Abstract

Transparent conductive oxides (TCOs) have emerged as alternative plasmonic materials in recent years to replace noble metals. The advantages of TCOs include CMOS compatibility, tunability of optical and structural properties, and reduced losses. In this work, we demonstrate how post-deposition annealing of indium tin oxide (ITO) films in oxygen atmosphere allows for tuning their optical dispersion properties to the mid-infrared spectral range while simultaneously reducing their absorption losses. In particular, we show a materials strategy that extends the epsilon-near-zero (ENZ) point of ITO from the near-infrared to the mid-infrared range. This is demonstrated by fabricating periodic arrays of ITO discs of varying diameters and characterizing their plasmonic resonances in the mid-infrared range from λ = 5 to 10 µm. The developed ITO plasmonic structures pave the way to the development of novel infrared active devices for sensing and spectroscopy on a silicon-compatible platform.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett. 4(10), 295–297 (2010).
    [Crossref]
  2. G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.) 5(1), 1–7 (2011).
    [Crossref]
  3. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  4. S. H. Brewer and S. Franzen, “Optical properties of indium tin oxide and fluorine-doped tin oxide surfaces: Correlation of reflectivity, skin depth, and plasmon frequency with conductivity,” J. Alloys Compd. 338(1-2), 73–79 (2002).
    [Crossref]
  5. S. H. Brewer and S. Franzen, “Calculation of the electronic and optical properties of indium tin oxide by density functional theory,” Chem. Phys. 300(1-3), 285–293 (2004).
    [Crossref]
  6. S. H. Brewer and S. Franzen, “Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy,” J. Phys. Chem. B 106(50), 12986–12992 (2002).
    [Crossref]
  7. S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C 112(15), 6027–6032 (2008).
    [Crossref]
  8. Y. Wang, A. Capretti, and L. Dal Negro, “Wide tuning of the optical and structural properties of alternative plasmonic materials,” Opt. Mater. Express 5(11), 2415 (2015).
    [Crossref]
  9. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478 (2012).
    [Crossref]
  10. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  11. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [Invited],” Opt. Mater. Express 1(6), 1090 (2011).
    [Crossref]
  12. J. F. Wager, “Applied physics. Transparent electronics,” Science 300(5623), 1245–1246 (2003).
    [Crossref] [PubMed]
  13. X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83(9), 1875–1877 (2003).
    [Crossref]
  14. A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third- harmonic generation in Si-compatible epsilon-near-zero ITO nanolayers,” Opt. Lett. 40(7), 1500 (2015).
    [Crossref]
  15. A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Comparative Study of Second-Harmonic Generation from Epsilon-Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-Infrared Spectral Range,” ACS Photonics 2(11), 1584–1591 (2015).
    [Crossref]
  16. M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
    [Crossref] [PubMed]
  17. H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband Electroabsorption Modulators Design Based on Epsilon-Near-Zero Indium Tin Oxide,” IEEE J. Sel. Top. Quantum Electron. 21, 1–7 (2015).
  18. V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 1–6 (2012).
    [Crossref]
  19. E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
    [Crossref] [PubMed]
  20. N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
    [Crossref]
  21. G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
    [Crossref] [PubMed]
  22. Y. Wang, H. Sugimoto, S. Inampudi, A. Capretti, M. Fujii, and L. Dal Negro, “Broadband enhancement of local density of states using silicon-compatible hyperbolic metamaterials,” Appl. Phys. Lett. 106(24), 241105 (2015).
    [Crossref]
  23. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
    [Crossref] [PubMed]
  24. R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(7), 409–411 (2012).
    [Crossref]
  25. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  26. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
    [Crossref] [PubMed]
  27. E. Sachet, C. T. Shelton, J. S. Harris, B. E. Gaddy, D. L. Irving, S. Curtarolo, B. F. Donovan, P. E. Hopkins, P. A. Sharma, A. L. Sharma, J. Ihlefeld, S. Franzen, and J. P. Maria, “Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics,” Nat. Mater. 14(4), 414–420 (2015).
    [Crossref] [PubMed]
  28. J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 4601907 (2013).
    [Crossref]
  29. C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85(4), 45129 (2012).
    [Crossref]
  30. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E - Stat. Nonlinear,” Soft Matter Phys. 72, 1–9 (2005).
  31. M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E - Stat. Nonlinear. Soft Matter Phys. 75, 1–16 (2007).
  32. A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett. 102(23), 233901 (2009).
    [Crossref] [PubMed]
  33. S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
    [Crossref] [PubMed]
  34. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
    [Crossref] [PubMed]
  35. M. V. Klein and T. E. Furtak, Optics, 2. ed. (John Wiley & Sons, 1986).
  36. A. K. Kulkarni, K. H. Schulz, T. S. Lim, and M. Khan, “Dependence of the sheet resistance of indium-tin-oxide thin films on grain size and grain orientation determined from X-ray diffraction techniques,” Thin Solid Films 345(2), 273–277 (1999).
    [Crossref]
  37. W.-F. Wu, B.-S. Chiou, and S.-T. Hsieh, “Effect of sputtering power on the structural and optical properties of RF magnetron sputtered ITO films,” Semicond. Sci. Technol. 9(6), 1242–1249 (1994).
    [Crossref]
  38. L. Meng and M. dos Santos, “Properties of indium tin oxide films prepared by rf reactive magnetron sputtering at different substrate temperature,” Thin Solid Films 322(1-2), 56–62 (1998).
    [Crossref]
  39. L. Kerkache, A. Layadi, E. Dogheche, and D. Rémiens, “Physical properties of RF sputtered ITO thin films and annealing effect,” J. Phys. D Appl. Phys. 39(1), 184–189 (2006).
    [Crossref]
  40. S. Takayama, T. Sugawara, A. Tanaka, and T. Himuro, “Indium tin oxide films with low resistivity and low internal stress,” J. Vac. Sci. Technol. A Vacuum, Surfaces. Film. 21, 1351–1354 (2003).
  41. H. Han, J. W. Mayer, and T. L. Alford, “Effect of various annealing environments on electrical and optical properties of indium tin oxide on polyethylene napthalate,” J. Appl. Phys. 99(12), 123711 (2006).
    [Crossref]

