Abstract

Er3+/Yb3+ co-doped tellurite glass is prepared by conventional melt-quenching method. The thermal and optical properties of the glass are investigated for temperature sensing. The Judd-Ofelt theory is applied for spectral analysis and the obtained intensity parameters (Ω2 = 6.48 × 10−20 cm2, Ω4 = 1.82 × 10−20 cm2, Ω6 = 1.27 × 10−20 cm2) are used to estimate the spectroscopic parameters of Er3+ ions in the glass. The upconversion (UC) luminescence of the glass is investigated under the laser diode (LD) excitation at 976 nm. The absolute quantum yield for UC luminescence is determined to be 0.0049% when the pump power density is 10 W/cm2. The dependences of green and red UC emission intensities on pump power indicate that both of the red and green UC emissions of Er3+ ions are mostly contributed by the co-existing two and three-photon involved energy transfer processes between the Yb3+ and Er3+ ions. Furthermore, the temperature-dependent green UC emissions of the glass are studied and the results show that the glass is an excellent candidate for construction of temperature sensors based on the self-referenced fluorescence intensity ratio (FIR) technique.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Color-tunable upconversion photoluminescence and highly performed optical temperature sensing in Er3+/Yb3+ co-doped ZnWO4

Xiaona Chai, Jun Li, Xusheng Wang, Yanxia Li, and Xi Yao
Opt. Express 24(20) 22438-22447 (2016)

Investigation of upconversion luminescence in Er3+/Yb3+ co-doped Nb2O5-based glasses prepared by aerodynamic levitation method

Minghui Zhang, Haiqin Wen, Jianding Yu, Fei Ai, Huimei Yu, Xiuhong Pan, Hui Shao, Meibo Tang, and Lijun Gai
Opt. Mater. Express 7(9) 3222-3230 (2017)

Er3+/Yb3+ co-doped lead silicate glasses and their optical temperature sensing ability

Wojciech A. Pisarski, Joanna Pisarska, Radosław Lisiecki, and Witold Ryba-Romanowski
Opt. Express 25(23) 28501-28509 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Lin, G. Meredith, S. Jiang, X. Peng, T. Luo, N. Peyghambarian, and E. Y.-B. Pun, “Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass,” J. Appl. Phys. 93(1), 186–191 (2003).
    [Crossref]
  2. J. S. Wang, D. P. Machewirth, F. Wu, E. Snitzer, and E. M. Vogel, “Neodymium-doped tellurite single-mode fiber laser,” Opt. Lett. 19(18), 1448–1449 (1994).
    [Crossref] [PubMed]
  3. L. Li, W. Wang, C. Zhang, J. Yuan, B. Zhou, and Q. Zhang, “2.0 μm Nd3+/Ho3+-doped tungsten tellurite fiber laser,” Opt. Mater. Express 6(9), 2904–2914 (2016).
    [Crossref]
  4. L.-Y. Chen, W.-C. Cheng, C.-C. Tsai, J.-K. Chang, Y.-C. Huang, J.-C. Huang, and W.-H. Cheng, “Novel broadband glass phosphors for high CRI WLEDs,” Opt. Express 22(9), A671–A678 (2014).
    [Crossref] [PubMed]
  5. M. R. Dousti, M. R. Sahar, S. K. Ghoshal, R. J. Amjad, and A. R. Samavati, “Effect of AgCl on spectroscopic properties of erbium doped zinc tellurite glass,” J. Mol. Struct. 1035, 6–12 (2013).
    [Crossref]
  6. C. Li, B. Dong, S. Li, and C. Song, “Er3+-Yb3+ co-doped silicate glass for optical temperature sensor,” Chem. Phys. Lett. 443(4–6), 426–429 (2007).
    [Crossref]
  7. B. Ahrens and S. Schweizer, Trivalent rare-earth ions as photon down-shifter for photovoltaic applications, Proceedings of SPIE - The International Society for Optical Engineering 9140, 63–69 (2014).
  8. W. Stambouli, H. Elhouichet, and M. Ferid, “Study of thermal, structural and optical properties of tellurite glass with different TiO2 composition,” J. Mol. Struct. 1028, 39–43 (2012).
    [Crossref]
  9. J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
    [Crossref]
  10. D. R. Uhlmann and D. R. Ulrich, Ultrastructure Processing of Advanced Materials (Wiley, 1992).
  11. A. Pandey, S. Som, V. Kumar, V. Kumar, K. Kumar, V. K. Rai, and H. C. Swart, “Enhanced upconversion and temperature sensing study of Er3+-Yb3+ codoped tungsten-tellurite glass,” Sens. Actuators B Chem. 202, 1305–1312 (2014).
    [Crossref]
  12. N. Jaba, A. Kanoun, H. Mejri, A. Selmi, S. Alaya, and H. Maaref, “Infrared to visible up-conversion study for erbium-doped zinc tellurite glasses, ” J. Phys. -Condes. Matter. 12(20), 4523–4534 (2000).
    [Crossref]
  13. V. K. Rai, D. S. M. Leonardo, and C. B. de Araújo, “Infrared-to-green and blue upconversion in Tm3+-doped TeO2-PbO glass,” J. Appl. Phys. 103(5), 053514 (2008).
    [Crossref]
  14. D. K. Mohanty, V. K. Rai, Y. Dwivedi, and S. B. Rai, “Enhancement of upconversion intensity in Er3+ doped tellurite glass in presence of Yb3+,” Appl. Phys. B 104(1), 233–236 (2011).
    [Crossref]
  15. H. Suo, X. Q. Zhao, Z. Y. Zhang, T. Li, E. M. Goldys, and C. F. Guo, “Constructing multiform morphologies of YF3: Er3+/Yb3+ up-conversion nano/micro-crystals towards sub-tissue thermometry,” Chem. Eng. J. 313, 65–73 (2017).
    [Crossref]
  16. Z. Zhang, C. Guo, H. Suo, X. Zhao, N. Zhang, and T. Li, “Thermometry and up-conversion luminescence of Yb3+-Er3+ co-doped Na2Ln2Ti3O10 (Ln = Gd, La) phosphors,” Phys. Chem. Chem. Phys. 18(28), 18828–18834 (2016).
    [Crossref] [PubMed]
  17. R. Dey and V. K. Rai, “Yb3+ sensitized Er3+ doped La2O3 phosphor in temperature sensors and display devices,” Dalton Trans. 43(1), 111–118 (2014).
    [Crossref] [PubMed]
  18. M. Kochanowicz, D. Dorosz, J. Zmojda, J. Dorosz, and P. Miluski, “Influence of temperature on upconversion luminescence in tellurite glass co-doped with Yb3+/Er3+ and Yb3+/Tm3+,” J. Lumin. 151, 155–160 (2014).
    [Crossref]
  19. D. Manzani, J. F. D. Petruci, K. Nigoghossian, A. A. Cardoso, and S. J. L. Ribeiro, “A portable luminescent thermometer based on green up-conversion emission of Er3+/Yb3+ co-doped tellurite glass,” Sci. Rep. 7, 41596 (2017).
    [Crossref] [PubMed]
  20. S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176, 1167–1175 (2013).
    [Crossref]
  21. J.-C. Boyer and F. C. J. M. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
    [Crossref] [PubMed]
  22. C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Relative and absolute determination of fluorescence quantum yields of transparent samples,” Nat. Protoc. 8(8), 1535–1550 (2013).
    [Crossref] [PubMed]
  23. J. Ozdanova, H. Ticha, and L. Tichy, “Raman studies and some physical properties of selected (PbO)x(Nb2O5)y(TeO2)1−x−y glasses,” Opt. Mater. 32(9), 950–955 (2010).
    [Crossref]
  24. E. S. S. Yousef, “Thermal and optical properties of zinc halotellurite glasses,” J. Mater. Sci. 42(12), 4502–4507 (2007).
    [Crossref]
  25. W. C. Tan, K. Koughia, J. Singh, and S. O. Kasap, Optical Properties of Condensed Matter and Applications, J. Singh, ed. (John Wiley & Sons, 2006), pp. 1–25.
  26. C. Wang, P. Wang, R. Zheng, S. Xu, W. Wei, and B. Peng, “Spectroscopic properties of new Yb3+-doped TeO2-ZnO-Nb2O5 based tellurite glasses with high emission cross-section,” Opt. Mater. 34(9), 1549–1552 (2012).
    [Crossref]
  27. A. Renuka Devi and C. K. Jayasankar, “Optical properties of Er3+ ions in lithium borate glasses and comparative energy level analyses of Er3+ ions in various glasses,” J. Non-Cryst. Solids 197(2–3), 111–128 (1996).
    [Crossref]
  28. H. Desirena, E. De la Rosa, A. Shulzgen, S. Shabet, and N. Peyghambarian, “Er3+ and Yb3+ concentration effect in the spectroscopic properties and energy transfer in Yb3+/Er3+ codoped tellurite glasses,” J. Phys. D Appl. Phys. 41(9), 095102 (2008).
    [Crossref]
  29. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
    [Crossref]
  30. G. S. Ofelt, “Intensities of crystal spectra of rare−earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
    [Crossref]
  31. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
    [Crossref]
  32. M. Azam, V. K. Rai, and P. Mishra, “Enhanced frequency upconversion and non-colour tunability in Er3+–Yb3+ codoped TeO2–WO3–Pb3O4 glasses,” J. Mater. Sci. Mater. Electron. 27(12), 12633–12641 (2016).
    [Crossref]
  33. G. Z. Sui, X. P. Li, L. H. Cheng, J. S. Zhang, J. S. Sun, H. Y. Zhong, Y. Tian, S. B. Fu, and B. J. Chen, “Laser cooling with optical temperature sensing in Er3+-doped tellurite-germanate glasses,” Appl. Phys. B 110(4), 471–476 (2013).
    [Crossref]
  34. N. Vijaya, P. Babu, V. Venkatramu, C. K. Jayasankar, S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, and V. Lavín, “Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors,” Sens. Actuators B Chem. 186, 156–164 (2013).
    [Crossref]
  35. L. Feng, B. Lai, J. Wang, G. Du, and Q. Su, “Spectroscopic properties of Er3+ in a oxyfluoride glass and upconversion and temperature sensor behaviour of Er3+/Yb3+-codoped oxyfluoride glass,” J. Lumin. 130(12), 2418–2423 (2010).
    [Crossref]
  36. S. F. León-Luis, U. R. Rodríguez-Mendoza, P. Haro-González, I. R. Martín, and V. Lavín, “Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors,” Sens. Actuators B Chem. 174, 176–186 (2012).
    [Crossref]
  37. U. R. Rodríguez-Mendoza, E. A. Lalla, J. M. Cáceres, F. Rivera-López, S. F. León-Luís, and V. Lavín, “Optical characterization, 1.5μm emission and IR-to-visible energy upconversion in Er3+-doped fluorotellurite glasses,” J. Lumin. 131(6), 1239–1248 (2011).
    [Crossref]
  38. C. K. Jørgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less Common Met. 93(1), 107–112 (1983).
    [Crossref]
  39. C. L. Zhu, E. Y. B. Pun, Z. Q. Wang, and H. Lin, “Upconversion photon quantification of holmium and erbium ions in waveguide-adaptive germanate glasses,” Appl. Phys. B 123(2), 64 (2017).
    [Crossref]
  40. M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
    [Crossref]
  41. F. Song, G. Zhang, M. Shang, H. Tan, J. Yang, and F. Meng, “Three-photon phenomena in the upconversion luminescence of erbium-ytterbium-codoped phosphate glass,” Appl. Phys. Lett. 79(12), 1748–1750 (2001).
    [Crossref]
  42. H. Song, B. Sun, T. Wang, S. Lu, L. Yang, B. Chen, X. Wang, and X. Kong, “Three-photon upconversion luminescence phenomenon for the green levels in Er3+/Yb3+ codoped cubic nanocrystalline yttria,” Solid State Commun. 132(6), 409–413 (2004).
    [Crossref]
  43. Y. Onodera, T. Nunokawa, O. Odawara, and H. Wada, “Upconversion properties of Y2O3:Er,Yb nanoparticles prepared by laser ablation in water,” J. Lumin. 137, 220–224 (2013).
    [Crossref]
  44. M. Mondal, V. K. Rai, and C. Srivastava, “Influence of silica surface coating on optical properties of Er3+-Yb3+:YMoO4 upconverting nanoparticles,” Chem. Eng. J. 327, 838–848 (2017).
    [Crossref]
  45. S. F. León-Luis, V. Monteseguro, U. R. Rodríguez-Mendoza, I. R. Martín, D. Alonso, J. M. Cáceres, and V. Lavín, “2CaO·Al2O3:Er3+ glass: An efficient optical temperature sensor,” J. Lumin. 179, 272–279 (2016).
    [Crossref]
  46. M. Haouari, A. Maaoui, N. Saad, and A. Bulou, “Optical temperature sensing using green emissions of Er3+ doped fluoro-tellurite glass,” Sen. Actuators A. 261, 235–242 (2017).
    [Crossref]
  47. G. Z. Sui, X. P. Li, L. H. Cheng, J. S. Zhang, J. S. Sun, H. Y. Zhong, Y. Tian, S. B. Fu, and B. J. Chen, “Laser cooling with optical temperature sensing in Er3+-doped tellurite-germanate glasses,” Appl. Phys. B 110(4), 471–476 (2013).
    [Crossref]
  48. Y. Tian, Y. Tian, P. Huang, L. Wang, Q. Shi, and C. E. Cui, “Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route,” Chem. Eng. J. 297, 26–34 (2016).
    [Crossref]

