik and A. M. Srivastava, “Ab initio studies of the structural, electronic, and optical properties of K2SiF6 single crystals at ambient and elevated hydrostatic pressure,” J. Electrochem. Soc. 159(6), J212–J216 (2012).
    [Crossref]
  49. R. Kasa and S. Adachi, “Red and deep red emissions from cubic K2SiF6:Mn4+ and hexagonal K2MnF6 synthesized in HF/KMnO4/KHF2/Si solutions,” J. Electrochem. Soc. 159(4), J89–J95 (2012).
    [Crossref]
  50. R. Hoshino, T. Nakamura, and S. Adachi, “Synthesis and photoluminescence properties of BaSnF6:Mn4+ red phosphor,” ECS J. Solid State Sci. Technol. 5(3), R37–R43 (2016).
    [Crossref]
  51. L. Wei, C. C. Lin, M. Fang, M. G. Brik, S.-F. Hu, H. Jiao, and R. Liu, “A low-temperature co-precipitation approach to synthesize fluoride phosphors K2MF6:Mn4+ (M = Ge, Si) for white LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(8), 1655–1660 (2015).
    [Crossref]
  52. S. Adachi and T. Takahashi, “Direct synthesis of K2SiF6:Mn4+ red phosphor from crushed quartz schist by wet chemical etching,” Electrochem. Solid-State Lett. 12(2), J20–J23 (2009).
    [Crossref]
  53. T. Arai and S. Adachi, “Excited states of 3d3 electrons in K2SiF6:Mn4+ red phosphor studied by photoluminescence excitation spectroscopy,” Jpn. J. Appl. Phys. 50(9), 092401 (2011).
    [Crossref]
  54. M. Novita and K. Ogasawara, “Comparative study of multiplet structures of Mn4+ in K2SiF6, K2GeF6, and K2TiF6 based on first-principles configuration–interaction calculations,” Jpn. J. Appl. Phys. 51, 22604 (2012).
  55. M. H. Du, “Chemical trends of Mn4+ emission in solids,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(14), 2475–2481 (2014).
    [Crossref]
  56. Q. Shao, L. Wang, L. Song, Y. Dong, C. Liang, J. He, and J. Jiang, “Temperature dependence of photoluminescence spectra and dynamics of the red-emitting K2SiF6:Mn4+ phosphor,” J. Alloys Compd. 695, 221–226 (2017).
    [Crossref]
  57. A. Lazarowska, S. Mahlik, M. Grinberg, C. C. Lin, and R.-S. Liu, “Pressure effect on the zero-phonon line emission of Mn4+ in K2SiF6.,” J. Chem. Phys. 143(13), 134704 (2015).
    [Crossref] [PubMed]
  58. S. Adachi, H. Abe, R. Kasa, and T. Arai, “Synthesis and properties of hetero-dialkaline hexafluorosilicate red phosphor KNaSiF6:Mn4+,” J. Electrochem. Soc. 159(2), J34–J37 (2012).
    [Crossref]
  59. Y. K. Xu and S. Adachi, “Photoluminescence and raman scattering spectra in (NH4)2XF6:Mn4+ (X = Si, Ge, Sn, and Ti) red phosphors,” J. Electrochem. Soc. 159(1), E11–E17 (2012).
    [Crossref]
  60. Y. K. Xu and S. Adachi, “Properties of Mn4+-activated hexafluorotitanate phosphors,” J. Electrochem. Soc. 158(3), J58–J65 (2011).
    [Crossref]
  61. F. Tang, Z. Su, H. Ye, M. Wang, X. Lan, D. L. Phillips, Y. Cao, and S. Xu, “A set of manganese ion activated fluoride phosphors (A2BF6:Mn4+, A = K, Na, B = Si, Ge, Ti): synthesis below 0 °C and efficient room-temperature photoluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(40), 9561–9568 (2016).
    [Crossref]
  62. T. Takahashi and S. Adachi, “Synthesis of K2SiF6:Mn4+ red phosphor from silica glasses by wet chemical etching in HF/KMnO4 solution,” Electrochem. Solid-State Lett. 12(8), J69–J71 (2009).
    [Crossref]
  63. H.-D. Nguyen, C. C. Lin, and R.-S. Liu, “Waterproof alkyl phosphate coated fluoride phosphors for optoelectronic materials,” Angew. Chem. Int. Ed. Engl. 54(37), 10862–10866 (2015).
    [Crossref] [PubMed]
  64. M. Novita, T. Honma, B. Hong, A. Ohishi, and K. Ogasawara, “Study of multiplet structures of Mn4+ activated in fluoride crystals,” J. Lumin. 169, 594–600 (2016).
    [Crossref]
  65. K. Ogasawara, T. Ishii, I. Tanaka, and H. Adachi, “Calculation of multiplet structures of Cr3+ and V3+ in α-Al2O3 based on a hybrid method of density-functional theory and the configuration interaction,” Phys. Rev. B 61(1), 143–161 (2000).
    [Crossref]
  66. F. Yuan and H. Ryu, “Ce-doped YAG phosphor powders prepared by co-precipitation and heterogeneous precipitation,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 107(1), 14–18 (2004).
  67. Y. N. Wu, C. H. Cheng, and Z. X. Xiong, “Enhancement of Blue Emission via Upconversion in Solid-State Synthesized Hexagonal NaYF4:Ln3+,” Key Eng. Mater. 368–372, 398–401 (2008).
    [Crossref]
  68. W. Massa, “Fluorides: solid-state chemistry,” in Encyclopedia of Inorganic Chemistry (John Wiley & Sons, Ltd, 2006).
  69. S. Adachi and T. Takahashi, “Direct synthesis and properties of K2SiF6:Mn4+ phosphor by wet chemical etching of Si wafer,” J. Appl. Phys. 104(2), 023512 (2008).
    [Crossref]
  70. T. Nakamura, Z. Yuan, and S. Adachi, “Micronization of red-emitting K2SiF6:Mn4+ phosphor by pulsed laser irradiation in liquid,” Appl. Surf. Sci. 320(2014), 514–518 (2014).
    [Crossref]
  71. L. Lv, X. Jiang, S. Huang, X. Chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(20), 3879–3884 (2014).
    [Crossref]
  72. G. M. Rao, “Electrowinning of silicon from K2SiF6-molten fluoride systems,” J. Electrochem. Soc. Electrochem. Sci. Technol. 127(9), 1940–1944 (1980).
    [Crossref]
  73. H. Bode, H. Jenssen, and F. Bandte, “Über eine neue Darstellung des Kalium-hexafluoromanganats(IV),” Angew. Chem. 65(11), 304 (1953).
    [Crossref]
  74. E. V. Radkov, L. S. Grigorov, A. A. Setlur, and A. M. Srivastava, “Red line emitting phosphors for use in LED applications,” U.S. patent 7,497,973 B2 (2009).
  75. H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
    [Crossref] [PubMed]
  76. Y. Jin, M.-H. Fang, M. Grinberg, S. Mahlik, T. Lesniewski, M. G. Brik, G.-Y. Luo, J. G. Lin, and R.-S. Liu, “Narrow red emission band fluoride phosphor KNaSiF6:Mn4+ for warm white light-emitting diodes,” ACS Appl. Mater. Interfaces 8(18), 11194–11203 (2016).
    [Crossref] [PubMed]
  77. M. Kim, W. B. Park, C. H. Kim, K.-S. Sohn, and B. K. Bang, “Radiative and non-radiative decay rate of K2SiF6:Mn4+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(8), 1166–1169 (2015).
  78. L. Wang, X. Wang, T. Kohsei, K. Yoshimura, M. Izumi, N. Hirosaki, and R.-J. Xie, “Highly efficient narrow-band green and red phosphors enabling wider color-gamut LED backlight for more brilliant displays,” Opt. Express 23(22), 28707–28717 (2015).
    [Crossref] [PubMed]
  79. R. J. Lyons, A. A. Setlur, A. R. Deshpande, and L. S. Grigorov, “Color stable manganese-doped phosphors,” U.S. patent 8,252,613 B1 (2012).
  80. M. Kaneyoshi and F. Echizen-shi, “Red phosphor,” U.S. patent 3 015 529 A1 (2015).
  81. M. Kaneyoshi and Y. Takai, “Preparation of complex fluoride and complex fluoride phosphor,” U.S. patent 8,974,696 B2 (2015).
  82. J. E. Murphy, W. W. Beers, R. J. Lyons, and F. Du, “Processes for preparing color stable manganese-doped complex fluoride phosphors,” U.S. patent 2015/0166887 A1 (2015).
  83. J. E. Murphy, “Processes for preparing color stable manganese-doped phosphors,” U.S. patent 2015/0054400 A1 (2015).
  84. T. Yoshida, “Fluoride phosphor and light emitting device using the same and method of manufacturing the fluoride phosphor,” U.S. patent 9,120,972 B2 (2015).
  85. J. W. Park, I. H. Lee, T. H. Kim, J. H. You, C. W. Lee, and C. S. Yoon, “Fluoride phosphor and light emitting device, and methods of manufacturing the same,” U.S. patent 2016/133799 A1 (2016).
  86. A. Setlur, M. Brewster, F. Garcia, M. C. Hill, R. Lyons, J. Murphy, T. Stecher, S. Stoklosa, S. Weaver, U. Happek, D. Aesram, and A. Deshpande, Optimized Phosphors for Warm White LED Light Engines (2012).
    [Crossref]
  87. C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ phosphor from SiO2 powders via redox reaction in HF/KMnO4 solution and their application in warm-white LED,” J. Am. Ceram. Soc. 96(11), 3552–3556 (2013).
    [Crossref]
  88. H. D. Nguyen, C. C. Lin, M. Fang, and R. S. Liu, “Synthesis of Na2SiF6:Mn4+ red phosphors for white LED applications by co-precipitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(48), 10268–10272 (2014).
    [Crossref]
  89. M. J. Lee, Y. H. Song, Y. L. Song, G. S. Han, H. S. Jung, and D. H. Yoon, “Enhanced luminous efficiency of deep red emitting K2SiF6:Mn4+ phosphor dependent on KF ratio for warm-white LED,” J. Mater. Chem. C Mater. Lett. 141(2015), 27–30 (2015).
    [Crossref]
  90. J. H. Oh, H. Kang, M. Ko, and Y. R. Do, “Analysis of wide color gamut of green/red bilayered freestanding phosphor film-capped white LEDs for LCD backlight,” Opt. Express 23(15), A791–A804 (2015).
    [Crossref] [PubMed]
  91. Q. Zhou, Y. Zhou, Z. Wang, Y. Liu, G. Chen, J. Peng, J. Yan, and M. Wu, “Fabrication and application of non-rare earth red phosphors for warm white-light-emitting diodes,” RSC Advances 5(103), 84821–84826 (2015).
    [Crossref]
  92. B.-E. Yeo, Y.-S. Cho, and Y.-D. Huh, “Synthesis and photoluminescence properties of a red-emitting phosphor, K2SiF6:Mn4+, for use in three-band white LED applications,” Opt. Mater. 51(2016), 50–55 (2016).
    [Crossref]
  93. R. A. Talewar, C. P. Joshi, and S. V. Moharil, “Enhancing the photovoltaic performance of CdTe/CdS solar cell via luminescent downshifting using K2SiF6:Mn4+ phosphors,” in AIP Conference Proceedings (2016), p. 140019.
  94. X. Li, X. Su, P. Liu, J. Liu, Z. Yao, J. Chen, H. Yao, X. Yu, and M. Zhan, “Shape-controlled synthesis of phosphor K2SiF6:Mn4+ nanorods and their luminescence properties,” CrystEngComm 17(4), 930–936 (2015).
    [Crossref]
  95. Z. Wang, Y. Zhou, Z. Yang, Y. Liu, H. Yang, H. Tan, Q. Zhang, and Q. Zhou, “Synthesis of K2XF6:Mn4+ (X=Ti, Si and Ge) red phosphors for white LED applications with low-concentration of HF,” Opt. Mater. 49(2015), 235–240 (2015).
    [Crossref]
  96. L. Huang, Y. Zhu, X. Zhang, R. Zou, F. Pan, J. Wang, and M. Wu, “HF-free hydrothermal route for synthesis of highly efficient narrow-band red emitting phosphor K2Si1–xF6:xMn4+ for warm white light-emitting diodes,” Chem. Mater. 28(5), 1495–1502 (2016).
    [Crossref]
  97. J. E. Murphy, F. Garcia-Santamaria, A. A. Setlur, and S. Sista, “PFS, K2SiF6:Mn4+: the red-line emitting LED phosphor behind GE’s TriGain TechnologyTM platform,” SID Symp. Dig. Tech. Pap. 46(1), 927–930 (2015).
    [Crossref]
  98. J. W. Moon, B. G. Min, J. S. Kim, M. S. Jang, K. M. Ok, K.-Y. Han, and J. S. Yoo, “Optical characteristics and longevity of the line-emitting K2SiF6:Mn4+ phosphor for LED application,” Opt. Mater. Express 6(3), 782–792 (2016).
    [Crossref]
  99. A. A. Setlur, R. J. Lyons, J. E. Murphy, N. Prasanth Kumar, and M. Satya Kishore, “Blue light-emitting diode phosphors based upon oxide, oxyhalide and halide hosts,” ECS J. Solid State Sci. Technol. 2(2), R3059–R3070 (2012).
    [Crossref]
  100. P. Arunkumar, Y. H. Kim, H. J. Kim, S. Unithrattil, and W. B. Im, “Hydrophobic organic skin as a protective shield for moisture-sensitive phosphor-based optoelectronic devices,” ACS Appl. Mater. Interfaces 9(8), 7232–7240 (2017).
    [Crossref] [PubMed]
  101. J. Olchowka, M. Suta, and C. Wickleder, “Green synthesis of small nanoparticles of A2SiF6 (A = Li - Cs) using Ionic Liquids as Solvent and Fluorine Source: A novel simple approach without HF,” Chemistry6, (2017).
  102. J. H. You, I. H. Lee, T. H. Kim, J. W. Park, C. S. Yoon, and C. W. Lee, “Fluoride phosphor composite method of manufacturing fluoride phosphor composite, white light emitting apparatus, display apparatus, lighting device, and electronic device,” U.S. patent 2016/0160122 A1 (2016).
  103. A. A. Setlur, R. J. Lyons, P. K. Nammalwar, R. Hanumanlha, J. E. Murphy, and F. Garcia, “Moisture-resistant phosphor compositions and associate methods,” U.S. patent 2015/1025876 A1 (2015).
  104. M. Kaneyoshi and M. Ishii, “Phosphor surface treatment method,” U.S. patent 2015/0329770 A1 (2015).
  105. J. E. Murphy, A. A. Setlur, F. Garcia, R. J. Lyons, A. I. Chowdhury, N. Karkada, and P. K. Nammalwar, “Color stable red-emitting phosphors,” U.S. patent 8,906,724 B2 (2014).
  106. M. Kaneyoshi and K. Wataya, “Method for treating Mn-activated complex fluoride phosphor,” U.S. patent 2016/0122633 A1 (2016).
  107. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
    [Crossref]
  108. J. H. Loehlin, “Redetermination of the structure of potassium hexafluorosilicate, K2SiF6,” Acta Crystallogr. Sect. C Cryst. Struct. Commun. 40(3), 570 (1984).
    [Crossref]
  109. P. Bukovec and R. Hoppe, “Zur kenntnis von hexagonalem K2[MnF6],” J. Fluor. Chem. 23(6), 579–587 (1983).
    [Crossref]
  110. R. Hoshino and S. Adachi, “Optical spectroscopy and degradation behavior of ZnGeF6·6H2O:Mn4+ red-emitting phosphor,” J. Lumin. 162, 63–71 (2015).
    [Crossref]
  111. J. Ha, S. Song, G. Kim, J. Sim, and S. Choi, “Light-emitting device,” U.S. patent 2016/0141457 A1 (2015).
  112. Y. Ooyabu, H. Fujii, T. Nakamura, and H. Ito, “Component for light-emitting device, light-emitting device and producing method thereof,” U.S. patent 2012/0012875 A1 (2012).
  113. Y. Ooyabu, H. Ito, and T. Naito, “Reflecting resin sheet, light emitting diode device and producing method thereof,” U.S. patent 2012/0262054 A1 (2012).
  114. Y. Ooyabu, H. Katayama, S. Umetani, H. Ito, and S. Wakiya, “Light-emitting device assembly and lighting device,” U.S. patent 2013/0229805 A1 (2013).
  115. H. Sakuta, Y. Satou, N. Kijima, and B. Hong, “White light-emitting device and illumination device,” U.S. patent 8,890,403 B2 (2014).
  116. Y. Ooyabu, T. Nakamura, H. Fujii, and H. Ito, “Light-emitting device,” U.S. patent 8,916,893 B2 (2014).
  117. Y. Ooyabu, T. Nakamura, H. Fujii, and H. Ito, “Phosphor ceramic and light-emitting device,” U.S. patent 8,664,678 B2 (2014).
  118. H. Sakuta, Y. Kohara, and Y. Satou, “Semiconductor light-emitting device, semiconductor light-emitting system and illumination fixture,” U.S. patent 8,779,455 B2 (2014).
  119. J. Meyer, V. Weiler, and P. J. Schmidt, “Lighting device with light source and wavelength converting element,” U.S. patent 9,175,214 B2 (2015).
  120. Y. S. Park and H. J. Hahm, “Light emitting device, backlight unit and display apparatus,” U.S. patent 2015/0301259 A1 (2015).
  121. V. Weiler, P. J. Schmidt, and H.-H. Bechtel, “LED-based device with wide color gamut,” U.S. patent 2014/068440 A1 (2014).
  122. M. Mitani and H. Katayama, “Silicone resin sheet, producing method thereof, encapsulating sheet, and light emitting diode device,” U.S. patent 8,569,792 B2 (2013).
  123. Z. Zhong, X. Wang, J. Zhang, H. Zhong, and J.-B. Han, “Optical detection of magnetic field with Mn4+:K2SiF6 phosphor from room to liquid helium temperatures,” Appl. Phys. Lett. 110(21), 212405 (2017).
    [Crossref]
  124. X. Zhang, H.-C. Wang, A.-C. Tang, S.-Y. Lin, H.-C. Tong, C.-Y. Chen, Y.-C. Lee, T.-L. Tsai, and R.-S. Liu, “Robust and stable narrow-band green emitter: an option for advanced wide-color-gamut backlight display,” Chem. Mater. 28(23), 8493–8497 (2016).
    [Crossref]
  125. M. D. Tessier, D. Dupont, K. De Nolf, J. De Roo, and Z. Hens, “Economic and Size-Tunable Synthesis of InP/ZnE (E = S, Se) Colloidal Quantum Dots,” Chem. Mater. 27(13), 4893–4898 (2015).
    [Crossref]
  126. Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9(March), 1–9 (2015).
  127. D. Dupont, M. D. Tessier, P. F. Smet, and Z. Hens, “Indium Phosphide-Based Quantum Dots with Shell-Enhanced Absorption for Luminescent Down-Conversion,” Adv. Mater. 29(29), 1700686 (2017).
    [Crossref] [PubMed]
  128. W. Zhang, W. Yang, P. Zhong, S. Mei, G. Zhang, G. Chen, G. He, and R. Guo, “Spectral optimization of color temperature tunable white LEDs based on perovskite quantum dots for ultrahigh color rendition,” Opt. Mater. Express 7(9), 3065 (2017).
    [Crossref]
  129. K. Yoshimura, H. Fukunaga, M. Izumi, M. Masuda, T. Uemura, K. Takahashi, R.-J. Xie, and N. Hirosaki, “White LEDs using the sharp β-sialon:Eu phosphor and Mn-doped red phosphor for wide-color gamut display applications,” J. Soc. Inf. Disp. 24(7), 449–453 (2016).
    [Crossref]
  130. X. Zhang, M.-H. Fang, Y.-T. Tsai, A. Lazarowska, S. Mahlik, T. Lesniewski, M. Grinberg, W. K. Pang, F. Pan, C. Liang, W. Zhou, J. Wang, J.-F. Lee, B.-M. Cheng, T.-L. Hung, Y.-Y. Chen, and R.-S. Liu, “Controlling of Structural Ordering and Rigidity of β-SiAlON:Eu through Chemical Cosubstitution to Approach Narrow-Band-Emission for Light-Emitting Diodes Application,” Chem. Mater. Just Accepted Manuscript (2017).
  131. F. Zhang, H. Zhong, C. Chen, X. G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology,” ACS Nano 9(4), 4533–4542 (2015).
    [Crossref] [PubMed]
  132. G. Yang, Q. Fan, B. Chen, Q. Zhou, and H. Zhong, “Reprecipitation synthesis of luminescent CH3NH3PbBr3/NaNO3 nanocomposites with enhanced stability,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(48), 11387–11391 (2016).
    [Crossref]
  133. H. Huang, Q. Xue, B. Chen, Y. Xiong, J. Schneider, C. Zhi, H. Zhong, and A. L. Rogach, “Top-Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents,” Angew. Chem. Int. Ed. Engl. 56(32), 9571–9576 (2017).
    [Crossref] [PubMed]
  134. S. Lou, T. Xuan, C. Yu, M. Cao, C. Xia, J. Wang, and H. Li, “Nanocomposites of CsPbBr3 perovskite nanocrystals in an ammonium bromide framework with enhanced stability,” J. Mater. Chem. C Advance Article (2017).
    [Crossref]
  135. F. Baur, F. Glocker, and T. Jüstel, “Photoluminescence and energy transfer rates and efficiencies in Eu3+ activated Tb2Mo3O12,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2054–2064 (2015).
    [Crossref]
  136. K. V. Ivanovskikh, J. M. Ogieglo, A. Zych, C. R. Ronda, and A. Meijerink, “Luminescence temperature quenching for Ce3+ and Pr3+ d-f emission in YAG and LuAG,” ECS J. Solid State Sci. Technol. 2(2), R3148–R3152 (2012).
    [Crossref]
  137. D. Luo, L. Wang, S. W. Or, H. Zhang, and R.-J. Xie, “Realizing superior white LEDs with both high R9 and luminous efficacy by using dual red phosphors,” RSC Advances 7(42), 25964–25968 (2017).
    [Crossref]
  138. P. F. Smet and J. J. Joos, “White light-emitting diodes: Stabilizing colour and intensity,” Nat. Mater. 16(5), 500–501 (2017).
    [Crossref] [PubMed]
  139. C. Hoelen, H. Borel, J. de Graaf, M. Keuper, M. Lankhorst, C. Mutter, L. Waumans, and R. Wegh, “Remote phosphor LED modules for general illumination – towards 200 lm/W general lighting LED light sources,” Proc. SPIE 7058, 70580M (2008).
    [Crossref]
  140. P. Dorenbos, “Thermal quenching of Eu2+ 5d–4f luminescence in inorganic compounds,” J. Phys. Condens. Matter 17(50), 8103–8111 (2005).
    [Crossref]

2017 (11)

S. Abe, J. J. Joos, L. I. Martin, Z. Hens, and P. F. Smet, “Hybrid remote quantum dot/powder phosphor designs for display backlights,” Light Sci. Appl. 6(6), e16271 (2017).
[Crossref]

J. J. Joos, K. Lejaeghere, K. Korthout, A. Feng, D. Poelman, and P. F. Smet, “Charge transfer induced energy storage in CaZnOS:Mn - insight from experimental and computational spectroscopy,” Phys. Chem. Chem. Phys. 19(13), 9075–9085 (2017).
[Crossref] [PubMed]

V. Baslon, J. P. Harris, C. Reber, H. E. Colmer, T. A. Jackson, A. P. Forshaw, J. M. Smith, R. A. Kinney, and J. Telser, “Near-infrared 2Eg → 4A2g and visible LMCT luminescence from a molecular bis-(tris(carbene)borate) manganese(IV) complex,” Can. J. Chem. 95(5), 547–552 (2017).
[Crossref]

Q. Shao, L. Wang, L. Song, Y. Dong, C. Liang, J. He, and J. Jiang, “Temperature dependence of photoluminescence spectra and dynamics of the red-emitting K2SiF6:Mn4+ phosphor,” J. Alloys Compd. 695, 221–226 (2017).
[Crossref]

P. Arunkumar, Y. H. Kim, H. J. Kim, S. Unithrattil, and W. B. Im, “Hydrophobic organic skin as a protective shield for moisture-sensitive phosphor-based optoelectronic devices,” ACS Appl. Mater. Interfaces 9(8), 7232–7240 (2017).
[Crossref] [PubMed]

Z. Zhong, X. Wang, J. Zhang, H. Zhong, and J.-B. Han, “Optical detection of magnetic field with Mn4+:K2SiF6 phosphor from room to liquid helium temperatures,” Appl. Phys. Lett. 110(21), 212405 (2017).
[Crossref]

D. Dupont, M. D. Tessier, P. F. Smet, and Z. Hens, “Indium Phosphide-Based Quantum Dots with Shell-Enhanced Absorption for Luminescent Down-Conversion,” Adv. Mater. 29(29), 1700686 (2017).
[Crossref] [PubMed]

H. Huang, Q. Xue, B. Chen, Y. Xiong, J. Schneider, C. Zhi, H. Zhong, and A. L. Rogach, “Top-Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents,” Angew. Chem. Int. Ed. Engl. 56(32), 9571–9576 (2017).
[Crossref] [PubMed]

D. Luo, L. Wang, S. W. Or, H. Zhang, and R.-J. Xie, “Realizing superior white LEDs with both high R9 and luminous efficacy by using dual red phosphors,” RSC Advances 7(42), 25964–25968 (2017).
[Crossref]

P. F. Smet and J. J. Joos, “White light-emitting diodes: Stabilizing colour and intensity,” Nat. Mater. 16(5), 500–501 (2017).
[Crossref] [PubMed]

W. Zhang, W. Yang, P. Zhong, S. Mei, G. Zhang, G. Chen, G. He, and R. Guo, “Spectral optimization of color temperature tunable white LEDs based on perovskite quantum dots for ultrahigh color rendition,” Opt. Mater. Express 7(9), 3065 (2017).
[Crossref]

2016 (17)

J. W. Moon, B. G. Min, J. S. Kim, M. S. Jang, K. M. Ok, K.-Y. Han, and J. S. Yoo, “Optical characteristics and longevity of the line-emitting K2SiF6:Mn4+ phosphor for LED application,” Opt. Mater. Express 6(3), 782–792 (2016).
[Crossref]

G. Yang, Q. Fan, B. Chen, Q. Zhou, and H. Zhong, “Reprecipitation synthesis of luminescent CH3NH3PbBr3/NaNO3 nanocomposites with enhanced stability,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(48), 11387–11391 (2016).
[Crossref]

K. Yoshimura, H. Fukunaga, M. Izumi, M. Masuda, T. Uemura, K. Takahashi, R.-J. Xie, and N. Hirosaki, “White LEDs using the sharp β-sialon:Eu phosphor and Mn-doped red phosphor for wide-color gamut display applications,” J. Soc. Inf. Disp. 24(7), 449–453 (2016).
[Crossref]