2016 (1)

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

2015 (7)

H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband Electroabsorption Modulators Design Based on Epsilon-Near-Zero Indium Tin Oxide,” IEEE J. Sel. Top. Quantum Electron. 21, 1–7 (2015).

Y. Wang, A. Capretti, and L. Dal Negro, “Wide tuning of the optical and structural properties of alternative plasmonic materials,” Opt. Mater. Express 5(11), 2415 (2015).
[Crossref]

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third- harmonic generation in Si-compatible epsilon-near-zero ITO nanolayers,” Opt. Lett. 40(7), 1500 (2015).
[Crossref]

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Comparative Study of Second-Harmonic Generation from Epsilon-Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-Infrared Spectral Range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
[Crossref]

Y. Wang, H. Sugimoto, S. Inampudi, A. Capretti, M. Fujii, and L. Dal Negro, “Broadband enhancement of local density of states using silicon-compatible hyperbolic metamaterials,” Appl. Phys. Lett. 106(24), 241105 (2015).
[Crossref]

E. Sachet, C. T. Shelton, J. S. Harris, B. E. Gaddy, D. L. Irving, S. Curtarolo, B. F. Donovan, P. E. Hopkins, P. A. Sharma, A. L. Sharma, J. Ihlefeld, S. Franzen, and J. P. Maria, “Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics,” Nat. Mater. 14(4), 414–420 (2015).
[Crossref] [PubMed]

2014 (1)

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

2013 (2)

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 4601907 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

2012 (6)

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 1–6 (2012).
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478 (2012).
[Crossref]

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85(4), 45129 (2012).
[Crossref]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(7), 409–411 (2012).
[Crossref]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

2011 (2)

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.) 5(1), 1–7 (2011).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [Invited],” Opt. Mater. Express 1(6), 1090 (2011).
[Crossref]

2010 (3)

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett. 4(10), 295–297 (2010).
[Crossref]

2009 (1)

A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett. 102(23), 233901 (2009).
[Crossref] [PubMed]

2008 (1)

S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C 112(15), 6027–6032 (2008).
[Crossref]

2007 (2)

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E - Stat. Nonlinear. Soft Matter Phys. 75, 1–16 (2007).