2017 (5)

H. Suo, X. Q. Zhao, Z. Y. Zhang, T. Li, E. M. Goldys, and C. F. Guo, “Constructing multiform morphologies of YF3: Er3+/Yb3+ up-conversion nano/micro-crystals towards sub-tissue thermometry,” Chem. Eng. J. 313, 65–73 (2017).
[Crossref]

D. Manzani, J. F. D. Petruci, K. Nigoghossian, A. A. Cardoso, and S. J. L. Ribeiro, “A portable luminescent thermometer based on green up-conversion emission of Er3+/Yb3+ co-doped tellurite glass,” Sci. Rep. 7, 41596 (2017).
[Crossref] [PubMed]

C. L. Zhu, E. Y. B. Pun, Z. Q. Wang, and H. Lin, “Upconversion photon quantification of holmium and erbium ions in waveguide-adaptive germanate glasses,” Appl. Phys. B 123(2), 64 (2017).
[Crossref]

M. Mondal, V. K. Rai, and C. Srivastava, “Influence of silica surface coating on optical properties of Er3+-Yb3+:YMoO4 upconverting nanoparticles,” Chem. Eng. J. 327, 838–848 (2017).
[Crossref]

M. Haouari, A. Maaoui, N. Saad, and A. Bulou, “Optical temperature sensing using green emissions of Er3+ doped fluoro-tellurite glass,” Sen. Actuators A. 261, 235–242 (2017).
[Crossref]

2016 (5)

S. F. León-Luis, V. Monteseguro, U. R. Rodríguez-Mendoza, I. R. Martín, D. Alonso, J. M. Cáceres, and V. Lavín, “2CaO·Al2O3:Er3+ glass: An efficient optical temperature sensor,” J. Lumin. 179, 272–279 (2016).
[Crossref]

Y. Tian, Y. Tian, P. Huang, L. Wang, Q. Shi, and C. E. Cui, “Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route,” Chem. Eng. J. 297, 26–34 (2016).
[Crossref]

L. Li, W. Wang, C. Zhang, J. Yuan, B. Zhou, and Q. Zhang, “2.0 μm Nd3+/Ho3+-doped tungsten tellurite fiber laser,” Opt. Mater. Express 6(9), 2904–2914 (2016).
[Crossref]

M. Azam, V. K. Rai, and P. Mishra, “Enhanced frequency upconversion and non-colour tunability in Er3+–Yb3+ codoped TeO2–WO3–Pb3O4 glasses,” J. Mater. Sci. Mater. Electron. 27(12), 12633–12641 (2016).
[Crossref]

Z. Zhang, C. Guo, H. Suo, X. Zhao, N. Zhang, and T. Li, “Thermometry and up-conversion luminescence of Yb3+-Er3+ co-doped Na2Ln2Ti3O10 (Ln = Gd, La) phosphors,” Phys. Chem. Chem. Phys. 18(28), 18828–18834 (2016).
[Crossref] [PubMed]

2014 (4)

R. Dey and V. K. Rai, “Yb3+ sensitized Er3+ doped La2O3 phosphor in temperature sensors and display devices,” Dalton Trans. 43(1), 111–118 (2014).
[Crossref] [PubMed]

M. Kochanowicz, D. Dorosz, J. Zmojda, J. Dorosz, and P. Miluski, “Influence of temperature on upconversion luminescence in tellurite glass co-doped with Yb3+/Er3+ and Yb3+/Tm3+,” J. Lumin. 151, 155–160 (2014).
[Crossref]

A. Pandey, S. Som, V. Kumar, V. Kumar, K. Kumar, V. K. Rai, and H. C. Swart, “Enhanced upconversion and temperature sensing study of Er3+-Yb3+ codoped tungsten-tellurite glass,” Sens. Actuators B Chem. 202, 1305–1312 (2014).
[Crossref]

L.-Y. Chen, W.-C. Cheng, C.-C. Tsai, J.-K. Chang, Y.-C. Huang, J.-C. Huang, and W.-H. Cheng, “Novel broadband glass phosphors for high CRI WLEDs,” Opt. Express 22(9), A671–A678 (2014).
[Crossref] [PubMed]

2013 (7)

G. Z. Sui, X. P. Li, L. H. Cheng, J. S. Zhang, J. S. Sun, H. Y. Zhong, Y. Tian, S. B. Fu, and B. J. Chen, “Laser cooling with optical temperature sensing in Er3+-doped tellurite-germanate glasses,” Appl. Phys. B 110(4), 471–476 (2013).
[Crossref]

M. R. Dousti, M. R. Sahar, S. K. Ghoshal, R. J. Amjad, and A. R. Samavati, “Effect of AgCl on spectroscopic properties of erbium doped zinc tellurite glass,” J. Mol. Struct. 1035, 6–12 (2013).
[Crossref]

S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176, 1167–1175 (2013).
[Crossref]

C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Relative and absolute determination of fluorescence quantum yields of transparent samples,” Nat. Protoc. 8(8), 1535–1550 (2013).
[Crossref] [PubMed]

G. Z. Sui, X. P. Li, L. H. Cheng, J. S. Zhang, J. S. Sun, H. Y. Zhong, Y. Tian, S. B. Fu, and B. J. Chen, “Laser cooling with optical temperature sensing in Er3+-doped tellurite-germanate glasses,” Appl. Phys. B 110(4), 471–476 (2013).
[Crossref]

N. Vijaya, P. Babu, V. Venkatramu, C. K. Jayasankar, S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, and V. Lavín, “Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors,” Sens. Actuators B Chem. 186, 156–164 (2013).
[Crossref]

Y. Onodera, T. Nunokawa, O. Odawara, and H. Wada, “Upconversion properties of Y2O3:Er,Yb nanoparticles prepared by laser ablation in water,” J. Lumin. 137, 220–224 (2013).
[Crossref]

2012 (3)

S. F. León-Luis, U. R. Rodríguez-Mendoza, P. Haro-González, I. R. Martín, and V. Lavín, “Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors,” Sens. Actuators B Chem. 174, 176–186 (2012).
[Crossref]

C. Wang, P. Wang, R. Zheng, S. Xu, W. Wei, and B. Peng, “Spectroscopic properties of new Yb3+-doped TeO2-ZnO-Nb2O5 based tellurite glasses with high emission cross-section,” Opt. Mater. 34(9), 1549–1552 (2012).
[Crossref]

W. Stambouli, H. Elhouichet, and M. Ferid, “Study of thermal, structural and optical properties of tellurite glass with different TiO2 composition,” J. Mol. Struct. 1028, 39–43 (2012).
[Crossref]

2011 (2)

D. K. Mohanty, V. K. Rai, Y. Dwivedi, and S. B. Rai, “Enhancement of upconversion intensity in Er3+ doped tellurite glass in presence of Yb3+,” Appl. Phys. B 104(1), 233–236 (2011).
[Crossref]

U. R. Rodríguez-Mendoza, E. A. Lalla, J. M. Cáceres, F. Rivera-López, S. F. León-Luís, and V. Lavín, “Optical characterization, 1.5μm emission and IR-to-visible energy upconversion in Er3+-doped fluorotellurite glasses,” J. Lumin. 131(6), 1239–1248 (2011).
[Crossref]

2010 (3)

L. Feng, B. Lai, J. Wang, G. Du, and Q. Su, “Spectroscopic properties of Er3+ in a oxyfluoride glass and upconversion and temperature sensor behaviour of Er3+/Yb3+-codoped oxyfluoride glass,” J. Lumin. 130(12), 2418–2423 (2010).
[Crossref]

J. Ozdanova, H. Ticha, and L. Tichy, “Raman studies and some physical properties of selected (PbO)x(Nb2O5)y(TeO2)1−x−y glasses,” Opt. Mater. 32(9), 950–955 (2010).
[Crossref]

J.-C. Boyer and F. C. J. M. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[Crossref] [PubMed]

2008 (2)

V. K. Rai, D. S. M. Leonardo, and C. B. de Araújo, “Infrared-to-green and blue upconversion in Tm3+-doped TeO2-PbO glass,” J. Appl. Phys. 103(5), 053514 (2008).
[Crossref]

H. Desirena, E. De la Rosa, A. Shulzgen, S. Shabet, and N. Peyghambarian, “Er3+ and Yb3+ concentration effect in the spectroscopic properties and energy transfer in Yb3+/Er3+ codoped tellurite glasses,” J. Phys. D Appl. Phys. 41(9), 095102 (2008).
[Crossref]

2007 (2)

C. Li, B. Dong, S. Li, and C. Song, “Er3+-Yb3+ co-doped silicate glass for optical temperature sensor,” Chem. Phys. Lett. 443(4–6), 426–429 (2007).
[Crossref]

E. S. S. Yousef, “Thermal and optical properties of zinc halotellurite glasses,” J. Mater. Sci. 42(12), 4502–4507 (2007).
[Crossref]

2004 (1)

H. Song, B. Sun, T. Wang, S. Lu, L. Yang, B. Chen, X. Wang, and X. Kong, “Three-photon upconversion luminescence phenomenon for the green levels in Er3+/Yb3+ codoped cubic nanocrystalline yttria,” Solid State Commun. 132(6), 409–413 (2004).
[Crossref]

2003 (1)

H. Lin, G. Meredith, S. Jiang, X. Peng, T. Luo, N. Peyghambarian, and E. Y.-B. Pun, “Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass,” J. Appl. Phys. 93(1), 186–191 (2003).
[Crossref]

2001 (1)

F. Song, G. Zhang, M. Shang, H. Tan, J. Yang, and F. Meng, “Three-photon phenomena in the upconversion luminescence of erbium-ytterbium-codoped phosphate glass,” Appl. Phys. Lett. 79(12), 1748–1750 (2001).
[Crossref]

2000 (2)

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

N. Jaba, A. Kanoun, H. Mejri, A. Selmi, S. Alaya, and H. Maaref, “Infrared to visible up-conversion study for erbium-doped zinc tellurite glasses, ” J. Phys. -Condes. Matter. 12(20), 4523–4534 (2000).
[Crossref]

1996 (1)

A. Renuka Devi and C. K. Jayasankar, “Optical properties of Er3+ ions in lithium borate glasses and comparative energy level analyses of Er3+ ions in various glasses,” J. Non-Cryst. Solids 197(2–3), 111–128 (1996).
[Crossref]

1994 (2)

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

J. S. Wang, D. P. Machewirth, F. Wu, E. Snitzer, and E. M. Vogel, “Neodymium-doped tellurite single-mode fiber laser,” Opt. Lett. 19(18), 1448–1449 (1994).
[Crossref] [PubMed]

1983 (1)

C. K. Jørgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less Common Met. 93(1), 107–112 (1983).
[Crossref]

1968 (1)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[Crossref]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

G. S. Ofelt, “Intensities of crystal spectra of rare−earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Alaya, S.

N. Jaba, A. Kanoun, H. Mejri, A. Selmi, S. Alaya, and H. Maaref, “Infrared to visible up-conversion study for erbium-doped zinc tellurite glasses, ” J. Phys. -Condes. Matter. 12(20), 4523–4534 (2000).
[Crossref]

Alonso, D.