X. Zhang, H.-C. Wang, A.-C. Tang, S.-Y. Lin, H.-C. Tong, C.-Y. Chen, Y.-C. Lee, T.-L. Tsai, and R.-S. Liu, “Robust and stable narrow-band green emitter: an option for advanced wide-color-gamut backlight display,” Chem. Mater. 28(23), 8493–8497 (2016).
[Crossref]

L. Huang, Y. Zhu, X. Zhang, R. Zou, F. Pan, J. Wang, and M. Wu, “HF-free hydrothermal route for synthesis of highly efficient narrow-band red emitting phosphor K2Si1–xF6:xMn4+ for warm white light-emitting diodes,” Chem. Mater. 28(5), 1495–1502 (2016).
[Crossref]

F. Tang, Z. Su, H. Ye, M. Wang, X. Lan, D. L. Phillips, Y. Cao, and S. Xu, “A set of manganese ion activated fluoride phosphors (A2BF6:Mn4+, A = K, Na, B = Si, Ge, Ti): synthesis below 0 °C and efficient room-temperature photoluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(40), 9561–9568 (2016).
[Crossref]

M. Novita, T. Honma, B. Hong, A. Ohishi, and K. Ogasawara, “Study of multiplet structures of Mn4+ activated in fluoride crystals,” J. Lumin. 169, 594–600 (2016).
[Crossref]

R. Hoshino, T. Nakamura, and S. Adachi, “Synthesis and photoluminescence properties of BaSnF6:Mn4+ red phosphor,” ECS J. Solid State Sci. Technol. 5(3), R37–R43 (2016).
[Crossref]

Y. Jin, M.-H. Fang, M. Grinberg, S. Mahlik, T. Lesniewski, M. G. Brik, G.-Y. Luo, J. G. Lin, and R.-S. Liu, “Narrow red emission band fluoride phosphor KNaSiF6:Mn4+ for warm white light-emitting diodes,” ACS Appl. Mater. Interfaces 8(18), 11194–11203 (2016).
[Crossref] [PubMed]

B.-E. Yeo, Y.-S. Cho, and Y.-D. Huh, “Synthesis and photoluminescence properties of a red-emitting phosphor, K2SiF6:Mn4+, for use in three-band white LED applications,” Opt. Mater. 51(2016), 50–55 (2016).
[Crossref]

M. G. Brik, S. J. Camardello, A. M. Srivastava, N. M. Avram, and A. Suchocki, “Spin-forbidden transitions in the spectra of transition metal ions and nephelauxetic effect,” ECS J. Solid State Sci. Technol. 5(1), R3067–R3077 (2016).
[Crossref]

J. Li, J. Yan, D. Wen, W. U. Khan, J. Shi, M. Wu, Q. Su, and P. A. Tanner, “Advanced red phosphors for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(37), 8611–8623 (2016).
[Crossref]

D. Chen, Y. Zhou, and J. Zhong, “A review on Mn4+ activators in solids for warm white light-emitting diodes,” RSC Advances 6(89), 86285–86296 (2016).
[Crossref]

Z. Zhou, N. Zhou, M. Xia, M. Yokoyama, and H. T. Hintzen, “Research progress and application prospects of transition metal Mn4+-activated luminescent materials,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(39), 9143–9161 (2016).
[Crossref]

H.-D. Nguyen and R.-S. Liu, “Narrow-band red-emitting Mn4+-doped hexafluoride phosphors: synthesis, optoelectronic properties, and applications in white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(46), 10759–10775 (2016).
[Crossref]

J. H. Oh, Y. J. Eo, H. C. Yoon, Y.-D. Huh, and Y. R. Do, “Evaluation of new color metrics: guidelines for developing narrow-band red phosphors for WLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(36), 8326–8348 (2016).
[Crossref]

H. F. Sijbom, J. J. Joos, L. I. D. J. Martin, K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Luminescent behavior of the K2SiF6:Mn4+ red phosphor at high fluxes and at the microscopic level,” ECS J. Solid State Sci. Technol. 5(1), R3040–R3048 (2016).
[Crossref]

2015 (17)

J. H. Oh, H. Kang, Y. J. Eo, H. K. Park, and Y. R. Do, “Synthesis of narrow-band red-emitting K2SiF6:Mn4+ phosphors for a deep red monochromatic LED and ultrahigh color quality warm-white LEDs,” J. Mater. Chem. C 3(3), 607–615 (2015).
[Crossref]

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. Di Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

X. Li, X. Su, P. Liu, J. Liu, Z. Yao, J. Chen, H. Yao, X. Yu, and M. Zhan, “Shape-controlled synthesis of phosphor K2SiF6:Mn4+ nanorods and their luminescence properties,” CrystEngComm 17(4), 930–936 (2015).
[Crossref]

Z. Wang, Y. Zhou, Z. Yang, Y. Liu, H. Yang, H. Tan, Q. Zhang, and Q. Zhou, “Synthesis of K2XF6:Mn4+ (X=Ti, Si and Ge) red phosphors for white LED applications with low-concentration of HF,” Opt. Mater. 49(2015), 235–240 (2015).
[Crossref]

M. J. Lee, Y. H. Song, Y. L. Song, G. S. Han, H. S. Jung, and D. H. Yoon, “Enhanced luminous efficiency of deep red emitting K2SiF6:Mn4+ phosphor dependent on KF ratio for warm-white LED,” J. Mater. Chem. C Mater. Lett. 141(2015), 27–30 (2015).
[Crossref]

Q. Zhou, Y. Zhou, Z. Wang, Y. Liu, G. Chen, J. Peng, J. Yan, and M. Wu, “Fabrication and application of non-rare earth red phosphors for warm white-light-emitting diodes,” RSC Advances 5(103), 84821–84826 (2015).
[Crossref]

M. Kim, W. B. Park, C. H. Kim, K.-S. Sohn, and B. K. Bang, “Radiative and non-radiative decay rate of K2SiF6:Mn4+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(8), 1166–1169 (2015).

H.-D. Nguyen, C. C. Lin, and R.-S. Liu, “Waterproof alkyl phosphate coated fluoride phosphors for optoelectronic materials,” Angew. Chem. Int. Ed. Engl. 54(37), 10862–10866 (2015).
[Crossref] [PubMed]

L. Wei, C. C. Lin, M. Fang, M. G. Brik, S.-F. Hu, H. Jiao, and R. Liu, “A low-temperature co-precipitation approach to synthesize fluoride phosphors K2MF6:Mn4+ (M = Ge, Si) for white LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(8), 1655–1660 (2015).
[Crossref]

A. Lazarowska, S. Mahlik, M. Grinberg, C. C. Lin, and R.-S. Liu, “Pressure effect on the zero-phonon line emission of Mn4+ in K2SiF6.,” J. Chem. Phys. 143(13), 134704 (2015).
[Crossref] [PubMed]

M. D. Tessier, D. Dupont, K. De Nolf, J. De Roo, and Z. Hens, “Economic and Size-Tunable Synthesis of InP/ZnE (E = S, Se) Colloidal Quantum Dots,” Chem. Mater. 27(13), 4893–4898 (2015).
[Crossref]

Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9(March), 1–9 (2015).

F. Zhang, H. Zhong, C. Chen, X. G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology,” ACS Nano 9(4), 4533–4542 (2015).
[Crossref] [PubMed]

R. Hoshino and S. Adachi, “Optical spectroscopy and degradation behavior of ZnGeF6·6H2O:Mn4+ red-emitting phosphor,” J. Lumin. 162, 63–71 (2015).
[Crossref]

F. Baur, F. Glocker, and T. Jüstel, “Photoluminescence and energy transfer rates and efficiencies in Eu3+ activated Tb2Mo3O12,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2054–2064 (2015).
[Crossref]

J. H. Oh, H. Kang, M. Ko, and Y. R. Do, “Analysis of wide color gamut of green/red bilayered freestanding phosphor film-capped white LEDs for LCD backlight,” Opt. Express 23(15), A791–A804 (2015).
[Crossref] [PubMed]

L. Wang, X. Wang, T. Kohsei, K. Yoshimura, M. Izumi, N. Hirosaki, and R.-J. Xie, “Highly efficient narrow-band green and red phosphors enabling wider color-gamut LED backlight for more brilliant displays,” Opt. Express 23(22), 28707–28717 (2015).
[Crossref] [PubMed]

2014 (8)

M. H. Du, “Chemical trends of Mn4+ emission in solids,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(14), 2475–2481 (2014).
[Crossref]

T. Nakamura, Z. Yuan, and S. Adachi, “Micronization of red-emitting K2SiF6:Mn4+ phosphor by pulsed laser irradiation in liquid,” Appl. Surf. Sci. 320(2014), 514–518 (2014).
[Crossref]

L. Lv, X. Jiang, S. Huang, X. Chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(20), 3879–3884 (2014).
[Crossref]

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[Crossref] [PubMed]

H. D. Nguyen, C. C. Lin, M. Fang, and R. S. Liu, “Synthesis of Na2SiF6:Mn4+ red phosphors for white LED applications by co-precipitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(48), 10268–10272 (2014).
[Crossref]

J. J. Joos, J. Botterman, and P. F. Smet, “Evaluating the use of blue phosphors in white LEDs: the case of Sr0.25Ba0.75Si2O2N2:Eu2+,” J. Solid State Light. 1(1), 6 (2014).
[Crossref]

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

M. G. Brik, S. J. Camardello, and A. M. Srivastava, “Influence of covalency on the Mn4+ 2Eg -> 4A2g emission energy in crystals,” ECS J. Solid State Sci. Technol. 4(3), R39–R43 (2014).
[Crossref]

2013 (3)

M. Meneghini, M. Dal Lago, N. Trivellin, G. Meneghesso, and E. Zanoni, “Thermally activated degradation of remote phosphors for application in LED lighting,” IEEE Trans. Device Mater. Reliab. 13(1), 316–318 (2013).
[Crossref]

C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ phosphor from SiO2 powders via redox reaction in HF/KMnO4 solution and their application in warm-white LED,” J. Am. Ceram. Soc. 96(11), 3552–3556 (2013).
[Crossref]

M. G. Brik and A. M. Srivastava, “On the optical properties of the Mn4+ ion in solids,” J. Lumin. 133(2013), 63–72 (2013).

2012 (9)

M. Novita and K. Ogasawara, “Comparative study of multiplet structures of Mn4+ in K2SiF6, K2GeF6, and K2TiF6 based on first-principles configuration–interaction calculations,” Jpn. J. Appl. Phys. 51, 22604 (2012).

S. Adachi, H. Abe, R. Kasa, and T. Arai, “Synthesis and properties of hetero-dialkaline hexafluorosilicate red phosphor KNaSiF6:Mn4+,” J. Electrochem. Soc. 159(2), J34–J37 (2012).
[Crossref]

Y. K. Xu and S. Adachi, “Photoluminescence and raman scattering spectra in (NH4)2XF6:Mn4+ (X = Si, Ge, Sn, and Ti) red phosphors,” J. Electrochem. Soc. 159(1), E11–E17 (2012).
[Crossref]

M. G. Brik and A. M. Srivastava, “Ab initio studies of the structural, electronic, and optical properties of K2SiF6 single crystals at ambient and elevated hydrostatic pressure,” J. Electrochem. Soc. 159(6), J212–J216 (2012).
[Crossref]

R. Kasa and S. Adachi, “Red and deep red emissions from cubic K2SiF6:Mn4+ and hexagonal K2MnF6 synthesized in HF/KMnO4/KHF2/Si solutions,” J. Electrochem. Soc. 159(4), J89–J95 (2012).
[Crossref]

J. J. Joos, K. W. Meert, A. B. Parmentier, D. Poelman, and P. F. Smet, “Thermal quenching and luminescence lifetime of saturated green Sr1−xEuxGa2S4 phosphors,” Opt. Mater. 34(11), 1902–1907 (2012).
[Crossref]

S. H. Park, K. H. Lee, S. Unithrattil, H. S. Yoon, H. G. Jang, and W. Bin Im, “Melilite-structure CaYAl3O7:Eu3+ phosphor: structural and optical characteristics for near-UV LED-based white light,” J. Phys. Chem. C 116(51), 26850–26856 (2012).
[Crossref]

K. V. Ivanovskikh, J. M. Ogieglo, A. Zych, C. R. Ronda, and A. Meijerink, “Luminescence temperature quenching for Ce3+ and Pr3+ d-f emission in YAG and LuAG,” ECS J. Solid State Sci. Technol. 2(2), R3148–R3152 (2012).
[Crossref]

A. A. Setlur, R. J. Lyons, J. E. Murphy, N. Prasanth Kumar, and M. Satya Kishore, “Blue light-emitting diode phosphors based upon oxide, oxyhalide and halide hosts,” ECS J. Solid State Sci. Technol. 2(2), R3059–R3070 (2012).
[Crossref]

2011 (4)

S. E. Brinkley, N. Pfaff, K. A. Denault, Z. Zhang, H. T. Hintzen, R. Seshadri, S. Nakamura, and S. P. Denbaars, “Robust thermal performance of Sr2Si5N8:Eu2+: An efficient red emitting phosphor for light emitting diode based white lighting,” Appl. Phys. Lett. 99, 241106 (2011).
[Crossref]

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

Y. K. Xu and S. Adachi, “Properties of Mn4+-activated hexafluorotitanate phosphors,” J. Electrochem. Soc. 158(3), J58–J65 (2011).
[Crossref]

T. Arai and S. Adachi, “Excited states of 3d3 electrons in K2SiF6:Mn4+ red phosphor studied by photoluminescence excitation spectroscopy,” Jpn. J. Appl. Phys. 50(9), 092401 (2011).
[Crossref]

2010 (2)

A. A. Setlur, E. V. Radkov, C. S. Henderson, J.-H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, A. R. Deshpande, B. Kolodin, S. G. Ljudmil, and U. Happek, “Energy-efficient, high-color-rendering LED lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22(13), 4076–4082 (2010).
[Crossref]

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[Crossref]

2009 (4)

C. J. Duan, A. C. A. Delsing, and H. T. Hintzen, “Photoluminescence Properties of Novel Red-Emitting Mn2+-Activated MZnOS (M = Ca, Ba) Phosphors,” Chem. Mater. 21(6), 1010–1016 (2009).
[Crossref]

Y. K. Xu and S. Adachi, “Properties of Na2SiF6:Mn4+ and Na2GeF6:Mn4+ red phosphors synthesized by wet chemical etching,” J. Appl. Phys. 105(1), 013525 (2009).
[Crossref]

S. Adachi and T. Takahashi, “Direct synthesis of K2SiF6:Mn4+ red phosphor from crushed quartz schist by wet chemical etching,” Electrochem. Solid-State Lett. 12(2), J20–J23 (2009).
[Crossref]

T. Takahashi and S. Adachi, “Synthesis of K2SiF6:Mn4+ red phosphor from silica glasses by wet chemical etching in HF/KMnO4 solution,” Electrochem. Solid-State Lett. 12(8), J69–J71 (2009).
[Crossref]

2008 (4)

Y. N. Wu, C. H. Cheng, and Z. X. Xiong, “Enhancement of Blue Emission via Upconversion in Solid-State Synthesized Hexagonal NaYF4:Ln3+,” Key Eng. Mater. 368–372, 398–401 (2008).
[Crossref]

S. Adachi and T. Takahashi, “Direct synthesis and properties of K2SiF6:Mn4+ phosphor by wet chemical etching of Si wafer,” J. Appl. Phys. 104(2), 023512 (2008).
[Crossref]

T. Takahashi and S. Adachi, “Mn4+-activated red photoluminescence K2SiF6 phosphor,” J. Electrochem. Soc. 155(12), E183–E188 (2008).
[Crossref]

C. Hoelen, H. Borel, J. de Graaf, M. Keuper, M. Lankhorst, C. Mutter, L. Waumans, and R. Wegh, “Remote phosphor LED modules for general illumination – towards 200 lm/W general lighting LED light sources,” Proc. SPIE 7058, 70580M (2008).
[Crossref]

2007 (1)

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[Crossref]

2006 (3)

Y. Q. Li, J. E. J. van Steen, J. W. H. van Krevel, G. Botty, A. C. A. Delsing, F. J. DiSalvo, G. de With, and H. T. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca, Sr, Ba) LED conversion phosphors,” J. Alloys Compd. 417(1–2), 273–279 (2006).
[Crossref]

X. Piao, T. Horikawa, H. Hanzawa, and K. Machida, “Characterization and luminescence properties of Sr2Si5N8:Eu2+ phosphor for white light-emitting-diode illumination,” Appl. Phys. Lett. 88(16), 2004–2007 (2006).
[Crossref]

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3:Eu2+, for White Light-Emitting Diodes,” Electrochem. Solid-State Lett. 9(4), H22 (2006).
[Crossref]

2005 (5)

H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors,” IEEE Photonics Technol. Lett. 17(6), 1160–1162 (2005).
[Crossref]

R. Mueller-Mach, G. Mueller, M. R. Krames, H. A. Höppe, F. Stadler, W. Schnick, T. Juestel, and P. Schmidt, “Highly efficient all-nitride phosphor-converted white light emitting diode,” Phys. Status Solidi 202(9), 1727–1732 (2005).
[Crossref]

Y. Hu, W. Zhuang, H. Ye, S. Zhang, Y. Fang, and X. Huang, “Preparation and luminescent properties of (Ca1-x,Srx)S:Eu2+ red-emitting phosphor for white LED,” J. Lumin. 111(3), 139–145 (2005).
[Crossref]

B. Han, B. W. Wessels, and M. P. Ulmer, “Optical investigation of electronic states of Mn4+ ions in p-type GaN,” Appl. Phys. Lett. 86(4),042505 (2005).
[Crossref]

P. Dorenbos, “Thermal quenching of Eu2+ 5d–4f luminescence in inorganic compounds,” J. Phys. Condens. Matter 17(50), 8103–8111 (2005).
[Crossref]

2004 (1)

F. Yuan and H. Ryu, “Ce-doped YAG phosphor powders prepared by co-precipitation and heterogeneous precipitation,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 107(1), 14–18 (2004).

2000 (2)

K. Ogasawara, T. Ishii, I. Tanaka, and H. Adachi, “Calculation of multiplet structures of Cr3+ and V3+ in α-Al2O3 based on a hybrid method of density-functional theory and the configuration interaction,” Phys. Rev. B 61(1), 143–161 (2000).
[Crossref]

Z. Bryknar, V. Trepakov, Z. Potůček, and L. Jastrabík, “Luminescence spectra of SrTiO3:Mn4+,” J. Lumin. 87, 605–607 (2000).
[Crossref]

1984 (2)

P. H. M. Uylings, A. J. J. Raassen, and J. F. Wyart, “Energies of N equivalent electrons expressed in terms of two-electron energies and independent three-electron parameters : a new complete set of orthogonal operators : II. Application to 3dN configurations,” J. Phys. B At. Mol. Phys. 17(20), 4103–4126 (1984).
[Crossref]

J. H. Loehlin, “Redetermination of the structure of potassium hexafluorosilicate, K2SiF6,” Acta Crystallogr. Sect. C Cryst. Struct. Commun. 40(3), 570 (1984).
[Crossref]

1983 (1)

P. Bukovec and R. Hoppe, “Zur kenntnis von hexagonalem K2[MnF6],” J. Fluor. Chem. 23(6), 579–587 (1983).
[Crossref]

1980 (1)

G. M. Rao, “Electrowinning of silicon from K2SiF6-molten fluoride systems,” J. Electrochem. Soc. Electrochem. Sci. Technol. 127(9), 1940–1944 (1980).
[Crossref]

1976 (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

1973 (1)

A. Paulusz, “Efficient Mn (IV) emission in fluorine coordination,” J. Electrochem. Soc. 120(7), 942–947 (1973).
[Crossref]

1969 (1)

F. Karel, J. Pastrňák, and J. Rosa, “Thermoluminescent measurements of the trap level spectrum in AlN:Mn4+ phosphors,” Czech. J. Phys. 19(8), 974–982 (1969).
[Crossref]

1965 (1)

D. Nickerson and C. W. Jerome, “Color rendering of light sources: CIE method of specification and its application,” Illum. Eng. 60(4), 262 (1965).

1960 (1)

G. Kemeny and C. H. Haake, “Activator center in magnesium fluorogermanate phosphors,” J. Chem. Phys. 33(3), 783–789 (1960).
[Crossref]

1958 (1)

C. E. Schäffer and C. K. Jørgensen, “The nephelauxetic series of ligands corresponding to increasing tendency of partly covalent bonding,” J. Inorg. Nucl. Chem. 8, 143–148 (1958).
[Crossref]

1953 (1)

H. Bode, H. Jenssen, and F. Bandte, “Über eine neue Darstellung des Kalium-hexafluoromanganats(IV),” Angew. Chem. 65(11), 304 (1953).
[Crossref]

Abe, H.

S. Adachi, H. Abe, R. Kasa, and T. Arai, “Synthesis and properties of hetero-dialkaline hexafluorosilicate red phosphor KNaSiF6:Mn4+,” J. Electrochem. Soc. 159(2), J34–J37 (2012).
[Crossref]

Abe, S.

S. Abe, J. J. Joos, L. I. Martin, Z. Hens, and P. F. Smet, “Hybrid remote quantum dot/powder phosphor designs for display backlights,” Light Sci. Appl. 6(6), e16271 (2017).
[Crossref]

Adachi, H.

K. Ogasawara, T. Ishii, I. Tanaka, and H. Adachi, “Calculation of multiplet structures of Cr3+ and V3+ in α-Al2O3 based on a hybrid method of density-functional theory and the configuration interaction,” Phys. Rev. B 61(1), 143–161 (2000).
[Crossref]

Adachi, S.

R. Hoshino, T. Nakamura, and S. Adachi, “Synthesis and photoluminescence properties of BaSnF6:Mn4+ red phosphor,” ECS J. Solid State Sci. Technol. 5(3), R37–R43 (2016).
[Crossref]

R. Hoshino and S. Adachi, “Optical spectroscopy and degradation behavior of ZnGeF6·6H2O:Mn4+ red-emitting phosphor,” J. Lumin. 162, 63–71 (2015).
[Crossref]

T. Nakamura, Z. Yuan, and S. Adachi, “Micronization of red-emitting K2SiF6:Mn4+ phosphor by pulsed laser irradiation in liquid,” Appl. Surf. Sci. 320(2014), 514–518 (2014).
[Crossref]

R. Kasa and S. Adachi, “Red and deep red emissions from cubic K2SiF6:Mn4+ and hexagonal K2MnF6 synthesized in HF/KMnO4/KHF2/Si solutions,” J. Electrochem. Soc. 159(4), J89–J95 (2012).
[Crossref]

S. Adachi, H. Abe, R. Kasa, and T. Arai, “Synthesis and properties of hetero-dialkaline hexafluorosilicate red phosphor KNaSiF6:Mn4+,” J. Electrochem. Soc. 159(2), J34–J37 (2012).
[Crossref]

Y. K. Xu and S. Adachi, “Photoluminescence and raman scattering spectra in (NH4)2XF6:Mn4+ (X = Si, Ge, Sn, and Ti) red phosphors,” J. Electrochem. Soc. 159(1), E11–E17 (2012).
[Crossref]

Y. K. Xu and S. Adachi, “Properties of Mn4+-activated hexafluorotitanate phosphors,” J. Electrochem. Soc. 158(3), J58–J65 (2011).
[Crossref]

T. Arai and S. Adachi, “Excited states of 3d3 electrons in K2SiF6:Mn4+ red phosphor studied by photoluminescence excitation spectroscopy,” Jpn. J. Appl. Phys. 50(9), 092401 (2011).
[Crossref]

S. Adachi and T. Takahashi, “Direct synthesis of K2SiF6:Mn4+ red phosphor from crushed quartz schist by wet chemical etching,” Electrochem. Solid-State Lett. 12(2), J20–J23 (2009).
[Crossref]

Y. K. Xu and S. Adachi, “Properties of Na2SiF6:Mn4+ and Na2GeF6:Mn4+ red phosphors synthesized by wet chemical etching,” J. Appl. Phys. 105(1), 013525 (2009).
[Crossref]

T. Takahashi and S. Adachi, “Synthesis of K2SiF6:Mn4+ red phosphor from silica glasses by wet chemical etching in HF/KMnO4 solution,” Electrochem. Solid-State Lett. 12(8), J69–J71 (2009).
[Crossref]

S. Adachi and T. Takahashi, “Direct synthesis and properties of K2SiF6:Mn4+ phosphor by wet chemical etching of Si wafer,” J. Appl. Phys. 104(2), 023512 (2008).
[Crossref]

T. Takahashi and S. Adachi, “Mn4+-activated red photoluminescence K2SiF6 phosphor,” J. Electrochem. Soc. 155(12), E183–E188 (2008).
[Crossref]

Aesram, D.

A. A. Setlur, E. V. Radkov, C. S. Henderson, J.-H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, A. R. Deshpande, B. Kolodin, S. G. Ljudmil, and U. Happek, “Energy-efficient, high-color-rendering LED lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22(13), 4076–4082 (2010).
[Crossref]

A. Setlur, M. Brewster, F. Garcia, M. C. Hill, R. Lyons, J. Murphy, T. Stecher, S. Stoklosa, S. Weaver, U. Happek, D. Aesram, and A. Deshpande, Optimized Phosphors for Warm White LED Light Engines (2012).
[Crossref]

Arai, T.

S. Adachi, H. Abe, R. Kasa, and T. Arai, “Synthesis and properties of hetero-dialkaline hexafluorosilicate red phosphor KNaSiF6:Mn4+,” J. Electrochem. Soc. 159(2), J34–J37 (2012).
[Crossref]

T. Arai and S. Adachi, “Excited states of 3d3 electrons in K2SiF6:Mn4+ red phosphor studied by photoluminescence excitation spectroscopy,” Jpn. J. Appl. Phys. 50(9), 092401 (2011).
[Crossref]

Arunkumar, P.

P. Arunkumar, Y. H. Kim, H. J. Kim, S. Unithrattil, and W. B. Im, “Hydrophobic organic skin as a protective shield for moisture-sensitive phosphor-based optoelectronic devices,” ACS Appl. Mater. Interfaces 9(8), 7232–7240 (2017).
[Crossref] [PubMed]

Avram, N. M.

M. G. Brik, S. J. Camardello, A. M. Srivastava, N. M. Avram, and A. Suchocki, “Spin-forbidden transitions in the spectra of transition metal ions and nephelauxetic effect,” ECS J. Solid State Sci. Technol. 5(1), R3067–R3077 (2016).
[Crossref]

Bandte, F.

H. Bode, H. Jenssen, and F. Bandte, “Über eine neue Darstellung des Kalium-hexafluoromanganats(IV),” Angew. Chem. 65(11), 304 (1953).
[Crossref]

Bang, B. K.

M. Kim, W. B. Park, C. H. Kim, K.-S. Sohn, and B. K. Bang, “Radiative and non-radiative decay rate of K2SiF6:Mn4+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(8), 1166–1169 (2015).

Baslon, V.

V. Baslon, J. P. Harris, C. Reber, H. E. Colmer, T. A. Jackson, A. P. Forshaw, J. M. Smith, R. A. Kinney, and J. Telser, “Near-infrared 2Eg → 4A2g and visible LMCT luminescence from a molecular bis-(tris(carbene)borate) manganese(IV) complex,” Can. J. Chem. 95(5), 547–552 (2017).
[Crossref]

Baur, F.

