Abstract

Plasmonic bio-sensing chips were prepared by fabricating wavelength-scaled sinusoidal dielectric-metal interfacial gratings on polymer film covered bimetal layers. Lysozyme biomolecules (LYZ) and gold nanoparticle bioconjugates (AuNP-LYZ) were seeded onto the biochip surfaces. Comparison of the reflectance curves measured in a modified Kretschmann arrangement and computed numerically proved that monitoring of the narrower secondary reflectance minima under optimal rotated-grating coupling condition makes it possible to achieve enhanced sensitivity in biodetection. The enlarged reflectance minimum shift is due to the horizontally and vertically antisymmetric long-range plasmonic mode, which originates from surface plasmon polariton Bragg scattering and propagates at the border of the valley and hill. The sensitivity is significantly increased in case of bioconjugates due to the coupled localized resonances on the gold nanoparticles.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing

Anuj Dhawan, Michael Canva, and Tuan Vo-Dinh
Opt. Express 19(2) 787-813 (2011)

Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control

F. Romanato, K. H. Lee, H. K. Kang, G. Ruffato, and C. C. Wong
Opt. Express 17(14) 12145-12154 (2009)

Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance

Keiko Tawa, Hironobu Hori, Kenji Kintaka, Kazuyuki Kiyosue, Yoshiro Tatsu, and Junji Nishii
Opt. Express 16(13) 9781-9790 (2008)

References

  • View by:
  • |
  • |
  • |

  1. S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators,” Opt. Express 15(17), 10869–10877 (2007).
    [Crossref] [PubMed]
  2. G. D’Aguanno, N. Mattiucci, A. Alú, and M. J. Bloemer, “Quenched optical transmission in ultrathin subwavelength plasmonic gratings,” Phys. Rev. B 83(3), 035426 (2011).
    [Crossref]
  3. M. G. Weber and D. L. Mills, “Determination of surface-polariton minigaps on grating structures: A comparison between constant-frequency and constant-angle scans,” Phys. Rev. B Condens. Matter 34(4), 2893–2894 (1986).
    [Crossref] [PubMed]
  4. W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 51(16), 11164–11167 (1995).
    [Crossref] [PubMed]
  5. A. Ghoshal, I. Divliansky, and P. G. Kik, “Experimental observation of mode-selective anticrossing in surface-plasmon coupled metal nanoparticle arrays,” Appl. Phys. Lett. 94(17), 171108 (2009).
    [Crossref]
  6. D. L. Mills, “Interaction of surface polaritons with periodic surface structures; Rayleigh waves and gratings,” Phys. Rev. B 15(6), 3097–3118 (1977).
    [Crossref]
  7. M. Kretschmann, A. Leskova, and A. A. Maradudin, “Conical propagation of a surface plasmon polariton across a grating,” Opt. Commun. 215(4-6), 205–223 (2003).
    [Crossref]
  8. M. Csete, C. Vass, J. Kokavecz, M. Goncalves, V. Megyesi, Zs. Bor, M. Pietralla, and O. Marti, “Effect of sub-micrometer polymer gratings generated by two-beam interference on surface plasmon resonance,” Appl. Surf. Sci. 247(1), 477–485 (2005).
    [Crossref]
  9. M. Csete, G. Szekeres, C. Vass, N. Maghelli, K. Osvay, Zs. Bor, M. Pietralla, and O. Marti, “Surface plasmon resonance spectroscopy on rotated sub-micrometer polymer gratings generated by UV laser based two-beam interference,” Appl. Surf. Sci. 252(13), 4773–4780 (2006).
    [Crossref]
  10. A. Szalai, G. Szekeres, J. Balázs, A. Somogyi, and M. Csete, “Rotated grating coupled surface plasmon resonance on wavelength-scaled shallow rectangular gratings,” Proc. SPIE 8809, 88092U (2013).
    [Crossref]
  11. F. Romanato, L. K. Hong, H. K. Kang, C. C. Wong, Z. Yun, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435 (2008).
    [Crossref]
  12. E. Gazzola, L. Brigo, G. Zacco, P. Zilio, G. Ruffato, G. Brusatin, and F. Romanato, “Coupled SPP Modes on 1D Plasmonic Gratings in Conical Mounting,” Plasmonics 9(4), 867–876 (2014).
    [Crossref]
  13. M. Perino, E. Pasqualotto, M. Scaramuzza, A. De Toni, and A. Paccagnela, “Characterization of Grating Coupled Surface Plasmon Polaritons Using Diffracted Rays Transmittance,” Plasmonics 9(5), 1103–1111 (2014).
    [Crossref]
  14. S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surface plasmon Bragg mirrors,” Opt. Express 18(14), 14496–14510 (2010).
    [Crossref] [PubMed]
  15. D. Kim, “Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonance biosensors,” Appl. Opt. 44(16), 3218–3223 (2005).
    [Crossref] [PubMed]
  16. M. Csete, A. Kőházi-Kis, V. Megyesi, K. Osvay, Zs. Bor, M. Pietralla, and O. Marti, “Coupled surface plasmon resonance on bimetallic films covered by sub-micrometer polymer gratings,” Org. Electron. 8(2), 148–160 (2007).
    [Crossref]
  17. M. Csete, Á. Sipos, A. Kőházi-Kis, A. Szalai, G. Szekeres, A. Mathesz, T. Csákó, K. Osvay, Zs. Bor, B. Penke, M. A. Deli, S. Veszelka, A. Schmatulla, and O. Marti, “Comparative study of sub-micrometer polymeric structures: dot-arrays, linear and crossed gratings generated by UV laser based two-beam interference, as surfaces for SPR and AFM based bio-sensing,” Appl. Surf. Sci. 254(4), 1194–1205 (2007).
    [Crossref]
  18. Á. Sipos, H. Tóháti, A. Mathesz, A. Szalai, S. Veszelka, M. A. Deli, L. Fülöp, A. Kőházi-Kis, M. Csete, and Zs. Bor, “Effect of nanogold particles on coupled plasmon resonance on biomolecule covered prepatterned multilayers,” Sens. Lett. 8(3), 512–520 (2010).
    [Crossref]
  19. F. Romanato, K. H. Lee, H. K. Kang, G. Ruffato, and C. C. Wong, “Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control,” Opt. Express 17(14), 12145–12154 (2009).
    [Crossref] [PubMed]
  20. E. Gazzola, A. Pozzato, G. Ruffato, E. Sovernigo, and A. Sonato, “High-throughput fabrication and calibration of compact high-sensitivity plasmonic lab-on-chip for biosensing,” Opto-. Micro-. Nanofluid 3, 13 (2016).
  21. M. Perino, E. Pasqualotto, M. Scaramuzza, A. De Toni, and A. Paccagnella, “Enhancement and control of surface plasmon resonance sensitivity using grating in conical mounting configuration,” Opt. Lett. 40(2), 221–224 (2015).
    [Crossref] [PubMed]
  22. A. Shalabney and I. Abdulhalim, “Sensitivity-enhancement methods for surface plasmon sensors,” Laser Photonics Rev. 5(4), 571–606 (2011).
    [Crossref]
  23. B. Spackova, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: A Review,” Proc. IEEE 104(12), 2380–2408 (2016).
    [Crossref]
  24. S. S. Senlik, A. Kocabas, and A. Aydinli, “Grating based plasmonic band gap cavities,” Opt. Express 17(18), 15541–15549 (2009).
    [Crossref] [PubMed]
  25. C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
    [Crossref] [PubMed]
  26. H. Shi, Z. Liu, X. Wang, J. Guo, L. Liu, L. Luo, J. Guo, H. Ma, S. Sun, and Y. He, “A symmetrical optical waveguide based surface plasmon resonance biosensing system,” Sens. Actuators B Chem. 185, 91–96 (2013).
    [Crossref]
  27. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
    [Crossref]
  28. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  29. K. Liu, X. Xue, and E. P. Furlani, “Theoretical Comparison of Optical Properties of Near-Infrared Colloidal Plasmonic Nanoparticles,” Sci. Rep. 6(1), 34189 (2016).
    [Crossref] [PubMed]
  30. C. Formoso and L. S. Forster, “Tryptophan fluorescence lifetimes in lysozyme,” J. Biol. Chem. 250(10), 3738–3745 (1975).
    [PubMed]
  31. H. Wei, Z. Wang, L. Yang, S. Tian, C. Hou, and Y. Lu, “Lysozyme-stabilized gold fluorescent cluster: Synthesis and application as Hg(2+) sensor,” Analyst (Lond.) 135(6), 1406–1410 (2010).
    [Crossref] [PubMed]
  32. W. Y. Chen, J. Y. Lin, W. J. Chen, L. Luo, E. Wei-Guang Diau, and Y. C. Chen, “Functional gold nanoclusters as antimicrobial agents for antibiotic-resistant bacteria,” Nanomedicine (Lond.) 5(5), 755–764 (2010).
    [Crossref] [PubMed]
  33. V. Hornok, E. Csapó, N. Varga, D. Ungor, D. Sebők, L. Janovák, G. Laczkó, and I. Dékány, “Controlled syntheses and structural characterization of plasmonic and red-emitting gold/lysozyme nanohybrid dispersions,” Colloid Polym. Sci. 294(1), 49–58 (2016).
    [Crossref]
  34. H. Arwin, “Optical properties of thin layers of bovine serum albumin, γ-globulin, and hemoglobin,” Appl. Spectrosc. 40(3), 313–318 (1986).
    [Crossref]
  35. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  36. B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, “On the role of molecular forces in contact deformations,” Colloid Interf. Sci. 67(2), 378–379 (1978).
    [Crossref]
  37. M. Csete, G. Kurdi, J. Kokavecz, V. Megyesi, K. Osvay, Z. Schay Zs. Bor, and O. Marti, “Application possibilities and chemical origin of sub-micrometer adhesion modulation on polymer gratings produced by UV laser illumination,” Mater. Sci. Eng. C 26(5-7), 1056–1062 (2006).
    [Crossref]

2016 (4)

E. Gazzola, A. Pozzato, G. Ruffato, E. Sovernigo, and A. Sonato, “High-throughput fabrication and calibration of compact high-sensitivity plasmonic lab-on-chip for biosensing,” Opto-. Micro-. Nanofluid 3, 13 (2016).

