Abstract

Hybrid colloidal plasmonic-photonic crystals (HPPCs) are known for their interesting optical properties, which are relevant both fundamentally and for their applicative potential. The optical response of HPPCs is easily tunable from the visible to the infrared spectral range, while their fabrication, based on colloidal self-assembly, keeps production costs rather low. Both arguments make HPPCs a class of attractive functional materials. Here, we explore the optical properties of HPPCs obtained by gradual etching of a hexagonal close-packed monolayer of polystyrene microspheres, subsequently covered by a thin metal layer. We analyze the optical transmission characteristics of these etched colloidal crystals and HPPCs as a function of the etching degree. Finite-difference time-domain simulations allowed us to explain the correlations between the observed optical response and morphology. The transmission gap in bare colloidal crystals can be blue-shifted up to at least 50 nm, and its depth increased by more than 20%. In HPPCs on the other hand, it is possible to tune not only the wavelength of the enhanced plasmonic fields, but also their locations within the nanostructure. Thus, both spectra and near-field profiles can be fine-tuned in a controlled manner by plasma etching in these hybrid plasmonic-photonic structures, expanding the current understanding of the physical working principles of HPPCs and their applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical transmission of corrugated metal films on a two-dimensional hetero-colloidal crystal

Zhengqi Liu, Jinting Hang, Jing Chen, Zhendong Yan, Chaojun Tang, Zhuo Chen, and Peng Zhan
Opt. Express 20(8) 9215-9225 (2012)

Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure

Zhengqi Liu, Peng Zhan, Jing Chen, Chaojun Tang, Zhendong Yan, Zhuo Chen, and Zhenlin Wang
Opt. Express 21(3) 3021-3030 (2013)

Extraordinary transmission through metal-coated monolayers of microspheres

L. Landström, D. Brodoceanu, D. Bäuerle, F. J. Garcia-Vidal, Sergio G. Rodrigo, and L. Martin-Moreno
Opt. Express 17(2) 761-772 (2009)

References

  • View by:
  • |
  • |
  • |

  1. L. Landström, D. Brodoceanu, K. Piglmayer, and D. Bäuerle, “Extraordinary optical transmission through metal-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 84(4), 373–377 (2006).
    [Crossref]
  2. P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H.-T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
    [Crossref]
  3. Z.-B. Wang, Y.-H. Ye, Y.-A. Zhang, and J.-Y. Zhang, “Visible transmission through metal-coated colloidal crystals,” Appl. Phys., A Mater. Sci. Process. 97(1), 225–228 (2009).
    [Crossref]
  4. C. Farcau, M. Giloan, E. Vinteler, and S. Astilean, “Understanding plasmon resonances of metal-coated colloidal crystal monolayers,” Appl. Phys. B 106(4), 849–856 (2012).
    [Crossref]
  5. V. Saracut, M. Giloan, M. Gabor, S. Astilean, and C. Farcau, “Polarization-Sensitive Linear Plasmonic Nanostructures Via Colloidal Lithography with Uniaxial Colloidal Arrays,” ACS Appl. Mater. Interfaces 5(4), 1362–1369 (2013).
    [Crossref] [PubMed]
  6. C. Haginoya, M. Ishibashi, and K. Koike, “Nanostructure array fabrication with a size-controllable natural lithography,” Appl. Phys. Lett. 71(20), 2934–2936 (1997).
    [Crossref]
  7. W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
    [Crossref]
  8. W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69(16), 165407 (2004).
    [Crossref]
  9. P. N. Bartlett, J. J. Baumberg, P. R. Birkin, M. A. Ghanem, and M. C. Netti, “Highly ordered macroporous gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres,” Chem. Mater. 14(5), 2199–2208 (2002).
    [Crossref]
  10. Y. Wang, J. Rybczynski, D. Z. Wang, and Z. F. Ren, “Large-scale triangular lattice arrays of sub-micron islands by microsphere self-assembly,” Nanotechnology 16(6), 819–822 (2005).
    [Crossref]
  11. T. Lohmüller, L. Iversen, M. Schmidt, C. Rhodes, H.-L. Tu, W.-C. Lin, and J. T. Groves, “Single molecule tracking on supported membranes with arrays of optical nanoantennas,” Nano Lett. 12(3), 1717–1721 (2012).
    [Crossref] [PubMed]
  12. S. Fayyaz, M. Tabatabaei, R. Hou, and F. Lagugné-Labarthet, “Surface-enhanced fluorescence: mapping individual hot spots in silica-protected 2D gold nanotriangle arrays,” J. Phys. Chem. C 116(21), 11665–11670 (2012).
    [Crossref]
  13. Y.-C. Chang, S.-M. Wang, H.-C. Chung, C.-B. Tseng, and S.-H. Chang, “Large-area bowtie nanoantenna arrays fabricated with economic oxygen plasma-assisted nanosphere lithography,” Plasmonics 6(3), 599–604 (2011).
    [Crossref]
  14. M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
    [Crossref] [PubMed]
  15. M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5(18), 2105–2110 (2009).
    [Crossref] [PubMed]
  16. B. Gompf, B. Krausz, B. Frank, and M. Dressel, “k-dependent optics of nanostructures: Spatial dispersion of metallic nanorings and split-ring resonators,” Phys. Rev. B 86(7), 075462 (2012).
    [Crossref]
  17. T. Meng, M. Zhu, J. Pan, P. Zhan, and Z. Wang, “Fabrication of metallic split-ring arrays for metamaterials using silica particle templates anchored on a silicon substrate,” Jpn. J. Appl. Phys. 47(10), 8109–8112 (2008).
    [Crossref]
  18. M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology 18(23), 235704 (2007).
    [Crossref]
  19. C. Charnay, A. Lee, S.-Q. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. B 107(30), 7327–7333 (2003).
    [Crossref]
  20. J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir 25(3), 1822–1827 (2009).
    [Crossref] [PubMed]
  21. F. Sun, W. Cai, Y. Li, B. Cao, Y. Lei, and L. Zhang, “Morphology-controlled growth of large-area two-dimensional ordered pore arrays,” Adv. Funct. Mater. 14(3), 283–288 (2004).
    [Crossref]
  22. L. Li, T. Zhai, H. Zeng, X. Fang, Y. Bando, and D. Golberg, “Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications,” J. Mater. Chem. 21(1), 40–56 (2011).
    [Crossref]
  23. Y. Lu, Y. Yin, Z.-Y. Li, and Y. Xia, “Colloidal crystals made of polystyrene spheroids: fabrication and structural/optical characterization,” Langmuir 18(20), 7722–7727 (2002).
    [Crossref]
  24. M. Szekeres, O. Kamalin, R. A. Schoonheydt, K. Wostyn, K. Clays, A. Persoons, and I. Dékány, “Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir–Blodgett method,” J. Mater. Chem. 12(11), 3268–3274 (2002).
    [Crossref]
  25. H. Míguez, C. López, F. Meseguer, A. Blanco, L. Vázquez, R. Mayoral, M. Ocaña, V. Fornés, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71(9), 1148–1150 (1997).
    [Crossref]
  26. E. W. Seelig, B. Tang, A. Yamilov, H. Cao, and R. P. H. Chang, “Self-assembled 3D photonic crystals from ZnO colloidal spheres,” Mater. Chem. Phys. 80(1), 257–263 (2003).
    [Crossref]
  27. E. Vinţeler, C. Farcău, and S. Aştilean, “Disorder effects in reflectance spectra of colloidal photonic crystals,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 267, 393–396 (2009).
  28. C. Farcau, E. Vinteler, and S. Astilean, “Experimental and theoretical investigation of optical properties of colloidal photonic crystal films,” J. Optoelectron. Adv. Mater. 10, 3165–3168 (2008).
  29. L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. Van Duyne, “Metal Film over Nanosphere (MFON) Electrodes for Surface-Enhanced Raman Spectroscopy (SERS): Improvements in Surface Nanostructure Stability and Suppression of Irreversible Loss,” J. Phys. Chem. B 106(4), 853–860 (2002).
    [Crossref]
  30. S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid Colloidal Plasmonic-Photonic Crystals,” Adv. Mater. 23(22-23), 2515–2533 (2011).
    [Crossref] [PubMed]
  31. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  32. B. Ding, C. Hrelescu, N. Arnold, G. Isic, and T. A. Klar, “Spectral and Directional Reshaping of Fluorescence in Large Area Self-Assembled Plasmonic-Photonic Crystals,” Nano Lett. 13(2), 378–386 (2013).
    [Crossref] [PubMed]
  33. C. Farcău and S. Aştilean, “Silver half-shell arrays with controlled plasmonic response for fluorescence enhancement optimization,” Appl. Phys. Lett. 95(19), 193110 (2009).
    [Crossref]
  34. C. Farcau, R. A. L. Vallée, S. Boca, and S. Astilean, “Polarized SERS on linear arrays of silver half-shells: SERS re-radiation modulated by local density of optical states,” J. Opt. 17(11), 114007 (2015).
    [Crossref]
  35. M. López-García, J. F. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, and A. García-Martín, “Enhancement and directionality of spontaneous emission in hybrid self-assembled photonic-plasmonic crystals,” Small 6(16), 1757–1761 (2010).
    [Crossref] [PubMed]
  36. A. Plettl, F. Enderle, M. Saitner, A. Manzke, C. Pfahler, S. Wiedemann, and P. Ziemann, “Non-close-packed crystals from self-assembled polystyrene spheres by isotropic plasma etching: adding flexibility to colloid lithography,” Adv. Funct. Mater. 19(20), 3279–3284 (2009).
    [Crossref]
  37. B. J.-Y. Tan, C.-H. Sow, K.-Y. Lim, F.-C. Cheong, G.-L. Chong, A. T.-S. Wee, and C.-K. Ong, “Fabrication of a two-dimensional periodic non-close-packed array of polystyrene particles,” J. Phys. Chem. B 108(48), 18575–18579 (2004).
    [Crossref]
  38. T. Fujimura, T. Tamura, T. Itoh, C. Haginoya, Y. Komori, and T. Koda, “Morphology and photonic band structure modification of polystyrene particle layers by reactive ion etching,” Appl. Phys. Lett. 78(11), 1478–1480 (2001).
    [Crossref]
  39. A. Valsesia, T. Meziani, F. Bretagnol, P. Colpo, G. Ceccone, and F. Rossi, “Plasma assisted production of chemical nano-patterns by nano-sphere lithography: application to bio-interfaces,” J. Phys. Appl. Phys. 40(8), 2341–2347 (2007).
    [Crossref]
  40. Y. Li, J. Zhang, T. Wang, S. Zhu, H. Yu, L. Fang, Z. Wang, L. Cui, and B. Yang, “Full Color Plasmonic Nanostructured Surfaces and Their Sensor Applications,” J. Phys. Chem. C 114(47), 19908–19912 (2010).
    [Crossref]
  41. L. Xia, Z. Yang, S. Yin, W. Guo, S. Li, W. Xie, D. Huang, Q. Deng, H. Shi, H. Cui, and C. Du, “Surface enhanced Raman scattering substrate with metallic nanogap array fabricated by etching the assembled polystyrene spheres array,” Opt. Express 21(9), 11349–11355 (2013).
    [Crossref] [PubMed]
  42. “Lumerical Solutions, Inc. | Innovative Photonic Design Tools,” https://www.lumerical.com/ .
  43. N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8(12), 3183–3190 (1992).
    [Crossref]
  44. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
    [Crossref] [PubMed]
  45. H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87(10), 7152–7158 (2000).
    [Crossref]
  46. S. I. Kim, K. Imura, S. Kim, and H. Okamoto, “Confined optical fields in nanovoid chain structures directly visualized by near-field optical imaging,” J. Phys. Chem. C 115(5), 1548–1555 (2011).
    [Crossref]
  47. L. Landström, D. Brodoceanu, D. Bäuerle, F. J. Garcia-Vidal, S. G. Rodrigo, and L. Martin-Moreno, “Extraordinary transmission through metal-coated monolayers of microspheres,” Opt. Express 17(2), 761–772 (2009).
    [Crossref] [PubMed]

