Abstract

Silicon based micro- and nanophotonics yielding plenty of applications from black silicon for photovoltaics to all-dielectric nanoantennas for sensing and nonlinear optics requires advanced methods of fabrication. Here we provide a detailed investigation of femtosecond laser fabrication of silicon based miro- and nanostructures formed via self-organization processes revealing a strong influence of nonlinear optical feedback during their growth under multipulse irradiation. Our results are supported by the experimental study of the effects of laser wavelength, fluence, exposure time, and ambient gas pressure. We demonstrate that both sub-µm and µm-scale structures have similar principles of formation, which paves the way to controllable and low-cost fabrication of advanced optoelectronics devices with multilevel patterning of functional elements.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Formation of multiscale surface structures on nickel via above surface growth and below surface growth mechanisms using femtosecond laser pulses

Craig A. Zuhlke, Troy P. Anderson, and Dennis R. Alexander
Opt. Express 21(7) 8460-8473 (2013)

Doping effects on ablation enhancement in femtosecond laser irradiation of silicon

Juqiang Fang, Lan Jiang, Qiang Cao, Kaihu Zhang, Yanping Yuan, and Yongfeng Lu
Appl. Opt. 53(18) 3897-3902 (2014)

Femtosecond laser induced surface swelling in poly-methyl methacrylate

Farhana Baset, Konstantin Popov, Ana Villafranca, Jean-Michel Guay, Zeinab Al-Rekabi, Andrew E. Pelling, Lora Ramunno, and Ravi Bhardwaj
Opt. Express 21(10) 12527-12538 (2013)

References

  • View by:
  • |
  • |
  • |

  1. I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).
  2. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
  3. R. Soref, “The past, present, and future of silicon photonics,” IEEE Trans. Emerg. Sel. Topics Power Electron. 12(6), 1678–1687 (2006).
  4. J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30(14), 1773–1775 (2005).
  5. Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
  6. T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir 22(11), 4917–4919 (2006).
  7. M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
  8. T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
  9. A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Silicon microcolumn arrays grown by nanosecond pulsed-excimer laser irradiation,” Appl. Phys. Lett. 74(16), 2322–2324 (1999).
  10. A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Self-organized silicon microcolumn arrays generated by pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 69(7), 731 (1999).
  11. S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Formation of conical microstructures upon laser evaporation of solids,” Appl. Phys., A Mater. Sci. Process. 73(2), 177–181 (2001).
  12. C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).
  13. E. Skantzakis, V. Zorba, D. G. Papazoglou, I. Zergioti, and C. Fotakis, “Ultraviolet laser microstructuring of silicon and the effect of laser pulse duration on the surface morphology,” Appl. Surf. Sci. 252(13), 4462–4466 (2006).
  14. V. Zorba, N. Boukos, I. Zergioti, and C. Fotakis, “Ultraviolet femtosecond, picosecond and nanosecond laser microstructuring of silicon: structural and optical properties,” Appl. Opt. 47(11), 1846–1850 (2008).
  15. B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 90(3), 399–402 (2008).
  16. A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, E. V. Golosov, Y. R. Kolobov, and A. E. Ligachev, “Beam spatial profile effect on femtosecond laser surface structuring of titanium in scanning regime,” Appl. Surf. Sci. 265, 688 (2013).
  17. S. Anisimov and V. Khokhlov, “Instabilities in Laser Matter Interaction” (CRC Press, Boca Raton, 1995)
  18. M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).
  19. G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
  20. G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures,” Phys. Rev. B 92(4), 041405 (2015).
  21. A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon by femtosecond laser radiation,” Sov. Phys. JETP 116(3), 347–362 (2013).
  22. A. A. Kuchmizhak, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, Y. N. Kulchin, O. B. Vitrik, and T. V. Efimov, “Flash-imprinting of intense femtosecond surface plasmons for advanced nanoantenna fabrication,” Opt. Lett. 40(8), 1687–1690 (2015).
  23. A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and V. I. Emel’yanov, “Nonlinear optical dynamics during femtosecond laser nanostructuring of a silicon surface,” Laser Phys. Lett. 12(2), 025902 (2015).
  24. G. D. Tsibidis, E. Stratakis, P. A. Loukakos, and C. Fotakis, “Controlled ultrashort-pulse laser-induced ripple formation on semiconductors,” Appl. Phys., A Mater. Sci. Process. 114(1), 57–68 (2014).
  25. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
  26. K. Sokolowski-Tinten and D. Von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).
  27. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
  28. T. J. Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114(8), 083104 (2013).
  29. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
  30. S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, “Interaction of powerful laser radiation with the surfaces of semiconductors and metals: nonlinear optical effects and nonlinear optical diagnostics,” Phys. Uspekhi 28(12), 1084–1124 (1985).
  31. H. Raether, “Surface plasmons on smooth surfaces” (Springer, Berlin, 1988).
  32. P. A. Danilov, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, P. N. Saltuganov, L. V. Seleznev, V. I. Yurovskikh, D. A. Zayarny, and T. Apostolova, “Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation,” J. Exp. Theor. Phys. 120(6), 946–959 (2015).
  33. E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Topological evolution of self-induced silicon nanogratings during prolonged femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 104(2), 701–705 (2011).
  34. J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, “Electromagnetic and Acoustic Scattering by Simple Shapes” (Hemisphere Publishing Corporation, New York, 1987).
  35. E. D. Palik, “Handbook of optical constants of solids” (Academic press, 1998).
  36. D. Bauerle, “Laser Processing and Chemistry” (Springer, Berlin, 2011).
  37. A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, E. V. Golosov, Y. R. Kolobov, and A. E. Ligachev, ““Heterogeneous” versus “homogeneous” nucleation and growth of microcones on titanium surface under UV femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 116(3), 1133–1139 (2014).
  38. C. A. Zuhlke, T. P. Anderson, and D. R. Alexander, “Formation of multiscale surface structures on nickel via above surface growth and below surface growth mechanisms using femtosecond laser pulses,” Opt. Express 21(7), 8460–8473 (2013).
  39. M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
  40. L. I. Sedov, “Similarity and dimensional methods in mechanics” (CRC press, 1993).
  41. S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
  42. S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys., A Mater. Sci. Process. 61(1), 33–37 (1995).