F. Baur, F. Glocker, and T. Jüstel, “Photoluminescence and energy transfer rates and efficiencies in Eu3+ activated Tb2Mo3O12,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2054–2064 (2015).
[Crossref]

Bin Im, W.

S. H. Park, K. H. Lee, S. Unithrattil, H. S. Yoon, H. G. Jang, and W. Bin Im, “Melilite-structure CaYAl3O7:Eu3+ phosphor: structural and optical characteristics for near-UV LED-based white light,” J. Phys. Chem. C 116(51), 26850–26856 (2012).
[Crossref]

Bode, H.

H. Bode, H. Jenssen, and F. Bandte, “Über eine neue Darstellung des Kalium-hexafluoromanganats(IV),” Angew. Chem. 65(11), 304 (1953).
[Crossref]

Borel, H.

C. Hoelen, H. Borel, J. de Graaf, M. Keuper, M. Lankhorst, C. Mutter, L. Waumans, and R. Wegh, “Remote phosphor LED modules for general illumination – towards 200 lm/W general lighting LED light sources,” Proc. SPIE 7058, 70580M (2008).
[Crossref]

Botterman, J.

J. J. Joos, J. Botterman, and P. F. Smet, “Evaluating the use of blue phosphors in white LEDs: the case of Sr0.25Ba0.75Si2O2N2:Eu2+,” J. Solid State Light. 1(1), 6 (2014).
[Crossref]

Botty, G.

Y. Q. Li, J. E. J. van Steen, J. W. H. van Krevel, G. Botty, A. C. A. Delsing, F. J. DiSalvo, G. de With, and H. T. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca, Sr, Ba) LED conversion phosphors,” J. Alloys Compd. 417(1–2), 273–279 (2006).
[Crossref]

Brewster, M.

A. Setlur, M. Brewster, F. Garcia, M. C. Hill, R. Lyons, J. Murphy, T. Stecher, S. Stoklosa, S. Weaver, U. Happek, D. Aesram, and A. Deshpande, Optimized Phosphors for Warm White LED Light Engines (2012).
[Crossref]

Brik, M. G.

Y. Jin, M.-H. Fang, M. Grinberg, S. Mahlik, T. Lesniewski, M. G. Brik, G.-Y. Luo, J. G. Lin, and R.-S. Liu, “Narrow red emission band fluoride phosphor KNaSiF6:Mn4+ for warm white light-emitting diodes,” ACS Appl. Mater. Interfaces 8(18), 11194–11203 (2016).
[Crossref] [PubMed]

M. G. Brik, S. J. Camardello, A. M. Srivastava, N. M. Avram, and A. Suchocki, “Spin-forbidden transitions in the spectra of transition metal ions and nephelauxetic effect,” ECS J. Solid State Sci. Technol. 5(1), R3067–R3077 (2016).
[Crossref]

L. Wei, C. C. Lin, M. Fang, M. G. Brik, S.-F. Hu, H. Jiao, and R. Liu, “A low-temperature co-precipitation approach to synthesize fluoride phosphors K2MF6:Mn4+ (M = Ge, Si) for white LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(8), 1655–1660 (2015).
[Crossref]

M. G. Brik, S. J. Camardello, and A. M. Srivastava, “Influence of covalency on the Mn4+ 2Eg -> 4A2g emission energy in crystals,” ECS J. Solid State Sci. Technol. 4(3), R39–R43 (2014).
[Crossref]

M. G. Brik and A. M. Srivastava, “On the optical properties of the Mn4+ ion in solids,” J. Lumin. 133(2013), 63–72 (2013).

M. G. Brik and A. M. Srivastava, “Ab initio studies of the structural, electronic, and optical properties of K2SiF6 single crystals at ambient and elevated hydrostatic pressure,” J. Electrochem. Soc. 159(6), J212–J216 (2012).
[Crossref]

Brinkley, S. E.

S. E. Brinkley, N. Pfaff, K. A. Denault, Z. Zhang, H. T. Hintzen, R. Seshadri, S. Nakamura, and S. P. Denbaars, “Robust thermal performance of Sr2Si5N8:Eu2+: An efficient red emitting phosphor for light emitting diode based white lighting,” Appl. Phys. Lett. 99, 241106 (2011).
[Crossref]

Bryknar, Z.

Z. Bryknar, V. Trepakov, Z. Potůček, and L. Jastrabík, “Luminescence spectra of SrTiO3:Mn4+,” J. Lumin. 87, 605–607 (2000).
[Crossref]

Bukovec, P.

P. Bukovec and R. Hoppe, “Zur kenntnis von hexagonalem K2[MnF6],” J. Fluor. Chem. 23(6), 579–587 (1983).
[Crossref]

Camardello, S. J.

M. G. Brik, S. J. Camardello, A. M. Srivastava, N. M. Avram, and A. Suchocki, “Spin-forbidden transitions in the spectra of transition metal ions and nephelauxetic effect,” ECS J. Solid State Sci. Technol. 5(1), R3067–R3077 (2016).
[Crossref]

M. G. Brik, S. J. Camardello, and A. M. Srivastava, “Influence of covalency on the Mn4+ 2Eg -> 4A2g emission energy in crystals,” ECS J. Solid State Sci. Technol. 4(3), R39–R43 (2014).
[Crossref]

Cao, R.

C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ phosphor from SiO2 powders via redox reaction in HF/KMnO4 solution and their application in warm-white LED,” J. Am. Ceram. Soc. 96(11), 3552–3556 (2013).
[Crossref]

Cao, W.

Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9(March), 1–9 (2015).

Cao, Y.

F. Tang, Z. Su, H. Ye, M. Wang, X. Lan, D. L. Phillips, Y. Cao, and S. Xu, “A set of manganese ion activated fluoride phosphors (A2BF6:Mn4+, A = K, Na, B = Si, Ge, Ti): synthesis below 0 °C and efficient room-temperature photoluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(40), 9561–9568 (2016).
[Crossref]

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[Crossref] [PubMed]

Chen, B.

H. Huang, Q. Xue, B. Chen, Y. Xiong, J. Schneider, C. Zhi, H. Zhong, and A. L. Rogach, “Top-Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents,” Angew. Chem. Int. Ed. Engl. 56(32), 9571–9576 (2017).
[Crossref] [PubMed]

G. Yang, Q. Fan, B. Chen, Q. Zhou, and H. Zhong, “Reprecipitation synthesis of luminescent CH3NH3PbBr3/NaNO3 nanocomposites with enhanced stability,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(48), 11387–11391 (2016).
[Crossref]

Chen, C.

F. Zhang, H. Zhong, C. Chen, X. G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology,” ACS Nano 9(4), 4533–4542 (2015).
[Crossref] [PubMed]

Chen, C.-Y.

X. Zhang, H.-C. Wang, A.-C. Tang, S.-Y. Lin, H.-C. Tong, C.-Y. Chen, Y.-C. Lee, T.-L. Tsai, and R.-S. Liu, “Robust and stable narrow-band green emitter: an option for advanced wide-color-gamut backlight display,” Chem. Mater. 28(23), 8493–8497 (2016).
[Crossref]

Chen, D.

D. Chen, Y. Zhou, and J. Zhong, “A review on Mn4+ activators in solids for warm white light-emitting diodes,” RSC Advances 6(89), 86285–86296 (2016).
[Crossref]

Chen, G.

W. Zhang, W. Yang, P. Zhong, S. Mei, G. Zhang, G. Chen, G. He, and R. Guo, “Spectral optimization of color temperature tunable white LEDs based on perovskite quantum dots for ultrahigh color rendition,” Opt. Mater. Express 7(9), 3065 (2017).
[Crossref]

Q. Zhou, Y. Zhou, Z. Wang, Y. Liu, G. Chen, J. Peng, J. Yan, and M. Wu, “Fabrication and application of non-rare earth red phosphors for warm white-light-emitting diodes,” RSC Advances 5(103), 84821–84826 (2015).
[Crossref]

Chen, J.

X. Li, X. Su, P. Liu, J. Liu, Z. Yao, J. Chen, H. Yao, X. Yu, and M. Zhan, “Shape-controlled synthesis of phosphor K2SiF6:Mn4+ nanorods and their luminescence properties,” CrystEngComm 17(4), 930–936 (2015).
[Crossref]

Chen, X.

L. Lv, X. Jiang, S. Huang, X. Chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(20), 3879–3884 (2014).
[Crossref]

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[Crossref] [PubMed]

Cheng, C. H.

Y. N. Wu, C. H. Cheng, and Z. X. Xiong, “Enhancement of Blue Emission via Upconversion in Solid-State Synthesized Hexagonal NaYF4:Ln3+,” Key Eng. Mater. 368–372, 398–401 (2008).
[Crossref]

Cho, Y.-S.

B.-E. Yeo, Y.-S. Cho, and Y.-D. Huh, “Synthesis and photoluminescence properties of a red-emitting phosphor, K2SiF6:Mn4+, for use in three-band white LED applications,” Opt. Mater. 51(2016), 50–55 (2016).
[Crossref]

Colmer, H. E.

V. Baslon, J. P. Harris, C. Reber, H. E. Colmer, T. A. Jackson, A. P. Forshaw, J. M. Smith, R. A. Kinney, and J. Telser, “Near-infrared 2Eg → 4A2g and visible LMCT luminescence from a molecular bis-(tris(carbene)borate) manganese(IV) complex,” Can. J. Chem. 95(5), 547–552 (2017).
[Crossref]

Dal Lago, M.

M. Meneghini, M. Dal Lago, N. Trivellin, G. Meneghesso, and E. Zanoni, “Thermally activated degradation of remote phosphors for application in LED lighting,” IEEE Trans. Device Mater. Reliab. 13(1), 316–318 (2013).
[Crossref]

Davis, W.

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[Crossref]

de Graaf, J.

C. Hoelen, H. Borel, J. de Graaf, M. Keuper, M. Lankhorst, C. Mutter, L. Waumans, and R. Wegh, “Remote phosphor LED modules for general illumination – towards 200 lm/W general lighting LED light sources,” Proc. SPIE 7058, 70580M (2008).
[Crossref]

De Nolf, K.

M. D. Tessier, D. Dupont, K. De Nolf, J. De Roo, and Z. Hens, “Economic and Size-Tunable Synthesis of InP/ZnE (E = S, Se) Colloidal Quantum Dots,” Chem. Mater. 27(13), 4893–4898 (2015).
[Crossref]

De Roo, J.

M. D. Tessier, D. Dupont, K. De Nolf, J. De Roo, and Z. Hens, “Economic and Size-Tunable Synthesis of InP/ZnE (E = S, Se) Colloidal Quantum Dots,” Chem. Mater. 27(13), 4893–4898 (2015).
[Crossref]

de With, G.

Y. Q. Li, J. E. J. van Steen, J. W. H. van Krevel, G. Botty, A. C. A. Delsing, F. J. DiSalvo, G. de With, and H. T. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca, Sr, Ba) LED conversion phosphors,” J. Alloys Compd. 417(1–2), 273–279 (2006).
[Crossref]

Delsing, A. C. A.

C. J. Duan, A. C. A. Delsing, and H. T. Hintzen, “Photoluminescence Properties of Novel Red-Emitting Mn2+-Activated MZnOS (M = Ca, Ba) Phosphors,” Chem. Mater. 21(6), 1010–1016 (2009).
[Crossref]

Y. Q. Li, J. E. J. van Steen, J. W. H. van Krevel, G. Botty, A. C. A. Delsing, F. J. DiSalvo, G. de With, and H. T. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca, Sr, Ba) LED conversion phosphors,” J. Alloys Compd. 417(1–2), 273–279 (2006).
[Crossref]

Denault, K. A.

S. E. Brinkley, N. Pfaff, K. A. Denault, Z. Zhang, H. T. Hintzen, R. Seshadri, S. Nakamura, and S. P. Denbaars, “Robust thermal performance of Sr2Si5N8:Eu2+: An efficient red emitting phosphor for light emitting diode based white lighting,” Appl. Phys. Lett. 99, 241106 (2011).
[Crossref]

Denbaars, S. P.

S. E. Brinkley, N. Pfaff, K. A. Denault, Z. Zhang, H. T. Hintzen, R. Seshadri, S. Nakamura, and S. P. Denbaars, “Robust thermal performance of Sr2Si5N8:Eu2+: An efficient red emitting phosphor for light emitting diode based white lighting,” Appl. Phys. Lett. 99, 241106 (2011).
[Crossref]

Deshpande, A.

A. Setlur, M. Brewster, F. Garcia, M. C. Hill, R. Lyons, J. Murphy, T. Stecher, S. Stoklosa, S. Weaver, U. Happek, D. Aesram, and A. Deshpande, Optimized Phosphors for Warm White LED Light Engines (2012).
[Crossref]

Deshpande, A. R.

A. A. Setlur, E. V. Radkov, C. S. Henderson, J.-H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, A. R. Deshpande, B. Kolodin, S. G. Ljudmil, and U. Happek, “Energy-efficient, high-color-rendering LED lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22(13), 4076–4082 (2010).
[Crossref]

Di Zhang, H.

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. Di Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

DiSalvo, F. J.

Y. Q. Li, J. E. J. van Steen, J. W. H. van Krevel, G. Botty, A. C. A. Delsing, F. J. DiSalvo, G. de With, and H. T. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca, Sr, Ba) LED conversion phosphors,” J. Alloys Compd. 417(1–2), 273–279 (2006).
[Crossref]

Do, Y. R.

J. H. Oh, Y. J. Eo, H. C. Yoon, Y.-D. Huh, and Y. R. Do, “Evaluation of new color metrics: guidelines for developing narrow-band red phosphors for WLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(36), 8326–8348 (2016).
[Crossref]

J. H. Oh, H. Kang, Y. J. Eo, H. K. Park, and Y. R. Do, “Synthesis of narrow-band red-emitting K2SiF6:Mn4+ phosphors for a deep red monochromatic LED and ultrahigh color quality warm-white LEDs,” J. Mater. Chem. C 3(3), 607–615 (2015).
[Crossref]

J. H. Oh, H. Kang, M. Ko, and Y. R. Do, “Analysis of wide color gamut of green/red bilayered freestanding phosphor film-capped white LEDs for LCD backlight,” Opt. Express 23(15), A791–A804 (2015).
[Crossref] [PubMed]

Dong, G.

C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ phosphor from SiO2 powders via redox reaction in HF/KMnO4 solution and their application in warm-white LED,” J. Am. Ceram. Soc. 96(11), 3552–3556 (2013).
[Crossref]

Dong, Y.

Q. Shao, L. Wang, L. Song, Y. Dong, C. Liang, J. He, and J. Jiang, “Temperature dependence of photoluminescence spectra and dynamics of the red-emitting K2SiF6:Mn4+ phosphor,” J. Alloys Compd. 695, 221–226 (2017).
[Crossref]

F. Zhang, H. Zhong, C. Chen, X. G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology,” ACS Nano 9(4), 4533–4542 (2015).
[Crossref] [PubMed]

Dorenbos, P.

P. Dorenbos, “Thermal quenching of Eu2+ 5d–4f luminescence in inorganic compounds,” J. Phys. Condens. Matter 17(50), 8103–8111 (2005).
[Crossref]

Du, M. H.

M. H. Du, “Chemical trends of Mn4+ emission in solids,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(14), 2475–2481 (2014).
[Crossref]

Duan, C. J.

C. J. Duan, A. C. A. Delsing, and H. T. Hintzen, “Photoluminescence Properties of Novel Red-Emitting Mn2+-Activated MZnOS (M = Ca, Ba) Phosphors,” Chem. Mater. 21(6), 1010–1016 (2009).
[Crossref]

Dupont, D.

D. Dupont, M. D. Tessier, P. F. Smet, and Z. Hens, “Indium Phosphide-Based Quantum Dots with Shell-Enhanced Absorption for Luminescent Down-Conversion,” Adv. Mater. 29(29), 1700686 (2017).
[Crossref] [PubMed]

M. D. Tessier, D. Dupont, K. De Nolf, J. De Roo, and Z. Hens, “Economic and Size-Tunable Synthesis of InP/ZnE (E = S, Se) Colloidal Quantum Dots,” Chem. Mater. 27(13), 4893–4898 (2015).
[Crossref]

Eo, Y. J.

J. H. Oh, Y. J. Eo, H. C. Yoon, Y.-D. Huh, and Y. R. Do, “Evaluation of new color metrics: guidelines for developing narrow-band red phosphors for WLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(36), 8326–8348 (2016).
[Crossref]

J. H. Oh, H. Kang, Y. J. Eo, H. K. Park, and Y. R. Do, “Synthesis of narrow-band red-emitting K2SiF6:Mn4+ phosphors for a deep red monochromatic LED and ultrahigh color quality warm-white LEDs,” J. Mater. Chem. C 3(3), 607–615 (2015).
[Crossref]

Fan, Q.

G. Yang, Q. Fan, B. Chen, Q. Zhou, and H. Zhong, “Reprecipitation synthesis of luminescent CH3NH3PbBr3/NaNO3 nanocomposites with enhanced stability,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(48), 11387–11391 (2016).
[Crossref]

Fang, M.

L. Wei, C. C. Lin, M. Fang, M. G. Brik, S.-F. Hu, H. Jiao, and R. Liu, “A low-temperature co-precipitation approach to synthesize fluoride phosphors K2MF6:Mn4+ (M = Ge, Si) for white LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(8), 1655–1660 (2015).
[Crossref]

H. D. Nguyen, C. C. Lin, M. Fang, and R. S. Liu, “Synthesis of Na2SiF6:Mn4+ red phosphors for white LED applications by co-precipitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(48), 10268–10272 (2014).
[Crossref]

Fang, M.-H.

Y. Jin, M.-H. Fang, M. Grinberg, S. Mahlik, T. Lesniewski, M. G. Brik, G.-Y. Luo, J. G. Lin, and R.-S. Liu, “Narrow red emission band fluoride phosphor KNaSiF6:Mn4+ for warm white light-emitting diodes,” ACS Appl. Mater. Interfaces 8(18), 11194–11203 (2016).
[Crossref] [PubMed]

Fang, Y.

Y. Hu, W. Zhuang, H. Ye, S. Zhang, Y. Fang, and X. Huang, “Preparation and luminescent properties of (Ca1-x,Srx)S:Eu2+ red-emitting phosphor for white LED,” J. Lumin. 111(3), 139–145 (2005).
[Crossref]

Feng, A.

J. J. Joos, K. Lejaeghere, K. Korthout, A. Feng, D. Poelman, and P. F. Smet, “Charge transfer induced energy storage in CaZnOS:Mn - insight from experimental and computational spectroscopy,” Phys. Chem. Chem. Phys. 19(13), 9075–9085 (2017).
[Crossref] [PubMed]

Forshaw, A. P.

V. Baslon, J. P. Harris, C. Reber, H. E. Colmer, T. A. Jackson, A. P. Forshaw, J. M. Smith, R. A. Kinney, and J. Telser, “Near-infrared 2Eg → 4A2g and visible LMCT luminescence from a molecular bis-(tris(carbene)borate) manganese(IV) complex,” Can. J. Chem. 95(5), 547–552 (2017).
[Crossref]

Fukunaga, H.

K. Yoshimura, H. Fukunaga, M. Izumi, M. Masuda, T. Uemura, K. Takahashi, R.-J. Xie, and N. Hirosaki, “White LEDs using the sharp β-sialon:Eu phosphor and Mn-doped red phosphor for wide-color gamut display applications,” J. Soc. Inf. Disp. 24(7), 449–453 (2016).
[Crossref]

Garcia, F.

A. Setlur, M. Brewster, F. Garcia, M. C. Hill, R. Lyons, J. Murphy, T. Stecher, S. Stoklosa, S. Weaver, U. Happek, D. Aesram, and A. Deshpande, Optimized Phosphors for Warm White LED Light Engines (2012).
[Crossref]

Glocker, F.

F. Baur, F. Glocker, and T. Jüstel, “Photoluminescence and energy transfer rates and efficiencies in Eu3+ activated Tb2Mo3O12,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2054–2064 (2015).
[Crossref]

Grinberg, M.

Y. Jin, M.-H. Fang, M. Grinberg, S. Mahlik, T. Lesniewski, M. G. Brik, G.-Y. Luo, J. G. Lin, and R.-S. Liu, “Narrow red emission band fluoride phosphor KNaSiF6:Mn4+ for warm white light-emitting diodes,” ACS Appl. Mater. Interfaces 8(18), 11194–11203 (2016).
[Crossref] [PubMed]

A. Lazarowska, S. Mahlik, M. Grinberg, C. C. Lin, and R.-S. Liu, “Pressure effect on the zero-phonon line emission of Mn4+ in K2SiF6.,” J. Chem. Phys. 143(13), 134704 (2015).
[Crossref] [PubMed]

Guo, C.

H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors,” IEEE Photonics Technol. Lett. 17(6), 1160–1162 (2005).
[Crossref]

Guo, R.

Haake, C. H.

G. Kemeny and C. H. Haake, “Activator center in magnesium fluorogermanate phosphors,” J. Chem. Phys. 33(3), 783–789 (1960).
[Crossref]

Han, B.

B. Han, B. W. Wessels, and M. P. Ulmer, “Optical investigation of electronic states of Mn4+ ions in p-type GaN,” Appl. Phys. Lett. 86(4),042505 (2005).
[Crossref]

Han, G. S.

M. J. Lee, Y. H. Song, Y. L. Song, G. S. Han, H. S. Jung, and D. H. Yoon, “Enhanced luminous efficiency of deep red emitting K2SiF6:Mn4+ phosphor dependent on KF ratio for warm-white LED,” J. Mater. Chem. C Mater. Lett. 141(2015), 27–30 (2015).
[Crossref]

Han, J.

F. Zhang, H. Zhong, C. Chen, X. G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology,” ACS Nano 9(4), 4533–4542 (2015).
[Crossref] [PubMed]

Han, J.-B.

Z. Zhong, X. Wang, J. Zhang, H. Zhong, and J.-B. Han, “Optical detection of magnetic field with Mn4+:K2SiF6 phosphor from room to liquid helium temperatures,” Appl. Phys. Lett. 110(21), 212405 (2017).
[Crossref]

Han, K.-Y.

Han, W. P.

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. Di Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

Hanzawa, H.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[Crossref]

X. Piao, T. Horikawa, H. Hanzawa, and K. Machida, “Characterization and luminescence properties of Sr2Si5N8:Eu2+ phosphor for white light-emitting-diode illumination,” Appl. Phys. Lett. 88(16), 2004–2007 (2006).
[Crossref]

Happek, U.

A. A. Setlur, E. V. Radkov, C. S. Henderson, J.-H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, A. R. Deshpande, B. Kolodin, S. G. Ljudmil, and U. Happek, “Energy-efficient, high-color-rendering LED lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22(13), 4076–4082 (2010).
[Crossref]

A. Setlur, M. Brewster, F. Garcia, M. C. Hill, R. Lyons, J. Murphy, T. Stecher, S. Stoklosa, S. Weaver, U. Happek, D. Aesram, and A. Deshpande, Optimized Phosphors for Warm White LED Light Engines (2012).
[Crossref]

Harris, J. P.

V. Baslon, J. P. Harris, C. Reber, H. E. Colmer, T. A. Jackson, A. P. Forshaw, J. M. Smith, R. A. Kinney, and J. Telser, “Near-infrared 2Eg → 4A2g and visible LMCT luminescence from a molecular bis-(tris(carbene)borate) manganese(IV) complex,” Can. J. Chem. 95(5), 547–552 (2017).
[Crossref]

He, G.

He, J.

Q. Shao, L. Wang, L. Song, Y. Dong, C. Liang, J. He, and J. Jiang, “Temperature dependence of photoluminescence spectra and dynamics of the red-emitting K2SiF6:Mn4+ phosphor,” J. Alloys Compd. 695, 221–226 (2017).
[Crossref]

Hecht, C.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Henderson, C. S.

A. A. Setlur, E. V. Radkov, C. S. Henderson, J.-H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, A. R. Deshpande, B. Kolodin, S. G. Ljudmil, and U. Happek, “Energy-efficient, high-color-rendering LED lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22(13), 4076–4082 (2010).
[Crossref]

Hens, Z.

S. Abe, J. J. Joos, L. I. Martin, Z. Hens, and P. F. Smet, “Hybrid remote quantum dot/powder phosphor designs for display backlights,” Light Sci. Appl. 6(6), e16271 (2017).
[Crossref]

D. Dupont, M. D. Tessier, P. F. Smet, and Z. Hens, “Indium Phosphide-Based Quantum Dots with Shell-Enhanced Absorption for Luminescent Down-Conversion,” Adv. Mater. 29(29), 1700686 (2017).
[Crossref] [PubMed]

M. D. Tessier, D. Dupont, K. De Nolf, J. De Roo, and Z. Hens, “Economic and Size-Tunable Synthesis of InP/ZnE (E = S, Se) Colloidal Quantum Dots,” Chem. Mater. 27(13), 4893–4898 (2015).
[Crossref]

Henß, A.-K.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Her, J.-H.

A. A. Setlur, E. V. Radkov, C. S. Henderson, J.-H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, A. R. Deshpande, B. Kolodin, S. G. Ljudmil, and U. Happek, “Energy-efficient, high-color-rendering LED lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22(13), 4076–4082 (2010).
[Crossref]

Hill, M. C.

A. Setlur, M. Brewster, F. Garcia, M. C. Hill, R. Lyons, J. Murphy, T. Stecher, S. Stoklosa, S. Weaver, U. Happek, D. Aesram, and A. Deshpande, Optimized Phosphors for Warm White LED Light Engines (2012).
[Crossref]

Hintzen, H. T.

Z. Zhou, N. Zhou, M. Xia, M. Yokoyama, and H. T. Hintzen, “Research progress and application prospects of transition metal Mn4+-activated luminescent materials,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(39), 9143–9161 (2016).
[Crossref]

S. E. Brinkley, N. Pfaff, K. A. Denault, Z. Zhang, H. T. Hintzen, R. Seshadri, S. Nakamura, and S. P. Denbaars, “Robust thermal performance of Sr2Si5N8:Eu2+: An efficient red emitting phosphor for light emitting diode based white lighting,” Appl. Phys. Lett. 99, 241106 (2011).
[Crossref]

C. J. Duan, A. C. A. Delsing, and H. T. Hintzen, “Photoluminescence Properties of Novel Red-Emitting Mn2+-Activated MZnOS (M = Ca, Ba) Phosphors,” Chem. Mater. 21(6), 1010–1016 (2009).
[Crossref]

Y. Q. Li, J. E. J. van Steen, J. W. H. van Krevel, G. Botty, A. C. A. Delsing, F. J. DiSalvo, G. de With, and H. T. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca, Sr, Ba) LED conversion phosphors,” J. Alloys Compd. 417(1–2), 273–279 (2006).
[Crossref]

Hirosaki, N.