S. F. León-Luis, V. Monteseguro, U. R. Rodríguez-Mendoza, I. R. Martín, D. Alonso, J. M. Cáceres, and V. Lavín, “2CaO·Al2O3:Er3+ glass: An efficient optical temperature sensor,” J. Lumin. 179, 272–279 (2016).
[Crossref]

Amjad, R. J.

M. R. Dousti, M. R. Sahar, S. K. Ghoshal, R. J. Amjad, and A. R. Samavati, “Effect of AgCl on spectroscopic properties of erbium doped zinc tellurite glass,” J. Mol. Struct. 1035, 6–12 (2013).
[Crossref]

Azam, M.

M. Azam, V. K. Rai, and P. Mishra, “Enhanced frequency upconversion and non-colour tunability in Er3+–Yb3+ codoped TeO2–WO3–Pb3O4 glasses,” J. Mater. Sci. Mater. Electron. 27(12), 12633–12641 (2016).
[Crossref]

Babu, P.

N. Vijaya, P. Babu, V. Venkatramu, C. K. Jayasankar, S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, and V. Lavín, “Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors,” Sens. Actuators B Chem. 186, 156–164 (2013).
[Crossref]

Boyer, J.-C.

J.-C. Boyer and F. C. J. M. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[Crossref] [PubMed]

Bulou, A.

M. Haouari, A. Maaoui, N. Saad, and A. Bulou, “Optical temperature sensing using green emissions of Er3+ doped fluoro-tellurite glass,” Sen. Actuators A. 261, 235–242 (2017).
[Crossref]

Cáceres, J. M.

S. F. León-Luis, V. Monteseguro, U. R. Rodríguez-Mendoza, I. R. Martín, D. Alonso, J. M. Cáceres, and V. Lavín, “2CaO·Al2O3:Er3+ glass: An efficient optical temperature sensor,” J. Lumin. 179, 272–279 (2016).
[Crossref]

U. R. Rodríguez-Mendoza, E. A. Lalla, J. M. Cáceres, F. Rivera-López, S. F. León-Luís, and V. Lavín, “Optical characterization, 1.5μm emission and IR-to-visible energy upconversion in Er3+-doped fluorotellurite glasses,” J. Lumin. 131(6), 1239–1248 (2011).
[Crossref]

Cardoso, A. A.

D. Manzani, J. F. D. Petruci, K. Nigoghossian, A. A. Cardoso, and S. J. L. Ribeiro, “A portable luminescent thermometer based on green up-conversion emission of Er3+/Yb3+ co-doped tellurite glass,” Sci. Rep. 7, 41596 (2017).
[Crossref] [PubMed]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[Crossref]

Chang, J.-K.

Chen, B.

H. Song, B. Sun, T. Wang, S. Lu, L. Yang, B. Chen, X. Wang, and X. Kong, “Three-photon upconversion luminescence phenomenon for the green levels in Er3+/Yb3+ codoped cubic nanocrystalline yttria,” Solid State Commun. 132(6), 409–413 (2004).
[Crossref]

Chen, B. J.

G. Z. Sui, X. P. Li, L. H. Cheng, J. S. Zhang, J. S. Sun, H. Y. Zhong, Y. Tian, S. B. Fu, and B. J. Chen, “Laser cooling with optical temperature sensing in Er3+-doped tellurite-germanate glasses,” Appl. Phys. B 110(4), 471–476 (2013).
[Crossref]

G. Z. Sui, X. P. Li, L. H. Cheng, J. S. Zhang, J. S. Sun, H. Y. Zhong, Y. Tian, S. B. Fu, and B. J. Chen, “Laser cooling with optical temperature sensing in Er3+-doped tellurite-germanate glasses,” Appl. Phys. B 110(4), 471–476 (2013).
[Crossref]

Chen, L.-Y.

Cheng, L. H.

G. Z. Sui, X. P. Li, L. H. Cheng, J. S. Zhang, J. S. Sun, H. Y. Zhong, Y. Tian, S. B. Fu, and B. J. Chen, “Laser cooling with optical temperature sensing in Er3+-doped tellurite-germanate glasses,” Appl. Phys. B 110(4), 471–476 (2013).
[Crossref]

G. Z. Sui, X. P. Li, L. H. Cheng, J. S. Zhang, J. S. Sun, H. Y. Zhong, Y. Tian, S. B. Fu, and B. J. Chen, “Laser cooling with optical temperature sensing in Er3+-doped tellurite-germanate glasses,” Appl. Phys. B 110(4), 471–476 (2013).
[Crossref]

Cheng, W.-C.

Cheng, W.-H.

Cui, C. E.

Y. Tian, Y. Tian, P. Huang, L. Wang, Q. Shi, and C. E. Cui, “Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route,” Chem. Eng. J. 297, 26–34 (2016).
[Crossref]

de Araújo, C. B.

V. K. Rai, D. S. M. Leonardo, and C. B. de Araújo, “Infrared-to-green and blue upconversion in Tm3+-doped TeO2-PbO glass,” J. Appl. Phys. 103(5), 053514 (2008).
[Crossref]

De la Rosa, E.

H. Desirena, E. De la Rosa, A. Shulzgen, S. Shabet, and N. Peyghambarian, “Er3+ and Yb3+ concentration effect in the spectroscopic properties and energy transfer in Yb3+/Er3+ codoped tellurite glasses,” J. Phys. D Appl. Phys. 41(9), 095102 (2008).
[Crossref]

Desirena, H.

H. Desirena, E. De la Rosa, A. Shulzgen, S. Shabet, and N. Peyghambarian, “Er3+ and Yb3+ concentration effect in the spectroscopic properties and energy transfer in Yb3+/Er3+ codoped tellurite glasses,” J. Phys. D Appl. Phys. 41(9), 095102 (2008).
[Crossref]

Dey, R.

R. Dey and V. K. Rai, “Yb3+ sensitized Er3+ doped La2O3 phosphor in temperature sensors and display devices,” Dalton Trans. 43(1), 111–118 (2014).
[Crossref] [PubMed]

Dong, B.

C. Li, B. Dong, S. Li, and C. Song, “Er3+-Yb3+ co-doped silicate glass for optical temperature sensor,” Chem. Phys. Lett. 443(4–6), 426–429 (2007).
[Crossref]

Dorosz, D.

M. Kochanowicz, D. Dorosz, J. Zmojda, J. Dorosz, and P. Miluski, “Influence of temperature on upconversion luminescence in tellurite glass co-doped with Yb3+/Er3+ and Yb3+/Tm3+,” J. Lumin. 151, 155–160 (2014).
[Crossref]

Dorosz, J.

M. Kochanowicz, D. Dorosz, J. Zmojda, J. Dorosz, and P. Miluski, “Influence of temperature on upconversion luminescence in tellurite glass co-doped with Yb3+/Er3+ and Yb3+/Tm3+,” J. Lumin. 151, 155–160 (2014).
[Crossref]

Dousti, M. R.

M. R. Dousti, M. R. Sahar, S. K. Ghoshal, R. J. Amjad, and A. R. Samavati, “Effect of AgCl on spectroscopic properties of erbium doped zinc tellurite glass,” J. Mol. Struct. 1035, 6–12 (2013).
[Crossref]

Du, G.

L. Feng, B. Lai, J. Wang, G. Du, and Q. Su, “Spectroscopic properties of Er3+ in a oxyfluoride glass and upconversion and temperature sensor behaviour of Er3+/Yb3+-codoped oxyfluoride glass,” J. Lumin. 130(12), 2418–2423 (2010).
[Crossref]

Dwivedi, Y.

D. K. Mohanty, V. K. Rai, Y. Dwivedi, and S. B. Rai, “Enhancement of upconversion intensity in Er3+ doped tellurite glass in presence of Yb3+,” Appl. Phys. B 104(1), 233–236 (2011).
[Crossref]

Elhouichet, H.

W. Stambouli, H. Elhouichet, and M. Ferid, “Study of thermal, structural and optical properties of tellurite glass with different TiO2 composition,” J. Mol. Struct. 1028, 39–43 (2012).
[Crossref]

Feng, L.

L. Feng, B. Lai, J. Wang, G. Du, and Q. Su, “Spectroscopic properties of Er3+ in a oxyfluoride glass and upconversion and temperature sensor behaviour of Er3+/Yb3+-codoped oxyfluoride glass,” J. Lumin. 130(12), 2418–2423 (2010).
[Crossref]

Ferid, M.

W. Stambouli, H. Elhouichet, and M. Ferid, “Study of thermal, structural and optical properties of tellurite glass with different TiO2 composition,” J. Mol. Struct. 1028, 39–43 (2012).
[Crossref]

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[Crossref]

Fu, S. B.

G. Z. Sui, X. P. Li, L. H. Cheng, J. S. Zhang, J. S. Sun, H. Y. Zhong, Y. Tian, S. B. Fu, and B. J. Chen, “Laser cooling with optical temperature sensing in Er3+-doped tellurite-germanate glasses,” Appl. Phys. B 110(4), 471–476 (2013).
[Crossref]

G. Z. Sui, X. P. Li, L. H. Cheng, J. S. Zhang, J. S. Sun, H. Y. Zhong, Y. Tian, S. B. Fu, and B. J. Chen, “Laser cooling with optical temperature sensing in Er3+-doped tellurite-germanate glasses,” Appl. Phys. B 110(4), 471–476 (2013).
[Crossref]

Gamelin, D. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Ghoshal, S. K.

M. R. Dousti, M. R. Sahar, S. K. Ghoshal, R. J. Amjad, and A. R. Samavati, “Effect of AgCl on spectroscopic properties of erbium doped zinc tellurite glass,” J. Mol. Struct. 1035, 6–12 (2013).
[Crossref]

Goldys, E. M.

H. Suo, X. Q. Zhao, Z. Y. Zhang, T. Li, E. M. Goldys, and C. F. Guo, “Constructing multiform morphologies of YF3: Er3+/Yb3+ up-conversion nano/micro-crystals towards sub-tissue thermometry,” Chem. Eng. J. 313, 65–73 (2017).
[Crossref]

Grabolle, M.

