Abstract

Shape design of sapphire/Nd3+:YAG based distributed face cooling (DFC) chip is reported with reduction of thermal effects as compared with those from a conventional Nd3+:YAG chip. The CW diode laser pumped round-trip cavity loss was 0.51% from a 9-disk bonded DFC chip, which was close to the theoretically calculated total Fresnel reflection loss of 0.2% from 8 Sapphire/Nd3+:YAG interfaces. The depolarization ratio from an 8-disk bonded DFC chip was 40 times lower than that from YAG/Nd3+:YAG chip. The DFC chip underwent no crack at pump power of 86 W while Nd3+:YAG single chip suffered crystal crack under pump power around 54 W. Over megawatt peak power from DFC tiny integrated laser is demonstrated at 1 kHz with 3-pulse burst modes. It is concluded that DFC structure could relieve thermal effects as expected.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Continuous-wave and passively Q-switched tape casting YAG/Nd:YAG/YAG ceramic laser

Y. F. Ma, Y. He, X. D. Li, X. Yu, L. Ge, J. Li, R. P. Yan, and R. Sun
Opt. Mater. Express 6(9) 2966-2974 (2016)

Diode-pumped Nd:YAG and Nd:glass spinning-disk lasers

Steven M. Massey, Jason B. McKay, Timothy H. Russell, Alan H. Paxton, Harold C. Miller, and Santanu Basu
J. Opt. Soc. Am. B 22(5) 1003-1009 (2005)

References

  • View by:
  • |
  • |
  • |

  1. ImPACT Sano-project, http://www.jst.go.jp/impact/en/program/03.html
  2. L. Zheng, A. Kausas, and T. Taira, “>MW peak power at 266 nm, low jitter kHz repetition rate from intense pumped microlaser,” Opt. Express 24(25), 28748–28760 (2016).
    [Crossref] [PubMed]
  3. S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2014).
    [Crossref] [PubMed]
  4. H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
    [Crossref] [PubMed]
  5. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
    [Crossref]
  6. V. Yahia and T. Taira, “Development of a 0.3 GW microchip-seeded amplifier,” The 4th Laser Ignition Conference (LIC’16), OPIC’16, Yokohama, Japan, May 18–20, LIC3–3 (2016).
  7. F. Hanson, “Improved laser performance at 946 and 473 nm from a composite Nd:Y3Al5O12 rod,” Appl. Phys. Lett. 66(26), 3549–3551 (1995).
    [Crossref]
  8. P. Mason, M. Divoký, K. Ertel, J. Pilař, T. Butcher, M. Hanuš, S. Banerjee, J. Phillips, J. Smith, M. De Vido, A. Lucianetti, C. Hernandez-Gomez, C. Edwards, T. Mocek, and J. Collier, “Kilowatt average power 100 J-level diode pumped solid state laser,” Optica 4(4), 438–439 (2017).
    [Crossref]
  9. A. Bayramian, J. Armstrong, G. Beer, R. Campbell, B. Chai, R. Cross, A. Erlandson, Y. Fei, B. Freitas, R. Kent, J. Menapace, W. Molander, K. Schaffers, C. Siders, S. Sutton, J. Tassano, S. Telford, C. Ebbers, J. Caird, and C. Barty, “High-average-power femto-petawatt laser pumped by the Mercury laser facility,” J. Opt. Soc. Am. B 25(7), B57–B61 (2008).
    [Crossref]
  10. A. C. Erlandson, S. M. Aceves, A. J. Bayramian, A. L. Bullington, R. J. Beach, C. D. Boley, J. A. Caird, R. J. Deri, A. M. Dunne, D. L. Flowers, M. A. Henesian, K. R. Manes, E. I. Moses, S. I. Rana, K. I. Schaffers, M. L. Spaeth, C. J. Stolz, and S. J. Telford, “Comparison of Nd:phosphate glass, Yb:YAG and Yb:S-FAP laser beamlines for laser inertial fusion energy (LIFE) [Invited],” Opt. Mater. Express 1(7), 1341–1352 (2011).
    [Crossref]
  11. A. Kausas, L. H. Zheng, and T. Taira, Structured laser gain-medium by new bonding for power micro-laser, Proc. SPIE 10082, Solid State Lasers XXVI: Technology and Devices, 100820Z (February 17, 2017).
  12. H. Takagi, K. Kikuchi, R. Maeda, T. R. Chung, and T. Suga, “Surface activated bonding of silicon wafers at room temperature,” Appl. Phys. Lett. 68(16), 2222–2224 (1996).
    [Crossref]
  13. I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
    [Crossref]
  14. R. Bhandari and T. Taira, “>0.5 MW peak power, kHz repetition rate at 266 nm using [100]-cut Nd:YAG microchip laser,” in Lasers and Electro-Optics (CLEO),2014Conference on, paper STu1I.4.
  15. H. Sakai, A. Sone, H. Kan, and T. Taira, “Polarization Stabilizing for Diode-Pumped Passively Q-Switched Nd:YAG Microchip Lasers,” in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2006), paper MD2.
    [Crossref]
  16. H. Sakai, H. Kan, and T. Taira, “Passive Q switch laser device,” United States Patent, US7664148 B2, (2010).
  17. R. Bhandari and T. Taira, “> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser,” Opt. Express 19(20), 19135–19141 (2011).
    [Crossref] [PubMed]
  18. Y. Sato and T. Taira, “Model for the polarization dependence of the saturable absorption in Cr4+:YAG,” Opt. Mater. Express 7(2), 577–586 (2017).
    [Crossref]