2015 (1)

C. Farcau, R. A. L. Vallée, S. Boca, and S. Astilean, “Polarized SERS on linear arrays of silver half-shells: SERS re-radiation modulated by local density of optical states,” J. Opt. 17(11), 114007 (2015).
[Crossref]

2013 (3)

V. Saracut, M. Giloan, M. Gabor, S. Astilean, and C. Farcau, “Polarization-Sensitive Linear Plasmonic Nanostructures Via Colloidal Lithography with Uniaxial Colloidal Arrays,” ACS Appl. Mater. Interfaces 5(4), 1362–1369 (2013).
[Crossref] [PubMed]

B. Ding, C. Hrelescu, N. Arnold, G. Isic, and T. A. Klar, “Spectral and Directional Reshaping of Fluorescence in Large Area Self-Assembled Plasmonic-Photonic Crystals,” Nano Lett. 13(2), 378–386 (2013).
[Crossref] [PubMed]

L. Xia, Z. Yang, S. Yin, W. Guo, S. Li, W. Xie, D. Huang, Q. Deng, H. Shi, H. Cui, and C. Du, “Surface enhanced Raman scattering substrate with metallic nanogap array fabricated by etching the assembled polystyrene spheres array,” Opt. Express 21(9), 11349–11355 (2013).
[Crossref] [PubMed]

2012 (4)

C. Farcau, M. Giloan, E. Vinteler, and S. Astilean, “Understanding plasmon resonances of metal-coated colloidal crystal monolayers,” Appl. Phys. B 106(4), 849–856 (2012).
[Crossref]

T. Lohmüller, L. Iversen, M. Schmidt, C. Rhodes, H.-L. Tu, W.-C. Lin, and J. T. Groves, “Single molecule tracking on supported membranes with arrays of optical nanoantennas,” Nano Lett. 12(3), 1717–1721 (2012).
[Crossref] [PubMed]

S. Fayyaz, M. Tabatabaei, R. Hou, and F. Lagugné-Labarthet, “Surface-enhanced fluorescence: mapping individual hot spots in silica-protected 2D gold nanotriangle arrays,” J. Phys. Chem. C 116(21), 11665–11670 (2012).
[Crossref]

B. Gompf, B. Krausz, B. Frank, and M. Dressel, “k-dependent optics of nanostructures: Spatial dispersion of metallic nanorings and split-ring resonators,” Phys. Rev. B 86(7), 075462 (2012).
[Crossref]

2011 (4)

Y.-C. Chang, S.-M. Wang, H.-C. Chung, C.-B. Tseng, and S.-H. Chang, “Large-area bowtie nanoantenna arrays fabricated with economic oxygen plasma-assisted nanosphere lithography,” Plasmonics 6(3), 599–604 (2011).
[Crossref]

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid Colloidal Plasmonic-Photonic Crystals,” Adv. Mater. 23(22-23), 2515–2533 (2011).
[Crossref] [PubMed]

L. Li, T. Zhai, H. Zeng, X. Fang, Y. Bando, and D. Golberg, “Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications,” J. Mater. Chem. 21(1), 40–56 (2011).
[Crossref]

S. I. Kim, K. Imura, S. Kim, and H. Okamoto, “Confined optical fields in nanovoid chain structures directly visualized by near-field optical imaging,” J. Phys. Chem. C 115(5), 1548–1555 (2011).
[Crossref]

2010 (2)

Y. Li, J. Zhang, T. Wang, S. Zhu, H. Yu, L. Fang, Z. Wang, L. Cui, and B. Yang, “Full Color Plasmonic Nanostructured Surfaces and Their Sensor Applications,” J. Phys. Chem. C 114(47), 19908–19912 (2010).
[Crossref]

M. López-García, J. F. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, and A. García-Martín, “Enhancement and directionality of spontaneous emission in hybrid self-assembled photonic-plasmonic crystals,” Small 6(16), 1757–1761 (2010).
[Crossref] [PubMed]

2009 (8)

A. Plettl, F. Enderle, M. Saitner, A. Manzke, C. Pfahler, S. Wiedemann, and P. Ziemann, “Non-close-packed crystals from self-assembled polystyrene spheres by isotropic plasma etching: adding flexibility to colloid lithography,” Adv. Funct. Mater. 19(20), 3279–3284 (2009).
[Crossref]

E. Vinţeler, C. Farcău, and S. Aştilean, “Disorder effects in reflectance spectra of colloidal photonic crystals,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 267, 393–396 (2009).

J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir 25(3), 1822–1827 (2009).
[Crossref] [PubMed]

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5(18), 2105–2110 (2009).
[Crossref] [PubMed]

Z.-B. Wang, Y.-H. Ye, Y.-A. Zhang, and J.-Y. Zhang, “Visible transmission through metal-coated colloidal crystals,” Appl. Phys., A Mater. Sci. Process. 97(1), 225–228 (2009).
[Crossref]

C. Farcău and S. Aştilean, “Silver half-shell arrays with controlled plasmonic response for fluorescence enhancement optimization,” Appl. Phys. Lett. 95(19), 193110 (2009).
[Crossref]

L. Landström, D. Brodoceanu, D. Bäuerle, F. J. Garcia-Vidal, S. G. Rodrigo, and L. Martin-Moreno, “Extraordinary transmission through metal-coated monolayers of microspheres,” Opt. Express 17(2), 761–772 (2009).
[Crossref] [PubMed]

2008 (2)

T. Meng, M. Zhu, J. Pan, P. Zhan, and Z. Wang, “Fabrication of metallic split-ring arrays for metamaterials using silica particle templates anchored on a silicon substrate,” Jpn. J. Appl. Phys. 47(10), 8109–8112 (2008).
[Crossref]

C. Farcau, E. Vinteler, and S. Astilean, “Experimental and theoretical investigation of optical properties of colloidal photonic crystal films,” J. Optoelectron. Adv. Mater. 10, 3165–3168 (2008).

2007 (3)

M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology 18(23), 235704 (2007).
[Crossref]

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

A. Valsesia, T. Meziani, F. Bretagnol, P. Colpo, G. Ceccone, and F. Rossi, “Plasma assisted production of chemical nano-patterns by nano-sphere lithography: application to bio-interfaces,” J. Phys. Appl. Phys. 40(8), 2341–2347 (2007).
[Crossref]

2006 (3)

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[Crossref] [PubMed]

L. Landström, D. Brodoceanu, K. Piglmayer, and D. Bäuerle, “Extraordinary optical transmission through metal-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 84(4), 373–377 (2006).
[Crossref]

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H.-T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

2005 (1)

Y. Wang, J. Rybczynski, D. Z. Wang, and Z. F. Ren, “Large-scale triangular lattice arrays of sub-micron islands by microsphere self-assembly,” Nanotechnology 16(6), 819–822 (2005).
[Crossref]

2004 (3)

F. Sun, W. Cai, Y. Li, B. Cao, Y. Lei, and L. Zhang, “Morphology-controlled growth of large-area two-dimensional ordered pore arrays,” Adv. Funct. Mater. 14(3), 283–288 (2004).
[Crossref]

B. J.-Y. Tan, C.-H. Sow, K.-Y. Lim, F.-C. Cheong, G.-L. Chong, A. T.-S. Wee, and C.-K. Ong, “Fabrication of a two-dimensional periodic non-close-packed array of polystyrene particles,” J. Phys. Chem. B 108(48), 18575–18579 (2004).
[Crossref]

W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69(16), 165407 (2004).
[Crossref]

2003 (2)

C. Charnay, A. Lee, S.-Q. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. B 107(30), 7327–7333 (2003).
[Crossref]

E. W. Seelig, B. Tang, A. Yamilov, H. Cao, and R. P. H. Chang, “Self-assembled 3D photonic crystals from ZnO colloidal spheres,” Mater. Chem. Phys. 80(1), 257–263 (2003).
[Crossref]

2002 (4)

Y. Lu, Y. Yin, Z.-Y. Li, and Y. Xia, “Colloidal crystals made of polystyrene spheroids: fabrication and structural/optical characterization,” Langmuir 18(20), 7722–7727 (2002).
[Crossref]

M. Szekeres, O. Kamalin, R. A. Schoonheydt, K. Wostyn, K. Clays, A. Persoons, and I. Dékány, “Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir–Blodgett method,” J. Mater. Chem. 12(11), 3268–3274 (2002).
[Crossref]

L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. Van Duyne, “Metal Film over Nanosphere (MFON) Electrodes for Surface-Enhanced Raman Spectroscopy (SERS): Improvements in Surface Nanostructure Stability and Suppression of Irreversible Loss,” J. Phys. Chem. B 106(4), 853–860 (2002).
[Crossref]

P. N. Bartlett, J. J. Baumberg, P. R. Birkin, M. A. Ghanem, and M. C. Netti, “Highly ordered macroporous gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres,” Chem. Mater. 14(5), 2199–2208 (2002).
[Crossref]

2001 (1)

T. Fujimura, T. Tamura, T. Itoh, C. Haginoya, Y. Komori, and T. Koda, “Morphology and photonic band structure modification of polystyrene particle layers by reactive ion etching,” Appl. Phys. Lett. 78(11), 1478–1480 (2001).
[Crossref]

2000 (1)

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87(10), 7152–7158 (2000).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

1997 (2)

H. Míguez, C. López, F. Meseguer, A. Blanco, L. Vázquez, R. Mayoral, M. Ocaña, V. Fornés, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71(9), 1148–1150 (1997).
[Crossref]

C. Haginoya, M. Ishibashi, and K. Koike, “Nanostructure array fabrication with a size-controllable natural lithography,” Appl. Phys. Lett. 71(20), 2934–2936 (1997).
[Crossref]

1992 (1)

N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8(12), 3183–3190 (1992).
[Crossref]

Arnold, N.