2017 (1)

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).

2016 (1)

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).

2015 (4)

G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures,” Phys. Rev. B 92(4), 041405 (2015).

A. A. Kuchmizhak, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, Y. N. Kulchin, O. B. Vitrik, and T. V. Efimov, “Flash-imprinting of intense femtosecond surface plasmons for advanced nanoantenna fabrication,” Opt. Lett. 40(8), 1687–1690 (2015).

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and V. I. Emel’yanov, “Nonlinear optical dynamics during femtosecond laser nanostructuring of a silicon surface,” Laser Phys. Lett. 12(2), 025902 (2015).

P. A. Danilov, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, P. N. Saltuganov, L. V. Seleznev, V. I. Yurovskikh, D. A. Zayarny, and T. Apostolova, “Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation,” J. Exp. Theor. Phys. 120(6), 946–959 (2015).

2014 (2)

G. D. Tsibidis, E. Stratakis, P. A. Loukakos, and C. Fotakis, “Controlled ultrashort-pulse laser-induced ripple formation on semiconductors,” Appl. Phys., A Mater. Sci. Process. 114(1), 57–68 (2014).

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, E. V. Golosov, Y. R. Kolobov, and A. E. Ligachev, ““Heterogeneous” versus “homogeneous” nucleation and growth of microcones on titanium surface under UV femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 116(3), 1133–1139 (2014).

2013 (4)

C. A. Zuhlke, T. P. Anderson, and D. R. Alexander, “Formation of multiscale surface structures on nickel via above surface growth and below surface growth mechanisms using femtosecond laser pulses,” Opt. Express 21(7), 8460–8473 (2013).

T. J. Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114(8), 083104 (2013).

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon by femtosecond laser radiation,” Sov. Phys. JETP 116(3), 347–362 (2013).

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, E. V. Golosov, Y. R. Kolobov, and A. E. Ligachev, “Beam spatial profile effect on femtosecond laser surface structuring of titanium in scanning regime,” Appl. Surf. Sci. 265, 688 (2013).

2012 (1)

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).

2011 (1)

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Topological evolution of self-induced silicon nanogratings during prolonged femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 104(2), 701–705 (2011).

2009 (2)

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).

2008 (3)

V. Zorba, N. Boukos, I. Zergioti, and C. Fotakis, “Ultraviolet femtosecond, picosecond and nanosecond laser microstructuring of silicon: structural and optical properties,” Appl. Opt. 47(11), 1846–1850 (2008).

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 90(3), 399–402 (2008).

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).

2006 (4)

E. Skantzakis, V. Zorba, D. G. Papazoglou, I. Zergioti, and C. Fotakis, “Ultraviolet laser microstructuring of silicon and the effect of laser pulse duration on the surface morphology,” Appl. Surf. Sci. 252(13), 4462–4466 (2006).

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir 22(11), 4917–4919 (2006).

R. Soref, “The past, present, and future of silicon photonics,” IEEE Trans. Emerg. Sel. Topics Power Electron. 12(6), 1678–1687 (2006).

2005 (1)

2004 (2)

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).

2003 (1)

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).

2002 (1)

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).

2001 (1)

S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Formation of conical microstructures upon laser evaporation of solids,” Appl. Phys., A Mater. Sci. Process. 73(2), 177–181 (2001).

2000 (1)

K. Sokolowski-Tinten and D. Von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).

1999 (2)

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Silicon microcolumn arrays grown by nanosecond pulsed-excimer laser irradiation,” Appl. Phys. Lett. 74(16), 2322–2324 (1999).