C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Relative and absolute determination of fluorescence quantum yields of transparent samples,” Nat. Protoc. 8(8), 1535–1550 (2013).
[Crossref] [PubMed]

Güdel, H. U.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Guo, C.

Z. Zhang, C. Guo, H. Suo, X. Zhao, N. Zhang, and T. Li, “Thermometry and up-conversion luminescence of Yb3+-Er3+ co-doped Na2Ln2Ti3O10 (Ln = Gd, La) phosphors,” Phys. Chem. Chem. Phys. 18(28), 18828–18834 (2016).
[Crossref] [PubMed]

Guo, C. F.

H. Suo, X. Q. Zhao, Z. Y. Zhang, T. Li, E. M. Goldys, and C. F. Guo, “Constructing multiform morphologies of YF3: Er3+/Yb3+ up-conversion nano/micro-crystals towards sub-tissue thermometry,” Chem. Eng. J. 313, 65–73 (2017).
[Crossref]

Haouari, M.

M. Haouari, A. Maaoui, N. Saad, and A. Bulou, “Optical temperature sensing using green emissions of Er3+ doped fluoro-tellurite glass,” Sen. Actuators A. 261, 235–242 (2017).
[Crossref]

Haro-González, P.

S. F. León-Luis, U. R. Rodríguez-Mendoza, P. Haro-González, I. R. Martín, and V. Lavín, “Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors,” Sens. Actuators B Chem. 174, 176–186 (2012).
[Crossref]

Hehlen, M. P.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Huang, J.-C.

Huang, P.

Y. Tian, Y. Tian, P. Huang, L. Wang, Q. Shi, and C. E. Cui, “Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route,” Chem. Eng. J. 297, 26–34 (2016).
[Crossref]

Huang, Y.-C.

Jaba, N.

N. Jaba, A. Kanoun, H. Mejri, A. Selmi, S. Alaya, and H. Maaref, “Infrared to visible up-conversion study for erbium-doped zinc tellurite glasses, ” J. Phys. -Condes. Matter. 12(20), 4523–4534 (2000).
[Crossref]

Jayasankar, C. K.

N. Vijaya, P. Babu, V. Venkatramu, C. K. Jayasankar, S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, and V. Lavín, “Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors,” Sens. Actuators B Chem. 186, 156–164 (2013).
[Crossref]

A. Renuka Devi and C. K. Jayasankar, “Optical properties of Er3+ ions in lithium borate glasses and comparative energy level analyses of Er3+ ions in various glasses,” J. Non-Cryst. Solids 197(2–3), 111–128 (1996).
[Crossref]

Jiang, S.

H. Lin, G. Meredith, S. Jiang, X. Peng, T. Luo, N. Peyghambarian, and E. Y.-B. Pun, “Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass,” J. Appl. Phys. 93(1), 186–191 (2003).
[Crossref]

Jørgensen, C. K.

C. K. Jørgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less Common Met. 93(1), 107–112 (1983).
[Crossref]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Kanoun, A.

N. Jaba, A. Kanoun, H. Mejri, A. Selmi, S. Alaya, and H. Maaref, “Infrared to visible up-conversion study for erbium-doped zinc tellurite glasses, ” J. Phys. -Condes. Matter. 12(20), 4523–4534 (2000).
[Crossref]

Kochanowicz, M.

M. Kochanowicz, D. Dorosz, J. Zmojda, J. Dorosz, and P. Miluski, “Influence of temperature on upconversion luminescence in tellurite glass co-doped with Yb3+/Er3+ and Yb3+/Tm3+,” J. Lumin. 151, 155–160 (2014).
[Crossref]

Kong, X.

H. Song, B. Sun, T. Wang, S. Lu, L. Yang, B. Chen, X. Wang, and X. Kong, “Three-photon upconversion luminescence phenomenon for the green levels in Er3+/Yb3+ codoped cubic nanocrystalline yttria,” Solid State Commun. 132(6), 409–413 (2004).
[Crossref]

Kumar, K.

A. Pandey, S. Som, V. Kumar, V. Kumar, K. Kumar, V. K. Rai, and H. C. Swart, “Enhanced upconversion and temperature sensing study of Er3+-Yb3+ codoped tungsten-tellurite glass,” Sens. Actuators B Chem. 202, 1305–1312 (2014).
[Crossref]

Kumar, V.

A. Pandey, S. Som, V. Kumar, V. Kumar, K. Kumar, V. K. Rai, and H. C. Swart, “Enhanced upconversion and temperature sensing study of Er3+-Yb3+ codoped tungsten-tellurite glass,” Sens. Actuators B Chem. 202, 1305–1312 (2014).
[Crossref]

A. Pandey, S. Som, V. Kumar, V. Kumar, K. Kumar, V. K. Rai, and H. C. Swart, “Enhanced upconversion and temperature sensing study of Er3+-Yb3+ codoped tungsten-tellurite glass,” Sens. Actuators B Chem. 202, 1305–1312 (2014).
[Crossref]

Lai, B.

L. Feng, B. Lai, J. Wang, G. Du, and Q. Su, “Spectroscopic properties of Er3+ in a oxyfluoride glass and upconversion and temperature sensor behaviour of Er3+/Yb3+-codoped oxyfluoride glass,” J. Lumin. 130(12), 2418–2423 (2010).
[Crossref]

Lalla, E.

S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176, 1167–1175 (2013).
[Crossref]

Lalla, E. A.

U. R. Rodríguez-Mendoza, E. A. Lalla, J. M. Cáceres, F. Rivera-López, S. F. León-Luís, and V. Lavín, “Optical characterization, 1.5μm emission and IR-to-visible energy upconversion in Er3+-doped fluorotellurite glasses,” J. Lumin. 131(6), 1239–1248 (2011).
[Crossref]

Lavín, V.

S. F. León-Luis, V. Monteseguro, U. R. Rodríguez-Mendoza, I. R. Martín, D. Alonso, J. M. Cáceres, and V. Lavín, “2CaO·Al2O3:Er3+ glass: An efficient optical temperature sensor,” J. Lumin. 179, 272–279 (2016).
[Crossref]

N. Vijaya, P. Babu, V. Venkatramu, C. K. Jayasankar, S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, and V. Lavín, “Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors,” Sens. Actuators B Chem. 186, 156–164 (2013).
[Crossref]

S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176, 1167–1175 (2013).
[Crossref]

S. F. León-Luis, U. R. Rodríguez-Mendoza, P. Haro-González, I. R. Martín, and V. Lavín, “Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors,” Sens. Actuators B Chem. 174, 176–186 (2012).
[Crossref]

U. R. Rodríguez-Mendoza, E. A. Lalla, J. M. Cáceres, F. Rivera-López, S. F. León-Luís, and V. Lavín, “Optical characterization, 1.5μm emission and IR-to-visible energy upconversion in Er3+-doped fluorotellurite glasses,” J. Lumin. 131(6), 1239–1248 (2011).
[Crossref]

Leonardo, D. S. M.

V. K. Rai, D. S. M. Leonardo, and C. B. de Araújo, “Infrared-to-green and blue upconversion in Tm3+-doped TeO2-PbO glass,” J. Appl. Phys. 103(5), 053514 (2008).
[Crossref]

León-Luis, S. F.

S. F. León-Luis, V. Monteseguro, U. R. Rodríguez-Mendoza, I. R. Martín, D. Alonso, J. M. Cáceres, and V. Lavín, “2CaO·Al2O3:Er3+ glass: An efficient optical temperature sensor,” J. Lumin. 179, 272–279 (2016).
[Crossref]

S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176, 1167–1175 (2013).
[Crossref]

N. Vijaya, P. Babu, V. Venkatramu, C. K. Jayasankar, S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, and V. Lavín, “Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors,” Sens. Actuators B Chem. 186, 156–164 (2013).
[Crossref]

S. F. León-Luis, U. R. Rodríguez-Mendoza, P. Haro-González, I. R. Martín, and V. Lavín, “Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors,” Sens. Actuators B Chem. 174, 176–186 (2012).
[Crossref]

León-Luís, S. F.

U. R. Rodríguez-Mendoza, E. A. Lalla, J. M. Cáceres, F. Rivera-López, S. F. León-Luís, and V. Lavín, “Optical characterization, 1.5μm emission and IR-to-visible energy upconversion in Er3+-doped fluorotellurite glasses,” J. Lumin. 131(6), 1239–1248 (2011).
[Crossref]

Li, C.

C. Li, B. Dong, S. Li, and C. Song, “Er3+-Yb3+ co-doped silicate glass for optical temperature sensor,” Chem. Phys. Lett. 443(4–6), 426–429 (2007).
[Crossref]

Li, L.

Li, S.

C. Li, B. Dong, S. Li, and C. Song, “Er3+-Yb3+ co-doped silicate glass for optical temperature sensor,” Chem. Phys. Lett. 443(4–6), 426–429 (2007).
[Crossref]

Li, T.

H. Suo, X. Q. Zhao, Z. Y. Zhang, T. Li, E. M. Goldys, and C. F. Guo, “Constructing multiform morphologies of YF3: Er3+/Yb3+ up-conversion nano/micro-crystals towards sub-tissue thermometry,” Chem. Eng. J. 313, 65–73 (2017).
[Crossref]

Z. Zhang, C. Guo, H. Suo, X. Zhao, N. Zhang, and T. Li, “Thermometry and up-conversion luminescence of Yb3+-Er3+ co-doped Na2Ln2Ti3O10 (Ln = Gd, La) phosphors,” Phys. Chem. Chem. Phys. 18(28), 18828–18834 (2016).
[Crossref] [PubMed]

Li, X. P.

G. Z. Sui, X. P. Li, L. H. Cheng, J. S. Zhang, J. S. Sun, H. Y. Zhong, Y. Tian, S. B. Fu, and B. J. Chen, “Laser cooling with optical temperature sensing in Er3+-doped tellurite-germanate glasses,” Appl. Phys. B 110(4), 471–476 (2013).
[Crossref]

G. Z. Sui, X. P. Li, L. H. Cheng, J. S. Zhang, J. S. Sun, H. Y. Zhong, Y. Tian, S. B. Fu, and B. J. Chen, “Laser cooling with optical temperature sensing in Er3+-doped tellurite-germanate glasses,” Appl. Phys. B 110(4), 471–476 (2013).
[Crossref]

Lin, H.

C. L. Zhu, E. Y. B. Pun, Z. Q. Wang, and H. Lin, “Upconversion photon quantification of holmium and erbium ions in waveguide-adaptive germanate glasses,” Appl. Phys. B 123(2), 64 (2017).
[Crossref]

H. Lin, G. Meredith, S. Jiang, X. Peng, T. Luo, N. Peyghambarian, and E. Y.-B. Pun, “Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass,” J. Appl. Phys. 93(1), 186–191 (2003).
[Crossref]

Lu, S.

H. Song, B. Sun, T. Wang, S. Lu, L. Yang, B. Chen, X. Wang, and X. Kong, “Three-photon upconversion luminescence phenomenon for the green levels in Er3+/Yb3+ codoped cubic nanocrystalline yttria,” Solid State Commun. 132(6), 409–413 (2004).
[Crossref]

Luo, T.

H. Lin, G. Meredith, S. Jiang, X. Peng, T. Luo, N. Peyghambarian, and E. Y.-B. Pun, “Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass,” J. Appl. Phys. 93(1), 186–191 (2003).
[Crossref]

Lüthi, S. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Maaoui, A.