B. Ding, C. Hrelescu, N. Arnold, G. Isic, and T. A. Klar, “Spectral and Directional Reshaping of Fluorescence in Large Area Self-Assembled Plasmonic-Photonic Crystals,” Nano Lett. 13(2), 378–386 (2013).
[Crossref] [PubMed]

Astilean, S.

C. Farcau, R. A. L. Vallée, S. Boca, and S. Astilean, “Polarized SERS on linear arrays of silver half-shells: SERS re-radiation modulated by local density of optical states,” J. Opt. 17(11), 114007 (2015).
[Crossref]

V. Saracut, M. Giloan, M. Gabor, S. Astilean, and C. Farcau, “Polarization-Sensitive Linear Plasmonic Nanostructures Via Colloidal Lithography with Uniaxial Colloidal Arrays,” ACS Appl. Mater. Interfaces 5(4), 1362–1369 (2013).
[Crossref] [PubMed]

C. Farcau, M. Giloan, E. Vinteler, and S. Astilean, “Understanding plasmon resonances of metal-coated colloidal crystal monolayers,” Appl. Phys. B 106(4), 849–856 (2012).
[Crossref]

E. Vinţeler, C. Farcău, and S. Aştilean, “Disorder effects in reflectance spectra of colloidal photonic crystals,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 267, 393–396 (2009).

C. Farcău and S. Aştilean, “Silver half-shell arrays with controlled plasmonic response for fluorescence enhancement optimization,” Appl. Phys. Lett. 95(19), 193110 (2009).
[Crossref]

C. Farcau, E. Vinteler, and S. Astilean, “Experimental and theoretical investigation of optical properties of colloidal photonic crystal films,” J. Optoelectron. Adv. Mater. 10, 3165–3168 (2008).

W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69(16), 165407 (2004).
[Crossref]

Bando, Y.

L. Li, T. Zhai, H. Zeng, X. Fang, Y. Bando, and D. Golberg, “Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications,” J. Mater. Chem. 21(1), 40–56 (2011).
[Crossref]

Barnes, W. L.

W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69(16), 165407 (2004).
[Crossref]

Bartlett, P. N.

P. N. Bartlett, J. J. Baumberg, P. R. Birkin, M. A. Ghanem, and M. C. Netti, “Highly ordered macroporous gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres,” Chem. Mater. 14(5), 2199–2208 (2002).
[Crossref]

Bäuerle, D.

L. Landström, D. Brodoceanu, D. Bäuerle, F. J. Garcia-Vidal, S. G. Rodrigo, and L. Martin-Moreno, “Extraordinary transmission through metal-coated monolayers of microspheres,” Opt. Express 17(2), 761–772 (2009).
[Crossref] [PubMed]

L. Landström, D. Brodoceanu, K. Piglmayer, and D. Bäuerle, “Extraordinary optical transmission through metal-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 84(4), 373–377 (2006).
[Crossref]

Baumberg, J. J.

P. N. Bartlett, J. J. Baumberg, P. R. Birkin, M. A. Ghanem, and M. C. Netti, “Highly ordered macroporous gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres,” Chem. Mater. 14(5), 2199–2208 (2002).
[Crossref]

Birkin, P. R.

P. N. Bartlett, J. J. Baumberg, P. R. Birkin, M. A. Ghanem, and M. C. Netti, “Highly ordered macroporous gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres,” Chem. Mater. 14(5), 2199–2208 (2002).
[Crossref]

Blanco, A.

M. López-García, J. F. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, and A. García-Martín, “Enhancement and directionality of spontaneous emission in hybrid self-assembled photonic-plasmonic crystals,” Small 6(16), 1757–1761 (2010).
[Crossref] [PubMed]

H. Míguez, C. López, F. Meseguer, A. Blanco, L. Vázquez, R. Mayoral, M. Ocaña, V. Fornés, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71(9), 1148–1150 (1997).
[Crossref]

Boca, S.

C. Farcau, R. A. L. Vallée, S. Boca, and S. Astilean, “Polarized SERS on linear arrays of silver half-shells: SERS re-radiation modulated by local density of optical states,” J. Opt. 17(11), 114007 (2015).
[Crossref]

Bocchio, N.

M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5(18), 2105–2110 (2009).
[Crossref] [PubMed]

Borghs, G.

J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir 25(3), 1822–1827 (2009).
[Crossref] [PubMed]

Bradley, R. K.

C. Charnay, A. Lee, S.-Q. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. B 107(30), 7327–7333 (2003).
[Crossref]

Bretagnol, F.

A. Valsesia, T. Meziani, F. Bretagnol, P. Colpo, G. Ceccone, and F. Rossi, “Plasma assisted production of chemical nano-patterns by nano-sphere lithography: application to bio-interfaces,” J. Phys. Appl. Phys. 40(8), 2341–2347 (2007).
[Crossref]

Brodoceanu, D.

L. Landström, D. Brodoceanu, D. Bäuerle, F. J. Garcia-Vidal, S. G. Rodrigo, and L. Martin-Moreno, “Extraordinary transmission through metal-coated monolayers of microspheres,” Opt. Express 17(2), 761–772 (2009).
[Crossref] [PubMed]

L. Landström, D. Brodoceanu, K. Piglmayer, and D. Bäuerle, “Extraordinary optical transmission through metal-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 84(4), 373–377 (2006).
[Crossref]

Cai, W.

F. Sun, W. Cai, Y. Li, B. Cao, Y. Lei, and L. Zhang, “Morphology-controlled growth of large-area two-dimensional ordered pore arrays,” Adv. Funct. Mater. 14(3), 283–288 (2004).
[Crossref]

Cao, B.

F. Sun, W. Cai, Y. Li, B. Cao, Y. Lei, and L. Zhang, “Morphology-controlled growth of large-area two-dimensional ordered pore arrays,” Adv. Funct. Mater. 14(3), 283–288 (2004).
[Crossref]

Cao, H.

E. W. Seelig, B. Tang, A. Yamilov, H. Cao, and R. P. H. Chang, “Self-assembled 3D photonic crystals from ZnO colloidal spheres,” Mater. Chem. Phys. 80(1), 257–263 (2003).
[Crossref]

Ceccone, G.

A. Valsesia, T. Meziani, F. Bretagnol, P. Colpo, G. Ceccone, and F. Rossi, “Plasma assisted production of chemical nano-patterns by nano-sphere lithography: application to bio-interfaces,” J. Phys. Appl. Phys. 40(8), 2341–2347 (2007).
[Crossref]

Chang, R. P. H.

E. W. Seelig, B. Tang, A. Yamilov, H. Cao, and R. P. H. Chang, “Self-assembled 3D photonic crystals from ZnO colloidal spheres,” Mater. Chem. Phys. 80(1), 257–263 (2003).
[Crossref]

Chang, S.-H.

Y.-C. Chang, S.-M. Wang, H.-C. Chung, C.-B. Tseng, and S.-H. Chang, “Large-area bowtie nanoantenna arrays fabricated with economic oxygen plasma-assisted nanosphere lithography,” Plasmonics 6(3), 599–604 (2011).
[Crossref]

Chang, Y.-C.

Y.-C. Chang, S.-M. Wang, H.-C. Chung, C.-B. Tseng, and S.-H. Chang, “Large-area bowtie nanoantenna arrays fabricated with economic oxygen plasma-assisted nanosphere lithography,” Plasmonics 6(3), 599–604 (2011).
[Crossref]

Charnay, C.

C. Charnay, A. Lee, S.-Q. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. B 107(30), 7327–7333 (2003).
[Crossref]

Cheong, F.-C.

B. J.-Y. Tan, C.-H. Sow, K.-Y. Lim, F.-C. Cheong, G.-L. Chong, A. T.-S. Wee, and C.-K. Ong, “Fabrication of a two-dimensional periodic non-close-packed array of polystyrene particles,” J. Phys. Chem. B 108(48), 18575–18579 (2004).
[Crossref]

Chong, G.-L.

B. J.-Y. Tan, C.-H. Sow, K.-Y. Lim, F.-C. Cheong, G.-L. Chong, A. T.-S. Wee, and C.-K. Ong, “Fabrication of a two-dimensional periodic non-close-packed array of polystyrene particles,” J. Phys. Chem. B 108(48), 18575–18579 (2004).
[Crossref]

Chung, H.-C.

Y.-C. Chang, S.-M. Wang, H.-C. Chung, C.-B. Tseng, and S.-H. Chang, “Large-area bowtie nanoantenna arrays fabricated with economic oxygen plasma-assisted nanosphere lithography,” Plasmonics 6(3), 599–604 (2011).
[Crossref]

Clays, K.

M. Szekeres, O. Kamalin, R. A. Schoonheydt, K. Wostyn, K. Clays, A. Persoons, and I. Dékány, “Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir–Blodgett method,” J. Mater. Chem. 12(11), 3268–3274 (2002).
[Crossref]

Colpo, P.

A. Valsesia, T. Meziani, F. Bretagnol, P. Colpo, G. Ceccone, and F. Rossi, “Plasma assisted production of chemical nano-patterns by nano-sphere lithography: application to bio-interfaces,” J. Phys. Appl. Phys. 40(8), 2341–2347 (2007).
[Crossref]

Cortie, M.

M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology 18(23), 235704 (2007).
[Crossref]

Cui, H.

Cui, L.

Y. Li, J. Zhang, T. Wang, S. Zhu, H. Yu, L. Fang, Z. Wang, L. Cui, and B. Yang, “Full Color Plasmonic Nanostructured Surfaces and Their Sensor Applications,” J. Phys. Chem. C 114(47), 19908–19912 (2010).
[Crossref]

Dékány, I.