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Self-organized silicon microcolumn arrays generated by pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 69(7), 731 (1999).

1998 (1)

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).

1995 (1)

S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys., A Mater. Sci. Process. 61(1), 33–37 (1995).

1985 (1)

S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, “Interaction of powerful laser radiation with the surfaces of semiconductors and metals: nonlinear optical effects and nonlinear optical diagnostics,” Phys. Uspekhi 28(12), 1084–1124 (1985).

1983 (1)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).

Akhmanov, S. A.

S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, “Interaction of powerful laser radiation with the surfaces of semiconductors and metals: nonlinear optical effects and nonlinear optical diagnostics,” Phys. Uspekhi 28(12), 1084–1124 (1985).

Alexander, D. R.

Anastasiadis, S. H.

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).

Anderson, T. P.

Apostolova, T.

P. A. Danilov, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, P. N. Saltuganov, L. V. Seleznev, V. I. Yurovskikh, D. A. Zayarny, and T. Apostolova, “Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation,” J. Exp. Theor. Phys. 120(6), 946–959 (2015).

Aziz, M. J.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).

Baldacchini, T.

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir 22(11), 4917–4919 (2006).

Barberoglou, M.

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).

Baudach, S.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).

Bindhu, C. V.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).

Bonse, J.

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).

Boukos, N.

Brongersma, M. L.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).

Bunkin, A. F.

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon by femtosecond laser radiation,” Sov. Phys. JETP 116(3), 347–362 (2013).

Campbell, J. C.

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).

Carey, J. E.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir 22(11), 4917–4919 (2006).

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30(14), 1773–1775 (2005).

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).

Crouch, C. H.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30(14), 1773–1775 (2005).

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).

Danilov, P. A.

P. A. Danilov, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, P. N. Saltuganov, L. V. Seleznev, V. I. Yurovskikh, D. A. Zayarny, and T. Apostolova, “Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation,” J. Exp. Theor. Phys. 120(6), 946–959 (2015).

Deliwala, S.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).

Demchuk, A.

S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys., A Mater. Sci. Process. 61(1), 33–37 (1995).

Derrien, T. J. Y.

T. J. Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114(8), 083104 (2013).

Dolgaev, S. I.

S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Formation of conical microstructures upon laser evaporation of solids,” Appl. Phys., A Mater. Sci. Process. 73(2), 177–181 (2001).

Efimov, T. V.

Emel’yanov, V. I.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and V. I. Emel’yanov, “Nonlinear optical dynamics during femtosecond laser nanostructuring of a silicon surface,” Laser Phys. Lett. 12(2), 025902 (2015).

S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, “Interaction of powerful laser radiation with the surfaces of semiconductors and metals: nonlinear optical effects and nonlinear optical diagnostics,” Phys. Uspekhi 28(12), 1084–1124 (1985).

Finlay, R. J.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).

Fotakis, C.

G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures,” Phys. Rev. B 92(4), 041405 (2015).

G. D. Tsibidis, E. Stratakis, P. A. Loukakos, and C. Fotakis, “Controlled ultrashort-pulse laser-induced ripple formation on semiconductors,” Appl. Phys., A Mater. Sci. Process. 114(1), 57–68 (2014).

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).

V. Zorba, N. Boukos, I. Zergioti, and C. Fotakis, “Ultraviolet femtosecond, picosecond and nanosecond laser microstructuring of silicon: structural and optical properties,” Appl. Opt. 47(11), 1846–1850 (2008).

E. Skantzakis, V. Zorba, D. G. Papazoglou, I. Zergioti, and C. Fotakis, “Ultraviolet laser microstructuring of silicon and the effect of laser pulse duration on the surface morphology,” Appl. Surf. Sci. 252(13), 4462–4466 (2006).

Fowlkes, J. D.

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Silicon microcolumn arrays grown by nanosecond pulsed-excimer laser irradiation,” Appl. Phys. Lett. 74(16), 2322–2324 (1999).

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Self-organized silicon microcolumn arrays generated by pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 69(7), 731 (1999).

Gaeris, A. C.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).

Génin, F. Y.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).

Golosov, E. V.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, E. V. Golosov, Y. R. Kolobov, and A. E. Ligachev, ““Heterogeneous” versus “homogeneous” nucleation and growth of microcones on titanium surface under UV femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 116(3), 1133–1139 (2014).

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, E. V. Golosov, Y. R. Kolobov, and A. E. Ligachev, “Beam spatial profile effect on femtosecond laser surface structuring of titanium in scanning regime,” Appl. Surf. Sci. 265, 688 (2013).

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Topological evolution of self-induced silicon nanogratings during prolonged femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 104(2), 701–705 (2011).

Guo, X.

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).

Gupta, M. C.

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 90(3), 399–402 (2008).

Harilal, S. S.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).

Her, T. H.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).

Huang, Z.

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).

Ionin, A. A.