K. Liu, X. Xue, and E. P. Furlani, “Theoretical Comparison of Optical Properties of Near-Infrared Colloidal Plasmonic Nanoparticles,” Sci. Rep. 6(1), 34189 (2016).
[Crossref] [PubMed]

V. Hornok, E. Csapó, N. Varga, D. Ungor, D. Sebők, L. Janovák, G. Laczkó, and I. Dékány, “Controlled syntheses and structural characterization of plasmonic and red-emitting gold/lysozyme nanohybrid dispersions,” Colloid Polym. Sci. 294(1), 49–58 (2016).
[Crossref]

B. Spackova, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: A Review,” Proc. IEEE 104(12), 2380–2408 (2016).
[Crossref]

2015 (2)

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

M. Perino, E. Pasqualotto, M. Scaramuzza, A. De Toni, and A. Paccagnella, “Enhancement and control of surface plasmon resonance sensitivity using grating in conical mounting configuration,” Opt. Lett. 40(2), 221–224 (2015).
[Crossref] [PubMed]

2014 (2)

E. Gazzola, L. Brigo, G. Zacco, P. Zilio, G. Ruffato, G. Brusatin, and F. Romanato, “Coupled SPP Modes on 1D Plasmonic Gratings in Conical Mounting,” Plasmonics 9(4), 867–876 (2014).
[Crossref]

M. Perino, E. Pasqualotto, M. Scaramuzza, A. De Toni, and A. Paccagnela, “Characterization of Grating Coupled Surface Plasmon Polaritons Using Diffracted Rays Transmittance,” Plasmonics 9(5), 1103–1111 (2014).
[Crossref]

2013 (2)

H. Shi, Z. Liu, X. Wang, J. Guo, L. Liu, L. Luo, J. Guo, H. Ma, S. Sun, and Y. He, “A symmetrical optical waveguide based surface plasmon resonance biosensing system,” Sens. Actuators B Chem. 185, 91–96 (2013).
[Crossref]

A. Szalai, G. Szekeres, J. Balázs, A. Somogyi, and M. Csete, “Rotated grating coupled surface plasmon resonance on wavelength-scaled shallow rectangular gratings,” Proc. SPIE 8809, 88092U (2013).
[Crossref]

2011 (2)

A. Shalabney and I. Abdulhalim, “Sensitivity-enhancement methods for surface plasmon sensors,” Laser Photonics Rev. 5(4), 571–606 (2011).
[Crossref]

G. D’Aguanno, N. Mattiucci, A. Alú, and M. J. Bloemer, “Quenched optical transmission in ultrathin subwavelength plasmonic gratings,” Phys. Rev. B 83(3), 035426 (2011).
[Crossref]

2010 (5)

Á. Sipos, H. Tóháti, A. Mathesz, A. Szalai, S. Veszelka, M. A. Deli, L. Fülöp, A. Kőházi-Kis, M. Csete, and Zs. Bor, “Effect of nanogold particles on coupled plasmon resonance on biomolecule covered prepatterned multilayers,” Sens. Lett. 8(3), 512–520 (2010).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

H. Wei, Z. Wang, L. Yang, S. Tian, C. Hou, and Y. Lu, “Lysozyme-stabilized gold fluorescent cluster: Synthesis and application as Hg(2+) sensor,” Analyst (Lond.) 135(6), 1406–1410 (2010).
[Crossref] [PubMed]

W. Y. Chen, J. Y. Lin, W. J. Chen, L. Luo, E. Wei-Guang Diau, and Y. C. Chen, “Functional gold nanoclusters as antimicrobial agents for antibiotic-resistant bacteria,” Nanomedicine (Lond.) 5(5), 755–764 (2010).
[Crossref] [PubMed]

S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surface plasmon Bragg mirrors,” Opt. Express 18(14), 14496–14510 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (1)

F. Romanato, L. K. Hong, H. K. Kang, C. C. Wong, Z. Yun, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435 (2008).
[Crossref]

2007 (4)

S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators,” Opt. Express 15(17), 10869–10877 (2007).
[Crossref] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

M. Csete, A. Kőházi-Kis, V. Megyesi, K. Osvay, Zs. Bor, M. Pietralla, and O. Marti, “Coupled surface plasmon resonance on bimetallic films covered by sub-micrometer polymer gratings,” Org. Electron. 8(2), 148–160 (2007).
[Crossref]

M. Csete, Á. Sipos, A. Kőházi-Kis, A. Szalai, G. Szekeres, A. Mathesz, T. Csákó, K. Osvay, Zs. Bor, B. Penke, M. A. Deli, S. Veszelka, A. Schmatulla, and O. Marti, “Comparative study of sub-micrometer polymeric structures: dot-arrays, linear and crossed gratings generated by UV laser based two-beam interference, as surfaces for SPR and AFM based bio-sensing,” Appl. Surf. Sci. 254(4), 1194–1205 (2007).
[Crossref]

2006 (2)

M. Csete, G. Szekeres, C. Vass, N. Maghelli, K. Osvay, Zs. Bor, M. Pietralla, and O. Marti, “Surface plasmon resonance spectroscopy on rotated sub-micrometer polymer gratings generated by UV laser based two-beam interference,” Appl. Surf. Sci. 252(13), 4773–4780 (2006).
[Crossref]

M. Csete, G. Kurdi, J. Kokavecz, V. Megyesi, K. Osvay, Z. Schay Zs. Bor, and O. Marti, “Application possibilities and chemical origin of sub-micrometer adhesion modulation on polymer gratings produced by UV laser illumination,” Mater. Sci. Eng. C 26(5-7), 1056–1062 (2006).
[Crossref]

2005 (2)

D. Kim, “Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonance biosensors,” Appl. Opt. 44(16), 3218–3223 (2005).
[Crossref] [PubMed]

M. Csete, C. Vass, J. Kokavecz, M. Goncalves, V. Megyesi, Zs. Bor, M. Pietralla, and O. Marti, “Effect of sub-micrometer polymer gratings generated by two-beam interference on surface plasmon resonance,” Appl. Surf. Sci. 247(1), 477–485 (2005).
[Crossref]

2003 (1)

M. Kretschmann, A. Leskova, and A. A. Maradudin, “Conical propagation of a surface plasmon polariton across a grating,” Opt. Commun. 215(4-6), 205–223 (2003).
[Crossref]

1995 (1)

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 51(16), 11164–11167 (1995).
[Crossref] [PubMed]

1986 (2)

M. G. Weber and D. L. Mills, “Determination of surface-polariton minigaps on grating structures: A comparison between constant-frequency and constant-angle scans,” Phys. Rev. B Condens. Matter 34(4), 2893–2894 (1986).
[Crossref] [PubMed]

H. Arwin, “Optical properties of thin layers of bovine serum albumin, γ-globulin, and hemoglobin,” Appl. Spectrosc. 40(3), 313–318 (1986).
[Crossref]

1978 (1)

B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, “On the role of molecular forces in contact deformations,” Colloid Interf. Sci. 67(2), 378–379 (1978).
[Crossref]

1977 (1)

D. L. Mills, “Interaction of surface polaritons with periodic surface structures; Rayleigh waves and gratings,” Phys. Rev. B 15(6), 3097–3118 (1977).
[Crossref]

1975 (1)

C. Formoso and L. S. Forster, “Tryptophan fluorescence lifetimes in lysozyme,” J. Biol. Chem. 250(10), 3738–3745 (1975).
[PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Abdulhalim, I.

A. Shalabney and I. Abdulhalim, “Sensitivity-enhancement methods for surface plasmon sensors,” Laser Photonics Rev. 5(4), 571–606 (2011).
[Crossref]

Albert, J.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

Alú, A.

G. D’Aguanno, N. Mattiucci, A. Alú, and M. J. Bloemer, “Quenched optical transmission in ultrathin subwavelength plasmonic gratings,” Phys. Rev. B 83(3), 035426 (2011).
[Crossref]

Arwin, H.

Aydinli, A.

Balázs, J.

A. Szalai, G. Szekeres, J. Balázs, A. Somogyi, and M. Csete, “Rotated grating coupled surface plasmon resonance on wavelength-scaled shallow rectangular gratings,” Proc. SPIE 8809, 88092U (2013).
[Crossref]

Barnes, W. L.

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 51(16), 11164–11167 (1995).
[Crossref] [PubMed]

Bloemer, M. J.

G. D’Aguanno, N. Mattiucci, A. Alú, and M. J. Bloemer, “Quenched optical transmission in ultrathin subwavelength plasmonic gratings,” Phys. Rev. B 83(3), 035426 (2011).
[Crossref]

Bocková, M.

B. Spackova, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: A Review,” Proc. IEEE 104(12), 2380–2408 (2016).
[Crossref]

Bor, Zs.

Á. Sipos, H. Tóháti, A. Mathesz, A. Szalai, S. Veszelka, M. A. Deli, L. Fülöp, A. Kőházi-Kis, M. Csete, and Zs. Bor, “Effect of nanogold particles on coupled plasmon resonance on biomolecule covered prepatterned multilayers,” Sens. Lett. 8(3), 512–520 (2010).
[Crossref]

M. Csete, Á. Sipos, A. Kőházi-Kis, A. Szalai, G. Szekeres, A. Mathesz, T. Csákó, K. Osvay, Zs. Bor, B. Penke, M. A. Deli, S. Veszelka, A. Schmatulla, and O. Marti, “Comparative study of sub-micrometer polymeric structures: dot-arrays, linear and crossed gratings generated by UV laser based two-beam interference, as surfaces for SPR and AFM based bio-sensing,” Appl. Surf. Sci. 254(4), 1194–1205 (2007).
[Crossref]

M. Csete, A. Kőházi-Kis, V. Megyesi, K. Osvay, Zs. Bor, M. Pietralla, and O. Marti, “Coupled surface plasmon resonance on bimetallic films covered by sub-micrometer polymer gratings,” Org. Electron. 8(2), 148–160 (2007).
[Crossref]

M. Csete, G. Szekeres, C. Vass, N. Maghelli, K. Osvay, Zs. Bor, M. Pietralla, and O. Marti, “Surface plasmon resonance spectroscopy on rotated sub-micrometer polymer gratings generated by UV laser based two-beam interference,” Appl. Surf. Sci. 252(13), 4773–4780 (2006).
[Crossref]

M. Csete, C. Vass, J. Kokavecz, M. Goncalves, V. Megyesi, Zs. Bor, M. Pietralla, and O. Marti, “Effect of sub-micrometer polymer gratings generated by two-beam interference on surface plasmon resonance,” Appl. Surf. Sci. 247(1), 477–485 (2005).
[Crossref]

Bozhevolnyi, S. I.