M. Szekeres, O. Kamalin, R. A. Schoonheydt, K. Wostyn, K. Clays, A. Persoons, and I. Dékány, “Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir–Blodgett method,” J. Mater. Chem. 12(11), 3268–3274 (2002).
[Crossref]

Deng, Q.

Denkov, N.

N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8(12), 3183–3190 (1992).
[Crossref]

Dick, L. A.

L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. Van Duyne, “Metal Film over Nanosphere (MFON) Electrodes for Surface-Enhanced Raman Spectroscopy (SERS): Improvements in Surface Nanostructure Stability and Suppression of Irreversible Loss,” J. Phys. Chem. B 106(4), 853–860 (2002).
[Crossref]

Ding, B.

B. Ding, C. Hrelescu, N. Arnold, G. Isic, and T. A. Klar, “Spectral and Directional Reshaping of Fluorescence in Large Area Self-Assembled Plasmonic-Photonic Crystals,” Nano Lett. 13(2), 378–386 (2013).
[Crossref] [PubMed]

Dong, H.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H.-T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

Dressel, M.

B. Gompf, B. Krausz, B. Frank, and M. Dressel, “k-dependent optics of nanostructures: Spatial dispersion of metallic nanorings and split-ring resonators,” Phys. Rev. B 86(7), 075462 (2012).
[Crossref]

Du, C.

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Enderle, F.

A. Plettl, F. Enderle, M. Saitner, A. Manzke, C. Pfahler, S. Wiedemann, and P. Ziemann, “Non-close-packed crystals from self-assembled polystyrene spheres by isotropic plasma etching: adding flexibility to colloid lithography,” Adv. Funct. Mater. 19(20), 3279–3284 (2009).
[Crossref]

Fang, L.

Y. Li, J. Zhang, T. Wang, S. Zhu, H. Yu, L. Fang, Z. Wang, L. Cui, and B. Yang, “Full Color Plasmonic Nanostructured Surfaces and Their Sensor Applications,” J. Phys. Chem. C 114(47), 19908–19912 (2010).
[Crossref]

Fang, X.

L. Li, T. Zhai, H. Zeng, X. Fang, Y. Bando, and D. Golberg, “Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications,” J. Mater. Chem. 21(1), 40–56 (2011).
[Crossref]

Farcau, C.

C. Farcau, R. A. L. Vallée, S. Boca, and S. Astilean, “Polarized SERS on linear arrays of silver half-shells: SERS re-radiation modulated by local density of optical states,” J. Opt. 17(11), 114007 (2015).
[Crossref]

V. Saracut, M. Giloan, M. Gabor, S. Astilean, and C. Farcau, “Polarization-Sensitive Linear Plasmonic Nanostructures Via Colloidal Lithography with Uniaxial Colloidal Arrays,” ACS Appl. Mater. Interfaces 5(4), 1362–1369 (2013).
[Crossref] [PubMed]

C. Farcau, M. Giloan, E. Vinteler, and S. Astilean, “Understanding plasmon resonances of metal-coated colloidal crystal monolayers,” Appl. Phys. B 106(4), 849–856 (2012).
[Crossref]

E. Vinţeler, C. Farcău, and S. Aştilean, “Disorder effects in reflectance spectra of colloidal photonic crystals,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 267, 393–396 (2009).

C. Farcău and S. Aştilean, “Silver half-shell arrays with controlled plasmonic response for fluorescence enhancement optimization,” Appl. Phys. Lett. 95(19), 193110 (2009).
[Crossref]

C. Farcau, E. Vinteler, and S. Astilean, “Experimental and theoretical investigation of optical properties of colloidal photonic crystal films,” J. Optoelectron. Adv. Mater. 10, 3165–3168 (2008).

Fayyaz, S.

S. Fayyaz, M. Tabatabaei, R. Hou, and F. Lagugné-Labarthet, “Surface-enhanced fluorescence: mapping individual hot spots in silica-protected 2D gold nanotriangle arrays,” J. Phys. Chem. C 116(21), 11665–11670 (2012).
[Crossref]

Förch, R.

M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5(18), 2105–2110 (2009).
[Crossref] [PubMed]

Ford, M.

M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology 18(23), 235704 (2007).
[Crossref]

Fornés, V.

H. Míguez, C. López, F. Meseguer, A. Blanco, L. Vázquez, R. Mayoral, M. Ocaña, V. Fornés, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71(9), 1148–1150 (1997).
[Crossref]

Frank, B.

B. Gompf, B. Krausz, B. Frank, and M. Dressel, “k-dependent optics of nanostructures: Spatial dispersion of metallic nanorings and split-ring resonators,” Phys. Rev. B 86(7), 075462 (2012).
[Crossref]

Fu, L.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Fujimura, T.

T. Fujimura, T. Tamura, T. Itoh, C. Haginoya, Y. Komori, and T. Koda, “Morphology and photonic band structure modification of polystyrene particle layers by reactive ion etching,” Appl. Phys. Lett. 78(11), 1478–1480 (2001).
[Crossref]

Gabor, M.

V. Saracut, M. Giloan, M. Gabor, S. Astilean, and C. Farcau, “Polarization-Sensitive Linear Plasmonic Nanostructures Via Colloidal Lithography with Uniaxial Colloidal Arrays,” ACS Appl. Mater. Interfaces 5(4), 1362–1369 (2013).
[Crossref] [PubMed]

Galisteo-López, J. F.

M. López-García, J. F. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, and A. García-Martín, “Enhancement and directionality of spontaneous emission in hybrid self-assembled photonic-plasmonic crystals,” Small 6(16), 1757–1761 (2010).
[Crossref] [PubMed]

García-Martín, A.

M. López-García, J. F. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, and A. García-Martín, “Enhancement and directionality of spontaneous emission in hybrid self-assembled photonic-plasmonic crystals,” Small 6(16), 1757–1761 (2010).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Ghanem, M. A.

P. N. Bartlett, J. J. Baumberg, P. R. Birkin, M. A. Ghanem, and M. C. Netti, “Highly ordered macroporous gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres,” Chem. Mater. 14(5), 2199–2208 (2002).
[Crossref]

Giersig, M.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Giessen, H.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Giloan, M.

V. Saracut, M. Giloan, M. Gabor, S. Astilean, and C. Farcau, “Polarization-Sensitive Linear Plasmonic Nanostructures Via Colloidal Lithography with Uniaxial Colloidal Arrays,” ACS Appl. Mater. Interfaces 5(4), 1362–1369 (2013).
[Crossref] [PubMed]

C. Farcau, M. Giloan, E. Vinteler, and S. Astilean, “Understanding plasmon resonances of metal-coated colloidal crystal monolayers,” Appl. Phys. B 106(4), 849–856 (2012).
[Crossref]

Golberg, D.

L. Li, T. Zhai, H. Zeng, X. Fang, Y. Bando, and D. Golberg, “Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications,” J. Mater. Chem. 21(1), 40–56 (2011).
[Crossref]

Gompf, B.

B. Gompf, B. Krausz, B. Frank, and M. Dressel, “k-dependent optics of nanostructures: Spatial dispersion of metallic nanorings and split-ring resonators,” Phys. Rev. B 86(7), 075462 (2012).
[Crossref]

Groves, J. T.

T. Lohmüller, L. Iversen, M. Schmidt, C. Rhodes, H.-L. Tu, W.-C. Lin, and J. T. Groves, “Single molecule tracking on supported membranes with arrays of optical nanoantennas,” Nano Lett. 12(3), 1717–1721 (2012).
[Crossref] [PubMed]

Guo, W.

Gwinner, M. C.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Haginoya, C.

T. Fujimura, T. Tamura, T. Itoh, C. Haginoya, Y. Komori, and T. Koda, “Morphology and photonic band structure modification of polystyrene particle layers by reactive ion etching,” Appl. Phys. Lett. 78(11), 1478–1480 (2001).
[Crossref]

C. Haginoya, M. Ishibashi, and K. Koike, “Nanostructure array fabrication with a size-controllable natural lithography,” Appl. Phys. Lett. 71(20), 2934–2936 (1997).
[Crossref]

Halas, N. J.

C. Charnay, A. Lee, S.-Q. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. B 107(30), 7327–7333 (2003).
[Crossref]

Haynes, C. L.

L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. Van Duyne, “Metal Film over Nanosphere (MFON) Electrodes for Surface-Enhanced Raman Spectroscopy (SERS): Improvements in Surface Nanostructure Stability and Suppression of Irreversible Loss,” J. Phys. Chem. B 106(4), 853–860 (2002).
[Crossref]

Horn, N.

M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5(18), 2105–2110 (2009).
[Crossref] [PubMed]

Hou, R.

S. Fayyaz, M. Tabatabaei, R. Hou, and F. Lagugné-Labarthet, “Surface-enhanced fluorescence: mapping individual hot spots in silica-protected 2D gold nanotriangle arrays,” J. Phys. Chem. C 116(21), 11665–11670 (2012).
[Crossref]

Hrelescu, C.

B. Ding, C. Hrelescu, N. Arnold, G. Isic, and T. A. Klar, “Spectral and Directional Reshaping of Fluorescence in Large Area Self-Assembled Plasmonic-Photonic Crystals,” Nano Lett. 13(2), 378–386 (2013).
[Crossref] [PubMed]

Huang, D.

Imura, K.

S. I. Kim, K. Imura, S. Kim, and H. Okamoto, “Confined optical fields in nanovoid chain structures directly visualized by near-field optical imaging,” J. Phys. Chem. C 115(5), 1548–1555 (2011).
[Crossref]

Ishibashi, M.

C. Haginoya, M. Ishibashi, and K. Koike, “Nanostructure array fabrication with a size-controllable natural lithography,” Appl. Phys. Lett. 71(20), 2934–2936 (1997).
[Crossref]

Isic, G.

B. Ding, C. Hrelescu, N. Arnold, G. Isic, and T. A. Klar, “Spectral and Directional Reshaping of Fluorescence in Large Area Self-Assembled Plasmonic-Photonic Crystals,” Nano Lett. 13(2), 378–386 (2013).
[Crossref] [PubMed]

Itoh, T.

T. Fujimura, T. Tamura, T. Itoh, C. Haginoya, Y. Komori, and T. Koda, “Morphology and photonic band structure modification of polystyrene particle layers by reactive ion etching,” Appl. Phys. Lett. 78(11), 1478–1480 (2001).
[Crossref]

Ivanov, I.

N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8(12), 3183–3190 (1992).
[Crossref]

Iversen, L.

T. Lohmüller, L. Iversen, M. Schmidt, C. Rhodes, H.-L. Tu, W.-C. Lin, and J. T. Groves, “Single molecule tracking on supported membranes with arrays of optical nanoantennas,” Nano Lett. 12(3), 1717–1721 (2012).
[Crossref] [PubMed]

Jonas, U.