K. Yoshimura, H. Fukunaga, M. Izumi, M. Masuda, T. Uemura, K. Takahashi, R.-J. Xie, and N. Hirosaki, “White LEDs using the sharp β-sialon:Eu phosphor and Mn-doped red phosphor for wide-color gamut display applications,” J. Soc. Inf. Disp. 24(7), 449–453 (2016).
[Crossref]

L. Wang, X. Wang, T. Kohsei, K. Yoshimura, M. Izumi, N. Hirosaki, and R.-J. Xie, “Highly efficient narrow-band green and red phosphors enabling wider color-gamut LED backlight for more brilliant displays,” Opt. Express 23(22), 28707–28717 (2015).
[Crossref] [PubMed]

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3:Eu2+, for White Light-Emitting Diodes,” Electrochem. Solid-State Lett. 9(4), H22 (2006).
[Crossref]

Hoelen, C.

C. Hoelen, H. Borel, J. de Graaf, M. Keuper, M. Lankhorst, C. Mutter, L. Waumans, and R. Wegh, “Remote phosphor LED modules for general illumination – towards 200 lm/W general lighting LED light sources,” Proc. SPIE 7058, 70580M (2008).
[Crossref]

Holloway, P. H.

Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9(March), 1–9 (2015).

Hong, B.

M. Novita, T. Honma, B. Hong, A. Ohishi, and K. Ogasawara, “Study of multiplet structures of Mn4+ activated in fluoride crystals,” J. Lumin. 169, 594–600 (2016).
[Crossref]

Honma, T.

M. Novita, T. Honma, B. Hong, A. Ohishi, and K. Ogasawara, “Study of multiplet structures of Mn4+ activated in fluoride crystals,” J. Lumin. 169, 594–600 (2016).
[Crossref]

Hoppe, R.

P. Bukovec and R. Hoppe, “Zur kenntnis von hexagonalem K2[MnF6],” J. Fluor. Chem. 23(6), 579–587 (1983).
[Crossref]

Höppe, H. A.

R. Mueller-Mach, G. Mueller, M. R. Krames, H. A. Höppe, F. Stadler, W. Schnick, T. Juestel, and P. Schmidt, “Highly efficient all-nitride phosphor-converted white light emitting diode,” Phys. Status Solidi 202(9), 1727–1732 (2005).
[Crossref]

Horikawa, T.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[Crossref]

X. Piao, T. Horikawa, H. Hanzawa, and K. Machida, “Characterization and luminescence properties of Sr2Si5N8:Eu2+ phosphor for white light-emitting-diode illumination,” Appl. Phys. Lett. 88(16), 2004–2007 (2006).
[Crossref]

Hoshino, R.

R. Hoshino, T. Nakamura, and S. Adachi, “Synthesis and photoluminescence properties of BaSnF6:Mn4+ red phosphor,” ECS J. Solid State Sci. Technol. 5(3), R37–R43 (2016).
[Crossref]

R. Hoshino and S. Adachi, “Optical spectroscopy and degradation behavior of ZnGeF6·6H2O:Mn4+ red-emitting phosphor,” J. Lumin. 162, 63–71 (2015).
[Crossref]

Hu, S.-F.

L. Wei, C. C. Lin, M. Fang, M. G. Brik, S.-F. Hu, H. Jiao, and R. Liu, “A low-temperature co-precipitation approach to synthesize fluoride phosphors K2MF6:Mn4+ (M = Ge, Si) for white LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(8), 1655–1660 (2015).
[Crossref]

Hu, X.

F. Zhang, H. Zhong, C. Chen, X. G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology,” ACS Nano 9(4), 4533–4542 (2015).
[Crossref] [PubMed]

Hu, Y.

Y. Hu, W. Zhuang, H. Ye, S. Zhang, Y. Fang, and X. Huang, “Preparation and luminescent properties of (Ca1-x,Srx)S:Eu2+ red-emitting phosphor for white LED,” J. Lumin. 111(3), 139–145 (2005).
[Crossref]

Huang, H.

H. Huang, Q. Xue, B. Chen, Y. Xiong, J. Schneider, C. Zhi, H. Zhong, and A. L. Rogach, “Top-Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents,” Angew. Chem. Int. Ed. Engl. 56(32), 9571–9576 (2017).
[Crossref] [PubMed]

F. Zhang, H. Zhong, C. Chen, X. G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology,” ACS Nano 9(4), 4533–4542 (2015).
[Crossref] [PubMed]

Huang, L.

L. Huang, Y. Zhu, X. Zhang, R. Zou, F. Pan, J. Wang, and M. Wu, “HF-free hydrothermal route for synthesis of highly efficient narrow-band red emitting phosphor K2Si1–xF6:xMn4+ for warm white light-emitting diodes,” Chem. Mater. 28(5), 1495–1502 (2016).
[Crossref]

Huang, S.

L. Lv, X. Jiang, S. Huang, X. Chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(20), 3879–3884 (2014).
[Crossref]

Huang, X.

Y. Hu, W. Zhuang, H. Ye, S. Zhang, Y. Fang, and X. Huang, “Preparation and luminescent properties of (Ca1-x,Srx)S:Eu2+ red-emitting phosphor for white LED,” J. Lumin. 111(3), 139–145 (2005).
[Crossref]

Huh, Y.-D.

J. H. Oh, Y. J. Eo, H. C. Yoon, Y.-D. Huh, and Y. R. Do, “Evaluation of new color metrics: guidelines for developing narrow-band red phosphors for WLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(36), 8326–8348 (2016).
[Crossref]

B.-E. Yeo, Y.-S. Cho, and Y.-D. Huh, “Synthesis and photoluminescence properties of a red-emitting phosphor, K2SiF6:Mn4+, for use in three-band white LED applications,” Opt. Mater. 51(2016), 50–55 (2016).
[Crossref]

Hyvonen, J.

Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9(March), 1–9 (2015).

Im, W. B.

P. Arunkumar, Y. H. Kim, H. J. Kim, S. Unithrattil, and W. B. Im, “Hydrophobic organic skin as a protective shield for moisture-sensitive phosphor-based optoelectronic devices,” ACS Appl. Mater. Interfaces 9(8), 7232–7240 (2017).
[Crossref] [PubMed]

Ishii, T.

K. Ogasawara, T. Ishii, I. Tanaka, and H. Adachi, “Calculation of multiplet structures of Cr3+ and V3+ in α-Al2O3 based on a hybrid method of density-functional theory and the configuration interaction,” Phys. Rev. B 61(1), 143–161 (2000).
[Crossref]

Ivanovskikh, K. V.

K. V. Ivanovskikh, J. M. Ogieglo, A. Zych, C. R. Ronda, and A. Meijerink, “Luminescence temperature quenching for Ce3+ and Pr3+ d-f emission in YAG and LuAG,” ECS J. Solid State Sci. Technol. 2(2), R3148–R3152 (2012).
[Crossref]

Izumi, M.

K. Yoshimura, H. Fukunaga, M. Izumi, M. Masuda, T. Uemura, K. Takahashi, R.-J. Xie, and N. Hirosaki, “White LEDs using the sharp β-sialon:Eu phosphor and Mn-doped red phosphor for wide-color gamut display applications,” J. Soc. Inf. Disp. 24(7), 449–453 (2016).
[Crossref]

L. Wang, X. Wang, T. Kohsei, K. Yoshimura, M. Izumi, N. Hirosaki, and R.-J. Xie, “Highly efficient narrow-band green and red phosphors enabling wider color-gamut LED backlight for more brilliant displays,” Opt. Express 23(22), 28707–28717 (2015).
[Crossref] [PubMed]

Jackson, T. A.

V. Baslon, J. P. Harris, C. Reber, H. E. Colmer, T. A. Jackson, A. P. Forshaw, J. M. Smith, R. A. Kinney, and J. Telser, “Near-infrared 2Eg → 4A2g and visible LMCT luminescence from a molecular bis-(tris(carbene)borate) manganese(IV) complex,” Can. J. Chem. 95(5), 547–552 (2017).
[Crossref]

Jang, H. G.

S. H. Park, K. H. Lee, S. Unithrattil, H. S. Yoon, H. G. Jang, and W. Bin Im, “Melilite-structure CaYAl3O7:Eu3+ phosphor: structural and optical characteristics for near-UV LED-based white light,” J. Phys. Chem. C 116(51), 26850–26856 (2012).
[Crossref]

Jang, M. S.

Jastrabík, L.

Z. Bryknar, V. Trepakov, Z. Potůček, and L. Jastrabík, “Luminescence spectra of SrTiO3:Mn4+,” J. Lumin. 87, 605–607 (2000).
[Crossref]

Jenssen, H.

H. Bode, H. Jenssen, and F. Bandte, “Über eine neue Darstellung des Kalium-hexafluoromanganats(IV),” Angew. Chem. 65(11), 304 (1953).
[Crossref]

Jerome, C. W.

D. Nickerson and C. W. Jerome, “Color rendering of light sources: CIE method of specification and its application,” Illum. Eng. 60(4), 262 (1965).

Jiang, J.

Q. Shao, L. Wang, L. Song, Y. Dong, C. Liang, J. He, and J. Jiang, “Temperature dependence of photoluminescence spectra and dynamics of the red-emitting K2SiF6:Mn4+ phosphor,” J. Alloys Compd. 695, 221–226 (2017).
[Crossref]

Jiang, X.

L. Lv, X. Jiang, S. Huang, X. Chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(20), 3879–3884 (2014).
[Crossref]

Jiao, H.

L. Wei, C. C. Lin, M. Fang, M. G. Brik, S.-F. Hu, H. Jiao, and R. Liu, “A low-temperature co-precipitation approach to synthesize fluoride phosphors K2MF6:Mn4+ (M = Ge, Si) for white LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(8), 1655–1660 (2015).
[Crossref]

Jin, Y.

Y. Jin, M.-H. Fang, M. Grinberg, S. Mahlik, T. Lesniewski, M. G. Brik, G.-Y. Luo, J. G. Lin, and R.-S. Liu, “Narrow red emission band fluoride phosphor KNaSiF6:Mn4+ for warm white light-emitting diodes,” ACS Appl. Mater. Interfaces 8(18), 11194–11203 (2016).
[Crossref] [PubMed]

Joos, J. J.

J. J. Joos, K. Lejaeghere, K. Korthout, A. Feng, D. Poelman, and P. F. Smet, “Charge transfer induced energy storage in CaZnOS:Mn - insight from experimental and computational spectroscopy,” Phys. Chem. Chem. Phys. 19(13), 9075–9085 (2017).
[Crossref] [PubMed]

S. Abe, J. J. Joos, L. I. Martin, Z. Hens, and P. F. Smet, “Hybrid remote quantum dot/powder phosphor designs for display backlights,” Light Sci. Appl. 6(6), e16271 (2017).
[Crossref]

P. F. Smet and J. J. Joos, “White light-emitting diodes: Stabilizing colour and intensity,” Nat. Mater. 16(5), 500–501 (2017).
[Crossref] [PubMed]

H. F. Sijbom, J. J. Joos, L. I. D. J. Martin, K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Luminescent behavior of the K2SiF6:Mn4+ red phosphor at high fluxes and at the microscopic level,” ECS J. Solid State Sci. Technol. 5(1), R3040–R3048 (2016).
[Crossref]

J. J. Joos, J. Botterman, and P. F. Smet, “Evaluating the use of blue phosphors in white LEDs: the case of Sr0.25Ba0.75Si2O2N2:Eu2+,” J. Solid State Light. 1(1), 6 (2014).
[Crossref]

J. J. Joos, K. W. Meert, A. B. Parmentier, D. Poelman, and P. F. Smet, “Thermal quenching and luminescence lifetime of saturated green Sr1−xEuxGa2S4 phosphors,” Opt. Mater. 34(11), 1902–1907 (2012).
[Crossref]

Jørgensen, C. K.

C. E. Schäffer and C. K. Jørgensen, “The nephelauxetic series of ligands corresponding to increasing tendency of partly covalent bonding,” J. Inorg. Nucl. Chem. 8, 143–148 (1958).
[Crossref]

Juestel, T.

R. Mueller-Mach, G. Mueller, M. R. Krames, H. A. Höppe, F. Stadler, W. Schnick, T. Juestel, and P. Schmidt, “Highly efficient all-nitride phosphor-converted white light emitting diode,” Phys. Status Solidi 202(9), 1727–1732 (2005).
[Crossref]

Jung, H. S.

M. J. Lee, Y. H. Song, Y. L. Song, G. S. Han, H. S. Jung, and D. H. Yoon, “Enhanced luminous efficiency of deep red emitting K2SiF6:Mn4+ phosphor dependent on KF ratio for warm-white LED,” J. Mater. Chem. C Mater. Lett. 141(2015), 27–30 (2015).
[Crossref]

Jüstel, T.

F. Baur, F. Glocker, and T. Jüstel, “Photoluminescence and energy transfer rates and efficiencies in Eu3+ activated Tb2Mo3O12,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2054–2064 (2015).
[Crossref]

Kang, H.

J. H. Oh, H. Kang, M. Ko, and Y. R. Do, “Analysis of wide color gamut of green/red bilayered freestanding phosphor film-capped white LEDs for LCD backlight,” Opt. Express 23(15), A791–A804 (2015).
[Crossref] [PubMed]

J. H. Oh, H. Kang, Y. J. Eo, H. K. Park, and Y. R. Do, “Synthesis of narrow-band red-emitting K2SiF6:Mn4+ phosphors for a deep red monochromatic LED and ultrahigh color quality warm-white LEDs,” J. Mater. Chem. C 3(3), 607–615 (2015).
[Crossref]

Karel, F.

F. Karel, J. Pastrňák, and J. Rosa, “Thermoluminescent measurements of the trap level spectrum in AlN:Mn4+ phosphors,” Czech. J. Phys. 19(8), 974–982 (1969).
[Crossref]

Karkada, N.

A. A. Setlur, E. V. Radkov, C. S. Henderson, J.-H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, A. R. Deshpande, B. Kolodin, S. G. Ljudmil, and U. Happek, “Energy-efficient, high-color-rendering LED lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22(13), 4076–4082 (2010).
[Crossref]

Kasa, R.

R. Kasa and S. Adachi, “Red and deep red emissions from cubic K2SiF6:Mn4+ and hexagonal K2MnF6 synthesized in HF/KMnO4/KHF2/Si solutions,” J. Electrochem. Soc. 159(4), J89–J95 (2012).
[Crossref]

S. Adachi, H. Abe, R. Kasa, and T. Arai, “Synthesis and properties of hetero-dialkaline hexafluorosilicate red phosphor KNaSiF6:Mn4+,” J. Electrochem. Soc. 159(2), J34–J37 (2012).
[Crossref]

Kemeny, G.

G. Kemeny and C. H. Haake, “Activator center in magnesium fluorogermanate phosphors,” J. Chem. Phys. 33(3), 783–789 (1960).
[Crossref]

Keuper, M.

C. Hoelen, H. Borel, J. de Graaf, M. Keuper, M. Lankhorst, C. Mutter, L. Waumans, and R. Wegh, “Remote phosphor LED modules for general illumination – towards 200 lm/W general lighting LED light sources,” Proc. SPIE 7058, 70580M (2008).
[Crossref]

Khan, W. U.

J. Li, J. Yan, D. Wen, W. U. Khan, J. Shi, M. Wu, Q. Su, and P. A. Tanner, “Advanced red phosphors for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(37), 8611–8623 (2016).
[Crossref]

Kijima, N.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[Crossref]

Kim, C. H.

M. Kim, W. B. Park, C. H. Kim, K.-S. Sohn, and B. K. Bang, “Radiative and non-radiative decay rate of K2SiF6:Mn4+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(8), 1166–1169 (2015).

Kim, H. J.

P. Arunkumar, Y. H. Kim, H. J. Kim, S. Unithrattil, and W. B. Im, “Hydrophobic organic skin as a protective shield for moisture-sensitive phosphor-based optoelectronic devices,” ACS Appl. Mater. Interfaces 9(8), 7232–7240 (2017).
[Crossref] [PubMed]

Kim, J. S.

Kim, M.

M. Kim, W. B. Park, C. H. Kim, K.-S. Sohn, and B. K. Bang, “Radiative and non-radiative decay rate of K2SiF6:Mn4+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(8), 1166–1169 (2015).

Kim, Y. H.

P. Arunkumar, Y. H. Kim, H. J. Kim, S. Unithrattil, and W. B. Im, “Hydrophobic organic skin as a protective shield for moisture-sensitive phosphor-based optoelectronic devices,” ACS Appl. Mater. Interfaces 9(8), 7232–7240 (2017).
[Crossref] [PubMed]

Kinney, R. A.

V. Baslon, J. P. Harris, C. Reber, H. E. Colmer, T. A. Jackson, A. P. Forshaw, J. M. Smith, R. A. Kinney, and J. Telser, “Near-infrared 2Eg → 4A2g and visible LMCT luminescence from a molecular bis-(tris(carbene)borate) manganese(IV) complex,” Can. J. Chem. 95(5), 547–552 (2017).
[Crossref]

Kishore, M. S.

A. A. Setlur, E. V. Radkov, C. S. Henderson, J.-H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, A. R. Deshpande, B. Kolodin, S. G. Ljudmil, and U. Happek, “Energy-efficient, high-color-rendering LED lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22(13), 4076–4082 (2010).
[Crossref]

Ko, M.

Kohsei, T.

Kolodin, B.

A. A. Setlur, E. V. Radkov, C. S. Henderson, J.-H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, A. R. Deshpande, B. Kolodin, S. G. Ljudmil, and U. Happek, “Energy-efficient, high-color-rendering LED lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22(13), 4076–4082 (2010).
[Crossref]

Kong, J.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[Crossref] [PubMed]

Korthout, K.

J. J. Joos, K. Lejaeghere, K. Korthout, A. Feng, D. Poelman, and P. F. Smet, “Charge transfer induced energy storage in CaZnOS:Mn - insight from experimental and computational spectroscopy,” Phys. Chem. Chem. Phys. 19(13), 9075–9085 (2017).
[Crossref] [PubMed]

Krames, M. R.

R. Mueller-Mach, G. Mueller, M. R. Krames, H. A. Höppe, F. Stadler, W. Schnick, T. Juestel, and P. Schmidt, “Highly efficient all-nitride phosphor-converted white light emitting diode,” Phys. Status Solidi 202(9), 1727–1732 (2005).
[Crossref]

Kumar, N. P.

A. A. Setlur, E. V. Radkov, C. S. Henderson, J.-H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, A. R. Deshpande, B. Kolodin, S. G. Ljudmil, and U. Happek, “Energy-efficient, high-color-rendering LED lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22(13), 4076–4082 (2010).
[Crossref]

Lan, X.

F. Tang, Z. Su, H. Ye, M. Wang, X. Lan, D. L. Phillips, Y. Cao, and S. Xu, “A set of manganese ion activated fluoride phosphors (A2BF6:Mn4+, A = K, Na, B = Si, Ge, Ti): synthesis below 0 °C and efficient room-temperature photoluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(40), 9561–9568 (2016).
[Crossref]

Lankhorst, M.

C. Hoelen, H. Borel, J. de Graaf, M. Keuper, M. Lankhorst, C. Mutter, L. Waumans, and R. Wegh, “Remote phosphor LED modules for general illumination – towards 200 lm/W general lighting LED light sources,” Proc. SPIE 7058, 70580M (2008).
[Crossref]

Lazarowska, A.

A. Lazarowska, S. Mahlik, M. Grinberg, C. C. Lin, and R.-S. Liu, “Pressure effect on the zero-phonon line emission of Mn4+ in K2SiF6.,” J. Chem. Phys. 143(13), 134704 (2015).
[Crossref] [PubMed]

Lee, K. H.

S. H. Park, K. H. Lee, S. Unithrattil, H. S. Yoon, H. G. Jang, and W. Bin Im, “Melilite-structure CaYAl3O7:Eu3+ phosphor: structural and optical characteristics for near-UV LED-based white light,” J. Phys. Chem. C 116(51), 26850–26856 (2012).
[Crossref]

Lee, M. J.

M. J. Lee, Y. H. Song, Y. L. Song, G. S. Han, H. S. Jung, and D. H. Yoon, “Enhanced luminous efficiency of deep red emitting K2SiF6:Mn4+ phosphor dependent on KF ratio for warm-white LED,” J. Mater. Chem. C Mater. Lett. 141(2015), 27–30 (2015).
[Crossref]

Lee, Y.-C.

X. Zhang, H.-C. Wang, A.-C. Tang, S.-Y. Lin, H.-C. Tong, C.-Y. Chen, Y.-C. Lee, T.-L. Tsai, and R.-S. Liu, “Robust and stable narrow-band green emitter: an option for advanced wide-color-gamut backlight display,” Chem. Mater. 28(23), 8493–8497 (2016).
[Crossref]

Lejaeghere, K.

J. J. Joos, K. Lejaeghere, K. Korthout, A. Feng, D. Poelman, and P. F. Smet, “Charge transfer induced energy storage in CaZnOS:Mn - insight from experimental and computational spectroscopy,” Phys. Chem. Chem. Phys. 19(13), 9075–9085 (2017).
[Crossref] [PubMed]

Lesniewski, T.

Y. Jin, M.-H. Fang, M. Grinberg, S. Mahlik, T. Lesniewski, M. G. Brik, G.-Y. Luo, J. G. Lin, and R.-S. Liu, “Narrow red emission band fluoride phosphor KNaSiF6:Mn4+ for warm white light-emitting diodes,” ACS Appl. Mater. Interfaces 8(18), 11194–11203 (2016).
[Crossref] [PubMed]

Li, J.

J. Li, J. Yan, D. Wen, W. U. Khan, J. Shi, M. Wu, Q. Su, and P. A. Tanner, “Advanced red phosphors for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(37), 8611–8623 (2016).
[Crossref]

Li, X.

X. Li, X. Su, P. Liu, J. Liu, Z. Yao, J. Chen, H. Yao, X. Yu, and M. Zhan, “Shape-controlled synthesis of phosphor K2SiF6:Mn4+ nanorods and their luminescence properties,” CrystEngComm 17(4), 930–936 (2015).
[Crossref]

Li, Y.

C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ phosphor from SiO2 powders via redox reaction in HF/KMnO4 solution and their application in warm-white LED,” J. Am. Ceram. Soc. 96(11), 3552–3556 (2013).
[Crossref]

Li, Y. Q.

Y. Q. Li, J. E. J. van Steen, J. W. H. van Krevel, G. Botty, A. C. A. Delsing, F. J. DiSalvo, G. de With, and H. T. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca, Sr, Ba) LED conversion phosphors,” J. Alloys Compd. 417(1–2), 273–279 (2006).
[Crossref]

Liang, C.

Q. Shao, L. Wang, L. Song, Y. Dong, C. Liang, J. He, and J. Jiang, “Temperature dependence of photoluminescence spectra and dynamics of the red-emitting K2SiF6:Mn4+ phosphor,” J. Alloys Compd. 695, 221–226 (2017).
[Crossref]

Liao, C.

C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ phosphor from SiO2 powders via redox reaction in HF/KMnO4 solution and their application in warm-white LED,” J. Am. Ceram. Soc. 96(11), 3552–3556 (2013).
[Crossref]

Lin, C. C.

L. Wei, C. C. Lin, M. Fang, M. G. Brik, S.-F. Hu, H. Jiao, and R. Liu, “A low-temperature co-precipitation approach to synthesize fluoride phosphors K2MF6:Mn4+ (M = Ge, Si) for white LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(8), 1655–1660 (2015).
[Crossref]

A. Lazarowska, S. Mahlik, M. Grinberg, C. C. Lin, and R.-S. Liu, “Pressure effect on the zero-phonon line emission of Mn4+ in K2SiF6.,” J. Chem. Phys. 143(13), 134704 (2015).
[Crossref] [PubMed]

H.-D. Nguyen, C. C. Lin, and R.-S. Liu, “Waterproof alkyl phosphate coated fluoride phosphors for optoelectronic materials,” Angew. Chem. Int. Ed. Engl. 54(37), 10862–10866 (2015).
[Crossref] [PubMed]

H. D. Nguyen, C. C. Lin, M. Fang, and R. S. Liu, “Synthesis of Na2SiF6:Mn4+ red phosphors for white LED applications by co-precipitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(48), 10268–10272 (2014).
[Crossref]

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[Crossref] [PubMed]

Lin, J. G.

Y. Jin, M.-H. Fang, M. Grinberg, S. Mahlik, T. Lesniewski, M. G. Brik, G.-Y. Luo, J. G. Lin, and R.-S. Liu, “Narrow red emission band fluoride phosphor KNaSiF6:Mn4+ for warm white light-emitting diodes,” ACS Appl. Mater. Interfaces 8(18), 11194–11203 (2016).
[Crossref] [PubMed]

Lin, S.-Y.

X. Zhang, H.-C. Wang, A.-C. Tang, S.-Y. Lin, H.-C. Tong, C.-Y. Chen, Y.-C. Lee, T.-L. Tsai, and R.-S. Liu, “Robust and stable narrow-band green emitter: an option for advanced wide-color-gamut backlight display,” Chem. Mater. 28(23), 8493–8497 (2016).
[Crossref]

Liu, J.

X. Li, X. Su, P. Liu, J. Liu, Z. Yao, J. Chen, H. Yao, X. Yu, and M. Zhan, “Shape-controlled synthesis of phosphor K2SiF6:Mn4+ nanorods and their luminescence properties,” CrystEngComm 17(4), 930–936 (2015).
[Crossref]

Liu, P.

X. Li, X. Su, P. Liu, J. Liu, Z. Yao, J. Chen, H. Yao, X. Yu, and M. Zhan, “Shape-controlled synthesis of phosphor K2SiF6:Mn4+ nanorods and their luminescence properties,” CrystEngComm 17(4), 930–936 (2015).
[Crossref]

Liu, R.

L. Wei, C. C. Lin, M. Fang, M. G. Brik, S.-F. Hu, H. Jiao, and R. Liu, “A low-temperature co-precipitation approach to synthesize fluoride phosphors K2MF6:Mn4+ (M = Ge, Si) for white LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(8), 1655–1660 (2015).
[Crossref]

Liu, R. S.

H. D. Nguyen, C. C. Lin, M. Fang, and R. S. Liu, “Synthesis of Na2SiF6:Mn4+ red phosphors for white LED applications by co-precipitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(48), 10268–10272 (2014).
[Crossref]

Liu, R.-S.

X. Zhang, H.-C. Wang, A.-C. Tang, S.-Y. Lin, H.-C. Tong, C.-Y. Chen, Y.-C. Lee, T.-L. Tsai, and R.-S. Liu, “Robust and stable narrow-band green emitter: an option for advanced wide-color-gamut backlight display,” Chem. Mater. 28(23), 8493–8497 (2016).
[Crossref]

H.-D. Nguyen and R.-S. Liu, “Narrow-band red-emitting Mn4+-doped hexafluoride phosphors: synthesis, optoelectronic properties, and applications in white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(46), 10759–10775 (2016).
[Crossref]

Y. Jin, M.-H. Fang, M. Grinberg, S. Mahlik, T. Lesniewski, M. G. Brik, G.-Y. Luo, J. G. Lin, and R.-S. Liu, “Narrow red emission band fluoride phosphor KNaSiF6:Mn4+ for warm white light-emitting diodes,” ACS Appl. Mater. Interfaces 8(18), 11194–11203 (2016).
[Crossref] [PubMed]

A. Lazarowska, S. Mahlik, M. Grinberg, C. C. Lin, and R.-S. Liu, “Pressure effect on the zero-phonon line emission of Mn4+ in K2SiF6.,” J. Chem. Phys. 143(13), 134704 (2015).
[Crossref] [PubMed]

H.-D. Nguyen, C. C. Lin, and R.-S. Liu, “Waterproof alkyl phosphate coated fluoride phosphors for optoelectronic materials,” Angew. Chem. Int. Ed. Engl. 54(37), 10862–10866 (2015).
[Crossref] [PubMed]

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[Crossref] [PubMed]

Liu, Y.