P. A. Danilov, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, P. N. Saltuganov, L. V. Seleznev, V. I. Yurovskikh, D. A. Zayarny, and T. Apostolova, “Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation,” J. Exp. Theor. Phys. 120(6), 946–959 (2015).

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and V. I. Emel’yanov, “Nonlinear optical dynamics during femtosecond laser nanostructuring of a silicon surface,” Laser Phys. Lett. 12(2), 025902 (2015).

A. A. Kuchmizhak, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, Y. N. Kulchin, O. B. Vitrik, and T. V. Efimov, “Flash-imprinting of intense femtosecond surface plasmons for advanced nanoantenna fabrication,” Opt. Lett. 40(8), 1687–1690 (2015).

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, E. V. Golosov, Y. R. Kolobov, and A. E. Ligachev, ““Heterogeneous” versus “homogeneous” nucleation and growth of microcones on titanium surface under UV femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 116(3), 1133–1139 (2014).

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon by femtosecond laser radiation,” Sov. Phys. JETP 116(3), 347–362 (2013).

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, E. V. Golosov, Y. R. Kolobov, and A. E. Ligachev, “Beam spatial profile effect on femtosecond laser surface structuring of titanium in scanning regime,” Appl. Surf. Sci. 265, 688 (2013).

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Topological evolution of self-induced silicon nanogratings during prolonged femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 104(2), 701–705 (2011).

Itina, T. E.

T. J. Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114(8), 083104 (2013).

Kandyla, M.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).

Kautek, W.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).

Kivshar, Y. S.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).

Kolasinski, K. W.

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 90(3), 399–402 (2008).

Kolobov, Y. R.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, E. V. Golosov, Y. R. Kolobov, and A. E. Ligachev, ““Heterogeneous” versus “homogeneous” nucleation and growth of microcones on titanium surface under UV femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 116(3), 1133–1139 (2014).

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, E. V. Golosov, Y. R. Kolobov, and A. E. Ligachev, “Beam spatial profile effect on femtosecond laser surface structuring of titanium in scanning regime,” Appl. Surf. Sci. 265, 688 (2013).

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Topological evolution of self-induced silicon nanogratings during prolonged femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 104(2), 701–705 (2011).

Koroteev, N. I.

S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, “Interaction of powerful laser radiation with the surfaces of semiconductors and metals: nonlinear optical effects and nonlinear optical diagnostics,” Phys. Uspekhi 28(12), 1084–1124 (1985).

Krüger, J.

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).

Kuchmizhak, A. A.

Kudryashov, S. I.

A. A. Kuchmizhak, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, Y. N. Kulchin, O. B. Vitrik, and T. V. Efimov, “Flash-imprinting of intense femtosecond surface plasmons for advanced nanoantenna fabrication,” Opt. Lett. 40(8), 1687–1690 (2015).

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and V. I. Emel’yanov, “Nonlinear optical dynamics during femtosecond laser nanostructuring of a silicon surface,” Laser Phys. Lett. 12(2), 025902 (2015).

P. A. Danilov, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, P. N. Saltuganov, L. V. Seleznev, V. I. Yurovskikh, D. A. Zayarny, and T. Apostolova, “Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation,” J. Exp. Theor. Phys. 120(6), 946–959 (2015).

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, E. V. Golosov, Y. R. Kolobov, and A. E. Ligachev, ““Heterogeneous” versus “homogeneous” nucleation and growth of microcones on titanium surface under UV femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 116(3), 1133–1139 (2014).

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, E. V. Golosov, Y. R. Kolobov, and A. E. Ligachev, “Beam spatial profile effect on femtosecond laser surface structuring of titanium in scanning regime,” Appl. Surf. Sci. 265, 688 (2013).

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon by femtosecond laser radiation,” Sov. Phys. JETP 116(3), 347–362 (2013).

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Topological evolution of self-induced silicon nanogratings during prolonged femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 104(2), 701–705 (2011).

Kulchin, Y. N.

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).

Lavrishev, S. V.

S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Formation of conical microstructures upon laser evaporation of solids,” Appl. Phys., A Mater. Sci. Process. 73(2), 177–181 (2001).

Lednev, V. N.

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon by femtosecond laser radiation,” Sov. Phys. JETP 116(3), 347–362 (2013).

Lenzner, M.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).

Ligachev, A. E.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, E. V. Golosov, Y. R. Kolobov, and A. E. Ligachev, ““Heterogeneous” versus “homogeneous” nucleation and growth of microcones on titanium surface under UV femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 116(3), 1133–1139 (2014).

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, E. V. Golosov, Y. R. Kolobov, and A. E. Ligachev, “Beam spatial profile effect on femtosecond laser surface structuring of titanium in scanning regime,” Appl. Surf. Sci. 265, 688 (2013).

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Topological evolution of self-induced silicon nanogratings during prolonged femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 104(2), 701–705 (2011).