2017 (2)

2016 (1)

2014 (1)

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2014).
[Crossref] [PubMed]

2011 (2)

2010 (1)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

2008 (2)

2000 (1)

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[Crossref]

1996 (1)

H. Takagi, K. Kikuchi, R. Maeda, T. R. Chung, and T. Suga, “Surface activated bonding of silicon wafers at room temperature,” Appl. Phys. Lett. 68(16), 2222–2224 (1996).
[Crossref]

1995 (1)

F. Hanson, “Improved laser performance at 946 and 473 nm from a composite Nd:Y3Al5O12 rod,” Appl. Phys. Lett. 66(26), 3549–3551 (1995).
[Crossref]

Aceves, S. M.

Ando, A.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Armstrong, J.

Banerjee, S.

Barty, C.

Bayramian, A.

Bayramian, A. J.

Beach, R. J.

Beer, G.

Bhandari, R.

Boley, C. D.

Bullington, A. L.

Butcher, T.

Caird, J.

Caird, J. A.

Campbell, R.

Chai, B.

Chung, T. R.

H. Takagi, K. Kikuchi, R. Maeda, T. R. Chung, and T. Suga, “Surface activated bonding of silicon wafers at room temperature,” Appl. Phys. Lett. 68(16), 2222–2224 (1996).
[Crossref]

Collier, J.

Cross, R.

De Vido, M.

Deri, R. J.

Divoký, M.

Dunne, A. M.

Ebbers, C.

Edwards, C.

Erlandson, A.

Erlandson, A. C.

Ertel, K.

Fei, Y.

Flowers, D. L.

Freitas, B.

Hanson, F.

F. Hanson, “Improved laser performance at 946 and 473 nm from a composite Nd:Y3Al5O12 rod,” Appl. Phys. Lett. 66(26), 3549–3551 (1995).
[Crossref]

Hanuš, M.

Hayashi, S.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2014).
[Crossref] [PubMed]

Henesian, M. A.

Hernandez-Gomez, C.

Ikesue, A.

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[Crossref]

Inohara, T.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kan, H.

Kanehara, K.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kausas, A.

Kawase, K.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2014).
[Crossref] [PubMed]

Kent, R.

Kido, N.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kikuchi, K.

H. Takagi, K. Kikuchi, R. Maeda, T. R. Chung, and T. Suga, “Surface activated bonding of silicon wafers at room temperature,” Appl. Phys. Lett. 68(16), 2222–2224 (1996).
[Crossref]

Kurimura, S.

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[Crossref]

Lucianetti, A.

Maeda, R.

H. Takagi, K. Kikuchi, R. Maeda, T. R. Chung, and T. Suga, “Surface activated bonding of silicon wafers at room temperature,” Appl. Phys. Lett. 68(16), 2222–2224 (1996).
[Crossref]

Manes, K. R.

Mason, P.

Menapace, J.

Minamide, H.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2014).
[Crossref] [PubMed]

Mocek, T.

Molander, W.

Moses, E. I.

Nawata, K.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2014).
[Crossref] [PubMed]

Phillips, J.

Pilar, J.

Rana, S. I.

Sakai, H.

Sato, Y.