Z. Wang, Y. Zhou, Z. Yang, Y. Liu, H. Yang, H. Tan, Q. Zhang, and Q. Zhou, “Synthesis of K2XF6:Mn4+ (X=Ti, Si and Ge) red phosphors for white LED applications with low-concentration of HF,” Opt. Mater. 49(2015), 235–240 (2015).
[Crossref]

Q. Zhou, Y. Zhou, Z. Wang, Y. Liu, G. Chen, J. Peng, J. Yan, and M. Wu, “Fabrication and application of non-rare earth red phosphors for warm white-light-emitting diodes,” RSC Advances 5(103), 84821–84826 (2015).
[Crossref]

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[Crossref] [PubMed]

Liu, Z.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[Crossref] [PubMed]

Ljudmil, S. G.

A. A. Setlur, E. V. Radkov, C. S. Henderson, J.-H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, A. R. Deshpande, B. Kolodin, S. G. Ljudmil, and U. Happek, “Energy-efficient, high-color-rendering LED lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22(13), 4076–4082 (2010).
[Crossref]

Loehlin, J. H.

J. H. Loehlin, “Redetermination of the structure of potassium hexafluorosilicate, K2SiF6,” Acta Crystallogr. Sect. C Cryst. Struct. Commun. 40(3), 570 (1984).
[Crossref]

Long, Y. Z.

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. Di Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

Luo, D.

D. Luo, L. Wang, S. W. Or, H. Zhang, and R.-J. Xie, “Realizing superior white LEDs with both high R9 and luminous efficacy by using dual red phosphors,” RSC Advances 7(42), 25964–25968 (2017).
[Crossref]

Luo, G.-Y.

Y. Jin, M.-H. Fang, M. Grinberg, S. Mahlik, T. Lesniewski, M. G. Brik, G.-Y. Luo, J. G. Lin, and R.-S. Liu, “Narrow red emission band fluoride phosphor KNaSiF6:Mn4+ for warm white light-emitting diodes,” ACS Appl. Mater. Interfaces 8(18), 11194–11203 (2016).
[Crossref] [PubMed]

Luo, W.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[Crossref] [PubMed]

Lv, L.

L. Lv, X. Jiang, S. Huang, X. Chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(20), 3879–3884 (2014).
[Crossref]

Lyons, R.

A. Setlur, M. Brewster, F. Garcia, M. C. Hill, R. Lyons, J. Murphy, T. Stecher, S. Stoklosa, S. Weaver, U. Happek, D. Aesram, and A. Deshpande, Optimized Phosphors for Warm White LED Light Engines (2012).
[Crossref]

Lyons, R. J.

A. A. Setlur, R. J. Lyons, J. E. Murphy, N. Prasanth Kumar, and M. Satya Kishore, “Blue light-emitting diode phosphors based upon oxide, oxyhalide and halide hosts,” ECS J. Solid State Sci. Technol. 2(2), R3059–R3070 (2012).
[Crossref]

Ma, E.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[Crossref] [PubMed]

Ma, Z.

C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ phosphor from SiO2 powders via redox reaction in HF/KMnO4 solution and their application in warm-white LED,” J. Am. Ceram. Soc. 96(11), 3552–3556 (2013).
[Crossref]

Machida, K.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[Crossref]

X. Piao, T. Horikawa, H. Hanzawa, and K. Machida, “Characterization and luminescence properties of Sr2Si5N8:Eu2+ phosphor for white light-emitting-diode illumination,” Appl. Phys. Lett. 88(16), 2004–2007 (2006).
[Crossref]

Mahlik, S.

Y. Jin, M.-H. Fang, M. Grinberg, S. Mahlik, T. Lesniewski, M. G. Brik, G.-Y. Luo, J. G. Lin, and R.-S. Liu, “Narrow red emission band fluoride phosphor KNaSiF6:Mn4+ for warm white light-emitting diodes,” ACS Appl. Mater. Interfaces 8(18), 11194–11203 (2016).
[Crossref] [PubMed]

A. Lazarowska, S. Mahlik, M. Grinberg, C. C. Lin, and R.-S. Liu, “Pressure effect on the zero-phonon line emission of Mn4+ in K2SiF6.,” J. Chem. Phys. 143(13), 134704 (2015).
[Crossref] [PubMed]

Manders, J. R.

Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9(March), 1–9 (2015).

Martin, L. I.

S. Abe, J. J. Joos, L. I. Martin, Z. Hens, and P. F. Smet, “Hybrid remote quantum dot/powder phosphor designs for display backlights,” Light Sci. Appl. 6(6), e16271 (2017).
[Crossref]

Martin, L. I. D. J.

H. F. Sijbom, J. J. Joos, L. I. D. J. Martin, K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Luminescent behavior of the K2SiF6:Mn4+ red phosphor at high fluxes and at the microscopic level,” ECS J. Solid State Sci. Technol. 5(1), R3040–R3048 (2016).
[Crossref]

Masuda, M.

K. Yoshimura, H. Fukunaga, M. Izumi, M. Masuda, T. Uemura, K. Takahashi, R.-J. Xie, and N. Hirosaki, “White LEDs using the sharp β-sialon:Eu phosphor and Mn-doped red phosphor for wide-color gamut display applications,” J. Soc. Inf. Disp. 24(7), 449–453 (2016).
[Crossref]

Meert, K. W.

J. J. Joos, K. W. Meert, A. B. Parmentier, D. Poelman, and P. F. Smet, “Thermal quenching and luminescence lifetime of saturated green Sr1−xEuxGa2S4 phosphors,” Opt. Mater. 34(11), 1902–1907 (2012).
[Crossref]

Mei, S.

Meijerink, A.

K. V. Ivanovskikh, J. M. Ogieglo, A. Zych, C. R. Ronda, and A. Meijerink, “Luminescence temperature quenching for Ce3+ and Pr3+ d-f emission in YAG and LuAG,” ECS J. Solid State Sci. Technol. 2(2), R3148–R3152 (2012).
[Crossref]

Meneghesso, G.

M. Meneghini, M. Dal Lago, N. Trivellin, G. Meneghesso, and E. Zanoni, “Thermally activated degradation of remote phosphors for application in LED lighting,” IEEE Trans. Device Mater. Reliab. 13(1), 316–318 (2013).
[Crossref]

Meneghini, M.

M. Meneghini, M. Dal Lago, N. Trivellin, G. Meneghesso, and E. Zanoni, “Thermally activated degradation of remote phosphors for application in LED lighting,” IEEE Trans. Device Mater. Reliab. 13(1), 316–318 (2013).
[Crossref]

Min, B. G.

Moon, J. W.

Mueller, G.

R. Mueller-Mach, G. Mueller, M. R. Krames, H. A. Höppe, F. Stadler, W. Schnick, T. Juestel, and P. Schmidt, “Highly efficient all-nitride phosphor-converted white light emitting diode,” Phys. Status Solidi 202(9), 1727–1732 (2005).
[Crossref]

Mueller-Mach, R.

R. Mueller-Mach, G. Mueller, M. R. Krames, H. A. Höppe, F. Stadler, W. Schnick, T. Juestel, and P. Schmidt, “Highly efficient all-nitride phosphor-converted white light emitting diode,” Phys. Status Solidi 202(9), 1727–1732 (2005).
[Crossref]

Murphy, J.

A. Setlur, M. Brewster, F. Garcia, M. C. Hill, R. Lyons, J. Murphy, T. Stecher, S. Stoklosa, S. Weaver, U. Happek, D. Aesram, and A. Deshpande, Optimized Phosphors for Warm White LED Light Engines (2012).
[Crossref]

Murphy, J. E.

A. A. Setlur, R. J. Lyons, J. E. Murphy, N. Prasanth Kumar, and M. Satya Kishore, “Blue light-emitting diode phosphors based upon oxide, oxyhalide and halide hosts,” ECS J. Solid State Sci. Technol. 2(2), R3059–R3070 (2012).
[Crossref]

Mutter, C.

C. Hoelen, H. Borel, J. de Graaf, M. Keuper, M. Lankhorst, C. Mutter, L. Waumans, and R. Wegh, “Remote phosphor LED modules for general illumination – towards 200 lm/W general lighting LED light sources,” Proc. SPIE 7058, 70580M (2008).
[Crossref]

Naito, A.

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3:Eu2+, for White Light-Emitting Diodes,” Electrochem. Solid-State Lett. 9(4), H22 (2006).
[Crossref]

Nakajima, T.

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3:Eu2+, for White Light-Emitting Diodes,” Electrochem. Solid-State Lett. 9(4), H22 (2006).
[Crossref]

Nakamura, S.

S. E. Brinkley, N. Pfaff, K. A. Denault, Z. Zhang, H. T. Hintzen, R. Seshadri, S. Nakamura, and S. P. Denbaars, “Robust thermal performance of Sr2Si5N8:Eu2+: An efficient red emitting phosphor for light emitting diode based white lighting,” Appl. Phys. Lett. 99, 241106 (2011).
[Crossref]

Nakamura, T.

R. Hoshino, T. Nakamura, and S. Adachi, “Synthesis and photoluminescence properties of BaSnF6:Mn4+ red phosphor,” ECS J. Solid State Sci. Technol. 5(3), R37–R43 (2016).
[Crossref]

T. Nakamura, Z. Yuan, and S. Adachi, “Micronization of red-emitting K2SiF6:Mn4+ phosphor by pulsed laser irradiation in liquid,” Appl. Surf. Sci. 320(2014), 514–518 (2014).
[Crossref]

Nguyen, H. D.

H. D. Nguyen, C. C. Lin, M. Fang, and R. S. Liu, “Synthesis of Na2SiF6:Mn4+ red phosphors for white LED applications by co-precipitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(48), 10268–10272 (2014).
[Crossref]

Nguyen, H.-D.

H.-D. Nguyen and R.-S. Liu, “Narrow-band red-emitting Mn4+-doped hexafluoride phosphors: synthesis, optoelectronic properties, and applications in white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(46), 10759–10775 (2016).
[Crossref]

H.-D. Nguyen, C. C. Lin, and R.-S. Liu, “Waterproof alkyl phosphate coated fluoride phosphors for optoelectronic materials,” Angew. Chem. Int. Ed. Engl. 54(37), 10862–10866 (2015).
[Crossref] [PubMed]

Nickerson, D.

D. Nickerson and C. W. Jerome, “Color rendering of light sources: CIE method of specification and its application,” Illum. Eng. 60(4), 262 (1965).

Novita, M.

M. Novita, T. Honma, B. Hong, A. Ohishi, and K. Ogasawara, “Study of multiplet structures of Mn4+ activated in fluoride crystals,” J. Lumin. 169, 594–600 (2016).
[Crossref]

M. Novita and K. Ogasawara, “Comparative study of multiplet structures of Mn4+ in K2SiF6, K2GeF6, and K2TiF6 based on first-principles configuration–interaction calculations,” Jpn. J. Appl. Phys. 51, 22604 (2012).

Ogasawara, K.

M. Novita, T. Honma, B. Hong, A. Ohishi, and K. Ogasawara, “Study of multiplet structures of Mn4+ activated in fluoride crystals,” J. Lumin. 169, 594–600 (2016).
[Crossref]

M. Novita and K. Ogasawara, “Comparative study of multiplet structures of Mn4+ in K2SiF6, K2GeF6, and K2TiF6 based on first-principles configuration–interaction calculations,” Jpn. J. Appl. Phys. 51, 22604 (2012).

K. Ogasawara, T. Ishii, I. Tanaka, and H. Adachi, “Calculation of multiplet structures of Cr3+ and V3+ in α-Al2O3 based on a hybrid method of density-functional theory and the configuration interaction,” Phys. Rev. B 61(1), 143–161 (2000).
[Crossref]

Ogieglo, J. M.

K. V. Ivanovskikh, J. M. Ogieglo, A. Zych, C. R. Ronda, and A. Meijerink, “Luminescence temperature quenching for Ce3+ and Pr3+ d-f emission in YAG and LuAG,” ECS J. Solid State Sci. Technol. 2(2), R3148–R3152 (2012).
[Crossref]

Oh, J. H.

J. H. Oh, Y. J. Eo, H. C. Yoon, Y.-D. Huh, and Y. R. Do, “Evaluation of new color metrics: guidelines for developing narrow-band red phosphors for WLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(36), 8326–8348 (2016).
[Crossref]

J. H. Oh, H. Kang, Y. J. Eo, H. K. Park, and Y. R. Do, “Synthesis of narrow-band red-emitting K2SiF6:Mn4+ phosphors for a deep red monochromatic LED and ultrahigh color quality warm-white LEDs,” J. Mater. Chem. C 3(3), 607–615 (2015).
[Crossref]

J. H. Oh, H. Kang, M. Ko, and Y. R. Do, “Analysis of wide color gamut of green/red bilayered freestanding phosphor film-capped white LEDs for LCD backlight,” Opt. Express 23(15), A791–A804 (2015).
[Crossref] [PubMed]

Ohishi, A.

M. Novita, T. Honma, B. Hong, A. Ohishi, and K. Ogasawara, “Study of multiplet structures of Mn4+ activated in fluoride crystals,” J. Lumin. 169, 594–600 (2016).
[Crossref]

Ohno, Y.

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[Crossref]

Ok, K. M.

Olchowka, J.

J. Olchowka, M. Suta, and C. Wickleder, “Green synthesis of small nanoparticles of A2SiF6 (A = Li - Cs) using Ionic Liquids as Solvent and Fluorine Source: A novel simple approach without HF,” Chemistry6, (2017).

Or, S. W.

D. Luo, L. Wang, S. W. Or, H. Zhang, and R.-J. Xie, “Realizing superior white LEDs with both high R9 and luminous efficacy by using dual red phosphors,” RSC Advances 7(42), 25964–25968 (2017).
[Crossref]

Pan, F.

L. Huang, Y. Zhu, X. Zhang, R. Zou, F. Pan, J. Wang, and M. Wu, “HF-free hydrothermal route for synthesis of highly efficient narrow-band red emitting phosphor K2Si1–xF6:xMn4+ for warm white light-emitting diodes,” Chem. Mater. 28(5), 1495–1502 (2016).
[Crossref]

Pan, Y.

L. Lv, X. Jiang, S. Huang, X. Chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(20), 3879–3884 (2014).
[Crossref]

Park, H. K.

J. H. Oh, H. Kang, Y. J. Eo, H. K. Park, and Y. R. Do, “Synthesis of narrow-band red-emitting K2SiF6:Mn4+ phosphors for a deep red monochromatic LED and ultrahigh color quality warm-white LEDs,” J. Mater. Chem. C 3(3), 607–615 (2015).
[Crossref]

Park, S. H.

S. H. Park, K. H. Lee, S. Unithrattil, H. S. Yoon, H. G. Jang, and W. Bin Im, “Melilite-structure CaYAl3O7:Eu3+ phosphor: structural and optical characteristics for near-UV LED-based white light,” J. Phys. Chem. C 116(51), 26850–26856 (2012).
[Crossref]

Park, W. B.

M. Kim, W. B. Park, C. H. Kim, K.-S. Sohn, and B. K. Bang, “Radiative and non-radiative decay rate of K2SiF6:Mn4+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(8), 1166–1169 (2015).

Parmentier, A. B.

J. J. Joos, K. W. Meert, A. B. Parmentier, D. Poelman, and P. F. Smet, “Thermal quenching and luminescence lifetime of saturated green Sr1−xEuxGa2S4 phosphors,” Opt. Mater. 34(11), 1902–1907 (2012).
[Crossref]

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

Pastrnák, J.

F. Karel, J. Pastrňák, and J. Rosa, “Thermoluminescent measurements of the trap level spectrum in AlN:Mn4+ phosphors,” Czech. J. Phys. 19(8), 974–982 (1969).
[Crossref]

Paulusz, A.

A. Paulusz, “Efficient Mn (IV) emission in fluorine coordination,” J. Electrochem. Soc. 120(7), 942–947 (1973).
[Crossref]

Peng, J.

Q. Zhou, Y. Zhou, Z. Wang, Y. Liu, G. Chen, J. Peng, J. Yan, and M. Wu, “Fabrication and application of non-rare earth red phosphors for warm white-light-emitting diodes,” RSC Advances 5(103), 84821–84826 (2015).
[Crossref]

Pfaff, N.

S. E. Brinkley, N. Pfaff, K. A. Denault, Z. Zhang, H. T. Hintzen, R. Seshadri, S. Nakamura, and S. P. Denbaars, “Robust thermal performance of Sr2Si5N8:Eu2+: An efficient red emitting phosphor for light emitting diode based white lighting,” Appl. Phys. Lett. 99, 241106 (2011).
[Crossref]

Phillips, D. L.

F. Tang, Z. Su, H. Ye, M. Wang, X. Lan, D. L. Phillips, Y. Cao, and S. Xu, “A set of manganese ion activated fluoride phosphors (A2BF6:Mn4+, A = K, Na, B = Si, Ge, Ti): synthesis below 0 °C and efficient room-temperature photoluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(40), 9561–9568 (2016).
[Crossref]

Piao, X.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[Crossref]

X. Piao, T. Horikawa, H. Hanzawa, and K. Machida, “Characterization and luminescence properties of Sr2Si5N8:Eu2+ phosphor for white light-emitting-diode illumination,” Appl. Phys. Lett. 88(16), 2004–2007 (2006).
[Crossref]

Poelman, D.

J. J. Joos, K. Lejaeghere, K. Korthout, A. Feng, D. Poelman, and P. F. Smet, “Charge transfer induced energy storage in CaZnOS:Mn - insight from experimental and computational spectroscopy,” Phys. Chem. Chem. Phys. 19(13), 9075–9085 (2017).
[Crossref] [PubMed]

H. F. Sijbom, J. J. Joos, L. I. D. J. Martin, K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Luminescent behavior of the K2SiF6:Mn4+ red phosphor at high fluxes and at the microscopic level,” ECS J. Solid State Sci. Technol. 5(1), R3040–R3048 (2016).
[Crossref]

J. J. Joos, K. W. Meert, A. B. Parmentier, D. Poelman, and P. F. Smet, “Thermal quenching and luminescence lifetime of saturated green Sr1−xEuxGa2S4 phosphors,” Opt. Mater. 34(11), 1902–1907 (2012).
[Crossref]

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

Potucek, Z.

Z. Bryknar, V. Trepakov, Z. Potůček, and L. Jastrabík, “Luminescence spectra of SrTiO3:Mn4+,” J. Lumin. 87, 605–607 (2000).
[Crossref]

Prasanth Kumar, N.

A. A. Setlur, R. J. Lyons, J. E. Murphy, N. Prasanth Kumar, and M. Satya Kishore, “Blue light-emitting diode phosphors based upon oxide, oxyhalide and halide hosts,” ECS J. Solid State Sci. Technol. 2(2), R3059–R3070 (2012).
[Crossref]

Pust, P.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Qian, L.

Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9(March), 1–9 (2015).

Qiu, J.

C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ phosphor from SiO2 powders via redox reaction in HF/KMnO4 solution and their application in warm-white LED,” J. Am. Ceram. Soc. 96(11), 3552–3556 (2013).
[Crossref]

Raassen, A. J. J.

P. H. M. Uylings, A. J. J. Raassen, and J. F. Wyart, “Energies of N equivalent electrons expressed in terms of two-electron energies and independent three-electron parameters : a new complete set of orthogonal operators : II. Application to 3dN configurations,” J. Phys. B At. Mol. Phys. 17(20), 4103–4126 (1984).
[Crossref]

Radkov, E. V.

A. A. Setlur, E. V. Radkov, C. S. Henderson, J.-H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, A. R. Deshpande, B. Kolodin, S. G. Ljudmil, and U. Happek, “Energy-efficient, high-color-rendering LED lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22(13), 4076–4082 (2010).
[Crossref]

Rao, G. M.

G. M. Rao, “Electrowinning of silicon from K2SiF6-molten fluoride systems,” J. Electrochem. Soc. Electrochem. Sci. Technol. 127(9), 1940–1944 (1980).
[Crossref]

Reber, C.

V. Baslon, J. P. Harris, C. Reber, H. E. Colmer, T. A. Jackson, A. P. Forshaw, J. M. Smith, R. A. Kinney, and J. Telser, “Near-infrared 2Eg → 4A2g and visible LMCT luminescence from a molecular bis-(tris(carbene)borate) manganese(IV) complex,” Can. J. Chem. 95(5), 547–552 (2017).
[Crossref]

Rogach, A. L.

H. Huang, Q. Xue, B. Chen, Y. Xiong, J. Schneider, C. Zhi, H. Zhong, and A. L. Rogach, “Top-Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents,” Angew. Chem. Int. Ed. Engl. 56(32), 9571–9576 (2017).
[Crossref] [PubMed]

Ronda, C. R.

K. V. Ivanovskikh, J. M. Ogieglo, A. Zych, C. R. Ronda, and A. Meijerink, “Luminescence temperature quenching for Ce3+ and Pr3+ d-f emission in YAG and LuAG,” ECS J. Solid State Sci. Technol. 2(2), R3148–R3152 (2012).
[Crossref]

Rosa, J.

F. Karel, J. Pastrňák, and J. Rosa, “Thermoluminescent measurements of the trap level spectrum in AlN:Mn4+ phosphors,” Czech. J. Phys. 19(8), 974–982 (1969).
[Crossref]

Ryu, H.

F. Yuan and H. Ryu, “Ce-doped YAG phosphor powders prepared by co-precipitation and heterogeneous precipitation,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 107(1), 14–18 (2004).

Satya Kishore, M.

A. A. Setlur, R. J. Lyons, J. E. Murphy, N. Prasanth Kumar, and M. Satya Kishore, “Blue light-emitting diode phosphors based upon oxide, oxyhalide and halide hosts,” ECS J. Solid State Sci. Technol. 2(2), R3059–R3070 (2012).
[Crossref]

Schäffer, C. E.

C. E. Schäffer and C. K. Jørgensen, “The nephelauxetic series of ligands corresponding to increasing tendency of partly covalent bonding,” J. Inorg. Nucl. Chem. 8, 143–148 (1958).
[Crossref]

Scheu, C.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Schmidt, P.

R. Mueller-Mach, G. Mueller, M. R. Krames, H. A. Höppe, F. Stadler, W. Schnick, T. Juestel, and P. Schmidt, “Highly efficient all-nitride phosphor-converted white light emitting diode,” Phys. Status Solidi 202(9), 1727–1732 (2005).
[Crossref]

Schmidt, P. J.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Schneider, J.

H. Huang, Q. Xue, B. Chen, Y. Xiong, J. Schneider, C. Zhi, H. Zhong, and A. L. Rogach, “Top-Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents,” Angew. Chem. Int. Ed. Engl. 56(32), 9571–9576 (2017).
[Crossref] [PubMed]

Schnick, W.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

R. Mueller-Mach, G. Mueller, M. R. Krames, H. A. Höppe, F. Stadler, W. Schnick, T. Juestel, and P. Schmidt, “Highly efficient all-nitride phosphor-converted white light emitting diode,” Phys. Status Solidi 202(9), 1727–1732 (2005).
[Crossref]

Seshadri, R.

S. E. Brinkley, N. Pfaff, K. A. Denault, Z. Zhang, H. T. Hintzen, R. Seshadri, S. Nakamura, and S. P. Denbaars, “Robust thermal performance of Sr2Si5N8:Eu2+: An efficient red emitting phosphor for light emitting diode based white lighting,” Appl. Phys. Lett. 99, 241106 (2011).
[Crossref]

Setlur, A.

A. Setlur, M. Brewster, F. Garcia, M. C. Hill, R. Lyons, J. Murphy, T. Stecher, S. Stoklosa, S. Weaver, U. Happek, D. Aesram, and A. Deshpande, Optimized Phosphors for Warm White LED Light Engines (2012).
[Crossref]

Setlur, A. A.

A. A. Setlur, R. J. Lyons, J. E. Murphy, N. Prasanth Kumar, and M. Satya Kishore, “Blue light-emitting diode phosphors based upon oxide, oxyhalide and halide hosts,” ECS J. Solid State Sci. Technol. 2(2), R3059–R3070 (2012).
[Crossref]

A. A. Setlur, E. V. Radkov, C. S. Henderson, J.-H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, A. R. Deshpande, B. Kolodin, S. G. Ljudmil, and U. Happek, “Energy-efficient, high-color-rendering LED lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22(13), 4076–4082 (2010).
[Crossref]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

Shao, Q.

Q. Shao, L. Wang, L. Song, Y. Dong, C. Liang, J. He, and J. Jiang, “Temperature dependence of photoluminescence spectra and dynamics of the red-emitting K2SiF6:Mn4+ phosphor,” J. Alloys Compd. 695, 221–226 (2017).
[Crossref]

Sharafudeen, K. N.

C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ phosphor from SiO2 powders via redox reaction in HF/KMnO4 solution and their application in warm-white LED,” J. Am. Ceram. Soc. 96(11), 3552–3556 (2013).
[Crossref]

Shi, J.

J. Li, J. Yan, D. Wen, W. U. Khan, J. Shi, M. Wu, Q. Su, and P. A. Tanner, “Advanced red phosphors for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(37), 8611–8623 (2016).
[Crossref]

Shimomura, Y.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[Crossref]

Shu, S.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[Crossref] [PubMed]

Sijbom, H. F.

H. F. Sijbom, J. J. Joos, L. I. D. J. Martin, K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Luminescent behavior of the K2SiF6:Mn4+ red phosphor at high fluxes and at the microscopic level,” ECS J. Solid State Sci. Technol. 5(1), R3040–R3048 (2016).
[Crossref]

Smet, P. F.

D. Dupont, M. D. Tessier, P. F. Smet, and Z. Hens, “Indium Phosphide-Based Quantum Dots with Shell-Enhanced Absorption for Luminescent Down-Conversion,” Adv. Mater. 29(29), 1700686 (2017).
[Crossref] [PubMed]

J. J. Joos, K. Lejaeghere, K. Korthout, A. Feng, D. Poelman, and P. F. Smet, “Charge transfer induced energy storage in CaZnOS:Mn - insight from experimental and computational spectroscopy,” Phys. Chem. Chem. Phys. 19(13), 9075–9085 (2017).
[Crossref] [PubMed]

S. Abe, J. J. Joos, L. I. Martin, Z. Hens, and P. F. Smet, “Hybrid remote quantum dot/powder phosphor designs for display backlights,” Light Sci. Appl. 6(6), e16271 (2017).
[Crossref]

P. F. Smet and J. J. Joos, “White light-emitting diodes: Stabilizing colour and intensity,” Nat. Mater. 16(5), 500–501 (2017).
[Crossref] [PubMed]

H. F. Sijbom, J. J. Joos, L. I. D. J. Martin, K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Luminescent behavior of the K2SiF6:Mn4+ red phosphor at high fluxes and at the microscopic level,” ECS J. Solid State Sci. Technol. 5(1), R3040–R3048 (2016).
[Crossref]

J. J. Joos, J. Botterman, and P. F. Smet, “Evaluating the use of blue phosphors in white LEDs: the case of Sr0.25Ba0.75Si2O2N2:Eu2+,” J. Solid State Light. 1(1), 6 (2014).
[Crossref]

J. J. Joos, K. W. Meert, A. B. Parmentier, D. Poelman, and P. F. Smet, “Thermal quenching and luminescence lifetime of saturated green Sr1−xEuxGa2S4 phosphors,” Opt. Mater. 34(11), 1902–1907 (2012).
[Crossref]

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

Smith, J. M.