Liu, M.

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).

Loukakos, P. A.

G. D. Tsibidis, E. Stratakis, P. A. Loukakos, and C. Fotakis, “Controlled ultrashort-pulse laser-induced ripple formation on semiconductors,” Appl. Phys., A Mater. Sci. Process. 114(1), 57–68 (2014).

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).

Lowndes, D. H.

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Self-organized silicon microcolumn arrays generated by pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 69(7), 731 (1999).

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Silicon microcolumn arrays grown by nanosecond pulsed-excimer laser irradiation,” Appl. Phys. Lett. 74(16), 2322–2324 (1999).

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).

Lyalin, A. A.

S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Formation of conical microstructures upon laser evaporation of solids,” Appl. Phys., A Mater. Sci. Process. 73(2), 177–181 (2001).

Makarov, S. V.

P. A. Danilov, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, P. N. Saltuganov, L. V. Seleznev, V. I. Yurovskikh, D. A. Zayarny, and T. Apostolova, “Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation,” J. Exp. Theor. Phys. 120(6), 946–959 (2015).

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and V. I. Emel’yanov, “Nonlinear optical dynamics during femtosecond laser nanostructuring of a silicon surface,” Laser Phys. Lett. 12(2), 025902 (2015).

A. A. Kuchmizhak, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, Y. N. Kulchin, O. B. Vitrik, and T. V. Efimov, “Flash-imprinting of intense femtosecond surface plasmons for advanced nanoantenna fabrication,” Opt. Lett. 40(8), 1687–1690 (2015).

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, E. V. Golosov, Y. R. Kolobov, and A. E. Ligachev, ““Heterogeneous” versus “homogeneous” nucleation and growth of microcones on titanium surface under UV femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 116(3), 1133–1139 (2014).

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, E. V. Golosov, Y. R. Kolobov, and A. E. Ligachev, “Beam spatial profile effect on femtosecond laser surface structuring of titanium in scanning regime,” Appl. Surf. Sci. 265, 688 (2013).

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Topological evolution of self-induced silicon nanogratings during prolonged femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 104(2), 701–705 (2011).

Mazur, E.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir 22(11), 4917–4919 (2006).

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30(14), 1773–1775 (2005).

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).

Miroshnichenko, A. E.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).

Najmabadi, F.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).

Nayak, B. K.

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 90(3), 399–402 (2008).

Papazoglou, D. G.

E. Skantzakis, V. Zorba, D. G. Papazoglou, I. Zergioti, and C. Fotakis, “Ultraviolet laser microstructuring of silicon and the effect of laser pulse duration on the surface morphology,” Appl. Surf. Sci. 252(13), 4462–4466 (2006).

Pedraza, A. J.

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Silicon microcolumn arrays grown by nanosecond pulsed-excimer laser irradiation,” Appl. Phys. Lett. 74(16), 2322–2324 (1999).

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Self-organized silicon microcolumn arrays generated by pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 69(7), 731 (1999).

Pershin, S. M.

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon by femtosecond laser radiation,” Sov. Phys. JETP 116(3), 347–362 (2013).

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).

Preuss, S.

S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys., A Mater. Sci. Process. 61(1), 33–37 (1995).

Rosenfeld, A.

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).

Rudenko, A. A.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and V. I. Emel’yanov, “Nonlinear optical dynamics during femtosecond laser nanostructuring of a silicon surface,” Laser Phys. Lett. 12(2), 025902 (2015).

P. A. Danilov, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, P. N. Saltuganov, L. V. Seleznev, V. I. Yurovskikh, D. A. Zayarny, and T. Apostolova, “Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation,” J. Exp. Theor. Phys. 120(6), 946–959 (2015).

A. A. Kuchmizhak, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, Y. N. Kulchin, O. B. Vitrik, and T. V. Efimov, “Flash-imprinting of intense femtosecond surface plasmons for advanced nanoantenna fabrication,” Opt. Lett. 40(8), 1687–1690 (2015).

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, E. V. Golosov, Y. R. Kolobov, and A. E. Ligachev, ““Heterogeneous” versus “homogeneous” nucleation and growth of microcones on titanium surface under UV femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 116(3), 1133–1139 (2014).

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, E. V. Golosov, Y. R. Kolobov, and A. E. Ligachev, “Beam spatial profile effect on femtosecond laser surface structuring of titanium in scanning regime,” Appl. Surf. Sci. 265, 688 (2013).

Saltuganov, P. N.

P. A. Danilov, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, P. N. Saltuganov, L. V. Seleznev, V. I. Yurovskikh, D. A. Zayarny, and T. Apostolova, “Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation,” J. Exp. Theor. Phys. 120(6), 946–959 (2015).

Sarnet, T.

T. J. Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114(8), 083104 (2013).

Schilling, J.

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).

Seleznev, L. V.