Brigo, L.

E. Gazzola, L. Brigo, G. Zacco, P. Zilio, G. Ruffato, G. Brusatin, and F. Romanato, “Coupled SPP Modes on 1D Plasmonic Gratings in Conical Mounting,” Plasmonics 9(4), 867–876 (2014).
[Crossref]

Brusatin, G.

E. Gazzola, L. Brigo, G. Zacco, P. Zilio, G. Ruffato, G. Brusatin, and F. Romanato, “Coupled SPP Modes on 1D Plasmonic Gratings in Conical Mounting,” Plasmonics 9(4), 867–876 (2014).
[Crossref]

Caucheteur, C.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

Chen, W. J.

W. Y. Chen, J. Y. Lin, W. J. Chen, L. Luo, E. Wei-Guang Diau, and Y. C. Chen, “Functional gold nanoclusters as antimicrobial agents for antibiotic-resistant bacteria,” Nanomedicine (Lond.) 5(5), 755–764 (2010).
[Crossref] [PubMed]

Chen, W. Y.

W. Y. Chen, J. Y. Lin, W. J. Chen, L. Luo, E. Wei-Guang Diau, and Y. C. Chen, “Functional gold nanoclusters as antimicrobial agents for antibiotic-resistant bacteria,” Nanomedicine (Lond.) 5(5), 755–764 (2010).
[Crossref] [PubMed]

Chen, Y. C.

W. Y. Chen, J. Y. Lin, W. J. Chen, L. Luo, E. Wei-Guang Diau, and Y. C. Chen, “Functional gold nanoclusters as antimicrobial agents for antibiotic-resistant bacteria,” Nanomedicine (Lond.) 5(5), 755–764 (2010).
[Crossref] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cotter, N. P. K.

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 51(16), 11164–11167 (1995).
[Crossref] [PubMed]

Csákó, T.

M. Csete, Á. Sipos, A. Kőházi-Kis, A. Szalai, G. Szekeres, A. Mathesz, T. Csákó, K. Osvay, Zs. Bor, B. Penke, M. A. Deli, S. Veszelka, A. Schmatulla, and O. Marti, “Comparative study of sub-micrometer polymeric structures: dot-arrays, linear and crossed gratings generated by UV laser based two-beam interference, as surfaces for SPR and AFM based bio-sensing,” Appl. Surf. Sci. 254(4), 1194–1205 (2007).
[Crossref]

Csapó, E.

V. Hornok, E. Csapó, N. Varga, D. Ungor, D. Sebők, L. Janovák, G. Laczkó, and I. Dékány, “Controlled syntheses and structural characterization of plasmonic and red-emitting gold/lysozyme nanohybrid dispersions,” Colloid Polym. Sci. 294(1), 49–58 (2016).
[Crossref]

Csete, M.

A. Szalai, G. Szekeres, J. Balázs, A. Somogyi, and M. Csete, “Rotated grating coupled surface plasmon resonance on wavelength-scaled shallow rectangular gratings,” Proc. SPIE 8809, 88092U (2013).
[Crossref]

Á. Sipos, H. Tóháti, A. Mathesz, A. Szalai, S. Veszelka, M. A. Deli, L. Fülöp, A. Kőházi-Kis, M. Csete, and Zs. Bor, “Effect of nanogold particles on coupled plasmon resonance on biomolecule covered prepatterned multilayers,” Sens. Lett. 8(3), 512–520 (2010).
[Crossref]

M. Csete, Á. Sipos, A. Kőházi-Kis, A. Szalai, G. Szekeres, A. Mathesz, T. Csákó, K. Osvay, Zs. Bor, B. Penke, M. A. Deli, S. Veszelka, A. Schmatulla, and O. Marti, “Comparative study of sub-micrometer polymeric structures: dot-arrays, linear and crossed gratings generated by UV laser based two-beam interference, as surfaces for SPR and AFM based bio-sensing,” Appl. Surf. Sci. 254(4), 1194–1205 (2007).
[Crossref]

M. Csete, A. Kőházi-Kis, V. Megyesi, K. Osvay, Zs. Bor, M. Pietralla, and O. Marti, “Coupled surface plasmon resonance on bimetallic films covered by sub-micrometer polymer gratings,” Org. Electron. 8(2), 148–160 (2007).
[Crossref]

M. Csete, G. Szekeres, C. Vass, N. Maghelli, K. Osvay, Zs. Bor, M. Pietralla, and O. Marti, “Surface plasmon resonance spectroscopy on rotated sub-micrometer polymer gratings generated by UV laser based two-beam interference,” Appl. Surf. Sci. 252(13), 4773–4780 (2006).
[Crossref]

M. Csete, G. Kurdi, J. Kokavecz, V. Megyesi, K. Osvay, Z. Schay Zs. Bor, and O. Marti, “Application possibilities and chemical origin of sub-micrometer adhesion modulation on polymer gratings produced by UV laser illumination,” Mater. Sci. Eng. C 26(5-7), 1056–1062 (2006).
[Crossref]

M. Csete, C. Vass, J. Kokavecz, M. Goncalves, V. Megyesi, Zs. Bor, M. Pietralla, and O. Marti, “Effect of sub-micrometer polymer gratings generated by two-beam interference on surface plasmon resonance,” Appl. Surf. Sci. 247(1), 477–485 (2005).
[Crossref]

D’Aguanno, G.

G. D’Aguanno, N. Mattiucci, A. Alú, and M. J. Bloemer, “Quenched optical transmission in ultrathin subwavelength plasmonic gratings,” Phys. Rev. B 83(3), 035426 (2011).
[Crossref]

De Toni, A.

M. Perino, E. Pasqualotto, M. Scaramuzza, A. De Toni, and A. Paccagnella, “Enhancement and control of surface plasmon resonance sensitivity using grating in conical mounting configuration,” Opt. Lett. 40(2), 221–224 (2015).
[Crossref] [PubMed]

M. Perino, E. Pasqualotto, M. Scaramuzza, A. De Toni, and A. Paccagnela, “Characterization of Grating Coupled Surface Plasmon Polaritons Using Diffracted Rays Transmittance,” Plasmonics 9(5), 1103–1111 (2014).
[Crossref]

Dékány, I.

V. Hornok, E. Csapó, N. Varga, D. Ungor, D. Sebők, L. Janovák, G. Laczkó, and I. Dékány, “Controlled syntheses and structural characterization of plasmonic and red-emitting gold/lysozyme nanohybrid dispersions,” Colloid Polym. Sci. 294(1), 49–58 (2016).
[Crossref]

Deli, M. A.

Á. Sipos, H. Tóháti, A. Mathesz, A. Szalai, S. Veszelka, M. A. Deli, L. Fülöp, A. Kőházi-Kis, M. Csete, and Zs. Bor, “Effect of nanogold particles on coupled plasmon resonance on biomolecule covered prepatterned multilayers,” Sens. Lett. 8(3), 512–520 (2010).
[Crossref]

M. Csete, Á. Sipos, A. Kőházi-Kis, A. Szalai, G. Szekeres, A. Mathesz, T. Csákó, K. Osvay, Zs. Bor, B. Penke, M. A. Deli, S. Veszelka, A. Schmatulla, and O. Marti, “Comparative study of sub-micrometer polymeric structures: dot-arrays, linear and crossed gratings generated by UV laser based two-beam interference, as surfaces for SPR and AFM based bio-sensing,” Appl. Surf. Sci. 254(4), 1194–1205 (2007).
[Crossref]

Derjaguin, B. V.

B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, “On the role of molecular forces in contact deformations,” Colloid Interf. Sci. 67(2), 378–379 (1978).
[Crossref]

Divliansky, I.

A. Ghoshal, I. Divliansky, and P. G. Kik, “Experimental observation of mode-selective anticrossing in surface-plasmon coupled metal nanoparticle arrays,” Appl. Phys. Lett. 94(17), 171108 (2009).
[Crossref]

Enoch, S.

Formoso, C.

C. Formoso and L. S. Forster, “Tryptophan fluorescence lifetimes in lysozyme,” J. Biol. Chem. 250(10), 3738–3745 (1975).
[PubMed]

Forster, L. S.

C. Formoso and L. S. Forster, “Tryptophan fluorescence lifetimes in lysozyme,” J. Biol. Chem. 250(10), 3738–3745 (1975).
[PubMed]

Fülöp, L.

Á. Sipos, H. Tóháti, A. Mathesz, A. Szalai, S. Veszelka, M. A. Deli, L. Fülöp, A. Kőházi-Kis, M. Csete, and Zs. Bor, “Effect of nanogold particles on coupled plasmon resonance on biomolecule covered prepatterned multilayers,” Sens. Lett. 8(3), 512–520 (2010).
[Crossref]

Furlani, E. P.

K. Liu, X. Xue, and E. P. Furlani, “Theoretical Comparison of Optical Properties of Near-Infrared Colloidal Plasmonic Nanoparticles,” Sci. Rep. 6(1), 34189 (2016).
[Crossref] [PubMed]

Gazzola, E.