V. Baslon, J. P. Harris, C. Reber, H. E. Colmer, T. A. Jackson, A. P. Forshaw, J. M. Smith, R. A. Kinney, and J. Telser, “Near-infrared 2Eg → 4A2g and visible LMCT luminescence from a molecular bis-(tris(carbene)borate) manganese(IV) complex,” Can. J. Chem. 95(5), 547–552 (2017).
[Crossref]

Sohn, K.-S.

M. Kim, W. B. Park, C. H. Kim, K.-S. Sohn, and B. K. Bang, “Radiative and non-radiative decay rate of K2SiF6:Mn4+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(8), 1166–1169 (2015).

Song, L.

Q. Shao, L. Wang, L. Song, Y. Dong, C. Liang, J. He, and J. Jiang, “Temperature dependence of photoluminescence spectra and dynamics of the red-emitting K2SiF6:Mn4+ phosphor,” J. Alloys Compd. 695, 221–226 (2017).
[Crossref]

Song, Y. H.

M. J. Lee, Y. H. Song, Y. L. Song, G. S. Han, H. S. Jung, and D. H. Yoon, “Enhanced luminous efficiency of deep red emitting K2SiF6:Mn4+ phosphor dependent on KF ratio for warm-white LED,” J. Mater. Chem. C Mater. Lett. 141(2015), 27–30 (2015).
[Crossref]

Song, Y. L.

M. J. Lee, Y. H. Song, Y. L. Song, G. S. Han, H. S. Jung, and D. H. Yoon, “Enhanced luminous efficiency of deep red emitting K2SiF6:Mn4+ phosphor dependent on KF ratio for warm-white LED,” J. Mater. Chem. C Mater. Lett. 141(2015), 27–30 (2015).
[Crossref]

Srivastava, A. M.

M. G. Brik, S. J. Camardello, A. M. Srivastava, N. M. Avram, and A. Suchocki, “Spin-forbidden transitions in the spectra of transition metal ions and nephelauxetic effect,” ECS J. Solid State Sci. Technol. 5(1), R3067–R3077 (2016).
[Crossref]

M. G. Brik, S. J. Camardello, and A. M. Srivastava, “Influence of covalency on the Mn4+ 2Eg -> 4A2g emission energy in crystals,” ECS J. Solid State Sci. Technol. 4(3), R39–R43 (2014).
[Crossref]

M. G. Brik and A. M. Srivastava, “On the optical properties of the Mn4+ ion in solids,” J. Lumin. 133(2013), 63–72 (2013).

M. G. Brik and A. M. Srivastava, “Ab initio studies of the structural, electronic, and optical properties of K2SiF6 single crystals at ambient and elevated hydrostatic pressure,” J. Electrochem. Soc. 159(6), J212–J216 (2012).
[Crossref]

A. A. Setlur, E. V. Radkov, C. S. Henderson, J.-H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, A. R. Deshpande, B. Kolodin, S. G. Ljudmil, and U. Happek, “Energy-efficient, high-color-rendering LED lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22(13), 4076–4082 (2010).
[Crossref]

Stadler, F.

R. Mueller-Mach, G. Mueller, M. R. Krames, H. A. Höppe, F. Stadler, W. Schnick, T. Juestel, and P. Schmidt, “Highly efficient all-nitride phosphor-converted white light emitting diode,” Phys. Status Solidi 202(9), 1727–1732 (2005).
[Crossref]

Stecher, T.

A. Setlur, M. Brewster, F. Garcia, M. C. Hill, R. Lyons, J. Murphy, T. Stecher, S. Stoklosa, S. Weaver, U. Happek, D. Aesram, and A. Deshpande, Optimized Phosphors for Warm White LED Light Engines (2012).
[Crossref]

Stoklosa, S.

A. Setlur, M. Brewster, F. Garcia, M. C. Hill, R. Lyons, J. Murphy, T. Stecher, S. Stoklosa, S. Weaver, U. Happek, D. Aesram, and A. Deshpande, Optimized Phosphors for Warm White LED Light Engines (2012).
[Crossref]

Su, Q.

J. Li, J. Yan, D. Wen, W. U. Khan, J. Shi, M. Wu, Q. Su, and P. A. Tanner, “Advanced red phosphors for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(37), 8611–8623 (2016).
[Crossref]

H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors,” IEEE Photonics Technol. Lett. 17(6), 1160–1162 (2005).
[Crossref]

Su, X.

X. Li, X. Su, P. Liu, J. Liu, Z. Yao, J. Chen, H. Yao, X. Yu, and M. Zhan, “Shape-controlled synthesis of phosphor K2SiF6:Mn4+ nanorods and their luminescence properties,” CrystEngComm 17(4), 930–936 (2015).
[Crossref]

Su, Z.

F. Tang, Z. Su, H. Ye, M. Wang, X. Lan, D. L. Phillips, Y. Cao, and S. Xu, “A set of manganese ion activated fluoride phosphors (A2BF6:Mn4+, A = K, Na, B = Si, Ge, Ti): synthesis below 0 °C and efficient room-temperature photoluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(40), 9561–9568 (2016).
[Crossref]

Suchocki, A.

M. G. Brik, S. J. Camardello, A. M. Srivastava, N. M. Avram, and A. Suchocki, “Spin-forbidden transitions in the spectra of transition metal ions and nephelauxetic effect,” ECS J. Solid State Sci. Technol. 5(1), R3067–R3077 (2016).
[Crossref]

Sun, B.

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. Di Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

Suta, M.

J. Olchowka, M. Suta, and C. Wickleder, “Green synthesis of small nanoparticles of A2SiF6 (A = Li - Cs) using Ionic Liquids as Solvent and Fluorine Source: A novel simple approach without HF,” Chemistry6, (2017).

Takahashi, K.

K. Yoshimura, H. Fukunaga, M. Izumi, M. Masuda, T. Uemura, K. Takahashi, R.-J. Xie, and N. Hirosaki, “White LEDs using the sharp β-sialon:Eu phosphor and Mn-doped red phosphor for wide-color gamut display applications,” J. Soc. Inf. Disp. 24(7), 449–453 (2016).
[Crossref]

Takahashi, T.

S. Adachi and T. Takahashi, “Direct synthesis of K2SiF6:Mn4+ red phosphor from crushed quartz schist by wet chemical etching,” Electrochem. Solid-State Lett. 12(2), J20–J23 (2009).
[Crossref]

T. Takahashi and S. Adachi, “Synthesis of K2SiF6:Mn4+ red phosphor from silica glasses by wet chemical etching in HF/KMnO4 solution,” Electrochem. Solid-State Lett. 12(8), J69–J71 (2009).
[Crossref]

S. Adachi and T. Takahashi, “Direct synthesis and properties of K2SiF6:Mn4+ phosphor by wet chemical etching of Si wafer,” J. Appl. Phys. 104(2), 023512 (2008).
[Crossref]

T. Takahashi and S. Adachi, “Mn4+-activated red photoluminescence K2SiF6 phosphor,” J. Electrochem. Soc. 155(12), E183–E188 (2008).
[Crossref]

Tan, H.

Z. Wang, Y. Zhou, Z. Yang, Y. Liu, H. Yang, H. Tan, Q. Zhang, and Q. Zhou, “Synthesis of K2XF6:Mn4+ (X=Ti, Si and Ge) red phosphors for white LED applications with low-concentration of HF,” Opt. Mater. 49(2015), 235–240 (2015).
[Crossref]

Tanaka, I.

K. Ogasawara, T. Ishii, I. Tanaka, and H. Adachi, “Calculation of multiplet structures of Cr3+ and V3+ in α-Al2O3 based on a hybrid method of density-functional theory and the configuration interaction,” Phys. Rev. B 61(1), 143–161 (2000).
[Crossref]

Tang, A.-C.

X. Zhang, H.-C. Wang, A.-C. Tang, S.-Y. Lin, H.-C. Tong, C.-Y. Chen, Y.-C. Lee, T.-L. Tsai, and R.-S. Liu, “Robust and stable narrow-band green emitter: an option for advanced wide-color-gamut backlight display,” Chem. Mater. 28(23), 8493–8497 (2016).
[Crossref]

Tang, F.

F. Tang, Z. Su, H. Ye, M. Wang, X. Lan, D. L. Phillips, Y. Cao, and S. Xu, “A set of manganese ion activated fluoride phosphors (A2BF6:Mn4+, A = K, Na, B = Si, Ge, Ti): synthesis below 0 °C and efficient room-temperature photoluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(40), 9561–9568 (2016).
[Crossref]

Tanner, P. A.

J. Li, J. Yan, D. Wen, W. U. Khan, J. Shi, M. Wu, Q. Su, and P. A. Tanner, “Advanced red phosphors for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(37), 8611–8623 (2016).
[Crossref]

Telser, J.

V. Baslon, J. P. Harris, C. Reber, H. E. Colmer, T. A. Jackson, A. P. Forshaw, J. M. Smith, R. A. Kinney, and J. Telser, “Near-infrared 2Eg → 4A2g and visible LMCT luminescence from a molecular bis-(tris(carbene)borate) manganese(IV) complex,” Can. J. Chem. 95(5), 547–552 (2017).
[Crossref]

Tessier, M. D.

D. Dupont, M. D. Tessier, P. F. Smet, and Z. Hens, “Indium Phosphide-Based Quantum Dots with Shell-Enhanced Absorption for Luminescent Down-Conversion,” Adv. Mater. 29(29), 1700686 (2017).
[Crossref] [PubMed]

M. D. Tessier, D. Dupont, K. De Nolf, J. De Roo, and Z. Hens, “Economic and Size-Tunable Synthesis of InP/ZnE (E = S, Se) Colloidal Quantum Dots,” Chem. Mater. 27(13), 4893–4898 (2015).
[Crossref]

Titov, A.

Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9(March), 1–9 (2015).

Tong, H.-C.

X. Zhang, H.-C. Wang, A.-C. Tang, S.-Y. Lin, H.-C. Tong, C.-Y. Chen, Y.-C. Lee, T.-L. Tsai, and R.-S. Liu, “Robust and stable narrow-band green emitter: an option for advanced wide-color-gamut backlight display,” Chem. Mater. 28(23), 8493–8497 (2016).
[Crossref]

Trepakov, V.

Z. Bryknar, V. Trepakov, Z. Potůček, and L. Jastrabík, “Luminescence spectra of SrTiO3:Mn4+,” J. Lumin. 87, 605–607 (2000).
[Crossref]

Trivellin, N.

M. Meneghini, M. Dal Lago, N. Trivellin, G. Meneghesso, and E. Zanoni, “Thermally activated degradation of remote phosphors for application in LED lighting,” IEEE Trans. Device Mater. Reliab. 13(1), 316–318 (2013).
[Crossref]

Tsai, T.-L.

X. Zhang, H.-C. Wang, A.-C. Tang, S.-Y. Lin, H.-C. Tong, C.-Y. Chen, Y.-C. Lee, T.-L. Tsai, and R.-S. Liu, “Robust and stable narrow-band green emitter: an option for advanced wide-color-gamut backlight display,” Chem. Mater. 28(23), 8493–8497 (2016).
[Crossref]

Tücks, A.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Uemura, T.

K. Yoshimura, H. Fukunaga, M. Izumi, M. Masuda, T. Uemura, K. Takahashi, R.-J. Xie, and N. Hirosaki, “White LEDs using the sharp β-sialon:Eu phosphor and Mn-doped red phosphor for wide-color gamut display applications,” J. Soc. Inf. Disp. 24(7), 449–453 (2016).
[Crossref]

Uheda, K.

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3:Eu2+, for White Light-Emitting Diodes,” Electrochem. Solid-State Lett. 9(4), H22 (2006).
[Crossref]

Ulmer, M. P.

B. Han, B. W. Wessels, and M. P. Ulmer, “Optical investigation of electronic states of Mn4+ ions in p-type GaN,” Appl. Phys. Lett. 86(4),042505 (2005).
[Crossref]

Unithrattil, S.

P. Arunkumar, Y. H. Kim, H. J. Kim, S. Unithrattil, and W. B. Im, “Hydrophobic organic skin as a protective shield for moisture-sensitive phosphor-based optoelectronic devices,” ACS Appl. Mater. Interfaces 9(8), 7232–7240 (2017).
[Crossref] [PubMed]

S. H. Park, K. H. Lee, S. Unithrattil, H. S. Yoon, H. G. Jang, and W. Bin Im, “Melilite-structure CaYAl3O7:Eu3+ phosphor: structural and optical characteristics for near-UV LED-based white light,” J. Phys. Chem. C 116(51), 26850–26856 (2012).
[Crossref]

Uylings, P. H. M.

P. H. M. Uylings, A. J. J. Raassen, and J. F. Wyart, “Energies of N equivalent electrons expressed in terms of two-electron energies and independent three-electron parameters : a new complete set of orthogonal operators : II. Application to 3dN configurations,” J. Phys. B At. Mol. Phys. 17(20), 4103–4126 (1984).
[Crossref]

Van den Eeckhout, K.

H. F. Sijbom, J. J. Joos, L. I. D. J. Martin, K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Luminescent behavior of the K2SiF6:Mn4+ red phosphor at high fluxes and at the microscopic level,” ECS J. Solid State Sci. Technol. 5(1), R3040–R3048 (2016).
[Crossref]

van Krevel, J. W. H.

Y. Q. Li, J. E. J. van Steen, J. W. H. van Krevel, G. Botty, A. C. A. Delsing, F. J. DiSalvo, G. de With, and H. T. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca, Sr, Ba) LED conversion phosphors,” J. Alloys Compd. 417(1–2), 273–279 (2006).
[Crossref]

van Steen, J. E. J.

Y. Q. Li, J. E. J. van Steen, J. W. H. van Krevel, G. Botty, A. C. A. Delsing, F. J. DiSalvo, G. de With, and H. T. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca, Sr, Ba) LED conversion phosphors,” J. Alloys Compd. 417(1–2), 273–279 (2006).
[Crossref]

Wang, H.-C.

X. Zhang, H.-C. Wang, A.-C. Tang, S.-Y. Lin, H.-C. Tong, C.-Y. Chen, Y.-C. Lee, T.-L. Tsai, and R.-S. Liu, “Robust and stable narrow-band green emitter: an option for advanced wide-color-gamut backlight display,” Chem. Mater. 28(23), 8493–8497 (2016).
[Crossref]

Wang, J.

L. Huang, Y. Zhu, X. Zhang, R. Zou, F. Pan, J. Wang, and M. Wu, “HF-free hydrothermal route for synthesis of highly efficient narrow-band red emitting phosphor K2Si1–xF6:xMn4+ for warm white light-emitting diodes,” Chem. Mater. 28(5), 1495–1502 (2016).
[Crossref]

Wang, L.

Q. Shao, L. Wang, L. Song, Y. Dong, C. Liang, J. He, and J. Jiang, “Temperature dependence of photoluminescence spectra and dynamics of the red-emitting K2SiF6:Mn4+ phosphor,” J. Alloys Compd. 695, 221–226 (2017).
[Crossref]

D. Luo, L. Wang, S. W. Or, H. Zhang, and R.-J. Xie, “Realizing superior white LEDs with both high R9 and luminous efficacy by using dual red phosphors,” RSC Advances 7(42), 25964–25968 (2017).
[Crossref]

L. Wang, X. Wang, T. Kohsei, K. Yoshimura, M. Izumi, N. Hirosaki, and R.-J. Xie, “Highly efficient narrow-band green and red phosphors enabling wider color-gamut LED backlight for more brilliant displays,” Opt. Express 23(22), 28707–28717 (2015).
[Crossref] [PubMed]

Wang, M.

F. Tang, Z. Su, H. Ye, M. Wang, X. Lan, D. L. Phillips, Y. Cao, and S. Xu, “A set of manganese ion activated fluoride phosphors (A2BF6:Mn4+, A = K, Na, B = Si, Ge, Ti): synthesis below 0 °C and efficient room-temperature photoluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(40), 9561–9568 (2016).
[Crossref]

Wang, X.

Z. Zhong, X. Wang, J. Zhang, H. Zhong, and J.-B. Han, “Optical detection of magnetic field with Mn4+:K2SiF6 phosphor from room to liquid helium temperatures,” Appl. Phys. Lett. 110(21), 212405 (2017).
[Crossref]

L. Wang, X. Wang, T. Kohsei, K. Yoshimura, M. Izumi, N. Hirosaki, and R.-J. Xie, “Highly efficient narrow-band green and red phosphors enabling wider color-gamut LED backlight for more brilliant displays,” Opt. Express 23(22), 28707–28717 (2015).
[Crossref] [PubMed]

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. Di Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

Wang, Z.

Z. Wang, Y. Zhou, Z. Yang, Y. Liu, H. Yang, H. Tan, Q. Zhang, and Q. Zhou, “Synthesis of K2XF6:Mn4+ (X=Ti, Si and Ge) red phosphors for white LED applications with low-concentration of HF,” Opt. Mater. 49(2015), 235–240 (2015).
[Crossref]

Q. Zhou, Y. Zhou, Z. Wang, Y. Liu, G. Chen, J. Peng, J. Yan, and M. Wu, “Fabrication and application of non-rare earth red phosphors for warm white-light-emitting diodes,” RSC Advances 5(103), 84821–84826 (2015).
[Crossref]

Waumans, L.

C. Hoelen, H. Borel, J. de Graaf, M. Keuper, M. Lankhorst, C. Mutter, L. Waumans, and R. Wegh, “Remote phosphor LED modules for general illumination – towards 200 lm/W general lighting LED light sources,” Proc. SPIE 7058, 70580M (2008).
[Crossref]

Weaver, S.

A. Setlur, M. Brewster, F. Garcia, M. C. Hill, R. Lyons, J. Murphy, T. Stecher, S. Stoklosa, S. Weaver, U. Happek, D. Aesram, and A. Deshpande, Optimized Phosphors for Warm White LED Light Engines (2012).
[Crossref]

Wegh, R.

C. Hoelen, H. Borel, J. de Graaf, M. Keuper, M. Lankhorst, C. Mutter, L. Waumans, and R. Wegh, “Remote phosphor LED modules for general illumination – towards 200 lm/W general lighting LED light sources,” Proc. SPIE 7058, 70580M (2008).
[Crossref]

Wei, L.

L. Wei, C. C. Lin, M. Fang, M. G. Brik, S.-F. Hu, H. Jiao, and R. Liu, “A low-temperature co-precipitation approach to synthesize fluoride phosphors K2MF6:Mn4+ (M = Ge, Si) for white LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(8), 1655–1660 (2015).
[Crossref]

Weiler, V.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Wen, D.

J. Li, J. Yan, D. Wen, W. U. Khan, J. Shi, M. Wu, Q. Su, and P. A. Tanner, “Advanced red phosphors for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(37), 8611–8623 (2016).
[Crossref]

Wessels, B. W.

B. Han, B. W. Wessels, and M. P. Ulmer, “Optical investigation of electronic states of Mn4+ ions in p-type GaN,” Appl. Phys. Lett. 86(4),042505 (2005).
[Crossref]

Wickleder, C.

J. Olchowka, M. Suta, and C. Wickleder, “Green synthesis of small nanoparticles of A2SiF6 (A = Li - Cs) using Ionic Liquids as Solvent and Fluorine Source: A novel simple approach without HF,” Chemistry6, (2017).

Wiechert, D.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Wochnik, A. S.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Wu, H.

H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors,” IEEE Photonics Technol. Lett. 17(6), 1160–1162 (2005).
[Crossref]

Wu, M.

L. Huang, Y. Zhu, X. Zhang, R. Zou, F. Pan, J. Wang, and M. Wu, “HF-free hydrothermal route for synthesis of highly efficient narrow-band red emitting phosphor K2Si1–xF6:xMn4+ for warm white light-emitting diodes,” Chem. Mater. 28(5), 1495–1502 (2016).
[Crossref]

J. Li, J. Yan, D. Wen, W. U. Khan, J. Shi, M. Wu, Q. Su, and P. A. Tanner, “Advanced red phosphors for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(37), 8611–8623 (2016).
[Crossref]

Q. Zhou, Y. Zhou, Z. Wang, Y. Liu, G. Chen, J. Peng, J. Yan, and M. Wu, “Fabrication and application of non-rare earth red phosphors for warm white-light-emitting diodes,” RSC Advances 5(103), 84821–84826 (2015).
[Crossref]

H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors,” IEEE Photonics Technol. Lett. 17(6), 1160–1162 (2005).
[Crossref]

Wu, X. G.

F. Zhang, H. Zhong, C. Chen, X. G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology,” ACS Nano 9(4), 4533–4542 (2015).
[Crossref] [PubMed]

Wu, Y. N.

Y. N. Wu, C. H. Cheng, and Z. X. Xiong, “Enhancement of Blue Emission via Upconversion in Solid-State Synthesized Hexagonal NaYF4:Ln3+,” Key Eng. Mater. 368–372, 398–401 (2008).
[Crossref]

Wyart, J. F.

P. H. M. Uylings, A. J. J. Raassen, and J. F. Wyart, “Energies of N equivalent electrons expressed in terms of two-electron energies and independent three-electron parameters : a new complete set of orthogonal operators : II. Application to 3dN configurations,” J. Phys. B At. Mol. Phys. 17(20), 4103–4126 (1984).
[Crossref]

Xia, M.

Z. Zhou, N. Zhou, M. Xia, M. Yokoyama, and H. T. Hintzen, “Research progress and application prospects of transition metal Mn4+-activated luminescent materials,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(39), 9143–9161 (2016).
[Crossref]

Xie, R.-J.

D. Luo, L. Wang, S. W. Or, H. Zhang, and R.-J. Xie, “Realizing superior white LEDs with both high R9 and luminous efficacy by using dual red phosphors,” RSC Advances 7(42), 25964–25968 (2017).
[Crossref]

K. Yoshimura, H. Fukunaga, M. Izumi, M. Masuda, T. Uemura, K. Takahashi, R.-J. Xie, and N. Hirosaki, “White LEDs using the sharp β-sialon:Eu phosphor and Mn-doped red phosphor for wide-color gamut display applications,” J. Soc. Inf. Disp. 24(7), 449–453 (2016).
[Crossref]

L. Wang, X. Wang, T. Kohsei, K. Yoshimura, M. Izumi, N. Hirosaki, and R.-J. Xie, “Highly efficient narrow-band green and red phosphors enabling wider color-gamut LED backlight for more brilliant displays,” Opt. Express 23(22), 28707–28717 (2015).
[Crossref] [PubMed]

Xiong, Y.

H. Huang, Q. Xue, B. Chen, Y. Xiong, J. Schneider, C. Zhi, H. Zhong, and A. L. Rogach, “Top-Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents,” Angew. Chem. Int. Ed. Engl. 56(32), 9571–9576 (2017).
[Crossref] [PubMed]

Xiong, Z. X.

Y. N. Wu, C. H. Cheng, and Z. X. Xiong, “Enhancement of Blue Emission via Upconversion in Solid-State Synthesized Hexagonal NaYF4:Ln3+,” Key Eng. Mater. 368–372, 398–401 (2008).
[Crossref]

Xu, J.

H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors,” IEEE Photonics Technol. Lett. 17(6), 1160–1162 (2005).
[Crossref]

Xu, S.

F. Tang, Z. Su, H. Ye, M. Wang, X. Lan, D. L. Phillips, Y. Cao, and S. Xu, “A set of manganese ion activated fluoride phosphors (A2BF6:Mn4+, A = K, Na, B = Si, Ge, Ti): synthesis below 0 °C and efficient room-temperature photoluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(40), 9561–9568 (2016).
[Crossref]

Xu, Y. K.

Y. K. Xu and S. Adachi, “Photoluminescence and raman scattering spectra in (NH4)2XF6:Mn4+ (X = Si, Ge, Sn, and Ti) red phosphors,” J. Electrochem. Soc. 159(1), E11–E17 (2012).
[Crossref]

Y. K. Xu and S. Adachi, “Properties of Mn4+-activated hexafluorotitanate phosphors,” J. Electrochem. Soc. 158(3), J58–J65 (2011).
[Crossref]

Y. K. Xu and S. Adachi, “Properties of Na2SiF6:Mn4+ and Na2GeF6:Mn4+ red phosphors synthesized by wet chemical etching,” J. Appl. Phys. 105(1), 013525 (2009).
[Crossref]

Xue, J.

Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9(March), 1–9 (2015).

Xue, Q.

H. Huang, Q. Xue, B. Chen, Y. Xiong, J. Schneider, C. Zhi, H. Zhong, and A. L. Rogach, “Top-Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents,” Angew. Chem. Int. Ed. Engl. 56(32), 9571–9576 (2017).
[Crossref] [PubMed]

Yamamoto, H.

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3:Eu2+, for White Light-Emitting Diodes,” Electrochem. Solid-State Lett. 9(4), H22 (2006).
[Crossref]

Yamamoto, Y.

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3:Eu2+, for White Light-Emitting Diodes,” Electrochem. Solid-State Lett. 9(4), H22 (2006).
[Crossref]

Yan, J.

J. Li, J. Yan, D. Wen, W. U. Khan, J. Shi, M. Wu, Q. Su, and P. A. Tanner, “Advanced red phosphors for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(37), 8611–8623 (2016).
[Crossref]

Q. Zhou, Y. Zhou, Z. Wang, Y. Liu, G. Chen, J. Peng, J. Yan, and M. Wu, “Fabrication and application of non-rare earth red phosphors for warm white-light-emitting diodes,” RSC Advances 5(103), 84821–84826 (2015).
[Crossref]

Yan, X.

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. Di Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

Yang, G.

G. Yang, Q. Fan, B. Chen, Q. Zhou, and H. Zhong, “Reprecipitation synthesis of luminescent CH3NH3PbBr3/NaNO3 nanocomposites with enhanced stability,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(48), 11387–11391 (2016).
[Crossref]

Yang, H.

Z. Wang, Y. Zhou, Z. Yang, Y. Liu, H. Yang, H. Tan, Q. Zhang, and Q. Zhou, “Synthesis of K2XF6:Mn4+ (X=Ti, Si and Ge) red phosphors for white LED applications with low-concentration of HF,” Opt. Mater. 49(2015), 235–240 (2015).
[Crossref]

Yang, W.

Yang, Y.

Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9(March), 1–9 (2015).

Yang, Z.

Z. Wang, Y. Zhou, Z. Yang, Y. Liu, H. Yang, H. Tan, Q. Zhang, and Q. Zhou, “Synthesis of K2XF6:Mn4+ (X=Ti, Si and Ge) red phosphors for white LED applications with low-concentration of HF,” Opt. Mater. 49(2015), 235–240 (2015).
[Crossref]

Yao, H.