P. A. Danilov, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, P. N. Saltuganov, L. V. Seleznev, V. I. Yurovskikh, D. A. Zayarny, and T. Apostolova, “Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation,” J. Exp. Theor. Phys. 120(6), 946–959 (2015).

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and V. I. Emel’yanov, “Nonlinear optical dynamics during femtosecond laser nanostructuring of a silicon surface,” Laser Phys. Lett. 12(2), 025902 (2015).

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, E. V. Golosov, Y. R. Kolobov, and A. E. Ligachev, ““Heterogeneous” versus “homogeneous” nucleation and growth of microcones on titanium surface under UV femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 116(3), 1133–1139 (2014).

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, E. V. Golosov, Y. R. Kolobov, and A. E. Ligachev, “Beam spatial profile effect on femtosecond laser surface structuring of titanium in scanning regime,” Appl. Surf. Sci. 265, 688 (2013).

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon by femtosecond laser radiation,” Sov. Phys. JETP 116(3), 347–362 (2013).

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Topological evolution of self-induced silicon nanogratings during prolonged femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 104(2), 701–705 (2011).

Seminogov, V. N.

S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, “Interaction of powerful laser radiation with the surfaces of semiconductors and metals: nonlinear optical effects and nonlinear optical diagnostics,” Phys. Uspekhi 28(12), 1084–1124 (1985).

Sentis, M.

T. J. Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114(8), 083104 (2013).

Shafeev, G. A.

S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Formation of conical microstructures upon laser evaporation of solids,” Appl. Phys., A Mater. Sci. Process. 73(2), 177–181 (2001).

Shen, M.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30(14), 1773–1775 (2005).

Shen, M. Y.

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).

Simakin, A. V.

S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Formation of conical microstructures upon laser evaporation of solids,” Appl. Phys., A Mater. Sci. Process. 73(2), 177–181 (2001).

Sinitsyn, D. V.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and V. I. Emel’yanov, “Nonlinear optical dynamics during femtosecond laser nanostructuring of a silicon surface,” Laser Phys. Lett. 12(2), 025902 (2015).

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, E. V. Golosov, Y. R. Kolobov, and A. E. Ligachev, ““Heterogeneous” versus “homogeneous” nucleation and growth of microcones on titanium surface under UV femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 116(3), 1133–1139 (2014).

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, E. V. Golosov, Y. R. Kolobov, and A. E. Ligachev, “Beam spatial profile effect on femtosecond laser surface structuring of titanium in scanning regime,” Appl. Surf. Sci. 265, 688 (2013).

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon by femtosecond laser radiation,” Sov. Phys. JETP 116(3), 347–362 (2013).

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Topological evolution of self-induced silicon nanogratings during prolonged femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 104(2), 701–705 (2011).

Sipe, J. E.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).

Skantzakis, E.

E. Skantzakis, V. Zorba, D. G. Papazoglou, I. Zergioti, and C. Fotakis, “Ultraviolet laser microstructuring of silicon and the effect of laser pulse duration on the surface morphology,” Appl. Surf. Sci. 252(13), 4462–4466 (2006).

Sokolowski-Tinten, K.

K. Sokolowski-Tinten and D. Von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE Trans. Emerg. Sel. Topics Power Electron. 12(6), 1678–1687 (2006).

Spanakis, E.

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).

Staude, I.

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).

Stone, H. A.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).

Stratakis, E.

G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures,” Phys. Rev. B 92(4), 041405 (2015).

G. D. Tsibidis, E. Stratakis, P. A. Loukakos, and C. Fotakis, “Controlled ultrashort-pulse laser-induced ripple formation on semiconductors,” Appl. Phys., A Mater. Sci. Process. 114(1), 57–68 (2014).

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).

Stuke, M.

S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys., A Mater. Sci. Process. 61(1), 33–37 (1995).

Tillack, M. S.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).

Torres, R.

T. J. Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114(8), 083104 (2013).

Tsibidis, G. D.

G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures,” Phys. Rev. B 92(4), 041405 (2015).

G. D. Tsibidis, E. Stratakis, P. A. Loukakos, and C. Fotakis, “Controlled ultrashort-pulse laser-induced ripple formation on semiconductors,” Appl. Phys., A Mater. Sci. Process. 114(1), 57–68 (2014).

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).

Tzanetakis, P.

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).

Van Driel, H. M.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).

Vitrik, O. B.

Von der Linde, D.

K. Sokolowski-Tinten and D. Von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).

Voronov, V. V.

S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Formation of conical microstructures upon laser evaporation of solids,” Appl. Phys., A Mater. Sci. Process. 73(2), 177–181 (2001).

Warrender, J. M.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).

Wu, C.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).

Young, J. F.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).

Yurovskikh, V. I.

P. A. Danilov, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, P. N. Saltuganov, L. V. Seleznev, V. I. Yurovskikh, D. A. Zayarny, and T. Apostolova, “Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation,” J. Exp. Theor. Phys. 120(6), 946–959 (2015).