Y. Sato and T. Taira, “Model for the polarization dependence of the saturable absorption in Cr4+:YAG,” Opt. Mater. Express 7(2), 577–586 (2017).
[Crossref]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[Crossref]

Schaffers, K.

Schaffers, K. I.

Shikata, J.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2014).
[Crossref] [PubMed]

Shoji, I.

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[Crossref]

Siders, C.

Smith, J.

Spaeth, M. L.

Stolz, C. J.

Suga, T.

H. Takagi, K. Kikuchi, R. Maeda, T. R. Chung, and T. Suga, “Surface activated bonding of silicon wafers at room temperature,” Appl. Phys. Lett. 68(16), 2222–2224 (1996).
[Crossref]

Sutton, S.

Taira, T.

Y. Sato and T. Taira, “Model for the polarization dependence of the saturable absorption in Cr4+:YAG,” Opt. Mater. Express 7(2), 577–586 (2017).
[Crossref]

L. Zheng, A. Kausas, and T. Taira, “>MW peak power at 266 nm, low jitter kHz repetition rate from intense pumped microlaser,” Opt. Express 24(25), 28748–28760 (2016).
[Crossref] [PubMed]

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2014).
[Crossref] [PubMed]

R. Bhandari and T. Taira, “> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser,” Opt. Express 19(20), 19135–19141 (2011).
[Crossref] [PubMed]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
[Crossref] [PubMed]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[Crossref]

Takagi, H.

H. Takagi, K. Kikuchi, R. Maeda, T. R. Chung, and T. Suga, “Surface activated bonding of silicon wafers at room temperature,” Appl. Phys. Lett. 68(16), 2222–2224 (1996).
[Crossref]

Tassano, J.

Telford, S.

Telford, S. J.

Tsunekane, M.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Yoshida, K.

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[Crossref]

Zheng, L.

Appl. Phys. Lett. (3)

H. Takagi, K. Kikuchi, R. Maeda, T. R. Chung, and T. Suga, “Surface activated bonding of silicon wafers at room temperature,” Appl. Phys. Lett. 68(16), 2222–2224 (1996).
[Crossref]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[Crossref]

F. Hanson, “Improved laser performance at 946 and 473 nm from a composite Nd:Y3Al5O12 rod,” Appl. Phys. Lett. 66(26), 3549–3551 (1995).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Mater. Express (2)

Optica (1)

Sci. Rep. (1)

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2014).
[Crossref] [PubMed]

Other (6)

ImPACT Sano-project, http://www.jst.go.jp/impact/en/program/03.html

V. Yahia and T. Taira, “Development of a 0.3 GW microchip-seeded amplifier,” The 4th Laser Ignition Conference (LIC’16), OPIC’16, Yokohama, Japan, May 18–20, LIC3–3 (2016).

R. Bhandari and T. Taira, “>0.5 MW peak power, kHz repetition rate at 266 nm using [100]-cut Nd:YAG microchip laser,” in Lasers and Electro-Optics (CLEO),2014Conference on, paper STu1I.4.

H. Sakai, A. Sone, H. Kan, and T. Taira, “Polarization Stabilizing for Diode-Pumped Passively Q-Switched Nd:YAG Microchip Lasers,” in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2006), paper MD2.
[Crossref]

H. Sakai, H. Kan, and T. Taira, “Passive Q switch laser device,” United States Patent, US7664148 B2, (2010).

A. Kausas, L. H. Zheng, and T. Taira, Structured laser gain-medium by new bonding for power micro-laser, Proc. SPIE 10082, Solid State Lasers XXVI: Technology and Devices, 100820Z (February 17, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Principle of room temperature Surface Activated Bonding (SAB). (a) Initial state of disk; (b) Fast Atom Beam (FAB) irradiation; (c) Dangling bond formation; (d) Bonding formation.

Fig. 2
Fig. 2

Example of Distributed Face Cooling (DFC) chip fabricated by Surface Activated Bonding (SAB) technology.

Fig. 3
Fig. 3

Round-trip cavity loss and the output power from 9-disk Sapphire/Nd3+:YAG DFC chip under continuous wave (CW) laser pump. TD stands for chiller temperature for diode laser.

Fig. 4
Fig. 4

Thermal-induced-birefringence from Sapphire/Nd3+:YAG based DFC chip and YAG/Nd3+:YAG chip.

Metrics