M. Haouari, A. Maaoui, N. Saad, and A. Bulou, “Optical temperature sensing using green emissions of Er3+ doped fluoro-tellurite glass,” Sen. Actuators A. 261, 235–242 (2017).
[Crossref]

Maaref, H.

N. Jaba, A. Kanoun, H. Mejri, A. Selmi, S. Alaya, and H. Maaref, “Infrared to visible up-conversion study for erbium-doped zinc tellurite glasses, ” J. Phys. -Condes. Matter. 12(20), 4523–4534 (2000).
[Crossref]

Machewirth, D. P.

Manzani, D.

D. Manzani, J. F. D. Petruci, K. Nigoghossian, A. A. Cardoso, and S. J. L. Ribeiro, “A portable luminescent thermometer based on green up-conversion emission of Er3+/Yb3+ co-doped tellurite glass,” Sci. Rep. 7, 41596 (2017).
[Crossref] [PubMed]

Martín, I. R.

S. F. León-Luis, V. Monteseguro, U. R. Rodríguez-Mendoza, I. R. Martín, D. Alonso, J. M. Cáceres, and V. Lavín, “2CaO·Al2O3:Er3+ glass: An efficient optical temperature sensor,” J. Lumin. 179, 272–279 (2016).
[Crossref]

S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176, 1167–1175 (2013).
[Crossref]

N. Vijaya, P. Babu, V. Venkatramu, C. K. Jayasankar, S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, and V. Lavín, “Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors,” Sens. Actuators B Chem. 186, 156–164 (2013).
[Crossref]

S. F. León-Luis, U. R. Rodríguez-Mendoza, P. Haro-González, I. R. Martín, and V. Lavín, “Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors,” Sens. Actuators B Chem. 174, 176–186 (2012).
[Crossref]

Mejri, H.

N. Jaba, A. Kanoun, H. Mejri, A. Selmi, S. Alaya, and H. Maaref, “Infrared to visible up-conversion study for erbium-doped zinc tellurite glasses, ” J. Phys. -Condes. Matter. 12(20), 4523–4534 (2000).
[Crossref]

Meng, F.

F. Song, G. Zhang, M. Shang, H. Tan, J. Yang, and F. Meng, “Three-photon phenomena in the upconversion luminescence of erbium-ytterbium-codoped phosphate glass,” Appl. Phys. Lett. 79(12), 1748–1750 (2001).
[Crossref]

Meredith, G.

H. Lin, G. Meredith, S. Jiang, X. Peng, T. Luo, N. Peyghambarian, and E. Y.-B. Pun, “Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass,” J. Appl. Phys. 93(1), 186–191 (2003).
[Crossref]

Miluski, P.

M. Kochanowicz, D. Dorosz, J. Zmojda, J. Dorosz, and P. Miluski, “Influence of temperature on upconversion luminescence in tellurite glass co-doped with Yb3+/Er3+ and Yb3+/Tm3+,” J. Lumin. 151, 155–160 (2014).
[Crossref]

Mishra, P.

M. Azam, V. K. Rai, and P. Mishra, “Enhanced frequency upconversion and non-colour tunability in Er3+–Yb3+ codoped TeO2–WO3–Pb3O4 glasses,” J. Mater. Sci. Mater. Electron. 27(12), 12633–12641 (2016).
[Crossref]

Mohanty, D. K.

D. K. Mohanty, V. K. Rai, Y. Dwivedi, and S. B. Rai, “Enhancement of upconversion intensity in Er3+ doped tellurite glass in presence of Yb3+,” Appl. Phys. B 104(1), 233–236 (2011).
[Crossref]

Mondal, M.

M. Mondal, V. K. Rai, and C. Srivastava, “Influence of silica surface coating on optical properties of Er3+-Yb3+:YMoO4 upconverting nanoparticles,” Chem. Eng. J. 327, 838–848 (2017).
[Crossref]

Monteseguro, V.

S. F. León-Luis, V. Monteseguro, U. R. Rodríguez-Mendoza, I. R. Martín, D. Alonso, J. M. Cáceres, and V. Lavín, “2CaO·Al2O3:Er3+ glass: An efficient optical temperature sensor,” J. Lumin. 179, 272–279 (2016).
[Crossref]

Nigoghossian, K.

D. Manzani, J. F. D. Petruci, K. Nigoghossian, A. A. Cardoso, and S. J. L. Ribeiro, “A portable luminescent thermometer based on green up-conversion emission of Er3+/Yb3+ co-doped tellurite glass,” Sci. Rep. 7, 41596 (2017).
[Crossref] [PubMed]

Nunokawa, T.

Y. Onodera, T. Nunokawa, O. Odawara, and H. Wada, “Upconversion properties of Y2O3:Er,Yb nanoparticles prepared by laser ablation in water,” J. Lumin. 137, 220–224 (2013).
[Crossref]

Odawara, O.

Y. Onodera, T. Nunokawa, O. Odawara, and H. Wada, “Upconversion properties of Y2O3:Er,Yb nanoparticles prepared by laser ablation in water,” J. Lumin. 137, 220–224 (2013).
[Crossref]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare−earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Onodera, Y.

Y. Onodera, T. Nunokawa, O. Odawara, and H. Wada, “Upconversion properties of Y2O3:Er,Yb nanoparticles prepared by laser ablation in water,” J. Lumin. 137, 220–224 (2013).
[Crossref]

Ozdanova, J.

J. Ozdanova, H. Ticha, and L. Tichy, “Raman studies and some physical properties of selected (PbO)x(Nb2O5)y(TeO2)1−x−y glasses,” Opt. Mater. 32(9), 950–955 (2010).
[Crossref]

Pandey, A.

A. Pandey, S. Som, V. Kumar, V. Kumar, K. Kumar, V. K. Rai, and H. C. Swart, “Enhanced upconversion and temperature sensing study of Er3+-Yb3+ codoped tungsten-tellurite glass,” Sens. Actuators B Chem. 202, 1305–1312 (2014).
[Crossref]

Pauli, J.

C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Relative and absolute determination of fluorescence quantum yields of transparent samples,” Nat. Protoc. 8(8), 1535–1550 (2013).
[Crossref] [PubMed]

Peng, B.

C. Wang, P. Wang, R. Zheng, S. Xu, W. Wei, and B. Peng, “Spectroscopic properties of new Yb3+-doped TeO2-ZnO-Nb2O5 based tellurite glasses with high emission cross-section,” Opt. Mater. 34(9), 1549–1552 (2012).
[Crossref]

Peng, X.

H. Lin, G. Meredith, S. Jiang, X. Peng, T. Luo, N. Peyghambarian, and E. Y.-B. Pun, “Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass,” J. Appl. Phys. 93(1), 186–191 (2003).
[Crossref]

Petruci, J. F. D.

D. Manzani, J. F. D. Petruci, K. Nigoghossian, A. A. Cardoso, and S. J. L. Ribeiro, “A portable luminescent thermometer based on green up-conversion emission of Er3+/Yb3+ co-doped tellurite glass,” Sci. Rep. 7, 41596 (2017).
[Crossref] [PubMed]

Peyghambarian, N.

H. Desirena, E. De la Rosa, A. Shulzgen, S. Shabet, and N. Peyghambarian, “Er3+ and Yb3+ concentration effect in the spectroscopic properties and energy transfer in Yb3+/Er3+ codoped tellurite glasses,” J. Phys. D Appl. Phys. 41(9), 095102 (2008).
[Crossref]

H. Lin, G. Meredith, S. Jiang, X. Peng, T. Luo, N. Peyghambarian, and E. Y.-B. Pun, “Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass,” J. Appl. Phys. 93(1), 186–191 (2003).
[Crossref]

Pollnau, M.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Pun, E. Y. B.

C. L. Zhu, E. Y. B. Pun, Z. Q. Wang, and H. Lin, “Upconversion photon quantification of holmium and erbium ions in waveguide-adaptive germanate glasses,” Appl. Phys. B 123(2), 64 (2017).
[Crossref]

Pun, E. Y.-B.

H. Lin, G. Meredith, S. Jiang, X. Peng, T. Luo, N. Peyghambarian, and E. Y.-B. Pun, “Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass,” J. Appl. Phys. 93(1), 186–191 (2003).
[Crossref]

Rai, S. B.

D. K. Mohanty, V. K. Rai, Y. Dwivedi, and S. B. Rai, “Enhancement of upconversion intensity in Er3+ doped tellurite glass in presence of Yb3+,” Appl. Phys. B 104(1), 233–236 (2011).
[Crossref]

Rai, V. K.

M. Mondal, V. K. Rai, and C. Srivastava, “Influence of silica surface coating on optical properties of Er3+-Yb3+:YMoO4 upconverting nanoparticles,” Chem. Eng. J. 327, 838–848 (2017).
[Crossref]

M. Azam, V. K. Rai, and P. Mishra, “Enhanced frequency upconversion and non-colour tunability in Er3+–Yb3+ codoped TeO2–WO3–Pb3O4 glasses,” J. Mater. Sci. Mater. Electron. 27(12), 12633–12641 (2016).
[Crossref]

A. Pandey, S. Som, V. Kumar, V. Kumar, K. Kumar, V. K. Rai, and H. C. Swart, “Enhanced upconversion and temperature sensing study of Er3+-Yb3+ codoped tungsten-tellurite glass,” Sens. Actuators B Chem. 202, 1305–1312 (2014).
[Crossref]

R. Dey and V. K. Rai, “Yb3+ sensitized Er3+ doped La2O3 phosphor in temperature sensors and display devices,” Dalton Trans. 43(1), 111–118 (2014).
[Crossref] [PubMed]

D. K. Mohanty, V. K. Rai, Y. Dwivedi, and S. B. Rai, “Enhancement of upconversion intensity in Er3+ doped tellurite glass in presence of Yb3+,” Appl. Phys. B 104(1), 233–236 (2011).
[Crossref]

V. K. Rai, D. S. M. Leonardo, and C. B. de Araújo, “Infrared-to-green and blue upconversion in Tm3+-doped TeO2-PbO glass,” J. Appl. Phys. 103(5), 053514 (2008).
[Crossref]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[Crossref]

Reisfeld, R.

C. K. Jørgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less Common Met. 93(1), 107–112 (1983).
[Crossref]

Renuka Devi, A.

A. Renuka Devi and C. K. Jayasankar, “Optical properties of Er3+ ions in lithium borate glasses and comparative energy level analyses of Er3+ ions in various glasses,” J. Non-Cryst. Solids 197(2–3), 111–128 (1996).
[Crossref]

Resch-Genger, U.

C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Relative and absolute determination of fluorescence quantum yields of transparent samples,” Nat. Protoc. 8(8), 1535–1550 (2013).
[Crossref] [PubMed]

Ribeiro, S. J. L.

D. Manzani, J. F. D. Petruci, K. Nigoghossian, A. A. Cardoso, and S. J. L. Ribeiro, “A portable luminescent thermometer based on green up-conversion emission of Er3+/Yb3+ co-doped tellurite glass,” Sci. Rep. 7, 41596 (2017).
[Crossref] [PubMed]

Rivera-López, F.

U. R. Rodríguez-Mendoza, E. A. Lalla, J. M. Cáceres, F. Rivera-López, S. F. León-Luís, and V. Lavín, “Optical characterization, 1.5μm emission and IR-to-visible energy upconversion in Er3+-doped fluorotellurite glasses,” J. Lumin. 131(6), 1239–1248 (2011).
[Crossref]

Rodríguez-Mendoza, U. R.