E. Gazzola, A. Pozzato, G. Ruffato, E. Sovernigo, and A. Sonato, “High-throughput fabrication and calibration of compact high-sensitivity plasmonic lab-on-chip for biosensing,” Opto-. Micro-. Nanofluid 3, 13 (2016).

E. Gazzola, L. Brigo, G. Zacco, P. Zilio, G. Ruffato, G. Brusatin, and F. Romanato, “Coupled SPP Modes on 1D Plasmonic Gratings in Conical Mounting,” Plasmonics 9(4), 867–876 (2014).
[Crossref]

Ghoshal, A.

A. Ghoshal, I. Divliansky, and P. G. Kik, “Experimental observation of mode-selective anticrossing in surface-plasmon coupled metal nanoparticle arrays,” Appl. Phys. Lett. 94(17), 171108 (2009).
[Crossref]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Goncalves, M.

M. Csete, C. Vass, J. Kokavecz, M. Goncalves, V. Megyesi, Zs. Bor, M. Pietralla, and O. Marti, “Effect of sub-micrometer polymer gratings generated by two-beam interference on surface plasmon resonance,” Appl. Surf. Sci. 247(1), 477–485 (2005).
[Crossref]

González, M. U.

Guo, J.

H. Shi, Z. Liu, X. Wang, J. Guo, L. Liu, L. Luo, J. Guo, H. Ma, S. Sun, and Y. He, “A symmetrical optical waveguide based surface plasmon resonance biosensing system,” Sens. Actuators B Chem. 185, 91–96 (2013).
[Crossref]

H. Shi, Z. Liu, X. Wang, J. Guo, L. Liu, L. Luo, J. Guo, H. Ma, S. Sun, and Y. He, “A symmetrical optical waveguide based surface plasmon resonance biosensing system,” Sens. Actuators B Chem. 185, 91–96 (2013).
[Crossref]

Guo, T.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

He, Y.

H. Shi, Z. Liu, X. Wang, J. Guo, L. Liu, L. Luo, J. Guo, H. Ma, S. Sun, and Y. He, “A symmetrical optical waveguide based surface plasmon resonance biosensing system,” Sens. Actuators B Chem. 185, 91–96 (2013).
[Crossref]

Homola, J.

B. Spackova, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: A Review,” Proc. IEEE 104(12), 2380–2408 (2016).
[Crossref]

Hong, L. K.

F. Romanato, L. K. Hong, H. K. Kang, C. C. Wong, Z. Yun, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435 (2008).
[Crossref]

Hornok, V.

V. Hornok, E. Csapó, N. Varga, D. Ungor, D. Sebők, L. Janovák, G. Laczkó, and I. Dékány, “Controlled syntheses and structural characterization of plasmonic and red-emitting gold/lysozyme nanohybrid dispersions,” Colloid Polym. Sci. 294(1), 49–58 (2016).
[Crossref]

Hou, C.

H. Wei, Z. Wang, L. Yang, S. Tian, C. Hou, and Y. Lu, “Lysozyme-stabilized gold fluorescent cluster: Synthesis and application as Hg(2+) sensor,” Analyst (Lond.) 135(6), 1406–1410 (2010).
[Crossref] [PubMed]

Janovák, L.

V. Hornok, E. Csapó, N. Varga, D. Ungor, D. Sebők, L. Janovák, G. Laczkó, and I. Dékány, “Controlled syntheses and structural characterization of plasmonic and red-emitting gold/lysozyme nanohybrid dispersions,” Colloid Polym. Sci. 294(1), 49–58 (2016).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kang, H. K.

F. Romanato, K. H. Lee, H. K. Kang, G. Ruffato, and C. C. Wong, “Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control,” Opt. Express 17(14), 12145–12154 (2009).
[Crossref] [PubMed]

F. Romanato, L. K. Hong, H. K. Kang, C. C. Wong, Z. Yun, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435 (2008).
[Crossref]

Kik, P. G.

A. Ghoshal, I. Divliansky, and P. G. Kik, “Experimental observation of mode-selective anticrossing in surface-plasmon coupled metal nanoparticle arrays,” Appl. Phys. Lett. 94(17), 171108 (2009).
[Crossref]

Kim, D.

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 51(16), 11164–11167 (1995).
[Crossref] [PubMed]

Knoll, W.

F. Romanato, L. K. Hong, H. K. Kang, C. C. Wong, Z. Yun, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435 (2008).
[Crossref]

Kocabas, A.

Koházi-Kis, A.

Á. Sipos, H. Tóháti, A. Mathesz, A. Szalai, S. Veszelka, M. A. Deli, L. Fülöp, A. Kőházi-Kis, M. Csete, and Zs. Bor, “Effect of nanogold particles on coupled plasmon resonance on biomolecule covered prepatterned multilayers,” Sens. Lett. 8(3), 512–520 (2010).
[Crossref]

M. Csete, Á. Sipos, A. Kőházi-Kis, A. Szalai, G. Szekeres, A. Mathesz, T. Csákó, K. Osvay, Zs. Bor, B. Penke, M. A. Deli, S. Veszelka, A. Schmatulla, and O. Marti, “Comparative study of sub-micrometer polymeric structures: dot-arrays, linear and crossed gratings generated by UV laser based two-beam interference, as surfaces for SPR and AFM based bio-sensing,” Appl. Surf. Sci. 254(4), 1194–1205 (2007).
[Crossref]

M. Csete, A. Kőházi-Kis, V. Megyesi, K. Osvay, Zs. Bor, M. Pietralla, and O. Marti, “Coupled surface plasmon resonance on bimetallic films covered by sub-micrometer polymer gratings,” Org. Electron. 8(2), 148–160 (2007).
[Crossref]

Kokavecz, J.

M. Csete, G. Kurdi, J. Kokavecz, V. Megyesi, K. Osvay, Z. Schay Zs. Bor, and O. Marti, “Application possibilities and chemical origin of sub-micrometer adhesion modulation on polymer gratings produced by UV laser illumination,” Mater. Sci. Eng. C 26(5-7), 1056–1062 (2006).
[Crossref]

M. Csete, C. Vass, J. Kokavecz, M. Goncalves, V. Megyesi, Zs. Bor, M. Pietralla, and O. Marti, “Effect of sub-micrometer polymer gratings generated by two-beam interference on surface plasmon resonance,” Appl. Surf. Sci. 247(1), 477–485 (2005).
[Crossref]

Kretschmann, M.

M. Kretschmann, A. Leskova, and A. A. Maradudin, “Conical propagation of a surface plasmon polariton across a grating,” Opt. Commun. 215(4-6), 205–223 (2003).
[Crossref]

Kurdi, G.

M. Csete, G. Kurdi, J. Kokavecz, V. Megyesi, K. Osvay, Z. Schay Zs. Bor, and O. Marti, “Application possibilities and chemical origin of sub-micrometer adhesion modulation on polymer gratings produced by UV laser illumination,” Mater. Sci. Eng. C 26(5-7), 1056–1062 (2006).
[Crossref]

Laczkó, G.

V. Hornok, E. Csapó, N. Varga, D. Ungor, D. Sebők, L. Janovák, G. Laczkó, and I. Dékány, “Controlled syntheses and structural characterization of plasmonic and red-emitting gold/lysozyme nanohybrid dispersions,” Colloid Polym. Sci. 294(1), 49–58 (2016).
[Crossref]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Lee, K. H.

Leskova, A.

M. Kretschmann, A. Leskova, and A. A. Maradudin, “Conical propagation of a surface plasmon polariton across a grating,” Opt. Commun. 215(4-6), 205–223 (2003).
[Crossref]

Lin, J. Y.

W. Y. Chen, J. Y. Lin, W. J. Chen, L. Luo, E. Wei-Guang Diau, and Y. C. Chen, “Functional gold nanoclusters as antimicrobial agents for antibiotic-resistant bacteria,” Nanomedicine (Lond.) 5(5), 755–764 (2010).
[Crossref] [PubMed]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Liu, K.

K. Liu, X. Xue, and E. P. Furlani, “Theoretical Comparison of Optical Properties of Near-Infrared Colloidal Plasmonic Nanoparticles,” Sci. Rep. 6(1), 34189 (2016).
[Crossref] [PubMed]

Liu, L.

H. Shi, Z. Liu, X. Wang, J. Guo, L. Liu, L. Luo, J. Guo, H. Ma, S. Sun, and Y. He, “A symmetrical optical waveguide based surface plasmon resonance biosensing system,” Sens. Actuators B Chem. 185, 91–96 (2013).
[Crossref]

Liu, Z.

H. Shi, Z. Liu, X. Wang, J. Guo, L. Liu, L. Luo, J. Guo, H. Ma, S. Sun, and Y. He, “A symmetrical optical waveguide based surface plasmon resonance biosensing system,” Sens. Actuators B Chem. 185, 91–96 (2013).
[Crossref]

Lu, Y.

H. Wei, Z. Wang, L. Yang, S. Tian, C. Hou, and Y. Lu, “Lysozyme-stabilized gold fluorescent cluster: Synthesis and application as Hg(2+) sensor,” Analyst (Lond.) 135(6), 1406–1410 (2010).
[Crossref] [PubMed]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Luo, L.

H. Shi, Z. Liu, X. Wang, J. Guo, L. Liu, L. Luo, J. Guo, H. Ma, S. Sun, and Y. He, “A symmetrical optical waveguide based surface plasmon resonance biosensing system,” Sens. Actuators B Chem. 185, 91–96 (2013).
[Crossref]

W. Y. Chen, J. Y. Lin, W. J. Chen, L. Luo, E. Wei-Guang Diau, and Y. C. Chen, “Functional gold nanoclusters as antimicrobial agents for antibiotic-resistant bacteria,” Nanomedicine (Lond.) 5(5), 755–764 (2010).
[Crossref] [PubMed]

Ma, H.

H. Shi, Z. Liu, X. Wang, J. Guo, L. Liu, L. Luo, J. Guo, H. Ma, S. Sun, and Y. He, “A symmetrical optical waveguide based surface plasmon resonance biosensing system,” Sens. Actuators B Chem. 185, 91–96 (2013).
[Crossref]

Maghelli, N.