M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5(18), 2105–2110 (2009).
[Crossref] [PubMed]

Kamalin, O.

M. Szekeres, O. Kamalin, R. A. Schoonheydt, K. Wostyn, K. Clays, A. Persoons, and I. Dékány, “Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir–Blodgett method,” J. Mater. Chem. 12(11), 3268–3274 (2002).
[Crossref]

Kandulski, W.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Katsnelson, A.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Kim, S.

S. I. Kim, K. Imura, S. Kim, and H. Okamoto, “Confined optical fields in nanovoid chain structures directly visualized by near-field optical imaging,” J. Phys. Chem. C 115(5), 1548–1555 (2011).
[Crossref]

Kim, S. I.

S. I. Kim, K. Imura, S. Kim, and H. Okamoto, “Confined optical fields in nanovoid chain structures directly visualized by near-field optical imaging,” J. Phys. Chem. C 115(5), 1548–1555 (2011).
[Crossref]

Klar, T. A.

B. Ding, C. Hrelescu, N. Arnold, G. Isic, and T. A. Klar, “Spectral and Directional Reshaping of Fluorescence in Large Area Self-Assembled Plasmonic-Photonic Crystals,” Nano Lett. 13(2), 378–386 (2013).
[Crossref] [PubMed]

Koda, T.

T. Fujimura, T. Tamura, T. Itoh, C. Haginoya, Y. Komori, and T. Koda, “Morphology and photonic band structure modification of polystyrene particle layers by reactive ion etching,” Appl. Phys. Lett. 78(11), 1478–1480 (2001).
[Crossref]

Koike, K.

C. Haginoya, M. Ishibashi, and K. Koike, “Nanostructure array fabrication with a size-controllable natural lithography,” Appl. Phys. Lett. 71(20), 2934–2936 (1997).
[Crossref]

Komori, Y.

T. Fujimura, T. Tamura, T. Itoh, C. Haginoya, Y. Komori, and T. Koda, “Morphology and photonic band structure modification of polystyrene particle layers by reactive ion etching,” Appl. Phys. Lett. 78(11), 1478–1480 (2001).
[Crossref]

Koroknay, E.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Korovin, A. V.

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid Colloidal Plasmonic-Photonic Crystals,” Adv. Mater. 23(22-23), 2515–2533 (2011).
[Crossref] [PubMed]

Kralchevski, P.

N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8(12), 3183–3190 (1992).
[Crossref]

Krausz, B.

B. Gompf, B. Krausz, B. Frank, and M. Dressel, “k-dependent optics of nanostructures: Spatial dispersion of metallic nanorings and split-ring resonators,” Phys. Rev. B 86(7), 075462 (2012).
[Crossref]

Kreiter, M.

M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5(18), 2105–2110 (2009).
[Crossref] [PubMed]

Kurokawa, Y.

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[Crossref] [PubMed]

Lagugné-Labarthet, F.

S. Fayyaz, M. Tabatabaei, R. Hou, and F. Lagugné-Labarthet, “Surface-enhanced fluorescence: mapping individual hot spots in silica-protected 2D gold nanotriangle arrays,” J. Phys. Chem. C 116(21), 11665–11670 (2012).
[Crossref]

Landström, L.

L. Landström, D. Brodoceanu, D. Bäuerle, F. J. Garcia-Vidal, S. G. Rodrigo, and L. Martin-Moreno, “Extraordinary transmission through metal-coated monolayers of microspheres,” Opt. Express 17(2), 761–772 (2009).
[Crossref] [PubMed]

L. Landström, D. Brodoceanu, K. Piglmayer, and D. Bäuerle, “Extraordinary optical transmission through metal-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 84(4), 373–377 (2006).
[Crossref]

Lee, A.

C. Charnay, A. Lee, S.-Q. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. B 107(30), 7327–7333 (2003).
[Crossref]

Lei, Y.

F. Sun, W. Cai, Y. Li, B. Cao, Y. Lei, and L. Zhang, “Morphology-controlled growth of large-area two-dimensional ordered pore arrays,” Adv. Funct. Mater. 14(3), 283–288 (2004).
[Crossref]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Li, L.

L. Li, T. Zhai, H. Zeng, X. Fang, Y. Bando, and D. Golberg, “Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications,” J. Mater. Chem. 21(1), 40–56 (2011).
[Crossref]

Li, S.

Li, Y.

Y. Li, J. Zhang, T. Wang, S. Zhu, H. Yu, L. Fang, Z. Wang, L. Cui, and B. Yang, “Full Color Plasmonic Nanostructured Surfaces and Their Sensor Applications,” J. Phys. Chem. C 114(47), 19908–19912 (2010).
[Crossref]

F. Sun, W. Cai, Y. Li, B. Cao, Y. Lei, and L. Zhang, “Morphology-controlled growth of large-area two-dimensional ordered pore arrays,” Adv. Funct. Mater. 14(3), 283–288 (2004).
[Crossref]

Li, Z.-Y.

Y. Lu, Y. Yin, Z.-Y. Li, and Y. Xia, “Colloidal crystals made of polystyrene spheroids: fabrication and structural/optical characterization,” Langmuir 18(20), 7722–7727 (2002).
[Crossref]

Lim, K.-Y.

B. J.-Y. Tan, C.-H. Sow, K.-Y. Lim, F.-C. Cheong, G.-L. Chong, A. T.-S. Wee, and C.-K. Ong, “Fabrication of a two-dimensional periodic non-close-packed array of polystyrene particles,” J. Phys. Chem. B 108(48), 18575–18579 (2004).
[Crossref]

Lin, W.-C.

T. Lohmüller, L. Iversen, M. Schmidt, C. Rhodes, H.-L. Tu, W.-C. Lin, and J. T. Groves, “Single molecule tracking on supported membranes with arrays of optical nanoantennas,” Nano Lett. 12(3), 1717–1721 (2012).
[Crossref] [PubMed]

Lohmüller, T.

T. Lohmüller, L. Iversen, M. Schmidt, C. Rhodes, H.-L. Tu, W.-C. Lin, and J. T. Groves, “Single molecule tracking on supported membranes with arrays of optical nanoantennas,” Nano Lett. 12(3), 1717–1721 (2012).
[Crossref] [PubMed]

López, C.

M. López-García, J. F. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, and A. García-Martín, “Enhancement and directionality of spontaneous emission in hybrid self-assembled photonic-plasmonic crystals,” Small 6(16), 1757–1761 (2010).
[Crossref] [PubMed]

H. Míguez, C. López, F. Meseguer, A. Blanco, L. Vázquez, R. Mayoral, M. Ocaña, V. Fornés, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71(9), 1148–1150 (1997).
[Crossref]

López-García, M.

M. López-García, J. F. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, and A. García-Martín, “Enhancement and directionality of spontaneous emission in hybrid self-assembled photonic-plasmonic crystals,” Small 6(16), 1757–1761 (2010).
[Crossref] [PubMed]

Lu, Y.

Y. Lu, Y. Yin, Z.-Y. Li, and Y. Xia, “Colloidal crystals made of polystyrene spheroids: fabrication and structural/optical characterization,” Langmuir 18(20), 7722–7727 (2002).
[Crossref]

Maes, G.

J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir 25(3), 1822–1827 (2009).
[Crossref] [PubMed]

Man, S.-Q.

C. Charnay, A. Lee, S.-Q. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. B 107(30), 7327–7333 (2003).
[Crossref]

Manzke, A.

A. Plettl, F. Enderle, M. Saitner, A. Manzke, C. Pfahler, S. Wiedemann, and P. Ziemann, “Non-close-packed crystals from self-assembled polystyrene spheres by isotropic plasma etching: adding flexibility to colloid lithography,” Adv. Funct. Mater. 19(20), 3279–3284 (2009).
[Crossref]

Martin-Moreno, L.

Mayoral, R.

H. Míguez, C. López, F. Meseguer, A. Blanco, L. Vázquez, R. Mayoral, M. Ocaña, V. Fornés, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71(9), 1148–1150 (1997).
[Crossref]

McFarland, A. D.

L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. Van Duyne, “Metal Film over Nanosphere (MFON) Electrodes for Surface-Enhanced Raman Spectroscopy (SERS): Improvements in Surface Nanostructure Stability and Suppression of Irreversible Loss,” J. Phys. Chem. B 106(4), 853–860 (2002).
[Crossref]

Memis, O. G.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Meng, T.

T. Meng, M. Zhu, J. Pan, P. Zhan, and Z. Wang, “Fabrication of metallic split-ring arrays for metamaterials using silica particle templates anchored on a silicon substrate,” Jpn. J. Appl. Phys. 47(10), 8109–8112 (2008).
[Crossref]

Meseguer, F.

H. Míguez, C. López, F. Meseguer, A. Blanco, L. Vázquez, R. Mayoral, M. Ocaña, V. Fornés, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71(9), 1148–1150 (1997).
[Crossref]

Meziani, T.

A. Valsesia, T. Meziani, F. Bretagnol, P. Colpo, G. Ceccone, and F. Rossi, “Plasma assisted production of chemical nano-patterns by nano-sphere lithography: application to bio-interfaces,” J. Phys. Appl. Phys. 40(8), 2341–2347 (2007).
[Crossref]

Mifsud, A.

H. Míguez, C. López, F. Meseguer, A. Blanco, L. Vázquez, R. Mayoral, M. Ocaña, V. Fornés, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71(9), 1148–1150 (1997).
[Crossref]

Míguez, H.

H. Míguez, C. López, F. Meseguer, A. Blanco, L. Vázquez, R. Mayoral, M. Ocaña, V. Fornés, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71(9), 1148–1150 (1997).
[Crossref]

Ming, N. B.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H.-T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

Miyazaki, H.

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87(10), 7152–7158 (2000).
[Crossref]

Miyazaki, H. T.

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[Crossref] [PubMed]

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87(10), 7152–7158 (2000).
[Crossref]

Mohseni, H.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Moran, C. E.

C. Charnay, A. Lee, S.-Q. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. B 107(30), 7327–7333 (2003).
[Crossref]

Murray, W. A.

W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69(16), 165407 (2004).
[Crossref]

Nagayama, K.

N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8(12), 3183–3190 (1992).
[Crossref]

Netti, M. C.

P. N. Bartlett, J. J. Baumberg, P. R. Birkin, M. A. Ghanem, and M. C. Netti, “Highly ordered macroporous gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres,” Chem. Mater. 14(5), 2199–2208 (2002).
[Crossref]

Ocaña, M.