X. Li, X. Su, P. Liu, J. Liu, Z. Yao, J. Chen, H. Yao, X. Yu, and M. Zhan, “Shape-controlled synthesis of phosphor K2SiF6:Mn4+ nanorods and their luminescence properties,” CrystEngComm 17(4), 930–936 (2015).
[Crossref]

Yao, Z.

X. Li, X. Su, P. Liu, J. Liu, Z. Yao, J. Chen, H. Yao, X. Yu, and M. Zhan, “Shape-controlled synthesis of phosphor K2SiF6:Mn4+ nanorods and their luminescence properties,” CrystEngComm 17(4), 930–936 (2015).
[Crossref]

Ye, H.

F. Tang, Z. Su, H. Ye, M. Wang, X. Lan, D. L. Phillips, Y. Cao, and S. Xu, “A set of manganese ion activated fluoride phosphors (A2BF6:Mn4+, A = K, Na, B = Si, Ge, Ti): synthesis below 0 °C and efficient room-temperature photoluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(40), 9561–9568 (2016).
[Crossref]

Y. Hu, W. Zhuang, H. Ye, S. Zhang, Y. Fang, and X. Huang, “Preparation and luminescent properties of (Ca1-x,Srx)S:Eu2+ red-emitting phosphor for white LED,” J. Lumin. 111(3), 139–145 (2005).
[Crossref]

Yeo, B.-E.

B.-E. Yeo, Y.-S. Cho, and Y.-D. Huh, “Synthesis and photoluminescence properties of a red-emitting phosphor, K2SiF6:Mn4+, for use in three-band white LED applications,” Opt. Mater. 51(2016), 50–55 (2016).
[Crossref]

Yokoyama, M.

Z. Zhou, N. Zhou, M. Xia, M. Yokoyama, and H. T. Hintzen, “Research progress and application prospects of transition metal Mn4+-activated luminescent materials,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(39), 9143–9161 (2016).
[Crossref]

Yoo, J. S.

Yoon, D. H.

M. J. Lee, Y. H. Song, Y. L. Song, G. S. Han, H. S. Jung, and D. H. Yoon, “Enhanced luminous efficiency of deep red emitting K2SiF6:Mn4+ phosphor dependent on KF ratio for warm-white LED,” J. Mater. Chem. C Mater. Lett. 141(2015), 27–30 (2015).
[Crossref]

Yoon, H. C.

J. H. Oh, Y. J. Eo, H. C. Yoon, Y.-D. Huh, and Y. R. Do, “Evaluation of new color metrics: guidelines for developing narrow-band red phosphors for WLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(36), 8326–8348 (2016).
[Crossref]

Yoon, H. S.

S. H. Park, K. H. Lee, S. Unithrattil, H. S. Yoon, H. G. Jang, and W. Bin Im, “Melilite-structure CaYAl3O7:Eu3+ phosphor: structural and optical characteristics for near-UV LED-based white light,” J. Phys. Chem. C 116(51), 26850–26856 (2012).
[Crossref]

Yoshimura, K.

K. Yoshimura, H. Fukunaga, M. Izumi, M. Masuda, T. Uemura, K. Takahashi, R.-J. Xie, and N. Hirosaki, “White LEDs using the sharp β-sialon:Eu phosphor and Mn-doped red phosphor for wide-color gamut display applications,” J. Soc. Inf. Disp. 24(7), 449–453 (2016).
[Crossref]

L. Wang, X. Wang, T. Kohsei, K. Yoshimura, M. Izumi, N. Hirosaki, and R.-J. Xie, “Highly efficient narrow-band green and red phosphors enabling wider color-gamut LED backlight for more brilliant displays,” Opt. Express 23(22), 28707–28717 (2015).
[Crossref] [PubMed]

Yu, X.

X. Li, X. Su, P. Liu, J. Liu, Z. Yao, J. Chen, H. Yao, X. Yu, and M. Zhan, “Shape-controlled synthesis of phosphor K2SiF6:Mn4+ nanorods and their luminescence properties,” CrystEngComm 17(4), 930–936 (2015).
[Crossref]

Yuan, F.

F. Yuan and H. Ryu, “Ce-doped YAG phosphor powders prepared by co-precipitation and heterogeneous precipitation,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 107(1), 14–18 (2004).

Yuan, Z.

T. Nakamura, Z. Yuan, and S. Adachi, “Micronization of red-emitting K2SiF6:Mn4+ phosphor by pulsed laser irradiation in liquid,” Appl. Surf. Sci. 320(2014), 514–518 (2014).
[Crossref]

Zanoni, E.

M. Meneghini, M. Dal Lago, N. Trivellin, G. Meneghesso, and E. Zanoni, “Thermally activated degradation of remote phosphors for application in LED lighting,” IEEE Trans. Device Mater. Reliab. 13(1), 316–318 (2013).
[Crossref]

Zhan, M.

X. Li, X. Su, P. Liu, J. Liu, Z. Yao, J. Chen, H. Yao, X. Yu, and M. Zhan, “Shape-controlled synthesis of phosphor K2SiF6:Mn4+ nanorods and their luminescence properties,” CrystEngComm 17(4), 930–936 (2015).
[Crossref]

Zhang, F.

F. Zhang, H. Zhong, C. Chen, X. G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology,” ACS Nano 9(4), 4533–4542 (2015).
[Crossref] [PubMed]

Zhang, G.

Zhang, H.

D. Luo, L. Wang, S. W. Or, H. Zhang, and R.-J. Xie, “Realizing superior white LEDs with both high R9 and luminous efficacy by using dual red phosphors,” RSC Advances 7(42), 25964–25968 (2017).
[Crossref]

Zhang, J.

Z. Zhong, X. Wang, J. Zhang, H. Zhong, and J.-B. Han, “Optical detection of magnetic field with Mn4+:K2SiF6 phosphor from room to liquid helium temperatures,” Appl. Phys. Lett. 110(21), 212405 (2017).
[Crossref]

Zhang, J. C.

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. Di Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

Zhang, Q.

Z. Wang, Y. Zhou, Z. Yang, Y. Liu, H. Yang, H. Tan, Q. Zhang, and Q. Zhou, “Synthesis of K2XF6:Mn4+ (X=Ti, Si and Ge) red phosphors for white LED applications with low-concentration of HF,” Opt. Mater. 49(2015), 235–240 (2015).
[Crossref]

Zhang, S.

Y. Hu, W. Zhuang, H. Ye, S. Zhang, Y. Fang, and X. Huang, “Preparation and luminescent properties of (Ca1-x,Srx)S:Eu2+ red-emitting phosphor for white LED,” J. Lumin. 111(3), 139–145 (2005).
[Crossref]

Zhang, W.

Zhang, X.

L. Huang, Y. Zhu, X. Zhang, R. Zou, F. Pan, J. Wang, and M. Wu, “HF-free hydrothermal route for synthesis of highly efficient narrow-band red emitting phosphor K2Si1–xF6:xMn4+ for warm white light-emitting diodes,” Chem. Mater. 28(5), 1495–1502 (2016).
[Crossref]

X. Zhang, H.-C. Wang, A.-C. Tang, S.-Y. Lin, H.-C. Tong, C.-Y. Chen, Y.-C. Lee, T.-L. Tsai, and R.-S. Liu, “Robust and stable narrow-band green emitter: an option for advanced wide-color-gamut backlight display,” Chem. Mater. 28(23), 8493–8497 (2016).
[Crossref]

H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors,” IEEE Photonics Technol. Lett. 17(6), 1160–1162 (2005).
[Crossref]

Zhang, Z.

S. E. Brinkley, N. Pfaff, K. A. Denault, Z. Zhang, H. T. Hintzen, R. Seshadri, S. Nakamura, and S. P. Denbaars, “Robust thermal performance of Sr2Si5N8:Eu2+: An efficient red emitting phosphor for light emitting diode based white lighting,” Appl. Phys. Lett. 99, 241106 (2011).
[Crossref]

Zhao, L. Z.

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. Di Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

Zheng, Y.

Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9(March), 1–9 (2015).

Zhi, C.

H. Huang, Q. Xue, B. Chen, Y. Xiong, J. Schneider, C. Zhi, H. Zhong, and A. L. Rogach, “Top-Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents,” Angew. Chem. Int. Ed. Engl. 56(32), 9571–9576 (2017).
[Crossref] [PubMed]

Zhong, H.

H. Huang, Q. Xue, B. Chen, Y. Xiong, J. Schneider, C. Zhi, H. Zhong, and A. L. Rogach, “Top-Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents,” Angew. Chem. Int. Ed. Engl. 56(32), 9571–9576 (2017).
[Crossref] [PubMed]

Z. Zhong, X. Wang, J. Zhang, H. Zhong, and J.-B. Han, “Optical detection of magnetic field with Mn4+:K2SiF6 phosphor from room to liquid helium temperatures,” Appl. Phys. Lett. 110(21), 212405 (2017).
[Crossref]

G. Yang, Q. Fan, B. Chen, Q. Zhou, and H. Zhong, “Reprecipitation synthesis of luminescent CH3NH3PbBr3/NaNO3 nanocomposites with enhanced stability,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(48), 11387–11391 (2016).
[Crossref]

F. Zhang, H. Zhong, C. Chen, X. G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology,” ACS Nano 9(4), 4533–4542 (2015).
[Crossref] [PubMed]

Zhong, J.

D. Chen, Y. Zhou, and J. Zhong, “A review on Mn4+ activators in solids for warm white light-emitting diodes,” RSC Advances 6(89), 86285–86296 (2016).
[Crossref]

Zhong, P.

Zhong, Z.

Z. Zhong, X. Wang, J. Zhang, H. Zhong, and J.-B. Han, “Optical detection of magnetic field with Mn4+:K2SiF6 phosphor from room to liquid helium temperatures,” Appl. Phys. Lett. 110(21), 212405 (2017).
[Crossref]

Zhou, N.

Z. Zhou, N. Zhou, M. Xia, M. Yokoyama, and H. T. Hintzen, “Research progress and application prospects of transition metal Mn4+-activated luminescent materials,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(39), 9143–9161 (2016).
[Crossref]

Zhou, Q.

G. Yang, Q. Fan, B. Chen, Q. Zhou, and H. Zhong, “Reprecipitation synthesis of luminescent CH3NH3PbBr3/NaNO3 nanocomposites with enhanced stability,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(48), 11387–11391 (2016).
[Crossref]

Q. Zhou, Y. Zhou, Z. Wang, Y. Liu, G. Chen, J. Peng, J. Yan, and M. Wu, “Fabrication and application of non-rare earth red phosphors for warm white-light-emitting diodes,” RSC Advances 5(103), 84821–84826 (2015).
[Crossref]

Z. Wang, Y. Zhou, Z. Yang, Y. Liu, H. Yang, H. Tan, Q. Zhang, and Q. Zhou, “Synthesis of K2XF6:Mn4+ (X=Ti, Si and Ge) red phosphors for white LED applications with low-concentration of HF,” Opt. Mater. 49(2015), 235–240 (2015).
[Crossref]

Zhou, Y.

D. Chen, Y. Zhou, and J. Zhong, “A review on Mn4+ activators in solids for warm white light-emitting diodes,” RSC Advances 6(89), 86285–86296 (2016).
[Crossref]

Z. Wang, Y. Zhou, Z. Yang, Y. Liu, H. Yang, H. Tan, Q. Zhang, and Q. Zhou, “Synthesis of K2XF6:Mn4+ (X=Ti, Si and Ge) red phosphors for white LED applications with low-concentration of HF,” Opt. Mater. 49(2015), 235–240 (2015).
[Crossref]

Q. Zhou, Y. Zhou, Z. Wang, Y. Liu, G. Chen, J. Peng, J. Yan, and M. Wu, “Fabrication and application of non-rare earth red phosphors for warm white-light-emitting diodes,” RSC Advances 5(103), 84821–84826 (2015).
[Crossref]

Zhou, Z.

Z. Zhou, N. Zhou, M. Xia, M. Yokoyama, and H. T. Hintzen, “Research progress and application prospects of transition metal Mn4+-activated luminescent materials,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(39), 9143–9161 (2016).
[Crossref]

Zhu, H.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[Crossref] [PubMed]

Zhu, Y.

L. Huang, Y. Zhu, X. Zhang, R. Zou, F. Pan, J. Wang, and M. Wu, “HF-free hydrothermal route for synthesis of highly efficient narrow-band red emitting phosphor K2Si1–xF6:xMn4+ for warm white light-emitting diodes,” Chem. Mater. 28(5), 1495–1502 (2016).
[Crossref]

Zhuang, W.

Y. Hu, W. Zhuang, H. Ye, S. Zhang, Y. Fang, and X. Huang, “Preparation and luminescent properties of (Ca1-x,Srx)S:Eu2+ red-emitting phosphor for white LED,” J. Lumin. 111(3), 139–145 (2005).
[Crossref]

Zou, B.

F. Zhang, H. Zhong, C. Chen, X. G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology,” ACS Nano 9(4), 4533–4542 (2015).
[Crossref] [PubMed]

Zou, R.

L. Huang, Y. Zhu, X. Zhang, R. Zou, F. Pan, J. Wang, and M. Wu, “HF-free hydrothermal route for synthesis of highly efficient narrow-band red emitting phosphor K2Si1–xF6:xMn4+ for warm white light-emitting diodes,” Chem. Mater. 28(5), 1495–1502 (2016).
[Crossref]

Zych, A.

K. V. Ivanovskikh, J. M. Ogieglo, A. Zych, C. R. Ronda, and A. Meijerink, “Luminescence temperature quenching for Ce3+ and Pr3+ d-f emission in YAG and LuAG,” ECS J. Solid State Sci. Technol. 2(2), R3148–R3152 (2012).
[Crossref]

ACS Appl. Mater. Interfaces (2)

Y. Jin, M.-H. Fang, M. Grinberg, S. Mahlik, T. Lesniewski, M. G. Brik, G.-Y. Luo, J. G. Lin, and R.-S. Liu, “Narrow red emission band fluoride phosphor KNaSiF6:Mn4+ for warm white light-emitting diodes,” ACS Appl. Mater. Interfaces 8(18), 11194–11203 (2016).
[Crossref] [PubMed]

P. Arunkumar, Y. H. Kim, H. J. Kim, S. Unithrattil, and W. B. Im, “Hydrophobic organic skin as a protective shield for moisture-sensitive phosphor-based optoelectronic devices,” ACS Appl. Mater. Interfaces 9(8), 7232–7240 (2017).
[Crossref] [PubMed]

ACS Nano (1)

F. Zhang, H. Zhong, C. Chen, X. G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology,” ACS Nano 9(4), 4533–4542 (2015).
[Crossref] [PubMed]

Acta Crystallogr. A (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

Acta Crystallogr. Sect. C Cryst. Struct. Commun. (1)

J. H. Loehlin, “Redetermination of the structure of potassium hexafluorosilicate, K2SiF6,” Acta Crystallogr. Sect. C Cryst. Struct. Commun. 40(3), 570 (1984).
[Crossref]

Adv. Mater. (1)

D. Dupont, M. D. Tessier, P. F. Smet, and Z. Hens, “Indium Phosphide-Based Quantum Dots with Shell-Enhanced Absorption for Luminescent Down-Conversion,” Adv. Mater. 29(29), 1700686 (2017).
[Crossref] [PubMed]

Angew. Chem. (1)

H. Bode, H. Jenssen, and F. Bandte, “Über eine neue Darstellung des Kalium-hexafluoromanganats(IV),” Angew. Chem. 65(11), 304 (1953).
[Crossref]

Angew. Chem. Int. Ed. Engl. (2)

H. Huang, Q. Xue, B. Chen, Y. Xiong, J. Schneider, C. Zhi, H. Zhong, and A. L. Rogach, “Top-Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents,” Angew. Chem. Int. Ed. Engl. 56(32), 9571–9576 (2017).
[Crossref] [PubMed]

H.-D. Nguyen, C. C. Lin, and R.-S. Liu, “Waterproof alkyl phosphate coated fluoride phosphors for optoelectronic materials,” Angew. Chem. Int. Ed. Engl. 54(37), 10862–10866 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

B. Han, B. W. Wessels, and M. P. Ulmer, “Optical investigation of electronic states of Mn4+ ions in p-type GaN,” Appl. Phys. Lett. 86(4),042505 (2005).
[Crossref]

X. Piao, T. Horikawa, H. Hanzawa, and K. Machida, “Characterization and luminescence properties of Sr2Si5N8:Eu2+ phosphor for white light-emitting-diode illumination,” Appl. Phys. Lett. 88(16), 2004–2007 (2006).
[Crossref]

S. E. Brinkley, N. Pfaff, K. A. Denault, Z. Zhang, H. T. Hintzen, R. Seshadri, S. Nakamura, and S. P. Denbaars, “Robust thermal performance of Sr2Si5N8:Eu2+: An efficient red emitting phosphor for light emitting diode based white lighting,” Appl. Phys. Lett. 99, 241106 (2011).
[Crossref]

Z. Zhong, X. Wang, J. Zhang, H. Zhong, and J.-B. Han, “Optical detection of magnetic field with Mn4+:K2SiF6 phosphor from room to liquid helium temperatures,” Appl. Phys. Lett. 110(21), 212405 (2017).
[Crossref]

Appl. Surf. Sci. (1)

T. Nakamura, Z. Yuan, and S. Adachi, “Micronization of red-emitting K2SiF6:Mn4+ phosphor by pulsed laser irradiation in liquid,” Appl. Surf. Sci. 320(2014), 514–518 (2014).
[Crossref]

Can. J. Chem. (1)

V. Baslon, J. P. Harris, C. Reber, H. E. Colmer, T. A. Jackson, A. P. Forshaw, J. M. Smith, R. A. Kinney, and J. Telser, “Near-infrared 2Eg → 4A2g and visible LMCT luminescence from a molecular bis-(tris(carbene)borate) manganese(IV) complex,” Can. J. Chem. 95(5), 547–552 (2017).
[Crossref]

Chem. Mater. (7)

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[Crossref]

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. Di Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

C. J. Duan, A. C. A. Delsing, and H. T. Hintzen, “Photoluminescence Properties of Novel Red-Emitting Mn2+-Activated MZnOS (M = Ca, Ba) Phosphors,” Chem. Mater. 21(6), 1010–1016 (2009).
[Crossref]

A. A. Setlur, E. V. Radkov, C. S. Henderson, J.-H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, A. R. Deshpande, B. Kolodin, S. G. Ljudmil, and U. Happek, “Energy-efficient, high-color-rendering LED lamps using oxyfluoride and fluoride phosphors,” Chem. Mater. 22(13), 4076–4082 (2010).
[Crossref]

X. Zhang, H.-C. Wang, A.-C. Tang, S.-Y. Lin, H.-C. Tong, C.-Y. Chen, Y.-C. Lee, T.-L. Tsai, and R.-S. Liu, “Robust and stable narrow-band green emitter: an option for advanced wide-color-gamut backlight display,” Chem. Mater. 28(23), 8493–8497 (2016).
[Crossref]

M. D. Tessier, D. Dupont, K. De Nolf, J. De Roo, and Z. Hens, “Economic and Size-Tunable Synthesis of InP/ZnE (E = S, Se) Colloidal Quantum Dots,” Chem. Mater. 27(13), 4893–4898 (2015).
[Crossref]

L. Huang, Y. Zhu, X. Zhang, R. Zou, F. Pan, J. Wang, and M. Wu, “HF-free hydrothermal route for synthesis of highly efficient narrow-band red emitting phosphor K2Si1–xF6:xMn4+ for warm white light-emitting diodes,” Chem. Mater. 28(5), 1495–1502 (2016).
[Crossref]

CrystEngComm (1)

X. Li, X. Su, P. Liu, J. Liu, Z. Yao, J. Chen, H. Yao, X. Yu, and M. Zhan, “Shape-controlled synthesis of phosphor K2SiF6:Mn4+ nanorods and their luminescence properties,” CrystEngComm 17(4), 930–936 (2015).
[Crossref]

Czech. J. Phys. (1)

F. Karel, J. Pastrňák, and J. Rosa, “Thermoluminescent measurements of the trap level spectrum in AlN:Mn4+ phosphors,” Czech. J. Phys. 19(8), 974–982 (1969).
[Crossref]

ECS J. Solid State Sci. Technol. (6)

R. Hoshino, T. Nakamura, and S. Adachi, “Synthesis and photoluminescence properties of BaSnF6:Mn4+ red phosphor,” ECS J. Solid State Sci. Technol. 5(3), R37–R43 (2016).
[Crossref]

M. G. Brik, S. J. Camardello, A. M. Srivastava, N. M. Avram, and A. Suchocki, “Spin-forbidden transitions in the spectra of transition metal ions and nephelauxetic effect,” ECS J. Solid State Sci. Technol. 5(1), R3067–R3077 (2016).
[Crossref]

M. G. Brik, S. J. Camardello, and A. M. Srivastava, “Influence of covalency on the Mn4+ 2Eg -> 4A2g emission energy in crystals,” ECS J. Solid State Sci. Technol. 4(3), R39–R43 (2014).
[Crossref]

H. F. Sijbom, J. J. Joos, L. I. D. J. Martin, K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Luminescent behavior of the K2SiF6:Mn4+ red phosphor at high fluxes and at the microscopic level,” ECS J. Solid State Sci. Technol. 5(1), R3040–R3048 (2016).
[Crossref]

A. A. Setlur, R. J. Lyons, J. E. Murphy, N. Prasanth Kumar, and M. Satya Kishore, “Blue light-emitting diode phosphors based upon oxide, oxyhalide and halide hosts,” ECS J. Solid State Sci. Technol. 2(2), R3059–R3070 (2012).
[Crossref]

K. V. Ivanovskikh, J. M. Ogieglo, A. Zych, C. R. Ronda, and A. Meijerink, “Luminescence temperature quenching for Ce3+ and Pr3+ d-f emission in YAG and LuAG,” ECS J. Solid State Sci. Technol. 2(2), R3148–R3152 (2012).
[Crossref]

Electrochem. Solid-State Lett. (3)

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3:Eu2+, for White Light-Emitting Diodes,” Electrochem. Solid-State Lett. 9(4), H22 (2006).
[Crossref]

S. Adachi and T. Takahashi, “Direct synthesis of K2SiF6:Mn4+ red phosphor from crushed quartz schist by wet chemical etching,” Electrochem. Solid-State Lett. 12(2), J20–J23 (2009).
[Crossref]

T. Takahashi and S. Adachi, “Synthesis of K2SiF6:Mn4+ red phosphor from silica glasses by wet chemical etching in HF/KMnO4 solution,” Electrochem. Solid-State Lett. 12(8), J69–J71 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors,” IEEE Photonics Technol. Lett. 17(6), 1160–1162 (2005).
[Crossref]

IEEE Trans. Device Mater. Reliab. (1)

M. Meneghini, M. Dal Lago, N. Trivellin, G. Meneghesso, and E. Zanoni, “Thermally activated degradation of remote phosphors for application in LED lighting,” IEEE Trans. Device Mater. Reliab. 13(1), 316–318 (2013).
[Crossref]

Illum. Eng. (1)

D. Nickerson and C. W. Jerome, “Color rendering of light sources: CIE method of specification and its application,” Illum. Eng. 60(4), 262 (1965).

J. Alloys Compd. (2)

Y. Q. Li, J. E. J. van Steen, J. W. H. van Krevel, G. Botty, A. C. A. Delsing, F. J. DiSalvo, G. de With, and H. T. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca, Sr, Ba) LED conversion phosphors,” J. Alloys Compd. 417(1–2), 273–279 (2006).
[Crossref]

Q. Shao, L. Wang, L. Song, Y. Dong, C. Liang, J. He, and J. Jiang, “Temperature dependence of photoluminescence spectra and dynamics of the red-emitting K2SiF6:Mn4+ phosphor,” J. Alloys Compd. 695, 221–226 (2017).
[Crossref]

J. Am. Ceram. Soc. (1)

C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen, and J. Qiu, “Synthesis of K2SiF6:Mn4+ phosphor from SiO2 powders via redox reaction in HF/KMnO4 solution and their application in warm-white LED,” J. Am. Ceram. Soc. 96(11), 3552–3556 (2013).
[Crossref]

J. Appl. Phys. (2)

S. Adachi and T. Takahashi, “Direct synthesis and properties of K2SiF6:Mn4+ phosphor by wet chemical etching of Si wafer,” J. Appl. Phys. 104(2), 023512 (2008).
[Crossref]

Y. K. Xu and S. Adachi, “Properties of Na2SiF6:Mn4+ and Na2GeF6:Mn4+ red phosphors synthesized by wet chemical etching,” J. Appl. Phys. 105(1), 013525 (2009).
[Crossref]

J. Chem. Phys. (2)

G. Kemeny and C. H. Haake, “Activator center in magnesium fluorogermanate phosphors,” J. Chem. Phys. 33(3), 783–789 (1960).
[Crossref]

A. Lazarowska, S. Mahlik, M. Grinberg, C. C. Lin, and R.-S. Liu, “Pressure effect on the zero-phonon line emission of Mn4+ in K2SiF6.,” J. Chem. Phys. 143(13), 134704 (2015).
[Crossref] [PubMed]

J. Electrochem. Soc. (8)

S. Adachi, H. Abe, R. Kasa, and T. Arai, “Synthesis and properties of hetero-dialkaline hexafluorosilicate red phosphor KNaSiF6:Mn4+,” J. Electrochem. Soc. 159(2), J34–J37 (2012).
[Crossref]

Y. K. Xu and S. Adachi, “Photoluminescence and raman scattering spectra in (NH4)2XF6:Mn4+ (X = Si, Ge, Sn, and Ti) red phosphors,” J. Electrochem. Soc. 159(1), E11–E17 (2012).
[Crossref]

Y. K. Xu and S. Adachi, “Properties of Mn4+-activated hexafluorotitanate phosphors,” J. Electrochem. Soc. 158(3), J58–J65 (2011).
[Crossref]

M. G. Brik and A. M. Srivastava, “Ab initio studies of the structural, electronic, and optical properties of K2SiF6 single crystals at ambient and elevated hydrostatic pressure,” J. Electrochem. Soc. 159(6), J212–J216 (2012).
[Crossref]

R. Kasa and S. Adachi, “Red and deep red emissions from cubic K2SiF6:Mn4+ and hexagonal K2MnF6 synthesized in HF/KMnO4/KHF2/Si solutions,” J. Electrochem. Soc. 159(4), J89–J95 (2012).
[Crossref]

A. Paulusz, “Efficient Mn (IV) emission in fluorine coordination,” J. Electrochem. Soc. 120(7), 942–947 (1973).
[Crossref]

T. Takahashi and S. Adachi, “Mn4+-activated red photoluminescence K2SiF6 phosphor,” J. Electrochem. Soc. 155(12), E183–E188 (2008).
[Crossref]

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

J. Electrochem. Soc. Electrochem. Sci. Technol. (1)

G. M. Rao, “Electrowinning of silicon from K2SiF6-molten fluoride systems,” J. Electrochem. Soc. Electrochem. Sci. Technol. 127(9), 1940–1944 (1980).
[Crossref]

J. Fluor. Chem. (1)

P. Bukovec and R. Hoppe, “Zur kenntnis von hexagonalem K2[MnF6],” J. Fluor. Chem. 23(6), 579–587 (1983).
[Crossref]

J. Inorg. Nucl. Chem. (1)

C. E. Schäffer and C. K. Jørgensen, “The nephelauxetic series of ligands corresponding to increasing tendency of partly covalent bonding,” J. Inorg. Nucl. Chem. 8, 143–148 (1958).
[Crossref]

J. Lumin. (5)

Z. Bryknar, V. Trepakov, Z. Potůček, and L. Jastrabík, “Luminescence spectra of SrTiO3:Mn4+,” J. Lumin. 87, 605–607 (2000).
[Crossref]

M. Novita, T. Honma, B. Hong, A. Ohishi, and K. Ogasawara, “Study of multiplet structures of Mn4+ activated in fluoride crystals,” J. Lumin. 169, 594–600 (2016).
[Crossref]

Y. Hu, W. Zhuang, H. Ye, S. Zhang, Y. Fang, and X. Huang, “Preparation and luminescent properties of (Ca1-x,Srx)S:Eu2+ red-emitting phosphor for white LED,” J. Lumin. 111(3), 139–145 (2005).
[Crossref]

M. G. Brik and A. M. Srivastava, “On the optical properties of the Mn4+ ion in solids,” J. Lumin. 133(2013), 63–72 (2013).