M. Csete, G. Szekeres, C. Vass, N. Maghelli, K. Osvay, Zs. Bor, M. Pietralla, and O. Marti, “Surface plasmon resonance spectroscopy on rotated sub-micrometer polymer gratings generated by UV laser based two-beam interference,” Appl. Surf. Sci. 252(13), 4773–4780 (2006).
[Crossref]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Maradudin, A. A.

M. Kretschmann, A. Leskova, and A. A. Maradudin, “Conical propagation of a surface plasmon polariton across a grating,” Opt. Commun. 215(4-6), 205–223 (2003).
[Crossref]

Marti, O.

M. Csete, A. Kőházi-Kis, V. Megyesi, K. Osvay, Zs. Bor, M. Pietralla, and O. Marti, “Coupled surface plasmon resonance on bimetallic films covered by sub-micrometer polymer gratings,” Org. Electron. 8(2), 148–160 (2007).
[Crossref]

M. Csete, Á. Sipos, A. Kőházi-Kis, A. Szalai, G. Szekeres, A. Mathesz, T. Csákó, K. Osvay, Zs. Bor, B. Penke, M. A. Deli, S. Veszelka, A. Schmatulla, and O. Marti, “Comparative study of sub-micrometer polymeric structures: dot-arrays, linear and crossed gratings generated by UV laser based two-beam interference, as surfaces for SPR and AFM based bio-sensing,” Appl. Surf. Sci. 254(4), 1194–1205 (2007).
[Crossref]

M. Csete, G. Szekeres, C. Vass, N. Maghelli, K. Osvay, Zs. Bor, M. Pietralla, and O. Marti, “Surface plasmon resonance spectroscopy on rotated sub-micrometer polymer gratings generated by UV laser based two-beam interference,” Appl. Surf. Sci. 252(13), 4773–4780 (2006).
[Crossref]

M. Csete, G. Kurdi, J. Kokavecz, V. Megyesi, K. Osvay, Z. Schay Zs. Bor, and O. Marti, “Application possibilities and chemical origin of sub-micrometer adhesion modulation on polymer gratings produced by UV laser illumination,” Mater. Sci. Eng. C 26(5-7), 1056–1062 (2006).
[Crossref]

M. Csete, C. Vass, J. Kokavecz, M. Goncalves, V. Megyesi, Zs. Bor, M. Pietralla, and O. Marti, “Effect of sub-micrometer polymer gratings generated by two-beam interference on surface plasmon resonance,” Appl. Surf. Sci. 247(1), 477–485 (2005).
[Crossref]

Mathesz, A.

Á. Sipos, H. Tóháti, A. Mathesz, A. Szalai, S. Veszelka, M. A. Deli, L. Fülöp, A. Kőházi-Kis, M. Csete, and Zs. Bor, “Effect of nanogold particles on coupled plasmon resonance on biomolecule covered prepatterned multilayers,” Sens. Lett. 8(3), 512–520 (2010).
[Crossref]

M. Csete, Á. Sipos, A. Kőházi-Kis, A. Szalai, G. Szekeres, A. Mathesz, T. Csákó, K. Osvay, Zs. Bor, B. Penke, M. A. Deli, S. Veszelka, A. Schmatulla, and O. Marti, “Comparative study of sub-micrometer polymeric structures: dot-arrays, linear and crossed gratings generated by UV laser based two-beam interference, as surfaces for SPR and AFM based bio-sensing,” Appl. Surf. Sci. 254(4), 1194–1205 (2007).
[Crossref]

Mattiucci, N.

G. D’Aguanno, N. Mattiucci, A. Alú, and M. J. Bloemer, “Quenched optical transmission in ultrathin subwavelength plasmonic gratings,” Phys. Rev. B 83(3), 035426 (2011).
[Crossref]

Megyesi, V.

M. Csete, A. Kőházi-Kis, V. Megyesi, K. Osvay, Zs. Bor, M. Pietralla, and O. Marti, “Coupled surface plasmon resonance on bimetallic films covered by sub-micrometer polymer gratings,” Org. Electron. 8(2), 148–160 (2007).
[Crossref]

M. Csete, G. Kurdi, J. Kokavecz, V. Megyesi, K. Osvay, Z. Schay Zs. Bor, and O. Marti, “Application possibilities and chemical origin of sub-micrometer adhesion modulation on polymer gratings produced by UV laser illumination,” Mater. Sci. Eng. C 26(5-7), 1056–1062 (2006).
[Crossref]

M. Csete, C. Vass, J. Kokavecz, M. Goncalves, V. Megyesi, Zs. Bor, M. Pietralla, and O. Marti, “Effect of sub-micrometer polymer gratings generated by two-beam interference on surface plasmon resonance,” Appl. Surf. Sci. 247(1), 477–485 (2005).
[Crossref]

Mills, D. L.

M. G. Weber and D. L. Mills, “Determination of surface-polariton minigaps on grating structures: A comparison between constant-frequency and constant-angle scans,” Phys. Rev. B Condens. Matter 34(4), 2893–2894 (1986).
[Crossref] [PubMed]

D. L. Mills, “Interaction of surface polaritons with periodic surface structures; Rayleigh waves and gratings,” Phys. Rev. B 15(6), 3097–3118 (1977).
[Crossref]

Muller, V. M.

B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, “On the role of molecular forces in contact deformations,” Colloid Interf. Sci. 67(2), 378–379 (1978).
[Crossref]

Nash, D. J.

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 51(16), 11164–11167 (1995).
[Crossref] [PubMed]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Osvay, K.

M. Csete, Á. Sipos, A. Kőházi-Kis, A. Szalai, G. Szekeres, A. Mathesz, T. Csákó, K. Osvay, Zs. Bor, B. Penke, M. A. Deli, S. Veszelka, A. Schmatulla, and O. Marti, “Comparative study of sub-micrometer polymeric structures: dot-arrays, linear and crossed gratings generated by UV laser based two-beam interference, as surfaces for SPR and AFM based bio-sensing,” Appl. Surf. Sci. 254(4), 1194–1205 (2007).
[Crossref]

M. Csete, A. Kőházi-Kis, V. Megyesi, K. Osvay, Zs. Bor, M. Pietralla, and O. Marti, “Coupled surface plasmon resonance on bimetallic films covered by sub-micrometer polymer gratings,” Org. Electron. 8(2), 148–160 (2007).
[Crossref]

M. Csete, G. Szekeres, C. Vass, N. Maghelli, K. Osvay, Zs. Bor, M. Pietralla, and O. Marti, “Surface plasmon resonance spectroscopy on rotated sub-micrometer polymer gratings generated by UV laser based two-beam interference,” Appl. Surf. Sci. 252(13), 4773–4780 (2006).
[Crossref]

M. Csete, G. Kurdi, J. Kokavecz, V. Megyesi, K. Osvay, Z. Schay Zs. Bor, and O. Marti, “Application possibilities and chemical origin of sub-micrometer adhesion modulation on polymer gratings produced by UV laser illumination,” Mater. Sci. Eng. C 26(5-7), 1056–1062 (2006).
[Crossref]

Paccagnela, A.

M. Perino, E. Pasqualotto, M. Scaramuzza, A. De Toni, and A. Paccagnela, “Characterization of Grating Coupled Surface Plasmon Polaritons Using Diffracted Rays Transmittance,” Plasmonics 9(5), 1103–1111 (2014).
[Crossref]

Paccagnella, A.

Pasqualotto, E.

M. Perino, E. Pasqualotto, M. Scaramuzza, A. De Toni, and A. Paccagnella, “Enhancement and control of surface plasmon resonance sensitivity using grating in conical mounting configuration,” Opt. Lett. 40(2), 221–224 (2015).
[Crossref] [PubMed]

M. Perino, E. Pasqualotto, M. Scaramuzza, A. De Toni, and A. Paccagnela, “Characterization of Grating Coupled Surface Plasmon Polaritons Using Diffracted Rays Transmittance,” Plasmonics 9(5), 1103–1111 (2014).
[Crossref]

Penke, B.

M. Csete, Á. Sipos, A. Kőházi-Kis, A. Szalai, G. Szekeres, A. Mathesz, T. Csákó, K. Osvay, Zs. Bor, B. Penke, M. A. Deli, S. Veszelka, A. Schmatulla, and O. Marti, “Comparative study of sub-micrometer polymeric structures: dot-arrays, linear and crossed gratings generated by UV laser based two-beam interference, as surfaces for SPR and AFM based bio-sensing,” Appl. Surf. Sci. 254(4), 1194–1205 (2007).
[Crossref]

Perino, M.

M. Perino, E. Pasqualotto, M. Scaramuzza, A. De Toni, and A. Paccagnella, “Enhancement and control of surface plasmon resonance sensitivity using grating in conical mounting configuration,” Opt. Lett. 40(2), 221–224 (2015).
[Crossref] [PubMed]

M. Perino, E. Pasqualotto, M. Scaramuzza, A. De Toni, and A. Paccagnela, “Characterization of Grating Coupled Surface Plasmon Polaritons Using Diffracted Rays Transmittance,” Plasmonics 9(5), 1103–1111 (2014).
[Crossref]

Pietralla, M.

M. Csete, A. Kőházi-Kis, V. Megyesi, K. Osvay, Zs. Bor, M. Pietralla, and O. Marti, “Coupled surface plasmon resonance on bimetallic films covered by sub-micrometer polymer gratings,” Org. Electron. 8(2), 148–160 (2007).
[Crossref]

M. Csete, G. Szekeres, C. Vass, N. Maghelli, K. Osvay, Zs. Bor, M. Pietralla, and O. Marti, “Surface plasmon resonance spectroscopy on rotated sub-micrometer polymer gratings generated by UV laser based two-beam interference,” Appl. Surf. Sci. 252(13), 4773–4780 (2006).
[Crossref]

M. Csete, C. Vass, J. Kokavecz, M. Goncalves, V. Megyesi, Zs. Bor, M. Pietralla, and O. Marti, “Effect of sub-micrometer polymer gratings generated by two-beam interference on surface plasmon resonance,” Appl. Surf. Sci. 247(1), 477–485 (2005).
[Crossref]

Pozzato, A.