S. F. León-Luis, V. Monteseguro, U. R. Rodríguez-Mendoza, I. R. Martín, D. Alonso, J. M. Cáceres, and V. Lavín, “2CaO·Al2O3:Er3+ glass: An efficient optical temperature sensor,” J. Lumin. 179, 272–279 (2016).
[Crossref]

N. Vijaya, P. Babu, V. Venkatramu, C. K. Jayasankar, S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, and V. Lavín, “Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors,” Sens. Actuators B Chem. 186, 156–164 (2013).
[Crossref]

S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176, 1167–1175 (2013).
[Crossref]

S. F. León-Luis, U. R. Rodríguez-Mendoza, P. Haro-González, I. R. Martín, and V. Lavín, “Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors,” Sens. Actuators B Chem. 174, 176–186 (2012).
[Crossref]

U. R. Rodríguez-Mendoza, E. A. Lalla, J. M. Cáceres, F. Rivera-López, S. F. León-Luís, and V. Lavín, “Optical characterization, 1.5μm emission and IR-to-visible energy upconversion in Er3+-doped fluorotellurite glasses,” J. Lumin. 131(6), 1239–1248 (2011).
[Crossref]

Saad, N.

M. Haouari, A. Maaoui, N. Saad, and A. Bulou, “Optical temperature sensing using green emissions of Er3+ doped fluoro-tellurite glass,” Sen. Actuators A. 261, 235–242 (2017).
[Crossref]

Sahar, M. R.

M. R. Dousti, M. R. Sahar, S. K. Ghoshal, R. J. Amjad, and A. R. Samavati, “Effect of AgCl on spectroscopic properties of erbium doped zinc tellurite glass,” J. Mol. Struct. 1035, 6–12 (2013).
[Crossref]

Samavati, A. R.

M. R. Dousti, M. R. Sahar, S. K. Ghoshal, R. J. Amjad, and A. R. Samavati, “Effect of AgCl on spectroscopic properties of erbium doped zinc tellurite glass,” J. Mol. Struct. 1035, 6–12 (2013).
[Crossref]

Selmi, A.

N. Jaba, A. Kanoun, H. Mejri, A. Selmi, S. Alaya, and H. Maaref, “Infrared to visible up-conversion study for erbium-doped zinc tellurite glasses, ” J. Phys. -Condes. Matter. 12(20), 4523–4534 (2000).
[Crossref]

Shabet, S.

H. Desirena, E. De la Rosa, A. Shulzgen, S. Shabet, and N. Peyghambarian, “Er3+ and Yb3+ concentration effect in the spectroscopic properties and energy transfer in Yb3+/Er3+ codoped tellurite glasses,” J. Phys. D Appl. Phys. 41(9), 095102 (2008).
[Crossref]

Shang, M.

F. Song, G. Zhang, M. Shang, H. Tan, J. Yang, and F. Meng, “Three-photon phenomena in the upconversion luminescence of erbium-ytterbium-codoped phosphate glass,” Appl. Phys. Lett. 79(12), 1748–1750 (2001).
[Crossref]

Shi, Q.

Y. Tian, Y. Tian, P. Huang, L. Wang, Q. Shi, and C. E. Cui, “Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route,” Chem. Eng. J. 297, 26–34 (2016).
[Crossref]

Shulzgen, A.

H. Desirena, E. De la Rosa, A. Shulzgen, S. Shabet, and N. Peyghambarian, “Er3+ and Yb3+ concentration effect in the spectroscopic properties and energy transfer in Yb3+/Er3+ codoped tellurite glasses,” J. Phys. D Appl. Phys. 41(9), 095102 (2008).
[Crossref]

Snitzer, E.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

J. S. Wang, D. P. Machewirth, F. Wu, E. Snitzer, and E. M. Vogel, “Neodymium-doped tellurite single-mode fiber laser,” Opt. Lett. 19(18), 1448–1449 (1994).
[Crossref] [PubMed]

Som, S.

A. Pandey, S. Som, V. Kumar, V. Kumar, K. Kumar, V. K. Rai, and H. C. Swart, “Enhanced upconversion and temperature sensing study of Er3+-Yb3+ codoped tungsten-tellurite glass,” Sens. Actuators B Chem. 202, 1305–1312 (2014).
[Crossref]

Song, C.

C. Li, B. Dong, S. Li, and C. Song, “Er3+-Yb3+ co-doped silicate glass for optical temperature sensor,” Chem. Phys. Lett. 443(4–6), 426–429 (2007).
[Crossref]

Song, F.

F. Song, G. Zhang, M. Shang, H. Tan, J. Yang, and F. Meng, “Three-photon phenomena in the upconversion luminescence of erbium-ytterbium-codoped phosphate glass,” Appl. Phys. Lett. 79(12), 1748–1750 (2001).
[Crossref]

Song, H.

H. Song, B. Sun, T. Wang, S. Lu, L. Yang, B. Chen, X. Wang, and X. Kong, “Three-photon upconversion luminescence phenomenon for the green levels in Er3+/Yb3+ codoped cubic nanocrystalline yttria,” Solid State Commun. 132(6), 409–413 (2004).
[Crossref]

Spieles, M.

C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Relative and absolute determination of fluorescence quantum yields of transparent samples,” Nat. Protoc. 8(8), 1535–1550 (2013).
[Crossref] [PubMed]

Srivastava, C.

M. Mondal, V. K. Rai, and C. Srivastava, “Influence of silica surface coating on optical properties of Er3+-Yb3+:YMoO4 upconverting nanoparticles,” Chem. Eng. J. 327, 838–848 (2017).
[Crossref]

Stambouli, W.

W. Stambouli, H. Elhouichet, and M. Ferid, “Study of thermal, structural and optical properties of tellurite glass with different TiO2 composition,” J. Mol. Struct. 1028, 39–43 (2012).
[Crossref]

Su, Q.

L. Feng, B. Lai, J. Wang, G. Du, and Q. Su, “Spectroscopic properties of Er3+ in a oxyfluoride glass and upconversion and temperature sensor behaviour of Er3+/Yb3+-codoped oxyfluoride glass,” J. Lumin. 130(12), 2418–2423 (2010).
[Crossref]

Sui, G. Z.

G. Z. Sui, X. P. Li, L. H. Cheng, J. S. Zhang, J. S. Sun, H. Y. Zhong, Y. Tian, S. B. Fu, and B. J. Chen, “Laser cooling with optical temperature sensing in Er3+-doped tellurite-germanate glasses,” Appl. Phys. B 110(4), 471–476 (2013).
[Crossref]

G. Z. Sui, X. P. Li, L. H. Cheng, J. S. Zhang, J. S. Sun, H. Y. Zhong, Y. Tian, S. B. Fu, and B. J. Chen, “Laser cooling with optical temperature sensing in Er3+-doped tellurite-germanate glasses,” Appl. Phys. B 110(4), 471–476 (2013).
[Crossref]

Sun, B.

H. Song, B. Sun, T. Wang, S. Lu, L. Yang, B. Chen, X. Wang, and X. Kong, “Three-photon upconversion luminescence phenomenon for the green levels in Er3+/Yb3+ codoped cubic nanocrystalline yttria,” Solid State Commun. 132(6), 409–413 (2004).
[Crossref]

Sun, J. S.

G. Z. Sui, X. P. Li, L. H. Cheng, J. S. Zhang, J. S. Sun, H. Y. Zhong, Y. Tian, S. B. Fu, and B. J. Chen, “Laser cooling with optical temperature sensing in Er3+-doped tellurite-germanate glasses,” Appl. Phys. B 110(4), 471–476 (2013).
[Crossref]

G. Z. Sui, X. P. Li, L. H. Cheng, J. S. Zhang, J. S. Sun, H. Y. Zhong, Y. Tian, S. B. Fu, and B. J. Chen, “Laser cooling with optical temperature sensing in Er3+-doped tellurite-germanate glasses,” Appl. Phys. B 110(4), 471–476 (2013).
[Crossref]

Suo, H.

H. Suo, X. Q. Zhao, Z. Y. Zhang, T. Li, E. M. Goldys, and C. F. Guo, “Constructing multiform morphologies of YF3: Er3+/Yb3+ up-conversion nano/micro-crystals towards sub-tissue thermometry,” Chem. Eng. J. 313, 65–73 (2017).
[Crossref]

Z. Zhang, C. Guo, H. Suo, X. Zhao, N. Zhang, and T. Li, “Thermometry and up-conversion luminescence of Yb3+-Er3+ co-doped Na2Ln2Ti3O10 (Ln = Gd, La) phosphors,” Phys. Chem. Chem. Phys. 18(28), 18828–18834 (2016).
[Crossref] [PubMed]

Swart, H. C.

A. Pandey, S. Som, V. Kumar, V. Kumar, K. Kumar, V. K. Rai, and H. C. Swart, “Enhanced upconversion and temperature sensing study of Er3+-Yb3+ codoped tungsten-tellurite glass,” Sens. Actuators B Chem. 202, 1305–1312 (2014).
[Crossref]

Tan, H.

F. Song, G. Zhang, M. Shang, H. Tan, J. Yang, and F. Meng, “Three-photon phenomena in the upconversion luminescence of erbium-ytterbium-codoped phosphate glass,” Appl. Phys. Lett. 79(12), 1748–1750 (2001).
[Crossref]

Tian, Y.

Y. Tian, Y. Tian, P. Huang, L. Wang, Q. Shi, and C. E. Cui, “Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route,” Chem. Eng. J. 297, 26–34 (2016).
[Crossref]

Y. Tian, Y. Tian, P. Huang, L. Wang, Q. Shi, and C. E. Cui, “Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route,” Chem. Eng. J. 297, 26–34 (2016).
[Crossref]

G. Z. Sui, X. P. Li, L. H. Cheng, J. S. Zhang, J. S. Sun, H. Y. Zhong, Y. Tian, S. B. Fu, and B. J. Chen, “Laser cooling with optical temperature sensing in Er3+-doped tellurite-germanate glasses,” Appl. Phys. B 110(4), 471–476 (2013).
[Crossref]

G. Z. Sui, X. P. Li, L. H. Cheng, J. S. Zhang, J. S. Sun, H. Y. Zhong, Y. Tian, S. B. Fu, and B. J. Chen, “Laser cooling with optical temperature sensing in Er3+-doped tellurite-germanate glasses,” Appl. Phys. B 110(4), 471–476 (2013).
[Crossref]

Ticha, H.

J. Ozdanova, H. Ticha, and L. Tichy, “Raman studies and some physical properties of selected (PbO)x(Nb2O5)y(TeO2)1−x−y glasses,” Opt. Mater. 32(9), 950–955 (2010).
[Crossref]

Tichy, L.

J. Ozdanova, H. Ticha, and L. Tichy, “Raman studies and some physical properties of selected (PbO)x(Nb2O5)y(TeO2)1−x−y glasses,” Opt. Mater. 32(9), 950–955 (2010).
[Crossref]

Tsai, C.-C.

van Veggel, F. C. J. M.

J.-C. Boyer and F. C. J. M. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[Crossref] [PubMed]

Venkatramu, V.

N. Vijaya, P. Babu, V. Venkatramu, C. K. Jayasankar, S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, and V. Lavín, “Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors,” Sens. Actuators B Chem. 186, 156–164 (2013).
[Crossref]

Vijaya, N.

N. Vijaya, P. Babu, V. Venkatramu, C. K. Jayasankar, S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, and V. Lavín, “Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors,” Sens. Actuators B Chem. 186, 156–164 (2013).
[Crossref]

Vogel, E. M.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

J. S. Wang, D. P. Machewirth, F. Wu, E. Snitzer, and E. M. Vogel, “Neodymium-doped tellurite single-mode fiber laser,” Opt. Lett. 19(18), 1448–1449 (1994).
[Crossref] [PubMed]

Wada, H.