R. Hoshino and S. Adachi, “Optical spectroscopy and degradation behavior of ZnGeF6·6H2O:Mn4+ red-emitting phosphor,” J. Lumin. 162, 63–71 (2015).
[Crossref]

J. Mater. Chem. C (1)

J. H. Oh, H. Kang, Y. J. Eo, H. K. Park, and Y. R. Do, “Synthesis of narrow-band red-emitting K2SiF6:Mn4+ phosphors for a deep red monochromatic LED and ultrahigh color quality warm-white LEDs,” J. Mater. Chem. C 3(3), 607–615 (2015).
[Crossref]

J. Mater. Chem. C Mater. Lett. (1)

M. J. Lee, Y. H. Song, Y. L. Song, G. S. Han, H. S. Jung, and D. H. Yoon, “Enhanced luminous efficiency of deep red emitting K2SiF6:Mn4+ phosphor dependent on KF ratio for warm-white LED,” J. Mater. Chem. C Mater. Lett. 141(2015), 27–30 (2015).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (12)

H. D. Nguyen, C. C. Lin, M. Fang, and R. S. Liu, “Synthesis of Na2SiF6:Mn4+ red phosphors for white LED applications by co-precipitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(48), 10268–10272 (2014).
[Crossref]

M. Kim, W. B. Park, C. H. Kim, K.-S. Sohn, and B. K. Bang, “Radiative and non-radiative decay rate of K2SiF6:Mn4+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(8), 1166–1169 (2015).

F. Baur, F. Glocker, and T. Jüstel, “Photoluminescence and energy transfer rates and efficiencies in Eu3+ activated Tb2Mo3O12,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2054–2064 (2015).
[Crossref]

G. Yang, Q. Fan, B. Chen, Q. Zhou, and H. Zhong, “Reprecipitation synthesis of luminescent CH3NH3PbBr3/NaNO3 nanocomposites with enhanced stability,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(48), 11387–11391 (2016).
[Crossref]

J. H. Oh, Y. J. Eo, H. C. Yoon, Y.-D. Huh, and Y. R. Do, “Evaluation of new color metrics: guidelines for developing narrow-band red phosphors for WLEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(36), 8326–8348 (2016).
[Crossref]

J. Li, J. Yan, D. Wen, W. U. Khan, J. Shi, M. Wu, Q. Su, and P. A. Tanner, “Advanced red phosphors for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(37), 8611–8623 (2016).
[Crossref]

Z. Zhou, N. Zhou, M. Xia, M. Yokoyama, and H. T. Hintzen, “Research progress and application prospects of transition metal Mn4+-activated luminescent materials,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(39), 9143–9161 (2016).
[Crossref]

H.-D. Nguyen and R.-S. Liu, “Narrow-band red-emitting Mn4+-doped hexafluoride phosphors: synthesis, optoelectronic properties, and applications in white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(46), 10759–10775 (2016).
[Crossref]

L. Lv, X. Jiang, S. Huang, X. Chen, and Y. Pan, “The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(20), 3879–3884 (2014).
[Crossref]

F. Tang, Z. Su, H. Ye, M. Wang, X. Lan, D. L. Phillips, Y. Cao, and S. Xu, “A set of manganese ion activated fluoride phosphors (A2BF6:Mn4+, A = K, Na, B = Si, Ge, Ti): synthesis below 0 °C and efficient room-temperature photoluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(40), 9561–9568 (2016).
[Crossref]

M. H. Du, “Chemical trends of Mn4+ emission in solids,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(14), 2475–2481 (2014).
[Crossref]

L. Wei, C. C. Lin, M. Fang, M. G. Brik, S.-F. Hu, H. Jiao, and R. Liu, “A low-temperature co-precipitation approach to synthesize fluoride phosphors K2MF6:Mn4+ (M = Ge, Si) for white LED applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(8), 1655–1660 (2015).
[Crossref]

J. Phys. B At. Mol. Phys. (1)

P. H. M. Uylings, A. J. J. Raassen, and J. F. Wyart, “Energies of N equivalent electrons expressed in terms of two-electron energies and independent three-electron parameters : a new complete set of orthogonal operators : II. Application to 3dN configurations,” J. Phys. B At. Mol. Phys. 17(20), 4103–4126 (1984).
[Crossref]

J. Phys. Chem. C (1)

S. H. Park, K. H. Lee, S. Unithrattil, H. S. Yoon, H. G. Jang, and W. Bin Im, “Melilite-structure CaYAl3O7:Eu3+ phosphor: structural and optical characteristics for near-UV LED-based white light,” J. Phys. Chem. C 116(51), 26850–26856 (2012).
[Crossref]

J. Phys. Condens. Matter (1)

P. Dorenbos, “Thermal quenching of Eu2+ 5d–4f luminescence in inorganic compounds,” J. Phys. Condens. Matter 17(50), 8103–8111 (2005).
[Crossref]

J. Soc. Inf. Disp. (1)

K. Yoshimura, H. Fukunaga, M. Izumi, M. Masuda, T. Uemura, K. Takahashi, R.-J. Xie, and N. Hirosaki, “White LEDs using the sharp β-sialon:Eu phosphor and Mn-doped red phosphor for wide-color gamut display applications,” J. Soc. Inf. Disp. 24(7), 449–453 (2016).
[Crossref]

J. Solid State Light. (1)

J. J. Joos, J. Botterman, and P. F. Smet, “Evaluating the use of blue phosphors in white LEDs: the case of Sr0.25Ba0.75Si2O2N2:Eu2+,” J. Solid State Light. 1(1), 6 (2014).
[Crossref]

Jpn. J. Appl. Phys. (2)

T. Arai and S. Adachi, “Excited states of 3d3 electrons in K2SiF6:Mn4+ red phosphor studied by photoluminescence excitation spectroscopy,” Jpn. J. Appl. Phys. 50(9), 092401 (2011).
[Crossref]

M. Novita and K. Ogasawara, “Comparative study of multiplet structures of Mn4+ in K2SiF6, K2GeF6, and K2TiF6 based on first-principles configuration–interaction calculations,” Jpn. J. Appl. Phys. 51, 22604 (2012).

Key Eng. Mater. (1)

Y. N. Wu, C. H. Cheng, and Z. X. Xiong, “Enhancement of Blue Emission via Upconversion in Solid-State Synthesized Hexagonal NaYF4:Ln3+,” Key Eng. Mater. 368–372, 398–401 (2008).
[Crossref]

Light Sci. Appl. (1)

S. Abe, J. J. Joos, L. I. Martin, Z. Hens, and P. F. Smet, “Hybrid remote quantum dot/powder phosphor designs for display backlights,” Light Sci. Appl. 6(6), e16271 (2017).
[Crossref]

Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. (1)

F. Yuan and H. Ryu, “Ce-doped YAG phosphor powders prepared by co-precipitation and heterogeneous precipitation,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 107(1), 14–18 (2004).

Nat. Commun. (1)

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5, 4312 (2014).
[Crossref] [PubMed]

Nat. Mater. (2)

P. F. Smet and J. J. Joos, “White light-emitting diodes: Stabilizing colour and intensity,” Nat. Mater. 16(5), 500–501 (2017).
[Crossref] [PubMed]

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9(March), 1–9 (2015).

Opt. Eng. (1)

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[Crossref]

Opt. Express (2)

Opt. Mater. (3)

Z. Wang, Y. Zhou, Z. Yang, Y. Liu, H. Yang, H. Tan, Q. Zhang, and Q. Zhou, “Synthesis of K2XF6:Mn4+ (X=Ti, Si and Ge) red phosphors for white LED applications with low-concentration of HF,” Opt. Mater. 49(2015), 235–240 (2015).
[Crossref]

B.-E. Yeo, Y.-S. Cho, and Y.-D. Huh, “Synthesis and photoluminescence properties of a red-emitting phosphor, K2SiF6:Mn4+, for use in three-band white LED applications,” Opt. Mater. 51(2016), 50–55 (2016).
[Crossref]

J. J. Joos, K. W. Meert, A. B. Parmentier, D. Poelman, and P. F. Smet, “Thermal quenching and luminescence lifetime of saturated green Sr1−xEuxGa2S4 phosphors,” Opt. Mater. 34(11), 1902–1907 (2012).
[Crossref]

Opt. Mater. Express (2)

Phys. Chem. Chem. Phys. (1)

J. J. Joos, K. Lejaeghere, K. Korthout, A. Feng, D. Poelman, and P. F. Smet, “Charge transfer induced energy storage in CaZnOS:Mn - insight from experimental and computational spectroscopy,” Phys. Chem. Chem. Phys. 19(13), 9075–9085 (2017).
[Crossref] [PubMed]

Phys. Rev. B (1)

K. Ogasawara, T. Ishii, I. Tanaka, and H. Adachi, “Calculation of multiplet structures of Cr3+ and V3+ in α-Al2O3 based on a hybrid method of density-functional theory and the configuration interaction,” Phys. Rev. B 61(1), 143–161 (2000).
[Crossref]

Phys. Status Solidi (1)

R. Mueller-Mach, G. Mueller, M. R. Krames, H. A. Höppe, F. Stadler, W. Schnick, T. Juestel, and P. Schmidt, “Highly efficient all-nitride phosphor-converted white light emitting diode,” Phys. Status Solidi 202(9), 1727–1732 (2005).
[Crossref]

Proc. SPIE (1)

C. Hoelen, H. Borel, J. de Graaf, M. Keuper, M. Lankhorst, C. Mutter, L. Waumans, and R. Wegh, “Remote phosphor LED modules for general illumination – towards 200 lm/W general lighting LED light sources,” Proc. SPIE 7058, 70580M (2008).
[Crossref]

RSC Advances (3)

D. Luo, L. Wang, S. W. Or, H. Zhang, and R.-J. Xie, “Realizing superior white LEDs with both high R9 and luminous efficacy by using dual red phosphors,” RSC Advances 7(42), 25964–25968 (2017).
[Crossref]

Q. Zhou, Y. Zhou, Z. Wang, Y. Liu, G. Chen, J. Peng, J. Yan, and M. Wu, “Fabrication and application of non-rare earth red phosphors for warm white-light-emitting diodes,” RSC Advances 5(103), 84821–84826 (2015).
[Crossref]

D. Chen, Y. Zhou, and J. Zhong, “A review on Mn4+ activators in solids for warm white light-emitting diodes,” RSC Advances 6(89), 86285–86296 (2016).
[Crossref]

Other (38)

N. M. Avram and M. G. Brik, eds., Optical Properties of 3d-Ions in Crystals: Spectroscopy and Crystal Field Analysis (Springer, 2013).

T. Horikawa, X. Q. Piao, M. Fujitani, H. Hanzawa, and K. Machida, “Preparation of Sr2Si5N8:Eu2+ phosphors using various novel reducing agents and their luminescent properties,” IOP Conf. Ser. Mater. Sci. Eng. 1(1), 12024 (2009).
[Crossref]

A. B. Nobel Media, “The 2014 Nobel Prize in Physics - Press Release,” http://www.nobelprize.org/nobel_prizes/physics/laureates/2014/press.html .

Radiocommunication Sector of ITU (ITU-R), Parameter Values for Ultra-High Definition Television Systems for Production and International Programme Exchange (2015).

W. Massa, “Fluorides: solid-state chemistry,” in Encyclopedia of Inorganic Chemistry (John Wiley & Sons, Ltd, 2006).

C. K. Jørgensen, Modern Aspects of Ligand Field Theory (North-Holland Pub. Co, 1971).

B. Henderson and G. Imbusch, Optical Spectroscopy of Inorganic Solids (Oxford University Press, 1989).

E. V. Radkov, L. S. Grigorov, A. A. Setlur, and A. M. Srivastava, “Red line emitting phosphors for use in LED applications,” U.S. patent 7,497,973 B2 (2009).

R. J. Lyons, A. A. Setlur, A. R. Deshpande, and L. S. Grigorov, “Color stable manganese-doped phosphors,” U.S. patent 8,252,613 B1 (2012).

M. Kaneyoshi and F. Echizen-shi, “Red phosphor,” U.S. patent 3 015 529 A1 (2015).

M. Kaneyoshi and Y. Takai, “Preparation of complex fluoride and complex fluoride phosphor,” U.S. patent 8,974,696 B2 (2015).

J. E. Murphy, W. W. Beers, R. J. Lyons, and F. Du, “Processes for preparing color stable manganese-doped complex fluoride phosphors,” U.S. patent 2015/0166887 A1 (2015).

J. E. Murphy, “Processes for preparing color stable manganese-doped phosphors,” U.S. patent 2015/0054400 A1 (2015).

T. Yoshida, “Fluoride phosphor and light emitting device using the same and method of manufacturing the fluoride phosphor,” U.S. patent 9,120,972 B2 (2015).

J. W. Park, I. H. Lee, T. H. Kim, J. H. You, C. W. Lee, and C. S. Yoon, “Fluoride phosphor and light emitting device, and methods of manufacturing the same,” U.S. patent 2016/133799 A1 (2016).

A. Setlur, M. Brewster, F. Garcia, M. C. Hill, R. Lyons, J. Murphy, T. Stecher, S. Stoklosa, S. Weaver, U. Happek, D. Aesram, and A. Deshpande, Optimized Phosphors for Warm White LED Light Engines (2012).
[Crossref]

J. Ha, S. Song, G. Kim, J. Sim, and S. Choi, “Light-emitting device,” U.S. patent 2016/0141457 A1 (2015).

Y. Ooyabu, H. Fujii, T. Nakamura, and H. Ito, “Component for light-emitting device, light-emitting device and producing method thereof,” U.S. patent 2012/0012875 A1 (2012).

Y. Ooyabu, H. Ito, and T. Naito, “Reflecting resin sheet, light emitting diode device and producing method thereof,” U.S. patent 2012/0262054 A1 (2012).

Y. Ooyabu, H. Katayama, S. Umetani, H. Ito, and S. Wakiya, “Light-emitting device assembly and lighting device,” U.S. patent 2013/0229805 A1 (2013).

H. Sakuta, Y. Satou, N. Kijima, and B. Hong, “White light-emitting device and illumination device,” U.S. patent 8,890,403 B2 (2014).

Y. Ooyabu, T. Nakamura, H. Fujii, and H. Ito, “Light-emitting device,” U.S. patent 8,916,893 B2 (2014).

Y. Ooyabu, T. Nakamura, H. Fujii, and H. Ito, “Phosphor ceramic and light-emitting device,” U.S. patent 8,664,678 B2 (2014).

H. Sakuta, Y. Kohara, and Y. Satou, “Semiconductor light-emitting device, semiconductor light-emitting system and illumination fixture,” U.S. patent 8,779,455 B2 (2014).

J. Meyer, V. Weiler, and P. J. Schmidt, “Lighting device with light source and wavelength converting element,” U.S. patent 9,175,214 B2 (2015).

Y. S. Park and H. J. Hahm, “Light emitting device, backlight unit and display apparatus,” U.S. patent 2015/0301259 A1 (2015).

V. Weiler, P. J. Schmidt, and H.-H. Bechtel, “LED-based device with wide color gamut,” U.S. patent 2014/068440 A1 (2014).

M. Mitani and H. Katayama, “Silicone resin sheet, producing method thereof, encapsulating sheet, and light emitting diode device,” U.S. patent 8,569,792 B2 (2013).

S. Lou, T. Xuan, C. Yu, M. Cao, C. Xia, J. Wang, and H. Li, “Nanocomposites of CsPbBr3 perovskite nanocrystals in an ammonium bromide framework with enhanced stability,” J. Mater. Chem. C Advance Article (2017).
[Crossref]

R. A. Talewar, C. P. Joshi, and S. V. Moharil, “Enhancing the photovoltaic performance of CdTe/CdS solar cell via luminescent downshifting using K2SiF6:Mn4+ phosphors,” in AIP Conference Proceedings (2016), p. 140019.

J. Olchowka, M. Suta, and C. Wickleder, “Green synthesis of small nanoparticles of A2SiF6 (A = Li - Cs) using Ionic Liquids as Solvent and Fluorine Source: A novel simple approach without HF,” Chemistry6, (2017).

J. H. You, I. H. Lee, T. H. Kim, J. W. Park, C. S. Yoon, and C. W. Lee, “Fluoride phosphor composite method of manufacturing fluoride phosphor composite, white light emitting apparatus, display apparatus, lighting device, and electronic device,” U.S. patent 2016/0160122 A1 (2016).

A. A. Setlur, R. J. Lyons, P. K. Nammalwar, R. Hanumanlha, J. E. Murphy, and F. Garcia, “Moisture-resistant phosphor compositions and associate methods,” U.S. patent 2015/1025876 A1 (2015).

M. Kaneyoshi and M. Ishii, “Phosphor surface treatment method,” U.S. patent 2015/0329770 A1 (2015).

J. E. Murphy, A. A. Setlur, F. Garcia, R. J. Lyons, A. I. Chowdhury, N. Karkada, and P. K. Nammalwar, “Color stable red-emitting phosphors,” U.S. patent 8,906,724 B2 (2014).

M. Kaneyoshi and K. Wataya, “Method for treating Mn-activated complex fluoride phosphor,” U.S. patent 2016/0122633 A1 (2016).

X. Zhang, M.-H. Fang, Y.-T. Tsai, A. Lazarowska, S. Mahlik, T. Lesniewski, M. Grinberg, W. K. Pang, F. Pan, C. Liang, W. Zhou, J. Wang, J.-F. Lee, B.-M. Cheng, T.-L. Hung, Y.-Y. Chen, and R.-S. Liu, “Controlling of Structural Ordering and Rigidity of β-SiAlON:Eu through Chemical Cosubstitution to Approach Narrow-Band-Emission for Light-Emitting Diodes Application,” Chem. Mater. Just Accepted Manuscript (2017).

J. E. Murphy, F. Garcia-Santamaria, A. A. Setlur, and S. Sista, “PFS, K2SiF6:Mn4+: the red-line emitting LED phosphor behind GE’s TriGain TechnologyTM platform,” SID Symp. Dig. Tech. Pap. 46(1), 927–930 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Performance of K2SiF6:Mn4+ as LED phosphor for lighting or displays, compared with the benchmark phosphors Sr2Si5N8:Eu2+ and CaAlSiN3:Eu2+, the broader emitting CaZnOS:Mn2+ and the line-emitter CaYAl3O7:Eu3+. The indication “A” shows the absorption of blue light (465 nm) while “TQ” gives the temperature at which the emission intensity is at 75% of the initial intensity. γ-flux expresses the inverse decay constant τ−1. The lower this value, the more saturation effects are expected when elevating the excitation intensity. “LER” and “CQS” show the luminous efficacy of the radiation of the phosphor's emission and the color quality scale of a white LED (CCT = 4000 K) based on this phosphor (combined with a blue pump LED at 465 nm and the yellow phosphor Y3Al5O12:Ce3+). Finally, the indication “color purity” gives the transmission of the phosphor's emitted light tuned to the Rec. 2020 recommendation.

Fig. 2
Fig. 2

Illustration of how the emission and excitation spectrum are governed by the electronic structure of the octahedral [MnF6]2- center. (a) Tanabe–Sugano diagram for a 3d3 system in the octahedral symmetry, showing how the free-ion terms (shown in the extreme left part of the figure) split in the crystal field. Green lines indicate spin quartets, red lines indicate spin doublets. This diagram indicates the energies of the spectroscopic transitions. The black vertical line corresponds to the case of Mn4+ in K2SiF6. (b) Simplified configurational coordinate diagram showing the potential energy surfaces that play a role in the radiative transitions. This diagram qualitatively indicates the spectral shape for the different transitions. (c) Room temperature excitation (green line) and emission (red line) spectrum of K2SiF6:Mn4+. The approximate location of the zero-phonon line (ZPL) is indicated (adapted with permission from [14], copyright 2016, The Electrochemical Society).

Fig. 3
Fig. 3

Dependence of energy of the Mn4+ 2Eg level on the new nephelauxetic ratio β1 for fluoride hosts and oxide hosts and reported values for K2SiF6:Mn4+, adapted from [47]. The shaded red area corresponds to a peak wavelength < 650 nm, the given linear fit is −142.83 + 15544.02β1, with ± σ = 365 cm−1. Inset: The reported values of the Racah parameters B and C for K2SiF6:Mn4+, which were used to calculate the nephelauxetic parameter β1 show a linear correlation. The given linear fit is 5179.5-2.256B.

Fig. 4
Fig. 4

The Kohn-Sham density of states (DOS) for K2SiF6:Mn4+ calculated using DFT-PBE, ground state t2g2eg1 (4A2g) (a) and excited state t2g2eg1 (2Eg) (b), reproduced from [55] with permission of the Royal Society of Chemistry. (c) The calculated band structure of K2SiF6. The GGA- and LDA-calculated electronic bands are shown by the solid and dotted lines, respectively. The Fermi level is set at zero energy. The coordinates of the special points of the Brillouin zone are (in terms of the reciprocal lattice unit vectors): W(1/2, 1/4, 3/4); L(1/2, 1/2, 1/2); G(0,0,0); X(1/2, 0, 1/2); K(3/8, 3/8, 3/4), reproduced from [48] by permission of The Electrochemical Society.

Fig. 5
Fig. 5

Schematic overview of the main possible methods for K2SiF6:Mn4+ synthesis.

Fig. 6
Fig. 6

Synthesis of Mn4+-activated red phosphors using a cocrystallization synthesis. Photographs of the HF solution with dissolved K2MnF6 crystals (a) and the same solution containing K2TiF6 powders after cation exchange reaction for 3 min (b). (c) Schematic illustration of the cation exchange procedure for synthesizing Mn4+-activated fluoride compounds, reprinted by permission from Macmillan Publishers Ltd [75].

Fig. 7
Fig. 7

Schematic illustration of a coprecipitation synthesis of K2SiF6:Mn4+. Appearance of the phosphor under day light and UV illumination (left).

Fig. 8
Fig. 8

Schematic illustration of a simple precipitation synthesis of K2SiF6:Mn4+ at 0 °C. Appearance of K2SiF6:Mn4+ under day light and UV illumination (right) reproduced with permission from [14], copyright 2016, The Electrochemical Society.

Fig. 9
Fig. 9

XRD patterns of a K2SiF6:Mn4+ phosphor (b) and the reference pattern (ICSD 29407) for K2SiF6 (a) reproduced with permission from [14], copyright 2016, The Electrochemical Society.

Fig. 10
Fig. 10

X-band EPR spectra (a, b) of K2SiF6:Mn4+ synthesized with different Si:F ratios and differential EPR absorption intensities (c) reprinted with permission from [96]. Copyright 2016 American Chemical Society.

Fig. 11
Fig. 11

Emission spectra of K2SiF6:Mn4+ excited at 442 nm under varying pressures, reprinted from [57], with permission of AIP Publishing.

Fig. 12
Fig. 12

Emission spectrum at 90 K of K2SiF6 doped with 1 mol% Mn as published by Paulusz in 1973. Weak emission at shorter and larger wavelengths is shown on an enlarged scale (dashed lines) [31].

Fig. 13
Fig. 13

Excitation (black) and emission (red) spectrum of K2SiF6:Mn4+ at 10 K (left) and 300 K (right), adapted with permission from [14], copyright 2016, The Electrochemical Society. The electronic transitions are labeled in the 10 K spectrum, the vibrational modes of the emission are labeled in the spectrum at 300 K. The dopant concentration is 1.8%.

Fig. 14
Fig. 14

Decay-profile measurements (dots) and fit (lines) of the luminescence intensity of K2SiF6:Mn4+ at 450 K (a), 295 K (b) and 220 K (c) reproduced with permission from [14], copyright 2016, The Electrochemical Society.

Fig. 15
Fig. 15

Internal quantum efficiency (red) and decay time (green) as function of particle size. The according data can be found in Table 6–Table 9 in the Appendix.

Fig. 16
Fig. 16

Range of correlated color temperature (CCT) (blue), radiant luminous efficacy (LER) (green) and color rendering index (CRI) (red) for a pc-WLED with YAG:Ce and K2SiF6:Mn4+ phosphors (adapted with permission from [14], copyright 2016, The Electrochemical Society.) CRI values (yellow) for a pc-WLED with YAG:Ce are projected on the x-axis for equal CCT values. The black lines are guides to the eye for a CCT of 6500 K, 4500 K, 3000 K and 2800 K.

Fig. 17
Fig. 17

Integrated emission intensity of K2SiF6:Mn4+ as a function of temperature, adapted with permission from [14], copyright 2016, The Electrochemical Society. The dashed line is the fit from [52] for the increasing emission intensity in the low temperature range.

Tables (9)

Tables Icon

Table 1 Spectroscopic parameters for K2SiF6:Mn4+.

Tables Icon

Table 2 Values of zero-phonon lines for optical relevant d-d transitions in K2SiF6:Mn4+ from experiments and empirical calculations.

Tables Icon

Table 3 Lighting properties of K2SiF6:Mn4+ with green phosphors or QDs and a blue LED suited for displays.

Tables Icon

Table 4 Lighting properties of K2SiF6:Mn4+ with YAG:Ce and a blue LED suited for lighting.

Tables Icon

Table 5 Lighting properties of K2SiF6:Mn4+ combined with phosphors and a blue LED suited for lighting.

Tables Icon

Table 6 Phosphor properties resulting from etching synthesis

Tables Icon

Table 7 Phosphor properties resulting from coprecipitation synthesis

Tables Icon

Table 8 Phosphor properties resulting from precipitation synthesis

Tables Icon

Table 9 Phosphor properties resulting from other synthesis methods

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

B Dq = ( ΔE/Dq ) 2 10( ΔE/Dq ) 15( ΔE Dq 8 ) ,
C Dq 0.328 Δ E Dq 2.59 B Dq +0.59 ( B Dq ) 2 ,
β= B B 0 ,
β 1 = ( B B 0 ) 2 + ( C C 0 ) 2 ,

Metrics