H. Míguez, C. López, F. Meseguer, A. Blanco, L. Vázquez, R. Mayoral, M. Ocaña, V. Fornés, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71(9), 1148–1150 (1997).
[Crossref]

Ohtaka, K.

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87(10), 7152–7158 (2000).
[Crossref]

Okamoto, H.

S. I. Kim, K. Imura, S. Kim, and H. Okamoto, “Confined optical fields in nanovoid chain structures directly visualized by near-field optical imaging,” J. Phys. Chem. C 115(5), 1548–1555 (2011).
[Crossref]

Ong, C.-K.

B. J.-Y. Tan, C.-H. Sow, K.-Y. Lim, F.-C. Cheong, G.-L. Chong, A. T.-S. Wee, and C.-K. Ong, “Fabrication of a two-dimensional periodic non-close-packed array of polystyrene particles,” J. Phys. Chem. B 108(48), 18575–18579 (2004).
[Crossref]

Pan, J.

T. Meng, M. Zhu, J. Pan, P. Zhan, and Z. Wang, “Fabrication of metallic split-ring arrays for metamaterials using silica particle templates anchored on a silicon substrate,” Jpn. J. Appl. Phys. 47(10), 8109–8112 (2008).
[Crossref]

Patoka, P.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Persoons, A.

M. Szekeres, O. Kamalin, R. A. Schoonheydt, K. Wostyn, K. Clays, A. Persoons, and I. Dékány, “Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir–Blodgett method,” J. Mater. Chem. 12(11), 3268–3274 (2002).
[Crossref]

Peschel, U.

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid Colloidal Plasmonic-Photonic Crystals,” Adv. Mater. 23(22-23), 2515–2533 (2011).
[Crossref] [PubMed]

Pfahler, C.

A. Plettl, F. Enderle, M. Saitner, A. Manzke, C. Pfahler, S. Wiedemann, and P. Ziemann, “Non-close-packed crystals from self-assembled polystyrene spheres by isotropic plasma etching: adding flexibility to colloid lithography,” Adv. Funct. Mater. 19(20), 3279–3284 (2009).
[Crossref]

Piglmayer, K.

L. Landström, D. Brodoceanu, K. Piglmayer, and D. Bäuerle, “Extraordinary optical transmission through metal-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 84(4), 373–377 (2006).
[Crossref]

Plettl, A.

A. Plettl, F. Enderle, M. Saitner, A. Manzke, C. Pfahler, S. Wiedemann, and P. Ziemann, “Non-close-packed crystals from self-assembled polystyrene spheres by isotropic plasma etching: adding flexibility to colloid lithography,” Adv. Funct. Mater. 19(20), 3279–3284 (2009).
[Crossref]

Radloff, C.

C. Charnay, A. Lee, S.-Q. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. B 107(30), 7327–7333 (2003).
[Crossref]

Regensburger, A.

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid Colloidal Plasmonic-Photonic Crystals,” Adv. Mater. 23(22-23), 2515–2533 (2011).
[Crossref] [PubMed]

Ren, Z. F.

Y. Wang, J. Rybczynski, D. Z. Wang, and Z. F. Ren, “Large-scale triangular lattice arrays of sub-micron islands by microsphere self-assembly,” Nanotechnology 16(6), 819–822 (2005).
[Crossref]

Retsch, M.

M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5(18), 2105–2110 (2009).
[Crossref] [PubMed]

Rhodes, C.

T. Lohmüller, L. Iversen, M. Schmidt, C. Rhodes, H.-L. Tu, W.-C. Lin, and J. T. Groves, “Single molecule tracking on supported membranes with arrays of optical nanoantennas,” Nano Lett. 12(3), 1717–1721 (2012).
[Crossref] [PubMed]

Rodrigo, S. G.

Romanov, S. G.

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid Colloidal Plasmonic-Photonic Crystals,” Adv. Mater. 23(22-23), 2515–2533 (2011).
[Crossref] [PubMed]

Rossi, F.

A. Valsesia, T. Meziani, F. Bretagnol, P. Colpo, G. Ceccone, and F. Rossi, “Plasma assisted production of chemical nano-patterns by nano-sphere lithography: application to bio-interfaces,” J. Phys. Appl. Phys. 40(8), 2341–2347 (2007).
[Crossref]

Rybczynski, J.

Y. Wang, J. Rybczynski, D. Z. Wang, and Z. F. Ren, “Large-scale triangular lattice arrays of sub-micron islands by microsphere self-assembly,” Nanotechnology 16(6), 819–822 (2005).
[Crossref]

Saitner, M.

A. Plettl, F. Enderle, M. Saitner, A. Manzke, C. Pfahler, S. Wiedemann, and P. Ziemann, “Non-close-packed crystals from self-assembled polystyrene spheres by isotropic plasma etching: adding flexibility to colloid lithography,” Adv. Funct. Mater. 19(20), 3279–3284 (2009).
[Crossref]

Sánchez-Marcos, J.

M. López-García, J. F. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, and A. García-Martín, “Enhancement and directionality of spontaneous emission in hybrid self-assembled photonic-plasmonic crystals,” Small 6(16), 1757–1761 (2010).
[Crossref] [PubMed]

Saracut, V.

V. Saracut, M. Giloan, M. Gabor, S. Astilean, and C. Farcau, “Polarization-Sensitive Linear Plasmonic Nanostructures Via Colloidal Lithography with Uniaxial Colloidal Arrays,” ACS Appl. Mater. Interfaces 5(4), 1362–1369 (2013).
[Crossref] [PubMed]

Sato, T.

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87(10), 7152–7158 (2000).
[Crossref]

Schmidt, M.

T. Lohmüller, L. Iversen, M. Schmidt, C. Rhodes, H.-L. Tu, W.-C. Lin, and J. T. Groves, “Single molecule tracking on supported membranes with arrays of optical nanoantennas,” Nano Lett. 12(3), 1717–1721 (2012).
[Crossref] [PubMed]

Schoonheydt, R. A.

M. Szekeres, O. Kamalin, R. A. Schoonheydt, K. Wostyn, K. Clays, A. Persoons, and I. Dékány, “Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir–Blodgett method,” J. Mater. Chem. 12(11), 3268–3274 (2002).
[Crossref]

Seelig, E. W.

E. W. Seelig, B. Tang, A. Yamilov, H. Cao, and R. P. H. Chang, “Self-assembled 3D photonic crystals from ZnO colloidal spheres,” Mater. Chem. Phys. 80(1), 257–263 (2003).
[Crossref]

Shi, H.

Sow, C.-H.

B. J.-Y. Tan, C.-H. Sow, K.-Y. Lim, F.-C. Cheong, G.-L. Chong, A. T.-S. Wee, and C.-K. Ong, “Fabrication of a two-dimensional periodic non-close-packed array of polystyrene particles,” J. Phys. Chem. B 108(48), 18575–18579 (2004).
[Crossref]

Sun, F.

F. Sun, W. Cai, Y. Li, B. Cao, Y. Lei, and L. Zhang, “Morphology-controlled growth of large-area two-dimensional ordered pore arrays,” Adv. Funct. Mater. 14(3), 283–288 (2004).
[Crossref]

Sun, J.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H.-T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

Szekeres, M.

M. Szekeres, O. Kamalin, R. A. Schoonheydt, K. Wostyn, K. Clays, A. Persoons, and I. Dékány, “Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir–Blodgett method,” J. Mater. Chem. 12(11), 3268–3274 (2002).
[Crossref]

Tabatabaei, M.

S. Fayyaz, M. Tabatabaei, R. Hou, and F. Lagugné-Labarthet, “Surface-enhanced fluorescence: mapping individual hot spots in silica-protected 2D gold nanotriangle arrays,” J. Phys. Chem. C 116(21), 11665–11670 (2012).
[Crossref]

Tamm, M.

M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5(18), 2105–2110 (2009).
[Crossref] [PubMed]

Tamura, T.

T. Fujimura, T. Tamura, T. Itoh, C. Haginoya, Y. Komori, and T. Koda, “Morphology and photonic band structure modification of polystyrene particle layers by reactive ion etching,” Appl. Phys. Lett. 78(11), 1478–1480 (2001).
[Crossref]

Tan, B. J.-Y.

B. J.-Y. Tan, C.-H. Sow, K.-Y. Lim, F.-C. Cheong, G.-L. Chong, A. T.-S. Wee, and C.-K. Ong, “Fabrication of a two-dimensional periodic non-close-packed array of polystyrene particles,” J. Phys. Chem. B 108(48), 18575–18579 (2004).
[Crossref]

Tang, B.

E. W. Seelig, B. Tang, A. Yamilov, H. Cao, and R. P. H. Chang, “Self-assembled 3D photonic crystals from ZnO colloidal spheres,” Mater. Chem. Phys. 80(1), 257–263 (2003).
[Crossref]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Tseng, C.-B.

Y.-C. Chang, S.-M. Wang, H.-C. Chung, C.-B. Tseng, and S.-H. Chang, “Large-area bowtie nanoantenna arrays fabricated with economic oxygen plasma-assisted nanosphere lithography,” Plasmonics 6(3), 599–604 (2011).
[Crossref]

Tu, H.-L.

T. Lohmüller, L. Iversen, M. Schmidt, C. Rhodes, H.-L. Tu, W.-C. Lin, and J. T. Groves, “Single molecule tracking on supported membranes with arrays of optical nanoantennas,” Nano Lett. 12(3), 1717–1721 (2012).
[Crossref] [PubMed]

Vallée, R. A. L.

C. Farcau, R. A. L. Vallée, S. Boca, and S. Astilean, “Polarized SERS on linear arrays of silver half-shells: SERS re-radiation modulated by local density of optical states,” J. Opt. 17(11), 114007 (2015).
[Crossref]

Valsesia, A.

A. Valsesia, T. Meziani, F. Bretagnol, P. Colpo, G. Ceccone, and F. Rossi, “Plasma assisted production of chemical nano-patterns by nano-sphere lithography: application to bio-interfaces,” J. Phys. Appl. Phys. 40(8), 2341–2347 (2007).
[Crossref]

Van Dorpe, P.

J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir 25(3), 1822–1827 (2009).
[Crossref] [PubMed]

Van Duyne, R. P.

L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. Van Duyne, “Metal Film over Nanosphere (MFON) Electrodes for Surface-Enhanced Raman Spectroscopy (SERS): Improvements in Surface Nanostructure Stability and Suppression of Irreversible Loss,” J. Phys. Chem. B 106(4), 853–860 (2002).
[Crossref]

Van Roy, W.