Zayarny, D. A.

P. A. Danilov, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, P. N. Saltuganov, L. V. Seleznev, V. I. Yurovskikh, D. A. Zayarny, and T. Apostolova, “Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation,” J. Exp. Theor. Phys. 120(6), 946–959 (2015).

Zergioti, I.

V. Zorba, N. Boukos, I. Zergioti, and C. Fotakis, “Ultraviolet femtosecond, picosecond and nanosecond laser microstructuring of silicon: structural and optical properties,” Appl. Opt. 47(11), 1846–1850 (2008).

E. Skantzakis, V. Zorba, D. G. Papazoglou, I. Zergioti, and C. Fotakis, “Ultraviolet laser microstructuring of silicon and the effect of laser pulse duration on the surface morphology,” Appl. Surf. Sci. 252(13), 4462–4466 (2006).

Zhou, M.

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir 22(11), 4917–4919 (2006).

Zorba, V.

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).

V. Zorba, N. Boukos, I. Zergioti, and C. Fotakis, “Ultraviolet femtosecond, picosecond and nanosecond laser microstructuring of silicon: structural and optical properties,” Appl. Opt. 47(11), 1846–1850 (2008).

E. Skantzakis, V. Zorba, D. G. Papazoglou, I. Zergioti, and C. Fotakis, “Ultraviolet laser microstructuring of silicon and the effect of laser pulse duration on the surface morphology,” Appl. Surf. Sci. 252(13), 4462–4466 (2006).

Zuhlke, C. A.

Appl. Opt. (1)

Appl. Phys. Lett. (5)

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Silicon microcolumn arrays grown by nanosecond pulsed-excimer laser irradiation,” Appl. Phys. Lett. 74(16), 2322–2324 (1999).

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004).

Appl. Phys., A Mater. Sci. Process. (8)

G. D. Tsibidis, E. Stratakis, P. A. Loukakos, and C. Fotakis, “Controlled ultrashort-pulse laser-induced ripple formation on semiconductors,” Appl. Phys., A Mater. Sci. Process. 114(1), 57–68 (2014).

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Topological evolution of self-induced silicon nanogratings during prolonged femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 104(2), 701–705 (2011).

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Self-organized silicon microcolumn arrays generated by pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 69(7), 731 (1999).

S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Formation of conical microstructures upon laser evaporation of solids,” Appl. Phys., A Mater. Sci. Process. 73(2), 177–181 (2001).

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 90(3), 399–402 (2008).

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, E. V. Golosov, Y. R. Kolobov, and A. E. Ligachev, ““Heterogeneous” versus “homogeneous” nucleation and growth of microcones on titanium surface under UV femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 116(3), 1133–1139 (2014).

S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys., A Mater. Sci. Process. 61(1), 33–37 (1995).

Appl. Surf. Sci. (3)

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, E. V. Golosov, Y. R. Kolobov, and A. E. Ligachev, “Beam spatial profile effect on femtosecond laser surface structuring of titanium in scanning regime,” Appl. Surf. Sci. 265, 688 (2013).

E. Skantzakis, V. Zorba, D. G. Papazoglou, I. Zergioti, and C. Fotakis, “Ultraviolet laser microstructuring of silicon and the effect of laser pulse duration on the surface morphology,” Appl. Surf. Sci. 252(13), 4462–4466 (2006).

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).

IEEE Trans. Emerg. Sel. Topics Power Electron. (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE Trans. Emerg. Sel. Topics Power Electron. 12(6), 1678–1687 (2006).

J. Appl. Phys. (3)

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).

T. J. Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114(8), 083104 (2013).

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).

J. Exp. Theor. Phys. (1)

P. A. Danilov, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, P. N. Saltuganov, L. V. Seleznev, V. I. Yurovskikh, D. A. Zayarny, and T. Apostolova, “Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation,” J. Exp. Theor. Phys. 120(6), 946–959 (2015).

Langmuir (1)

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir 22(11), 4917–4919 (2006).

Laser Phys. Lett. (1)

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and V. I. Emel’yanov, “Nonlinear optical dynamics during femtosecond laser nanostructuring of a silicon surface,” Laser Phys. Lett. 12(2), 025902 (2015).

Nano Lett. (1)

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).

Nat. Photonics (1)

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (4)

K. Sokolowski-Tinten and D. Von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000).

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).

G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures,” Phys. Rev. B 92(4), 041405 (2015).

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).

Phys. Uspekhi (1)

S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, “Interaction of powerful laser radiation with the surfaces of semiconductors and metals: nonlinear optical effects and nonlinear optical diagnostics,” Phys. Uspekhi 28(12), 1084–1124 (1985).

Science (1)

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).

Sov. Phys. JETP (1)

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon by femtosecond laser radiation,” Sov. Phys. JETP 116(3), 347–362 (2013).