2006 (3)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

L. Kerkache, A. Layadi, E. Dogheche, and D. Rémiens, “Physical properties of RF sputtered ITO thin films and annealing effect,” J. Phys. D Appl. Phys. 39(1), 184–189 (2006).
[Crossref]

H. Han, J. W. Mayer, and T. L. Alford, “Effect of various annealing environments on electrical and optical properties of indium tin oxide on polyethylene napthalate,” J. Appl. Phys. 99(12), 123711 (2006).
[Crossref]

2005 (1)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E - Stat. Nonlinear,” Soft Matter Phys. 72, 1–9 (2005).

2004 (1)

S. H. Brewer and S. Franzen, “Calculation of the electronic and optical properties of indium tin oxide by density functional theory,” Chem. Phys. 300(1-3), 285–293 (2004).
[Crossref]

2003 (3)

J. F. Wager, “Applied physics. Transparent electronics,” Science 300(5623), 1245–1246 (2003).
[Crossref] [PubMed]

X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83(9), 1875–1877 (2003).
[Crossref]

S. Takayama, T. Sugawara, A. Tanaka, and T. Himuro, “Indium tin oxide films with low resistivity and low internal stress,” J. Vac. Sci. Technol. A Vacuum, Surfaces. Film. 21, 1351–1354 (2003).

2002 (3)

S. H. Brewer and S. Franzen, “Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy,” J. Phys. Chem. B 106(50), 12986–12992 (2002).
[Crossref]

S. H. Brewer and S. Franzen, “Optical properties of indium tin oxide and fluorine-doped tin oxide surfaces: Correlation of reflectivity, skin depth, and plasmon frequency with conductivity,” J. Alloys Compd. 338(1-2), 73–79 (2002).
[Crossref]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

1999 (1)

A. K. Kulkarni, K. H. Schulz, T. S. Lim, and M. Khan, “Dependence of the sheet resistance of indium-tin-oxide thin films on grain size and grain orientation determined from X-ray diffraction techniques,” Thin Solid Films 345(2), 273–277 (1999).
[Crossref]

1998 (1)

L. Meng and M. dos Santos, “Properties of indium tin oxide films prepared by rf reactive magnetron sputtering at different substrate temperature,” Thin Solid Films 322(1-2), 56–62 (1998).
[Crossref]

1994 (1)

W.-F. Wu, B.-S. Chiou, and S.-T. Hsieh, “Effect of sputtering power on the structural and optical properties of RF magnetron sputtered ITO films,” Semicond. Sci. Technol. 9(6), 1242–1249 (1994).
[Crossref]

Alam, M. Z.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

Alekseyev, L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Alford, T. L.

H. Han, J. W. Mayer, and T. L. Alford, “Effect of various annealing environments on electrical and optical properties of indium tin oxide on polyethylene napthalate,” J. Appl. Phys. 99(12), 123711 (2006).
[Crossref]

Alù, A.

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85(4), 45129 (2012).
[Crossref]

A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett. 102(23), 233901 (2009).
[Crossref] [PubMed]

M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E - Stat. Nonlinear. Soft Matter Phys. 75, 1–16 (2007).

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E - Stat. Nonlinear,” Soft Matter Phys. 72, 1–9 (2005).

Argyropoulos, C.

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85(4), 45129 (2012).
[Crossref]

Atwater, H. A.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Averitt, R. D.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Boltasseva, A.