J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir 25(3), 1822–1827 (2009).
[Crossref] [PubMed]

Vázquez, L.

H. Míguez, C. López, F. Meseguer, A. Blanco, L. Vázquez, R. Mayoral, M. Ocaña, V. Fornés, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71(9), 1148–1150 (1997).
[Crossref]

Velev, O.

N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8(12), 3183–3190 (1992).
[Crossref]

Vinteler, E.

C. Farcau, M. Giloan, E. Vinteler, and S. Astilean, “Understanding plasmon resonances of metal-coated colloidal crystal monolayers,” Appl. Phys. B 106(4), 849–856 (2012).
[Crossref]

E. Vinţeler, C. Farcău, and S. Aştilean, “Disorder effects in reflectance spectra of colloidal photonic crystals,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 267, 393–396 (2009).

C. Farcau, E. Vinteler, and S. Astilean, “Experimental and theoretical investigation of optical properties of colloidal photonic crystal films,” J. Optoelectron. Adv. Mater. 10, 3165–3168 (2008).

Wang, D. Z.

Y. Wang, J. Rybczynski, D. Z. Wang, and Z. F. Ren, “Large-scale triangular lattice arrays of sub-micron islands by microsphere self-assembly,” Nanotechnology 16(6), 819–822 (2005).
[Crossref]

Wang, H.-T.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H.-T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

Wang, S.-M.

Y.-C. Chang, S.-M. Wang, H.-C. Chung, C.-B. Tseng, and S.-H. Chang, “Large-area bowtie nanoantenna arrays fabricated with economic oxygen plasma-assisted nanosphere lithography,” Plasmonics 6(3), 599–604 (2011).
[Crossref]

Wang, T.

Y. Li, J. Zhang, T. Wang, S. Zhu, H. Yu, L. Fang, Z. Wang, L. Cui, and B. Yang, “Full Color Plasmonic Nanostructured Surfaces and Their Sensor Applications,” J. Phys. Chem. C 114(47), 19908–19912 (2010).
[Crossref]

Wang, Y.

Y. Wang, J. Rybczynski, D. Z. Wang, and Z. F. Ren, “Large-scale triangular lattice arrays of sub-micron islands by microsphere self-assembly,” Nanotechnology 16(6), 819–822 (2005).
[Crossref]

Wang, Z.

Y. Li, J. Zhang, T. Wang, S. Zhu, H. Yu, L. Fang, Z. Wang, L. Cui, and B. Yang, “Full Color Plasmonic Nanostructured Surfaces and Their Sensor Applications,” J. Phys. Chem. C 114(47), 19908–19912 (2010).
[Crossref]

T. Meng, M. Zhu, J. Pan, P. Zhan, and Z. Wang, “Fabrication of metallic split-ring arrays for metamaterials using silica particle templates anchored on a silicon substrate,” Jpn. J. Appl. Phys. 47(10), 8109–8112 (2008).
[Crossref]

Wang, Z. L.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H.-T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

Wang, Z.-B.

Z.-B. Wang, Y.-H. Ye, Y.-A. Zhang, and J.-Y. Zhang, “Visible transmission through metal-coated colloidal crystals,” Appl. Phys., A Mater. Sci. Process. 97(1), 225–228 (2009).
[Crossref]

Wee, A. T.-S.

B. J.-Y. Tan, C.-H. Sow, K.-Y. Lim, F.-C. Cheong, G.-L. Chong, A. T.-S. Wee, and C.-K. Ong, “Fabrication of a two-dimensional periodic non-close-packed array of polystyrene particles,” J. Phys. Chem. B 108(48), 18575–18579 (2004).
[Crossref]

Wiedemann, S.

A. Plettl, F. Enderle, M. Saitner, A. Manzke, C. Pfahler, S. Wiedemann, and P. Ziemann, “Non-close-packed crystals from self-assembled polystyrene spheres by isotropic plasma etching: adding flexibility to colloid lithography,” Adv. Funct. Mater. 19(20), 3279–3284 (2009).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Wostyn, K.

M. Szekeres, O. Kamalin, R. A. Schoonheydt, K. Wostyn, K. Clays, A. Persoons, and I. Dékány, “Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir–Blodgett method,” J. Mater. Chem. 12(11), 3268–3274 (2002).
[Crossref]

Wu, J.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H.-T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

Wu, W.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Xia, L.

Xia, Y.

Y. Lu, Y. Yin, Z.-Y. Li, and Y. Xia, “Colloidal crystals made of polystyrene spheroids: fabrication and structural/optical characterization,” Langmuir 18(20), 7722–7727 (2002).
[Crossref]

Xie, W.

Yamilov, A.

E. W. Seelig, B. Tang, A. Yamilov, H. Cao, and R. P. H. Chang, “Self-assembled 3D photonic crystals from ZnO colloidal spheres,” Mater. Chem. Phys. 80(1), 257–263 (2003).
[Crossref]

Yang, B.

Y. Li, J. Zhang, T. Wang, S. Zhu, H. Yu, L. Fang, Z. Wang, L. Cui, and B. Yang, “Full Color Plasmonic Nanostructured Surfaces and Their Sensor Applications,” J. Phys. Chem. C 114(47), 19908–19912 (2010).
[Crossref]

Yang, Z.

Ye, J.

J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir 25(3), 1822–1827 (2009).
[Crossref] [PubMed]

Ye, Y.-H.

Z.-B. Wang, Y.-H. Ye, Y.-A. Zhang, and J.-Y. Zhang, “Visible transmission through metal-coated colloidal crystals,” Appl. Phys., A Mater. Sci. Process. 97(1), 225–228 (2009).
[Crossref]

Yin, S.

Yin, Y.

Y. Lu, Y. Yin, Z.-Y. Li, and Y. Xia, “Colloidal crystals made of polystyrene spheroids: fabrication and structural/optical characterization,” Langmuir 18(20), 7722–7727 (2002).
[Crossref]

Yoshimura, H.

N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8(12), 3183–3190 (1992).
[Crossref]

Yu, H.

Y. Li, J. Zhang, T. Wang, S. Zhu, H. Yu, L. Fang, Z. Wang, L. Cui, and B. Yang, “Full Color Plasmonic Nanostructured Surfaces and Their Sensor Applications,” J. Phys. Chem. C 114(47), 19908–19912 (2010).
[Crossref]

Zeng, H.

L. Li, T. Zhai, H. Zeng, X. Fang, Y. Bando, and D. Golberg, “Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications,” J. Mater. Chem. 21(1), 40–56 (2011).
[Crossref]

Zhai, T.

L. Li, T. Zhai, H. Zeng, X. Fang, Y. Bando, and D. Golberg, “Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications,” J. Mater. Chem. 21(1), 40–56 (2011).
[Crossref]

Zhan, P.

T. Meng, M. Zhu, J. Pan, P. Zhan, and Z. Wang, “Fabrication of metallic split-ring arrays for metamaterials using silica particle templates anchored on a silicon substrate,” Jpn. J. Appl. Phys. 47(10), 8109–8112 (2008).
[Crossref]

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H.-T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

Zhang, J.

Y. Li, J. Zhang, T. Wang, S. Zhu, H. Yu, L. Fang, Z. Wang, L. Cui, and B. Yang, “Full Color Plasmonic Nanostructured Surfaces and Their Sensor Applications,” J. Phys. Chem. C 114(47), 19908–19912 (2010).
[Crossref]

Zhang, J.-Y.

Z.-B. Wang, Y.-H. Ye, Y.-A. Zhang, and J.-Y. Zhang, “Visible transmission through metal-coated colloidal crystals,” Appl. Phys., A Mater. Sci. Process. 97(1), 225–228 (2009).
[Crossref]

Zhang, L.

F. Sun, W. Cai, Y. Li, B. Cao, Y. Lei, and L. Zhang, “Morphology-controlled growth of large-area two-dimensional ordered pore arrays,” Adv. Funct. Mater. 14(3), 283–288 (2004).
[Crossref]

Zhang, Y.-A.

Z.-B. Wang, Y.-H. Ye, Y.-A. Zhang, and J.-Y. Zhang, “Visible transmission through metal-coated colloidal crystals,” Appl. Phys., A Mater. Sci. Process. 97(1), 225–228 (2009).
[Crossref]

Zhu, M.

T. Meng, M. Zhu, J. Pan, P. Zhan, and Z. Wang, “Fabrication of metallic split-ring arrays for metamaterials using silica particle templates anchored on a silicon substrate,” Jpn. J. Appl. Phys. 47(10), 8109–8112 (2008).
[Crossref]

Zhu, S.

Y. Li, J. Zhang, T. Wang, S. Zhu, H. Yu, L. Fang, Z. Wang, L. Cui, and B. Yang, “Full Color Plasmonic Nanostructured Surfaces and Their Sensor Applications,” J. Phys. Chem. C 114(47), 19908–19912 (2010).
[Crossref]

Zhu, S. N.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H.-T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

Zi, J.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H.-T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

Ziemann, P.