Y. Onodera, T. Nunokawa, O. Odawara, and H. Wada, “Upconversion properties of Y2O3:Er,Yb nanoparticles prepared by laser ablation in water,” J. Lumin. 137, 220–224 (2013).
[Crossref]

Wang, C.

C. Wang, P. Wang, R. Zheng, S. Xu, W. Wei, and B. Peng, “Spectroscopic properties of new Yb3+-doped TeO2-ZnO-Nb2O5 based tellurite glasses with high emission cross-section,” Opt. Mater. 34(9), 1549–1552 (2012).
[Crossref]

Wang, J.

L. Feng, B. Lai, J. Wang, G. Du, and Q. Su, “Spectroscopic properties of Er3+ in a oxyfluoride glass and upconversion and temperature sensor behaviour of Er3+/Yb3+-codoped oxyfluoride glass,” J. Lumin. 130(12), 2418–2423 (2010).
[Crossref]

Wang, J. S.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

J. S. Wang, D. P. Machewirth, F. Wu, E. Snitzer, and E. M. Vogel, “Neodymium-doped tellurite single-mode fiber laser,” Opt. Lett. 19(18), 1448–1449 (1994).
[Crossref] [PubMed]

Wang, L.

Y. Tian, Y. Tian, P. Huang, L. Wang, Q. Shi, and C. E. Cui, “Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route,” Chem. Eng. J. 297, 26–34 (2016).
[Crossref]

Wang, P.

C. Wang, P. Wang, R. Zheng, S. Xu, W. Wei, and B. Peng, “Spectroscopic properties of new Yb3+-doped TeO2-ZnO-Nb2O5 based tellurite glasses with high emission cross-section,” Opt. Mater. 34(9), 1549–1552 (2012).
[Crossref]

Wang, T.

H. Song, B. Sun, T. Wang, S. Lu, L. Yang, B. Chen, X. Wang, and X. Kong, “Three-photon upconversion luminescence phenomenon for the green levels in Er3+/Yb3+ codoped cubic nanocrystalline yttria,” Solid State Commun. 132(6), 409–413 (2004).
[Crossref]

Wang, W.

Wang, X.

H. Song, B. Sun, T. Wang, S. Lu, L. Yang, B. Chen, X. Wang, and X. Kong, “Three-photon upconversion luminescence phenomenon for the green levels in Er3+/Yb3+ codoped cubic nanocrystalline yttria,” Solid State Commun. 132(6), 409–413 (2004).
[Crossref]

Wang, Z. Q.

C. L. Zhu, E. Y. B. Pun, Z. Q. Wang, and H. Lin, “Upconversion photon quantification of holmium and erbium ions in waveguide-adaptive germanate glasses,” Appl. Phys. B 123(2), 64 (2017).
[Crossref]

Wei, W.

C. Wang, P. Wang, R. Zheng, S. Xu, W. Wei, and B. Peng, “Spectroscopic properties of new Yb3+-doped TeO2-ZnO-Nb2O5 based tellurite glasses with high emission cross-section,” Opt. Mater. 34(9), 1549–1552 (2012).
[Crossref]

Wu, F.

Würth, C.

C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Relative and absolute determination of fluorescence quantum yields of transparent samples,” Nat. Protoc. 8(8), 1535–1550 (2013).
[Crossref] [PubMed]

Xu, S.

C. Wang, P. Wang, R. Zheng, S. Xu, W. Wei, and B. Peng, “Spectroscopic properties of new Yb3+-doped TeO2-ZnO-Nb2O5 based tellurite glasses with high emission cross-section,” Opt. Mater. 34(9), 1549–1552 (2012).
[Crossref]

Yang, J.

F. Song, G. Zhang, M. Shang, H. Tan, J. Yang, and F. Meng, “Three-photon phenomena in the upconversion luminescence of erbium-ytterbium-codoped phosphate glass,” Appl. Phys. Lett. 79(12), 1748–1750 (2001).
[Crossref]

Yang, L.

H. Song, B. Sun, T. Wang, S. Lu, L. Yang, B. Chen, X. Wang, and X. Kong, “Three-photon upconversion luminescence phenomenon for the green levels in Er3+/Yb3+ codoped cubic nanocrystalline yttria,” Solid State Commun. 132(6), 409–413 (2004).
[Crossref]

Yousef, E. S. S.

E. S. S. Yousef, “Thermal and optical properties of zinc halotellurite glasses,” J. Mater. Sci. 42(12), 4502–4507 (2007).
[Crossref]

Yuan, J.

Zhang, C.

Zhang, G.

F. Song, G. Zhang, M. Shang, H. Tan, J. Yang, and F. Meng, “Three-photon phenomena in the upconversion luminescence of erbium-ytterbium-codoped phosphate glass,” Appl. Phys. Lett. 79(12), 1748–1750 (2001).
[Crossref]

Zhang, J. S.

G. Z. Sui, X. P. Li, L. H. Cheng, J. S. Zhang, J. S. Sun, H. Y. Zhong, Y. Tian, S. B. Fu, and B. J. Chen, “Laser cooling with optical temperature sensing in Er3+-doped tellurite-germanate glasses,” Appl. Phys. B 110(4), 471–476 (2013).
[Crossref]

G. Z. Sui, X. P. Li, L. H. Cheng, J. S. Zhang, J. S. Sun, H. Y. Zhong, Y. Tian, S. B. Fu, and B. J. Chen, “Laser cooling with optical temperature sensing in Er3+-doped tellurite-germanate glasses,” Appl. Phys. B 110(4), 471–476 (2013).
[Crossref]

Zhang, N.

Z. Zhang, C. Guo, H. Suo, X. Zhao, N. Zhang, and T. Li, “Thermometry and up-conversion luminescence of Yb3+-Er3+ co-doped Na2Ln2Ti3O10 (Ln = Gd, La) phosphors,” Phys. Chem. Chem. Phys. 18(28), 18828–18834 (2016).
[Crossref] [PubMed]

Zhang, Q.

Zhang, Z.

Z. Zhang, C. Guo, H. Suo, X. Zhao, N. Zhang, and T. Li, “Thermometry and up-conversion luminescence of Yb3+-Er3+ co-doped Na2Ln2Ti3O10 (Ln = Gd, La) phosphors,” Phys. Chem. Chem. Phys. 18(28), 18828–18834 (2016).
[Crossref] [PubMed]

Zhang, Z. Y.

H. Suo, X. Q. Zhao, Z. Y. Zhang, T. Li, E. M. Goldys, and C. F. Guo, “Constructing multiform morphologies of YF3: Er3+/Yb3+ up-conversion nano/micro-crystals towards sub-tissue thermometry,” Chem. Eng. J. 313, 65–73 (2017).
[Crossref]

Zhao, X.

Z. Zhang, C. Guo, H. Suo, X. Zhao, N. Zhang, and T. Li, “Thermometry and up-conversion luminescence of Yb3+-Er3+ co-doped Na2Ln2Ti3O10 (Ln = Gd, La) phosphors,” Phys. Chem. Chem. Phys. 18(28), 18828–18834 (2016).
[Crossref] [PubMed]

Zhao, X. Q.

H. Suo, X. Q. Zhao, Z. Y. Zhang, T. Li, E. M. Goldys, and C. F. Guo, “Constructing multiform morphologies of YF3: Er3+/Yb3+ up-conversion nano/micro-crystals towards sub-tissue thermometry,” Chem. Eng. J. 313, 65–73 (2017).
[Crossref]

Zheng, R.

C. Wang, P. Wang, R. Zheng, S. Xu, W. Wei, and B. Peng, “Spectroscopic properties of new Yb3+-doped TeO2-ZnO-Nb2O5 based tellurite glasses with high emission cross-section,” Opt. Mater. 34(9), 1549–1552 (2012).
[Crossref]

Zhong, H. Y.

G. Z. Sui, X. P. Li, L. H. Cheng, J. S. Zhang, J. S. Sun, H. Y. Zhong, Y. Tian, S. B. Fu, and B. J. Chen, “Laser cooling with optical temperature sensing in Er3+-doped tellurite-germanate glasses,” Appl. Phys. B 110(4), 471–476 (2013).
[Crossref]

G. Z. Sui, X. P. Li, L. H. Cheng, J. S. Zhang, J. S. Sun, H. Y. Zhong, Y. Tian, S. B. Fu, and B. J. Chen, “Laser cooling with optical temperature sensing in Er3+-doped tellurite-germanate glasses,” Appl. Phys. B 110(4), 471–476 (2013).
[Crossref]

Zhou, B.

Zhu, C. L.

C. L. Zhu, E. Y. B. Pun, Z. Q. Wang, and H. Lin, “Upconversion photon quantification of holmium and erbium ions in waveguide-adaptive germanate glasses,” Appl. Phys. B 123(2), 64 (2017).
[Crossref]

Zmojda, J.

M. Kochanowicz, D. Dorosz, J. Zmojda, J. Dorosz, and P. Miluski, “Influence of temperature on upconversion luminescence in tellurite glass co-doped with Yb3+/Er3+ and Yb3+/Tm3+,” J. Lumin. 151, 155–160 (2014).
[Crossref]

Appl. Phys. B (4)

D. K. Mohanty, V. K. Rai, Y. Dwivedi, and S. B. Rai, “Enhancement of upconversion intensity in Er3+ doped tellurite glass in presence of Yb3+,” Appl. Phys. B 104(1), 233–236 (2011).
[Crossref]

G. Z. Sui, X. P. Li, L. H. Cheng, J. S. Zhang, J. S. Sun, H. Y. Zhong, Y. Tian, S. B. Fu, and B. J. Chen, “Laser cooling with optical temperature sensing in Er3+-doped tellurite-germanate glasses,” Appl. Phys. B 110(4), 471–476 (2013).
[Crossref]

C. L. Zhu, E. Y. B. Pun, Z. Q. Wang, and H. Lin, “Upconversion photon quantification of holmium and erbium ions in waveguide-adaptive germanate glasses,” Appl. Phys. B 123(2), 64 (2017).
[Crossref]

G. Z. Sui, X. P. Li, L. H. Cheng, J. S. Zhang, J. S. Sun, H. Y. Zhong, Y. Tian, S. B. Fu, and B. J. Chen, “Laser cooling with optical temperature sensing in Er3+-doped tellurite-germanate glasses,” Appl. Phys. B 110(4), 471–476 (2013).
[Crossref]

Appl. Phys. Lett. (1)

F. Song, G. Zhang, M. Shang, H. Tan, J. Yang, and F. Meng, “Three-photon phenomena in the upconversion luminescence of erbium-ytterbium-codoped phosphate glass,” Appl. Phys. Lett. 79(12), 1748–1750 (2001).
[Crossref]

Chem. Eng. J. (3)

H. Suo, X. Q. Zhao, Z. Y. Zhang, T. Li, E. M. Goldys, and C. F. Guo, “Constructing multiform morphologies of YF3: Er3+/Yb3+ up-conversion nano/micro-crystals towards sub-tissue thermometry,” Chem. Eng. J. 313, 65–73 (2017).
[Crossref]

Y. Tian, Y. Tian, P. Huang, L. Wang, Q. Shi, and C. E. Cui, “Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route,” Chem. Eng. J. 297, 26–34 (2016).
[Crossref]

M. Mondal, V. K. Rai, and C. Srivastava, “Influence of silica surface coating on optical properties of Er3+-Yb3+:YMoO4 upconverting nanoparticles,” Chem. Eng. J. 327, 838–848 (2017).
[Crossref]