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
[Crossref]

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 4601907 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478 (2012).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [Invited],” Opt. Mater. Express 1(6), 1090 (2011).
[Crossref]

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.) 5(1), 1–7 (2011).
[Crossref]

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett. 4(10), 295–297 (2010).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Boyd, R. W.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

Brewer, S. H.

S. H. Brewer and S. Franzen, “Calculation of the electronic and optical properties of indium tin oxide by density functional theory,” Chem. Phys. 300(1-3), 285–293 (2004).
[Crossref]

S. H. Brewer and S. Franzen, “Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy,” J. Phys. Chem. B 106(50), 12986–12992 (2002).
[Crossref]

S. H. Brewer and S. Franzen, “Optical properties of indium tin oxide and fluorine-doped tin oxide surfaces: Correlation of reflectivity, skin depth, and plasmon frequency with conductivity,” J. Alloys Compd. 338(1-2), 73–79 (2002).
[Crossref]

Capretti, A.

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Comparative Study of Second-Harmonic Generation from Epsilon-Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-Infrared Spectral Range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband Electroabsorption Modulators Design Based on Epsilon-Near-Zero Indium Tin Oxide,” IEEE J. Sel. Top. Quantum Electron. 21, 1–7 (2015).

Y. Wang, H. Sugimoto, S. Inampudi, A. Capretti, M. Fujii, and L. Dal Negro, “Broadband enhancement of local density of states using silicon-compatible hyperbolic metamaterials,” Appl. Phys. Lett. 106(24), 241105 (2015).
[Crossref]

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third- harmonic generation in Si-compatible epsilon-near-zero ITO nanolayers,” Opt. Lett. 40(7), 1500 (2015).
[Crossref]

Y. Wang, A. Capretti, and L. Dal Negro, “Wide tuning of the optical and structural properties of alternative plasmonic materials,” Opt. Mater. Express 5(11), 2415 (2015).
[Crossref]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Chen, P.-Y.

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85(4), 45129 (2012).
[Crossref]

Chiou, B.-S.

W.-F. Wu, B.-S. Chiou, and S.-T. Hsieh, “Effect of sputtering power on the structural and optical properties of RF magnetron sputtered ITO films,” Semicond. Sci. Technol. 9(6), 1242–1249 (1994).
[Crossref]

Curtarolo, S.

E. Sachet, C. T. Shelton, J. S. Harris, B. E. Gaddy, D. L. Irving, S. Curtarolo, B. F. Donovan, P. E. Hopkins, P. A. Sharma, A. L. Sharma, J. Ihlefeld, S. Franzen, and J. P. Maria, “Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics,” Nat. Mater. 14(4), 414–420 (2015).
[Crossref] [PubMed]

D’Aguanno, G.

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85(4), 45129 (2012).
[Crossref]

Dal Negro, L.

Y. Wang, H. Sugimoto, S. Inampudi, A. Capretti, M. Fujii, and L. Dal Negro, “Broadband enhancement of local density of states using silicon-compatible hyperbolic metamaterials,” Appl. Phys. Lett. 106(24), 241105 (2015).
[Crossref]

H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband Electroabsorption Modulators Design Based on Epsilon-Near-Zero Indium Tin Oxide,” IEEE J. Sel. Top. Quantum Electron. 21, 1–7 (2015).

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Comparative Study of Second-Harmonic Generation from Epsilon-Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-Infrared Spectral Range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

Y. Wang, A. Capretti, and L. Dal Negro, “Wide tuning of the optical and structural properties of alternative plasmonic materials,” Opt. Mater. Express 5(11), 2415 (2015).
[Crossref]

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third- harmonic generation in Si-compatible epsilon-near-zero ITO nanolayers,” Opt. Lett. 40(7), 1500 (2015).
[Crossref]

De Leon, I.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

DeVault, C.

Diest, K.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Dogheche, E.

L. Kerkache, A. Layadi, E. Dogheche, and D. Rémiens, “Physical properties of RF sputtered ITO thin films and annealing effect,” J. Phys. D Appl. Phys. 39(1), 184–189 (2006).
[Crossref]

Donovan, B. F.