A. Plettl, F. Enderle, M. Saitner, A. Manzke, C. Pfahler, S. Wiedemann, and P. Ziemann, “Non-close-packed crystals from self-assembled polystyrene spheres by isotropic plasma etching: adding flexibility to colloid lithography,” Adv. Funct. Mater. 19(20), 3279–3284 (2009).
[Crossref]

ACS Appl. Mater. Interfaces (1)

V. Saracut, M. Giloan, M. Gabor, S. Astilean, and C. Farcau, “Polarization-Sensitive Linear Plasmonic Nanostructures Via Colloidal Lithography with Uniaxial Colloidal Arrays,” ACS Appl. Mater. Interfaces 5(4), 1362–1369 (2013).
[Crossref] [PubMed]

Adv. Funct. Mater. (2)

F. Sun, W. Cai, Y. Li, B. Cao, Y. Lei, and L. Zhang, “Morphology-controlled growth of large-area two-dimensional ordered pore arrays,” Adv. Funct. Mater. 14(3), 283–288 (2004).
[Crossref]

A. Plettl, F. Enderle, M. Saitner, A. Manzke, C. Pfahler, S. Wiedemann, and P. Ziemann, “Non-close-packed crystals from self-assembled polystyrene spheres by isotropic plasma etching: adding flexibility to colloid lithography,” Adv. Funct. Mater. 19(20), 3279–3284 (2009).
[Crossref]

Adv. Mater. (2)

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid Colloidal Plasmonic-Photonic Crystals,” Adv. Mater. 23(22-23), 2515–2533 (2011).
[Crossref] [PubMed]

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H.-T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

Appl. Phys. B (1)

C. Farcau, M. Giloan, E. Vinteler, and S. Astilean, “Understanding plasmon resonances of metal-coated colloidal crystal monolayers,” Appl. Phys. B 106(4), 849–856 (2012).
[Crossref]

Appl. Phys. Lett. (4)

C. Haginoya, M. Ishibashi, and K. Koike, “Nanostructure array fabrication with a size-controllable natural lithography,” Appl. Phys. Lett. 71(20), 2934–2936 (1997).
[Crossref]

C. Farcău and S. Aştilean, “Silver half-shell arrays with controlled plasmonic response for fluorescence enhancement optimization,” Appl. Phys. Lett. 95(19), 193110 (2009).
[Crossref]

H. Míguez, C. López, F. Meseguer, A. Blanco, L. Vázquez, R. Mayoral, M. Ocaña, V. Fornés, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71(9), 1148–1150 (1997).
[Crossref]

T. Fujimura, T. Tamura, T. Itoh, C. Haginoya, Y. Komori, and T. Koda, “Morphology and photonic band structure modification of polystyrene particle layers by reactive ion etching,” Appl. Phys. Lett. 78(11), 1478–1480 (2001).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

L. Landström, D. Brodoceanu, K. Piglmayer, and D. Bäuerle, “Extraordinary optical transmission through metal-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 84(4), 373–377 (2006).
[Crossref]

Z.-B. Wang, Y.-H. Ye, Y.-A. Zhang, and J.-Y. Zhang, “Visible transmission through metal-coated colloidal crystals,” Appl. Phys., A Mater. Sci. Process. 97(1), 225–228 (2009).
[Crossref]

Chem. Mater. (1)

P. N. Bartlett, J. J. Baumberg, P. R. Birkin, M. A. Ghanem, and M. C. Netti, “Highly ordered macroporous gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres,” Chem. Mater. 14(5), 2199–2208 (2002).
[Crossref]

J. Appl. Phys. (1)

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87(10), 7152–7158 (2000).
[Crossref]

J. Mater. Chem. (2)

L. Li, T. Zhai, H. Zeng, X. Fang, Y. Bando, and D. Golberg, “Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications,” J. Mater. Chem. 21(1), 40–56 (2011).
[Crossref]

M. Szekeres, O. Kamalin, R. A. Schoonheydt, K. Wostyn, K. Clays, A. Persoons, and I. Dékány, “Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir–Blodgett method,” J. Mater. Chem. 12(11), 3268–3274 (2002).
[Crossref]

J. Opt. (1)

C. Farcau, R. A. L. Vallée, S. Boca, and S. Astilean, “Polarized SERS on linear arrays of silver half-shells: SERS re-radiation modulated by local density of optical states,” J. Opt. 17(11), 114007 (2015).
[Crossref]

J. Optoelectron. Adv. Mater. (1)

C. Farcau, E. Vinteler, and S. Astilean, “Experimental and theoretical investigation of optical properties of colloidal photonic crystal films,” J. Optoelectron. Adv. Mater. 10, 3165–3168 (2008).

J. Phys. Appl. Phys. (1)

A. Valsesia, T. Meziani, F. Bretagnol, P. Colpo, G. Ceccone, and F. Rossi, “Plasma assisted production of chemical nano-patterns by nano-sphere lithography: application to bio-interfaces,” J. Phys. Appl. Phys. 40(8), 2341–2347 (2007).
[Crossref]

J. Phys. Chem. B (3)

B. J.-Y. Tan, C.-H. Sow, K.-Y. Lim, F.-C. Cheong, G.-L. Chong, A. T.-S. Wee, and C.-K. Ong, “Fabrication of a two-dimensional periodic non-close-packed array of polystyrene particles,” J. Phys. Chem. B 108(48), 18575–18579 (2004).
[Crossref]

L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. Van Duyne, “Metal Film over Nanosphere (MFON) Electrodes for Surface-Enhanced Raman Spectroscopy (SERS): Improvements in Surface Nanostructure Stability and Suppression of Irreversible Loss,” J. Phys. Chem. B 106(4), 853–860 (2002).
[Crossref]

C. Charnay, A. Lee, S.-Q. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. B 107(30), 7327–7333 (2003).
[Crossref]

J. Phys. Chem. C (3)

S. Fayyaz, M. Tabatabaei, R. Hou, and F. Lagugné-Labarthet, “Surface-enhanced fluorescence: mapping individual hot spots in silica-protected 2D gold nanotriangle arrays,” J. Phys. Chem. C 116(21), 11665–11670 (2012).
[Crossref]

Y. Li, J. Zhang, T. Wang, S. Zhu, H. Yu, L. Fang, Z. Wang, L. Cui, and B. Yang, “Full Color Plasmonic Nanostructured Surfaces and Their Sensor Applications,” J. Phys. Chem. C 114(47), 19908–19912 (2010).
[Crossref]

S. I. Kim, K. Imura, S. Kim, and H. Okamoto, “Confined optical fields in nanovoid chain structures directly visualized by near-field optical imaging,” J. Phys. Chem. C 115(5), 1548–1555 (2011).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Meng, M. Zhu, J. Pan, P. Zhan, and Z. Wang, “Fabrication of metallic split-ring arrays for metamaterials using silica particle templates anchored on a silicon substrate,” Jpn. J. Appl. Phys. 47(10), 8109–8112 (2008).
[Crossref]

Langmuir (3)

J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir 25(3), 1822–1827 (2009).
[Crossref] [PubMed]

Y. Lu, Y. Yin, Z.-Y. Li, and Y. Xia, “Colloidal crystals made of polystyrene spheroids: fabrication and structural/optical characterization,” Langmuir 18(20), 7722–7727 (2002).
[Crossref]

N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8(12), 3183–3190 (1992).
[Crossref]

Mater. Chem. Phys. (1)

E. W. Seelig, B. Tang, A. Yamilov, H. Cao, and R. P. H. Chang, “Self-assembled 3D photonic crystals from ZnO colloidal spheres,” Mater. Chem. Phys. 80(1), 257–263 (2003).
[Crossref]

Nano Lett. (2)

B. Ding, C. Hrelescu, N. Arnold, G. Isic, and T. A. Klar, “Spectral and Directional Reshaping of Fluorescence in Large Area Self-Assembled Plasmonic-Photonic Crystals,” Nano Lett. 13(2), 378–386 (2013).
[Crossref] [PubMed]

T. Lohmüller, L. Iversen, M. Schmidt, C. Rhodes, H.-L. Tu, W.-C. Lin, and J. T. Groves, “Single molecule tracking on supported membranes with arrays of optical nanoantennas,” Nano Lett. 12(3), 1717–1721 (2012).
[Crossref] [PubMed]

Nanotechnology (3)

Y. Wang, J. Rybczynski, D. Z. Wang, and Z. F. Ren, “Large-scale triangular lattice arrays of sub-micron islands by microsphere self-assembly,” Nanotechnology 16(6), 819–822 (2005).
[Crossref]

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology 18(23), 235704 (2007).
[Crossref]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. (1)

E. Vinţeler, C. Farcău, and S. Aştilean, “Disorder effects in reflectance spectra of colloidal photonic crystals,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 267, 393–396 (2009).

Opt. Express (2)

Phys. Rev. B (2)

W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69(16), 165407 (2004).
[Crossref]

B. Gompf, B. Krausz, B. Frank, and M. Dressel, “k-dependent optics of nanostructures: Spatial dispersion of metallic nanorings and split-ring resonators,” Phys. Rev. B 86(7), 075462 (2012).
[Crossref]

Phys. Rev. Lett. (1)

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[Crossref] [PubMed]

Plasmonics (1)

Y.-C. Chang, S.-M. Wang, H.-C. Chung, C.-B. Tseng, and S.-H. Chang, “Large-area bowtie nanoantenna arrays fabricated with economic oxygen plasma-assisted nanosphere lithography,” Plasmonics 6(3), 599–604 (2011).
[Crossref]

Small (3)

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5(18), 2105–2110 (2009).
[Crossref] [PubMed]

M. López-García, J. F. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, and A. García-Martín, “Enhancement and directionality of spontaneous emission in hybrid self-assembled photonic-plasmonic crystals,” Small 6(16), 1757–1761 (2010).
[Crossref] [PubMed]

Other (1)

“Lumerical Solutions, Inc. | Innovative Photonic Design Tools,” https://www.lumerical.com/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scheme depicting a top view (top) and a cross-section view (bottom) of a CC (A and B), Et^CC (C and D), HPPC (E and F) and Et^HPPC (G and H).

Fig. 2
Fig. 2

SEM images of: (A,E) HPPC, and (B-D and F-H) Et^HPPC. (I) The dependence of the etched spheres diameter on plasma power for the Et^HPPC samples. Scale bars are 2 µm (A-E) and 0.5 µm (E-H).

Fig. 3
Fig. 3

Transmission spectra of the bare colloidal crystal (CC) (black line), hybrid plasmonic-photonic crystal (HPPC) (red line), and flat Au film (blue line).

Fig. 4
Fig. 4

(A) Transmission experimental spectra of the unetched (S0) and gradually etched (S3-S5)PS CC; Inset depicts the dip wavelength of each experimental sample. (B) Comparison of the experimental CC (thin, black line) and their respective best fitted simulated spectra (thick, red line). The diameters of the simulated PS spheres are 500, 490, 460, 450, 410 and respectively 390nm. (C) Transmission experimental spectra of the HPPC (S0) and Et^HPPCs (S3-S5). (D) Comparison of the experimental HPPC and Et^HPPCs (thin, black line) and the simulated spectra (thick, red line) using the PS radius that best fitted their respective CC spectra.

Fig. 5
Fig. 5

On the top row the cross section of each structure is schematized. The middle row depicts the electric near-field intensity maps for the simulated Et^HPPC structures. The bottom row represents a vectorial plot of the electric fields, where the magnitude of each vector is described by both its size and color (from blue to red). The diameter of the PS spheres are: 350nm (A, E and I), 400nm (B, F and J), 450nm (C, G and K)and 500nm (D, H and L).

Fig. 6
Fig. 6

(A) Simulated transmission spectra of different compositions of the Et^HPPC: i - all the components, corresponding to the structure schematized in (B), ii - metal coated spheres, corresponding to structure in (C), iii - metal nanostructures on the substrate and uncoated spheres, corresponding to structure in (D); (E), (F) and (G) electric near-field intensity maps at 595 nm, on the structures schematized above each image.

Metrics