E. Gazzola, A. Pozzato, G. Ruffato, E. Sovernigo, and A. Sonato, “High-throughput fabrication and calibration of compact high-sensitivity plasmonic lab-on-chip for biosensing,” Opto-. Micro-. Nanofluid 3, 13 (2016).

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 51(16), 11164–11167 (1995).
[Crossref] [PubMed]

Quidant, R.

Randhawa, S.

Renger, J.

Romanato, F.

E. Gazzola, L. Brigo, G. Zacco, P. Zilio, G. Ruffato, G. Brusatin, and F. Romanato, “Coupled SPP Modes on 1D Plasmonic Gratings in Conical Mounting,” Plasmonics 9(4), 867–876 (2014).
[Crossref]

F. Romanato, K. H. Lee, H. K. Kang, G. Ruffato, and C. C. Wong, “Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control,” Opt. Express 17(14), 12145–12154 (2009).
[Crossref] [PubMed]

F. Romanato, L. K. Hong, H. K. Kang, C. C. Wong, Z. Yun, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435 (2008).
[Crossref]

Ruffato, G.

E. Gazzola, A. Pozzato, G. Ruffato, E. Sovernigo, and A. Sonato, “High-throughput fabrication and calibration of compact high-sensitivity plasmonic lab-on-chip for biosensing,” Opto-. Micro-. Nanofluid 3, 13 (2016).

E. Gazzola, L. Brigo, G. Zacco, P. Zilio, G. Ruffato, G. Brusatin, and F. Romanato, “Coupled SPP Modes on 1D Plasmonic Gratings in Conical Mounting,” Plasmonics 9(4), 867–876 (2014).
[Crossref]

F. Romanato, K. H. Lee, H. K. Kang, G. Ruffato, and C. C. Wong, “Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control,” Opt. Express 17(14), 12145–12154 (2009).
[Crossref] [PubMed]

Sambles, J. R.

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 51(16), 11164–11167 (1995).
[Crossref] [PubMed]

Scaramuzza, M.

M. Perino, E. Pasqualotto, M. Scaramuzza, A. De Toni, and A. Paccagnella, “Enhancement and control of surface plasmon resonance sensitivity using grating in conical mounting configuration,” Opt. Lett. 40(2), 221–224 (2015).
[Crossref] [PubMed]

M. Perino, E. Pasqualotto, M. Scaramuzza, A. De Toni, and A. Paccagnela, “Characterization of Grating Coupled Surface Plasmon Polaritons Using Diffracted Rays Transmittance,” Plasmonics 9(5), 1103–1111 (2014).
[Crossref]

Schay Zs. Bor, Z.

M. Csete, G. Kurdi, J. Kokavecz, V. Megyesi, K. Osvay, Z. Schay Zs. Bor, and O. Marti, “Application possibilities and chemical origin of sub-micrometer adhesion modulation on polymer gratings produced by UV laser illumination,” Mater. Sci. Eng. C 26(5-7), 1056–1062 (2006).
[Crossref]

Schmatulla, A.

M. Csete, Á. Sipos, A. Kőházi-Kis, A. Szalai, G. Szekeres, A. Mathesz, T. Csákó, K. Osvay, Zs. Bor, B. Penke, M. A. Deli, S. Veszelka, A. Schmatulla, and O. Marti, “Comparative study of sub-micrometer polymeric structures: dot-arrays, linear and crossed gratings generated by UV laser based two-beam interference, as surfaces for SPR and AFM based bio-sensing,” Appl. Surf. Sci. 254(4), 1194–1205 (2007).
[Crossref]

Sebok, D.

V. Hornok, E. Csapó, N. Varga, D. Ungor, D. Sebők, L. Janovák, G. Laczkó, and I. Dékány, “Controlled syntheses and structural characterization of plasmonic and red-emitting gold/lysozyme nanohybrid dispersions,” Colloid Polym. Sci. 294(1), 49–58 (2016).
[Crossref]

Senlik, S. S.

Shalabney, A.

A. Shalabney and I. Abdulhalim, “Sensitivity-enhancement methods for surface plasmon sensors,” Laser Photonics Rev. 5(4), 571–606 (2011).
[Crossref]

Shi, H.

H. Shi, Z. Liu, X. Wang, J. Guo, L. Liu, L. Luo, J. Guo, H. Ma, S. Sun, and Y. He, “A symmetrical optical waveguide based surface plasmon resonance biosensing system,” Sens. Actuators B Chem. 185, 91–96 (2013).
[Crossref]

Sipos, Á.

Á. Sipos, H. Tóháti, A. Mathesz, A. Szalai, S. Veszelka, M. A. Deli, L. Fülöp, A. Kőházi-Kis, M. Csete, and Zs. Bor, “Effect of nanogold particles on coupled plasmon resonance on biomolecule covered prepatterned multilayers,” Sens. Lett. 8(3), 512–520 (2010).
[Crossref]

M. Csete, Á. Sipos, A. Kőházi-Kis, A. Szalai, G. Szekeres, A. Mathesz, T. Csákó, K. Osvay, Zs. Bor, B. Penke, M. A. Deli, S. Veszelka, A. Schmatulla, and O. Marti, “Comparative study of sub-micrometer polymeric structures: dot-arrays, linear and crossed gratings generated by UV laser based two-beam interference, as surfaces for SPR and AFM based bio-sensing,” Appl. Surf. Sci. 254(4), 1194–1205 (2007).
[Crossref]

Somogyi, A.

A. Szalai, G. Szekeres, J. Balázs, A. Somogyi, and M. Csete, “Rotated grating coupled surface plasmon resonance on wavelength-scaled shallow rectangular gratings,” Proc. SPIE 8809, 88092U (2013).
[Crossref]

Sonato, A.

E. Gazzola, A. Pozzato, G. Ruffato, E. Sovernigo, and A. Sonato, “High-throughput fabrication and calibration of compact high-sensitivity plasmonic lab-on-chip for biosensing,” Opto-. Micro-. Nanofluid 3, 13 (2016).

Søndergaard, T.

Sovernigo, E.

E. Gazzola, A. Pozzato, G. Ruffato, E. Sovernigo, and A. Sonato, “High-throughput fabrication and calibration of compact high-sensitivity plasmonic lab-on-chip for biosensing,” Opto-. Micro-. Nanofluid 3, 13 (2016).

Spackova, B.

B. Spackova, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: A Review,” Proc. IEEE 104(12), 2380–2408 (2016).
[Crossref]

Sun, S.

H. Shi, Z. Liu, X. Wang, J. Guo, L. Liu, L. Luo, J. Guo, H. Ma, S. Sun, and Y. He, “A symmetrical optical waveguide based surface plasmon resonance biosensing system,” Sens. Actuators B Chem. 185, 91–96 (2013).
[Crossref]

Szalai, A.

A. Szalai, G. Szekeres, J. Balázs, A. Somogyi, and M. Csete, “Rotated grating coupled surface plasmon resonance on wavelength-scaled shallow rectangular gratings,” Proc. SPIE 8809, 88092U (2013).
[Crossref]

Á. Sipos, H. Tóháti, A. Mathesz, A. Szalai, S. Veszelka, M. A. Deli, L. Fülöp, A. Kőházi-Kis, M. Csete, and Zs. Bor, “Effect of nanogold particles on coupled plasmon resonance on biomolecule covered prepatterned multilayers,” Sens. Lett. 8(3), 512–520 (2010).
[Crossref]

M. Csete, Á. Sipos, A. Kőházi-Kis, A. Szalai, G. Szekeres, A. Mathesz, T. Csákó, K. Osvay, Zs. Bor, B. Penke, M. A. Deli, S. Veszelka, A. Schmatulla, and O. Marti, “Comparative study of sub-micrometer polymeric structures: dot-arrays, linear and crossed gratings generated by UV laser based two-beam interference, as surfaces for SPR and AFM based bio-sensing,” Appl. Surf. Sci. 254(4), 1194–1205 (2007).
[Crossref]

Szekeres, G.

A. Szalai, G. Szekeres, J. Balázs, A. Somogyi, and M. Csete, “Rotated grating coupled surface plasmon resonance on wavelength-scaled shallow rectangular gratings,” Proc. SPIE 8809, 88092U (2013).
[Crossref]

M. Csete, Á. Sipos, A. Kőházi-Kis, A. Szalai, G. Szekeres, A. Mathesz, T. Csákó, K. Osvay, Zs. Bor, B. Penke, M. A. Deli, S. Veszelka, A. Schmatulla, and O. Marti, “Comparative study of sub-micrometer polymeric structures: dot-arrays, linear and crossed gratings generated by UV laser based two-beam interference, as surfaces for SPR and AFM based bio-sensing,” Appl. Surf. Sci. 254(4), 1194–1205 (2007).
[Crossref]

M. Csete, G. Szekeres, C. Vass, N. Maghelli, K. Osvay, Zs. Bor, M. Pietralla, and O. Marti, “Surface plasmon resonance spectroscopy on rotated sub-micrometer polymer gratings generated by UV laser based two-beam interference,” Appl. Surf. Sci. 252(13), 4773–4780 (2006).
[Crossref]

Tian, S.

H. Wei, Z. Wang, L. Yang, S. Tian, C. Hou, and Y. Lu, “Lysozyme-stabilized gold fluorescent cluster: Synthesis and application as Hg(2+) sensor,” Analyst (Lond.) 135(6), 1406–1410 (2010).
[Crossref] [PubMed]

Tóháti, H.

Á. Sipos, H. Tóháti, A. Mathesz, A. Szalai, S. Veszelka, M. A. Deli, L. Fülöp, A. Kőházi-Kis, M. Csete, and Zs. Bor, “Effect of nanogold particles on coupled plasmon resonance on biomolecule covered prepatterned multilayers,” Sens. Lett. 8(3), 512–520 (2010).
[Crossref]

Toporov, Y. P.