Other (6)

H. Raether, “Surface plasmons on smooth surfaces” (Springer, Berlin, 1988).

J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, “Electromagnetic and Acoustic Scattering by Simple Shapes” (Hemisphere Publishing Corporation, New York, 1987).

E. D. Palik, “Handbook of optical constants of solids” (Academic press, 1998).

D. Bauerle, “Laser Processing and Chemistry” (Springer, Berlin, 2011).

S. Anisimov and V. Khokhlov, “Instabilities in Laser Matter Interaction” (CRC Press, Boca Raton, 1995)

L. I. Sedov, “Similarity and dimensional methods in mechanics” (CRC press, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) SEM image of a part of irradiated silicon surface by N = 20 IR fs-laser pulses at F ≈1.8 J/cm2. White arrow shows the values of incident fluence F and corresponding densities Neh of generated electron-hole plasma (adopted from [32]). White double-headed arrow with latter e in the picture (a) indicates direction of fs-laser polarization. Spatial Fourier spectra of area within (b) red and (c) blue frames in picture (a), and its whole spectrum (d).

Fig. 2
Fig. 2

SEM image of microcones formed on a silicon surface after exposure by N = 20 IR fs-laser pulses at local fluence F ≈1.8 J/cm2.

Fig. 3
Fig. 3

(a) Calculated distribution of local electric field E enhancement relatively to incident E0 electric field at λ = 744 nm near a microcone with height H, diameter D, and curvature radius r. Blue arrows with inscribed values of intensity enhancement coefficient ξ point to the most intensive maxima of the interference pattern. Black arrows show polarization (e) and wavevector (k) of incident plane wave. Dependencies of the intensity enhancement coefficient ξ on the microcone height H at different aspect ratios both for (b) λ = 248 nm and (с) λ = 744 nm.

Fig. 4
Fig. 4

SEM images of microcones on silicon surface fabricated in air at normal pressure by IR fs-laser pulses with F ≈1.8 J/cm2 and (a) N = 30, (b) N = 100, (c) N = 300, (d) N = 1000, and by UV fs-laser pulses with F ≈0.44 J/cm2 and (e) N = 30, (f) N = 100, (g) N = 300, (h) N = 1000. The scale bar in the picture (a) is relevant to all images. Angle of view is 45 degrees.

Fig. 5
Fig. 5

(a) Experimental dependence of microcone average volume on the number of laser pulses N at atmospheric pressure for IR (λ = 744 nm) fs-laser pulses (red line) and for UV (λ = 248 nm) fs-laser pulses (blue line). (b) Experimental dependence of aspect ratio AR = H/D on the number of laser pulses N for IR (red line) and UV (blue line) irradiation at atmospheric pressure. (c) Experimental dependences of height H (triangles) and diameter (squares) of microcones on the number of laser shots at λ = 248 nm (blue) and λ = 744 nm (red). (d) Experimental dependence of mean period of microcones on the number of laser shots at λ = 248 nm (blue) and λ = 744 nm (red). For all pictures, IR and UV fs-laser pulses have local fluences around F ≈1.8 ± 0.2 J/cm2 and F ≈0.44 ± 0.05 J/cm2, respectively.

Fig. 6
Fig. 6

SEM images of microcones in the crater center after the irradiation by UV fs-laser pulses with F ≈0.22 J/cm2 and (a) N = 30, (b) N = 100 at normal pressure, and in vacuum at (с) N = 30, (d) N = 100. (e) Dependence of average volume on the number of UV fs-laser pulses for F ≈0.44 J/cm2 at normal pressure (black triangles) or at 10−2 Torr (open triangles), and for F ≈0.22 J/cm2 at normal pressure (black circles) or at 10−2 Torr (open circles).

Fig. 7
Fig. 7

SEM images of a periphery area irradiated by (a) N = 30, (b) 102, (c) 3·102, and (d) 103 IR fs-laser pulses with peak fluence F0 ≈1.8 J/cm2 in air.

Fig. 8
Fig. 8

SEM images of periphery area irradiated by (a,b) N = 30, (c,d) N = 102, (e,f) N = 3·102, (g,h) N = 103 IR fs-laser pulses at peak fluence F0 ≈2.5 J/cm2 in vacuum (10−2 Torr).

Fig. 9
Fig. 9

(a) Calculated distribution of local electric field E enhancement relatively to incident E0 electric field at λ = 744 nm near two microcones with height H, diameter D, curvature radius r, and separation distance Λ. Black arrows show polarization (e) and wavevextor (k) of incident plane wave. Dependences of maximum value of calculated intensity enhancement ξ between microcones separated by distance of Λ on their height H at fixed aspect ratios AR = 1 (blue), 2 (black) and 3 (red) for (b) Λ = 3.5 μm, λ = 248 nm and for (c) Λ = 7 μm, λ = 744 nm. Dash curves are given for comparison and correspond to the values of ξ for an individual cone depicted in Fig. 3.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

  H mp   R s ( P s P a ) 1 3