E. Sachet, C. T. Shelton, J. S. Harris, B. E. Gaddy, D. L. Irving, S. Curtarolo, B. F. Donovan, P. E. Hopkins, P. A. Sharma, A. L. Sharma, J. Ihlefeld, S. Franzen, and J. P. Maria, “Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics,” Nat. Mater. 14(4), 414–420 (2015).
[Crossref] [PubMed]

dos Santos, M.

L. Meng and M. dos Santos, “Properties of indium tin oxide films prepared by rf reactive magnetron sputtering at different substrate temperature,” Thin Solid Films 322(1-2), 56–62 (1998).
[Crossref]

Emani, N. K.

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 4601907 (2013).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Engheta, N.

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Comparative Study of Second-Harmonic Generation from Epsilon-Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-Infrared Spectral Range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third- harmonic generation in Si-compatible epsilon-near-zero ITO nanolayers,” Opt. Lett. 40(7), 1500 (2015).
[Crossref]

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85(4), 45129 (2012).
[Crossref]

A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett. 102(23), 233901 (2009).
[Crossref] [PubMed]

M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E - Stat. Nonlinear. Soft Matter Phys. 75, 1–16 (2007).

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E - Stat. Nonlinear,” Soft Matter Phys. 72, 1–9 (2005).

Enoch, S.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Feigenbaum, E.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Ferrera, M.

Franz, K. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Franzen, S.

E. Sachet, C. T. Shelton, J. S. Harris, B. E. Gaddy, D. L. Irving, S. Curtarolo, B. F. Donovan, P. E. Hopkins, P. A. Sharma, A. L. Sharma, J. Ihlefeld, S. Franzen, and J. P. Maria, “Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics,” Nat. Mater. 14(4), 414–420 (2015).
[Crossref] [PubMed]

S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C 112(15), 6027–6032 (2008).
[Crossref]

S. H. Brewer and S. Franzen, “Calculation of the electronic and optical properties of indium tin oxide by density functional theory,” Chem. Phys. 300(1-3), 285–293 (2004).
[Crossref]

S. H. Brewer and S. Franzen, “Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy,” J. Phys. Chem. B 106(50), 12986–12992 (2002).
[Crossref]

S. H. Brewer and S. Franzen, “Optical properties of indium tin oxide and fluorine-doped tin oxide surfaces: Correlation of reflectivity, skin depth, and plasmon frequency with conductivity,” J. Alloys Compd. 338(1-2), 73–79 (2002).
[Crossref]

Fujii, M.

Y. Wang, H. Sugimoto, S. Inampudi, A. Capretti, M. Fujii, and L. Dal Negro, “Broadband enhancement of local density of states using silicon-compatible hyperbolic metamaterials,” Appl. Phys. Lett. 106(24), 241105 (2015).
[Crossref]

Fung, M. K.

X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83(9), 1875–1877 (2003).
[Crossref]

Gaddy, B. E.

E. Sachet, C. T. Shelton, J. S. Harris, B. E. Gaddy, D. L. Irving, S. Curtarolo, B. F. Donovan, P. E. Hopkins, P. A. Sharma, A. L. Sharma, J. Ihlefeld, S. Franzen, and J. P. Maria, “Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics,” Nat. Mater. 14(4), 414–420 (2015).
[Crossref] [PubMed]

Gmachl, C.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Guérin, N.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Guler, U.

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 4601907 (2013).
[Crossref]

Han, H.

H. Han, J. W. Mayer, and T. L. Alford, “Effect of various annealing environments on electrical and optical properties of indium tin oxide on polyethylene napthalate,” J. Appl. Phys. 99(12), 123711 (2006).
[Crossref]

Harris, J. S.

E. Sachet, C. T. Shelton, J. S. Harris, B. E. Gaddy, D. L. Irving, S. Curtarolo, B. F. Donovan, P. E. Hopkins, P. A. Sharma, A. L. Sharma, J. Ihlefeld, S. Franzen, and J. P. Maria, “Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics,” Nat. Mater. 14(4), 414–420 (2015).
[Crossref] [PubMed]

Himuro, T.