B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, “On the role of molecular forces in contact deformations,” Colloid Interf. Sci. 67(2), 378–379 (1978).
[Crossref]

Ungor, D.

V. Hornok, E. Csapó, N. Varga, D. Ungor, D. Sebők, L. Janovák, G. Laczkó, and I. Dékány, “Controlled syntheses and structural characterization of plasmonic and red-emitting gold/lysozyme nanohybrid dispersions,” Colloid Polym. Sci. 294(1), 49–58 (2016).
[Crossref]

Varga, N.

V. Hornok, E. Csapó, N. Varga, D. Ungor, D. Sebők, L. Janovák, G. Laczkó, and I. Dékány, “Controlled syntheses and structural characterization of plasmonic and red-emitting gold/lysozyme nanohybrid dispersions,” Colloid Polym. Sci. 294(1), 49–58 (2016).
[Crossref]

Vass, C.

M. Csete, G. Szekeres, C. Vass, N. Maghelli, K. Osvay, Zs. Bor, M. Pietralla, and O. Marti, “Surface plasmon resonance spectroscopy on rotated sub-micrometer polymer gratings generated by UV laser based two-beam interference,” Appl. Surf. Sci. 252(13), 4773–4780 (2006).
[Crossref]

M. Csete, C. Vass, J. Kokavecz, M. Goncalves, V. Megyesi, Zs. Bor, M. Pietralla, and O. Marti, “Effect of sub-micrometer polymer gratings generated by two-beam interference on surface plasmon resonance,” Appl. Surf. Sci. 247(1), 477–485 (2005).
[Crossref]

Veszelka, S.

Á. Sipos, H. Tóháti, A. Mathesz, A. Szalai, S. Veszelka, M. A. Deli, L. Fülöp, A. Kőházi-Kis, M. Csete, and Zs. Bor, “Effect of nanogold particles on coupled plasmon resonance on biomolecule covered prepatterned multilayers,” Sens. Lett. 8(3), 512–520 (2010).
[Crossref]

M. Csete, Á. Sipos, A. Kőházi-Kis, A. Szalai, G. Szekeres, A. Mathesz, T. Csákó, K. Osvay, Zs. Bor, B. Penke, M. A. Deli, S. Veszelka, A. Schmatulla, and O. Marti, “Comparative study of sub-micrometer polymeric structures: dot-arrays, linear and crossed gratings generated by UV laser based two-beam interference, as surfaces for SPR and AFM based bio-sensing,” Appl. Surf. Sci. 254(4), 1194–1205 (2007).
[Crossref]

Wang, X.

H. Shi, Z. Liu, X. Wang, J. Guo, L. Liu, L. Luo, J. Guo, H. Ma, S. Sun, and Y. He, “A symmetrical optical waveguide based surface plasmon resonance biosensing system,” Sens. Actuators B Chem. 185, 91–96 (2013).
[Crossref]

Wang, Z.

H. Wei, Z. Wang, L. Yang, S. Tian, C. Hou, and Y. Lu, “Lysozyme-stabilized gold fluorescent cluster: Synthesis and application as Hg(2+) sensor,” Analyst (Lond.) 135(6), 1406–1410 (2010).
[Crossref] [PubMed]

Weber, M. G.

M. G. Weber and D. L. Mills, “Determination of surface-polariton minigaps on grating structures: A comparison between constant-frequency and constant-angle scans,” Phys. Rev. B Condens. Matter 34(4), 2893–2894 (1986).
[Crossref] [PubMed]

Wei, H.

H. Wei, Z. Wang, L. Yang, S. Tian, C. Hou, and Y. Lu, “Lysozyme-stabilized gold fluorescent cluster: Synthesis and application as Hg(2+) sensor,” Analyst (Lond.) 135(6), 1406–1410 (2010).
[Crossref] [PubMed]

Wei-Guang Diau, E.

W. Y. Chen, J. Y. Lin, W. J. Chen, L. Luo, E. Wei-Guang Diau, and Y. C. Chen, “Functional gold nanoclusters as antimicrobial agents for antibiotic-resistant bacteria,” Nanomedicine (Lond.) 5(5), 755–764 (2010).
[Crossref] [PubMed]

Wong, C. C.

F. Romanato, K. H. Lee, H. K. Kang, G. Ruffato, and C. C. Wong, “Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control,” Opt. Express 17(14), 12145–12154 (2009).
[Crossref] [PubMed]

F. Romanato, L. K. Hong, H. K. Kang, C. C. Wong, Z. Yun, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435 (2008).
[Crossref]

Wrobel, P.

B. Spackova, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: A Review,” Proc. IEEE 104(12), 2380–2408 (2016).
[Crossref]

Xue, X.

K. Liu, X. Xue, and E. P. Furlani, “Theoretical Comparison of Optical Properties of Near-Infrared Colloidal Plasmonic Nanoparticles,” Sci. Rep. 6(1), 34189 (2016).
[Crossref] [PubMed]

Yang, L.

H. Wei, Z. Wang, L. Yang, S. Tian, C. Hou, and Y. Lu, “Lysozyme-stabilized gold fluorescent cluster: Synthesis and application as Hg(2+) sensor,” Analyst (Lond.) 135(6), 1406–1410 (2010).
[Crossref] [PubMed]

Yun, Z.

F. Romanato, L. K. Hong, H. K. Kang, C. C. Wong, Z. Yun, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435 (2008).
[Crossref]

Zacco, G.

E. Gazzola, L. Brigo, G. Zacco, P. Zilio, G. Ruffato, G. Brusatin, and F. Romanato, “Coupled SPP Modes on 1D Plasmonic Gratings in Conical Mounting,” Plasmonics 9(4), 867–876 (2014).
[Crossref]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zilio, P.

E. Gazzola, L. Brigo, G. Zacco, P. Zilio, G. Ruffato, G. Brusatin, and F. Romanato, “Coupled SPP Modes on 1D Plasmonic Gratings in Conical Mounting,” Plasmonics 9(4), 867–876 (2014).
[Crossref]

Anal. Bioanal. Chem. (1)

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

Analyst (Lond.) (1)

H. Wei, Z. Wang, L. Yang, S. Tian, C. Hou, and Y. Lu, “Lysozyme-stabilized gold fluorescent cluster: Synthesis and application as Hg(2+) sensor,” Analyst (Lond.) 135(6), 1406–1410 (2010).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Ghoshal, I. Divliansky, and P. G. Kik, “Experimental observation of mode-selective anticrossing in surface-plasmon coupled metal nanoparticle arrays,” Appl. Phys. Lett. 94(17), 171108 (2009).
[Crossref]

Appl. Spectrosc. (1)

Appl. Surf. Sci. (3)

M. Csete, C. Vass, J. Kokavecz, M. Goncalves, V. Megyesi, Zs. Bor, M. Pietralla, and O. Marti, “Effect of sub-micrometer polymer gratings generated by two-beam interference on surface plasmon resonance,” Appl. Surf. Sci. 247(1), 477–485 (2005).
[Crossref]

M. Csete, G. Szekeres, C. Vass, N. Maghelli, K. Osvay, Zs. Bor, M. Pietralla, and O. Marti, “Surface plasmon resonance spectroscopy on rotated sub-micrometer polymer gratings generated by UV laser based two-beam interference,” Appl. Surf. Sci. 252(13), 4773–4780 (2006).
[Crossref]

M. Csete, Á. Sipos, A. Kőházi-Kis, A. Szalai, G. Szekeres, A. Mathesz, T. Csákó, K. Osvay, Zs. Bor, B. Penke, M. A. Deli, S. Veszelka, A. Schmatulla, and O. Marti, “Comparative study of sub-micrometer polymeric structures: dot-arrays, linear and crossed gratings generated by UV laser based two-beam interference, as surfaces for SPR and AFM based bio-sensing,” Appl. Surf. Sci. 254(4), 1194–1205 (2007).
[Crossref]

Colloid Interf. Sci. (1)

B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, “On the role of molecular forces in contact deformations,” Colloid Interf. Sci. 67(2), 378–379 (1978).
[Crossref]

Colloid Polym. Sci. (1)

V. Hornok, E. Csapó, N. Varga, D. Ungor, D. Sebők, L. Janovák, G. Laczkó, and I. Dékány, “Controlled syntheses and structural characterization of plasmonic and red-emitting gold/lysozyme nanohybrid dispersions,” Colloid Polym. Sci. 294(1), 49–58 (2016).
[Crossref]

J. Biol. Chem. (1)

C. Formoso and L. S. Forster, “Tryptophan fluorescence lifetimes in lysozyme,” J. Biol. Chem. 250(10), 3738–3745 (1975).
[PubMed]

Laser Photonics Rev. (1)

A. Shalabney and I. Abdulhalim, “Sensitivity-enhancement methods for surface plasmon sensors,” Laser Photonics Rev. 5(4), 571–606 (2011).
[Crossref]

Mater. Sci. Eng. C (1)

M. Csete, G. Kurdi, J. Kokavecz, V. Megyesi, K. Osvay, Z. Schay Zs. Bor, and O. Marti, “Application possibilities and chemical origin of sub-micrometer adhesion modulation on polymer gratings produced by UV laser illumination,” Mater. Sci. Eng. C 26(5-7), 1056–1062 (2006).
[Crossref]

Nanomedicine (Lond.) (1)

W. Y. Chen, J. Y. Lin, W. J. Chen, L. Luo, E. Wei-Guang Diau, and Y. C. Chen, “Functional gold nanoclusters as antimicrobial agents for antibiotic-resistant bacteria,” Nanomedicine (Lond.) 5(5), 755–764 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Opt. Commun. (1)

M. Kretschmann, A. Leskova, and A. A. Maradudin, “Conical propagation of a surface plasmon polariton across a grating,” Opt. Commun. 215(4-6), 205–223 (2003).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opto-. Micro-. Nanofluid (1)

E. Gazzola, A. Pozzato, G. Ruffato, E. Sovernigo, and A. Sonato, “High-throughput fabrication and calibration of compact high-sensitivity plasmonic lab-on-chip for biosensing,” Opto-. Micro-. Nanofluid 3, 13 (2016).