Chem. Phys. Lett. (1)

C. Li, B. Dong, S. Li, and C. Song, “Er3+-Yb3+ co-doped silicate glass for optical temperature sensor,” Chem. Phys. Lett. 443(4–6), 426–429 (2007).
[Crossref]

Dalton Trans. (1)

R. Dey and V. K. Rai, “Yb3+ sensitized Er3+ doped La2O3 phosphor in temperature sensors and display devices,” Dalton Trans. 43(1), 111–118 (2014).
[Crossref] [PubMed]

J. Appl. Phys. (2)

V. K. Rai, D. S. M. Leonardo, and C. B. de Araújo, “Infrared-to-green and blue upconversion in Tm3+-doped TeO2-PbO glass,” J. Appl. Phys. 103(5), 053514 (2008).
[Crossref]

H. Lin, G. Meredith, S. Jiang, X. Peng, T. Luo, N. Peyghambarian, and E. Y.-B. Pun, “Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass,” J. Appl. Phys. 93(1), 186–191 (2003).
[Crossref]

J. Chem. Phys. (2)

G. S. Ofelt, “Intensities of crystal spectra of rare−earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[Crossref]

J. Less Common Met. (1)

C. K. Jørgensen and R. Reisfeld, “Judd-Ofelt parameters and chemical bonding,” J. Less Common Met. 93(1), 107–112 (1983).
[Crossref]

J. Lumin. (5)

Y. Onodera, T. Nunokawa, O. Odawara, and H. Wada, “Upconversion properties of Y2O3:Er,Yb nanoparticles prepared by laser ablation in water,” J. Lumin. 137, 220–224 (2013).
[Crossref]

S. F. León-Luis, V. Monteseguro, U. R. Rodríguez-Mendoza, I. R. Martín, D. Alonso, J. M. Cáceres, and V. Lavín, “2CaO·Al2O3:Er3+ glass: An efficient optical temperature sensor,” J. Lumin. 179, 272–279 (2016).
[Crossref]

L. Feng, B. Lai, J. Wang, G. Du, and Q. Su, “Spectroscopic properties of Er3+ in a oxyfluoride glass and upconversion and temperature sensor behaviour of Er3+/Yb3+-codoped oxyfluoride glass,” J. Lumin. 130(12), 2418–2423 (2010).
[Crossref]

U. R. Rodríguez-Mendoza, E. A. Lalla, J. M. Cáceres, F. Rivera-López, S. F. León-Luís, and V. Lavín, “Optical characterization, 1.5μm emission and IR-to-visible energy upconversion in Er3+-doped fluorotellurite glasses,” J. Lumin. 131(6), 1239–1248 (2011).
[Crossref]

M. Kochanowicz, D. Dorosz, J. Zmojda, J. Dorosz, and P. Miluski, “Influence of temperature on upconversion luminescence in tellurite glass co-doped with Yb3+/Er3+ and Yb3+/Tm3+,” J. Lumin. 151, 155–160 (2014).
[Crossref]

J. Mater. Sci. (1)

E. S. S. Yousef, “Thermal and optical properties of zinc halotellurite glasses,” J. Mater. Sci. 42(12), 4502–4507 (2007).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

M. Azam, V. K. Rai, and P. Mishra, “Enhanced frequency upconversion and non-colour tunability in Er3+–Yb3+ codoped TeO2–WO3–Pb3O4 glasses,” J. Mater. Sci. Mater. Electron. 27(12), 12633–12641 (2016).
[Crossref]

J. Mol. Struct. (2)

M. R. Dousti, M. R. Sahar, S. K. Ghoshal, R. J. Amjad, and A. R. Samavati, “Effect of AgCl on spectroscopic properties of erbium doped zinc tellurite glass,” J. Mol. Struct. 1035, 6–12 (2013).
[Crossref]

W. Stambouli, H. Elhouichet, and M. Ferid, “Study of thermal, structural and optical properties of tellurite glass with different TiO2 composition,” J. Mol. Struct. 1028, 39–43 (2012).
[Crossref]

J. Non-Cryst. Solids (1)

A. Renuka Devi and C. K. Jayasankar, “Optical properties of Er3+ ions in lithium borate glasses and comparative energy level analyses of Er3+ ions in various glasses,” J. Non-Cryst. Solids 197(2–3), 111–128 (1996).
[Crossref]

J. Phys. -Condes. Matter. (1)

N. Jaba, A. Kanoun, H. Mejri, A. Selmi, S. Alaya, and H. Maaref, “Infrared to visible up-conversion study for erbium-doped zinc tellurite glasses, ” J. Phys. -Condes. Matter. 12(20), 4523–4534 (2000).
[Crossref]

J. Phys. D Appl. Phys. (1)

H. Desirena, E. De la Rosa, A. Shulzgen, S. Shabet, and N. Peyghambarian, “Er3+ and Yb3+ concentration effect in the spectroscopic properties and energy transfer in Yb3+/Er3+ codoped tellurite glasses,” J. Phys. D Appl. Phys. 41(9), 095102 (2008).
[Crossref]

Nanoscale (1)

J.-C. Boyer and F. C. J. M. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[Crossref] [PubMed]

Nat. Protoc. (1)

C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Relative and absolute determination of fluorescence quantum yields of transparent samples,” Nat. Protoc. 8(8), 1535–1550 (2013).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (3)

J. Ozdanova, H. Ticha, and L. Tichy, “Raman studies and some physical properties of selected (PbO)x(Nb2O5)y(TeO2)1−x−y glasses,” Opt. Mater. 32(9), 950–955 (2010).
[Crossref]

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

C. Wang, P. Wang, R. Zheng, S. Xu, W. Wei, and B. Peng, “Spectroscopic properties of new Yb3+-doped TeO2-ZnO-Nb2O5 based tellurite glasses with high emission cross-section,” Opt. Mater. 34(9), 1549–1552 (2012).
[Crossref]

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (1)

Z. Zhang, C. Guo, H. Suo, X. Zhao, N. Zhang, and T. Li, “Thermometry and up-conversion luminescence of Yb3+-Er3+ co-doped Na2Ln2Ti3O10 (Ln = Gd, La) phosphors,” Phys. Chem. Chem. Phys. 18(28), 18828–18834 (2016).
[Crossref] [PubMed]

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Phys. Rev. B (1)

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Sci. Rep. (1)

D. Manzani, J. F. D. Petruci, K. Nigoghossian, A. A. Cardoso, and S. J. L. Ribeiro, “A portable luminescent thermometer based on green up-conversion emission of Er3+/Yb3+ co-doped tellurite glass,” Sci. Rep. 7, 41596 (2017).
[Crossref] [PubMed]

Sen. Actuators A. (1)

M. Haouari, A. Maaoui, N. Saad, and A. Bulou, “Optical temperature sensing using green emissions of Er3+ doped fluoro-tellurite glass,” Sen. Actuators A. 261, 235–242 (2017).
[Crossref]

Sens. Actuators B Chem. (4)

S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176, 1167–1175 (2013).
[Crossref]

A. Pandey, S. Som, V. Kumar, V. Kumar, K. Kumar, V. K. Rai, and H. C. Swart, “Enhanced upconversion and temperature sensing study of Er3+-Yb3+ codoped tungsten-tellurite glass,” Sens. Actuators B Chem. 202, 1305–1312 (2014).
[Crossref]

S. F. León-Luis, U. R. Rodríguez-Mendoza, P. Haro-González, I. R. Martín, and V. Lavín, “Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors,” Sens. Actuators B Chem. 174, 176–186 (2012).
[Crossref]

N. Vijaya, P. Babu, V. Venkatramu, C. K. Jayasankar, S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, and V. Lavín, “Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors,” Sens. Actuators B Chem. 186, 156–164 (2013).
[Crossref]

Solid State Commun. (1)

H. Song, B. Sun, T. Wang, S. Lu, L. Yang, B. Chen, X. Wang, and X. Kong, “Three-photon upconversion luminescence phenomenon for the green levels in Er3+/Yb3+ codoped cubic nanocrystalline yttria,” Solid State Commun. 132(6), 409–413 (2004).
[Crossref]

Other (3)

W. C. Tan, K. Koughia, J. Singh, and S. O. Kasap, Optical Properties of Condensed Matter and Applications, J. Singh, ed. (John Wiley & Sons, 2006), pp. 1–25.

D. R. Uhlmann and D. R. Ulrich, Ultrastructure Processing of Advanced Materials (Wiley, 1992).

B. Ahrens and S. Schweizer, Trivalent rare-earth ions as photon down-shifter for photovoltaic applications, Proceedings of SPIE - The International Society for Optical Engineering 9140, 63–69 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

DSC and linear thermal expansion curves of the TLNT glass recorded at a heating rate of 5 K/min. The inset displays the curve of CTE versus temperature.

Fig. 2
Fig. 2

Refractive indices of the TLNT glass and its dispersion curve fitted by the empirical Cauchy dispersion equation.

Fig. 3
Fig. 3

Absorption spectrum of the TLNT glass.

Fig. 4
Fig. 4

UC spectra of the TLNT glass excited by LD at around 976 nm under different pump powers.

Fig. 5
Fig. 5

Double logarithmic plot of pump power versus UC emission intensity under 976 nm LD excitation.

Fig. 6
Fig. 6

Energy level diagrams of Er3+ and Yb3+ ions and UC luminescence mechanism of the TLNT glass.

Fig. 7
Fig. 7

The monolog plot of the FIR of green UC emissions as a function of inverse absolute temperature for the TLNT glass. The inset displays the UC green emissions normalized at 545 nm for the varying temperatures.

Fig. 8
Fig. 8

The sensitivity as a function of the temperature for the TLNT glass.

Tables (3)

Tables Icon

Table 1 Values of the mean wavelengths, refractive indices, integrated absorption coefficients, experimental and calculated oscillator strengths of Er3+ in TLNT glass.

Tables Icon

Table 2 J-O intensity parameters Ωt = 2, 4, 6 (10−20 cm2) and RMS deviations for the best-fitted oscillator strengths of Er3+ in different glass hosts, and their maximum sensor sensitivities for thermometry.

Tables Icon

Table 3 Calculated spontaneous emission rate A, fluorescence branching ratio β, and radiative lifetime τrad of Er3+ ions in TLNT glass.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

n = A + B λ 2 + C λ 4
f exp ( J J ) = m c 2 π N 0 λ ¯ 2 e 2 Г
Г = α ( λ ) d λ
f c a l ( J J ) = 8 π 2 m c 3 h ( 2 J + 1 ) λ ¯ [ ( n 2 + 2 ) 2 9 n S e d + n S m d ]
S e d ( J J ) = t =2,4,6 Ω t | < ( S , L ) J U ( t ) ( S , L ) J > | 2
S m d ( J J ) = h 2 16π 2 m 2 c 2 | < ( S , L ) J L + 2 S ( S , L ) J > | 2
δ r m s = ( f exp f c a l ) 2 q p
A ( J J ) = A e d + A m d = 64 π 4 e 2 3 h ( 2 J + 1 ) λ ¯ 3 [ n ( n 2 + 2 ) 2 S e d + n 3 S m d ]
τ r a d = 1 A ( J J )
β ( J J ) = A ( J J ) A ( J J )
F I R = I 523 I 545 = C exp ( - Δ E k T )
F I R = I 523 I 545 0.7158 Ω 2 + 0.4138 Ω 4 + 0.0927 Ω 6 0.2225 Ω 6
S = d F I R d T = F I R Δ E k T 2

Metrics