Org. Electron. (1)

M. Csete, A. Kőházi-Kis, V. Megyesi, K. Osvay, Zs. Bor, M. Pietralla, and O. Marti, “Coupled surface plasmon resonance on bimetallic films covered by sub-micrometer polymer gratings,” Org. Electron. 8(2), 148–160 (2007).
[Crossref]

Phys. Rev. B (4)

F. Romanato, L. K. Hong, H. K. Kang, C. C. Wong, Z. Yun, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435 (2008).
[Crossref]

G. D’Aguanno, N. Mattiucci, A. Alú, and M. J. Bloemer, “Quenched optical transmission in ultrathin subwavelength plasmonic gratings,” Phys. Rev. B 83(3), 035426 (2011).
[Crossref]

D. L. Mills, “Interaction of surface polaritons with periodic surface structures; Rayleigh waves and gratings,” Phys. Rev. B 15(6), 3097–3118 (1977).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. B Condens. Matter (2)

M. G. Weber and D. L. Mills, “Determination of surface-polariton minigaps on grating structures: A comparison between constant-frequency and constant-angle scans,” Phys. Rev. B Condens. Matter 34(4), 2893–2894 (1986).
[Crossref] [PubMed]

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 51(16), 11164–11167 (1995).
[Crossref] [PubMed]

Plasmonics (2)

E. Gazzola, L. Brigo, G. Zacco, P. Zilio, G. Ruffato, G. Brusatin, and F. Romanato, “Coupled SPP Modes on 1D Plasmonic Gratings in Conical Mounting,” Plasmonics 9(4), 867–876 (2014).
[Crossref]

M. Perino, E. Pasqualotto, M. Scaramuzza, A. De Toni, and A. Paccagnela, “Characterization of Grating Coupled Surface Plasmon Polaritons Using Diffracted Rays Transmittance,” Plasmonics 9(5), 1103–1111 (2014).
[Crossref]

Proc. IEEE (1)

B. Spackova, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: A Review,” Proc. IEEE 104(12), 2380–2408 (2016).
[Crossref]

Proc. SPIE (1)

A. Szalai, G. Szekeres, J. Balázs, A. Somogyi, and M. Csete, “Rotated grating coupled surface plasmon resonance on wavelength-scaled shallow rectangular gratings,” Proc. SPIE 8809, 88092U (2013).
[Crossref]

Sci. Rep. (1)

K. Liu, X. Xue, and E. P. Furlani, “Theoretical Comparison of Optical Properties of Near-Infrared Colloidal Plasmonic Nanoparticles,” Sci. Rep. 6(1), 34189 (2016).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

H. Shi, Z. Liu, X. Wang, J. Guo, L. Liu, L. Luo, J. Guo, H. Ma, S. Sun, and Y. He, “A symmetrical optical waveguide based surface plasmon resonance biosensing system,” Sens. Actuators B Chem. 185, 91–96 (2013).
[Crossref]

Sens. Lett. (1)

Á. Sipos, H. Tóháti, A. Mathesz, A. Szalai, S. Veszelka, M. A. Deli, L. Fülöp, A. Kőházi-Kis, M. Csete, and Zs. Bor, “Effect of nanogold particles on coupled plasmon resonance on biomolecule covered prepatterned multilayers,” Sens. Lett. 8(3), 512–520 (2010).
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1       Ey field distribution at the secondary and primary dips in different azimuthal orientations

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Absorptance and emission spectra of AuNP-LYZ nanodispersions with mAu:mLYZ = 1:5 mass ratio, the inset shows TEM image of the AuNP-LYZ bioconjugates, (b) AFM picture of the 416 nm periodic grating surface. Schematic drawings of the investigated biosensor chips: (c) sinusoidal polymer grating, (d) sinusoidal grating covered by LYZ biomolecules and (e) sinusoidal grating covered by AuNP-LYZ bioconjugates,. (f) Schematic drawing of the SPR setup based on a modified Kretschmann arrangement, used to study the RGC-SPR phenomenon. (g) Method of φ polar and γ azimuthal angle tuning.

Fig. 2
Fig. 2

Reflectance before and after covering by LYZ biomolecules and AuNP-LYZ bioconjugates (a) measured on two sensor chips, (b) computed on the fitted sensor chip in case of bio-objects at the bottom of valley and on the side of the hill, (c-e) computed on the designed sensor chip in case of bio-objects at the bottom of valley in different azimuthal orientations: (c) γ=33.64°; (d) γ=28°; (e) γ=38°. The insets indicate the magnified reflectance curves around the reflectance minima.

Fig. 3
Fig. 3

The Ey field component in planes taken horizontally (x-y plane: left) and vertically along the valley at the turning line of Ey (y-z plane: middle) and the normalized (E)-field distribution perpendicularly to the unit cell (x-z plane: right) on (a,b/ a,d) bare fitted chip, (a,b/ b,e) fitted chip covered by LYZ biomolecules, (a,b/ c,f) fitted chip covered by AuNP-LYZ bioconjugates, in 29.5° azimuthal orientation of the fitted chip (a,b/ a-c) secondary and (a,b/ d-f) primary minima in case of bio-objects (a/ a-f) at the bottom of valley and (b/ a-f) on the side of the hill. The schematic drawings indicate the structure contours in different plane cross-sections and the turning lines of the Ey field component at the secondary (red) and primary (green) reflectance minima.

Fig. 4
Fig. 4

Calculated reflectance of different chips as a function of polar angle ( ϕ=[ 28°,78° ]) and azimuthal orientation ( γ=[ 28°,38° ]): (a) bare designed chip, (b) designed chip covered by 8 LYZ biomolecules per unit cell and (c) designed chip covered by 8 AuNP-LYZ bioconjugates per unit cell. (d) Difference between reflectance modifications in case of different coverings; (e, f) reflectance modification caused by (e) 8 LYZ biomolecules and (f) 8 AuNP-LYZ bioconjugates per unit cells covering of the designed chip, compared to the bare designed chip.

Fig. 5
Fig. 5

The Ey field component in planes taken horizontally (x-y plane: left) and vertically along the valley at the turning line of the Ey field component (y-z plane: middle) and the normalized (E)-field distribution perpendicularly to the unit cell (x-z plane: right), (a-c/a, b/d) on a bare designed chip, (a-c/b, b/e) on a designed chip covered by 8 LYZ biomolecules per unit cell, (a-c/c, b/f) on a designed chip covered by 8 AuNP-LYZ bioconjugates per unit cell, (a/a-c) in γ designed =28° azimuthal orientation at the primary minimum, (b/a-c and d-f) in γ designed =33.64° azimuthal orientation at the secondary and primary minimum, and (c/a-c) in γ designed =38°azimuthal orientation at the secondary minimum (see Visualization 1). The schematic drawings indicate the structure contours in different plane cross-sections and the turning lines of the Ey field component at the secondary (red) and primary (green) minima.

Fig. 6
Fig. 6

Dispersion characteristics in reflectance of (a) a bare designed chip, (b) a designed chip covered by 8 LYZ biomolecules per unit cell, (c) a designed chip covered by 8 AuNP-LYZ bioconjugates per unit cell, in γ designed =33.64° azimuthal orientation. (d) Difference between reflectance modifications, (e, f) modifications of reflectance on a designed chip caused by seeding with (e) 8 LYZ biomolecules per unit cell and (f) 8 AuNP-LYZ bioconjugates per unit cell compared to the bare designed chip. Comparison of locations corresponding to secondary and primary minima (g) 8 AuNP-LYZ to LYZ covering, (h/i) 8 LYZ / 8 AuNP-LYZ covered chip to bare designed chip.

Fig. 7
Fig. 7

Concentration dependence of the polar angle shift in case of different bio-objects and locations. Insets: absolute value of the polar angle shift (top), sensitivity (middle) and FOM (bottom) for concentrations surrounding the 120 LYZ/unit cell (left) and 16 AuNP-LYZ/unit cell (right) on the fitted chip.

Fig. 8
Fig. 8

The normalized (E)-field distribution in planes taken horizontally (x-y plane: left) and vertically along the valley at the turning line of Ey (y-z plane: middle) and the Ey field component distribution perpendicularly to the unit cell (x-z plane: right) on (a,b/ a,d) bare fitted chip, (a,b/ b,e) fitted chip covered by LYZ biomolecules, (a,b/ c,f) fitted chip covered by AuNP-LYZ bioconjugates, in 29.5° azimuthal orientation of the fitted chip (a,b/ a-c) secondary and (a,b/ d-f) primary minima in case of bio-objects at the (a/ a-f) bottom of valley and (b/ a-f) side of the hill. The schematic drawings indicate the structure contours in different plane cross-sections and the turning lines of the Ey field component at the secondary (red) and primary (green) minima.

Fig. 9
Fig. 9

The normalized (E)-field distribution in planes taken horizontally (x-y plane: left) and vertically along the valley at the turning line of the Ey field component (y-z plane: middle) and the Ey field component distribution perpendicularly to the unit cell (x-z plane: right), (a-c/a, b/d) on a bare designed chip, (a-c/b, b/e) on a designed chip covered by 8 LYZ biomolecules per unit cell, (a-c/c, b/f) on a designed chip covered by 8 AuNP-LYZ bioconjugates per unit cell, (a/a-c) in γ designed =28° azimuthal orientation at the primary minimum, (b/a-c and d-f) in γ designed =33.64° azimuthal orientation at the secondary and primary minimum, and (c/a-c) in γ designed =38°azimuthal orientation at the secondary minimum. The schematic drawings indicate the structure contours in different plane cross-sections and the turning lines of the Ey field component at the secondary (red) and primary (green) minima.

Tables (1)

Tables Icon

Table 1 Secondary and primary minima on the measured and computed reflectance curves, the corresponding polar angle shifts (Δφ), surface angular sensitivity (Sφ) and FOM values*.

Metrics