S. Takayama, T. Sugawara, A. Tanaka, and T. Himuro, “Indium tin oxide films with low resistivity and low internal stress,” J. Vac. Sci. Technol. A Vacuum, Surfaces. Film. 21, 1351–1354 (2003).

Hoffman, A. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Hopkins, P. E.

E. Sachet, C. T. Shelton, J. S. Harris, B. E. Gaddy, D. L. Irving, S. Curtarolo, B. F. Donovan, P. E. Hopkins, P. A. Sharma, A. L. Sharma, J. Ihlefeld, S. Franzen, and J. P. Maria, “Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics,” Nat. Mater. 14(4), 414–420 (2015).
[Crossref] [PubMed]

Howard, S. S.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Hsieh, S.-T.

W.-F. Wu, B.-S. Chiou, and S.-T. Hsieh, “Effect of sputtering power on the structural and optical properties of RF magnetron sputtered ITO films,” Semicond. Sci. Technol. 9(6), 1242–1249 (1994).
[Crossref]

Ihlefeld, J.

E. Sachet, C. T. Shelton, J. S. Harris, B. E. Gaddy, D. L. Irving, S. Curtarolo, B. F. Donovan, P. E. Hopkins, P. A. Sharma, A. L. Sharma, J. Ihlefeld, S. Franzen, and J. P. Maria, “Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics,” Nat. Mater. 14(4), 414–420 (2015).
[Crossref] [PubMed]

Inampudi, S.

Y. Wang, H. Sugimoto, S. Inampudi, A. Capretti, M. Fujii, and L. Dal Negro, “Broadband enhancement of local density of states using silicon-compatible hyperbolic metamaterials,” Appl. Phys. Lett. 106(24), 241105 (2015).
[Crossref]

Irudayaraj, J. M.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

Irving, D. L.

E. Sachet, C. T. Shelton, J. S. Harris, B. E. Gaddy, D. L. Irving, S. Curtarolo, B. F. Donovan, P. E. Hopkins, P. A. Sharma, A. L. Sharma, J. Ihlefeld, S. Franzen, and J. P. Maria, “Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics,” Nat. Mater. 14(4), 414–420 (2015).
[Crossref] [PubMed]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Jacob, Z.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Jiang, X.

X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83(9), 1875–1877 (2003).
[Crossref]

Kerkache, L.

L. Kerkache, A. Layadi, E. Dogheche, and D. Rémiens, “Physical properties of RF sputtered ITO thin films and annealing effect,” J. Phys. D Appl. Phys. 39(1), 184–189 (2006).
[Crossref]

Khan, M.

A. K. Kulkarni, K. H. Schulz, T. S. Lim, and M. Khan, “Dependence of the sheet resistance of indium-tin-oxide thin films on grain size and grain orientation determined from X-ray diffraction techniques,” Thin Solid Films 345(2), 273–277 (1999).
[Crossref]

Kildishev, A. V.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478 (2012).
[Crossref]

Kim, J.

Kinsey, N.

Klamkin, J.

H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband Electroabsorption Modulators Design Based on Epsilon-Near-Zero Indium Tin Oxide,” IEEE J. Sel. Top. Quantum Electron. 21, 1–7 (2015).

Kretzschmar, I.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Krishnamoorthy, H. N. S.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Kulkarni, A. K.

A. K. Kulkarni, K. H. Schulz, T. S. Lim, and M. Khan, “Dependence of the sheet resistance of indium-tin-oxide thin films on grain size and grain orientation determined from X-ray diffraction techniques,” Thin Solid Films 345(2), 273–277 (1999).
[Crossref]

Lanzillotti-Kimura, N. D.

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 1–6 (2012).
[Crossref]

Layadi, A.

L. Kerkache, A. Layadi, E. Dogheche, and D. Rémiens, “Physical properties of RF sputtered ITO thin films and annealing effect,” J. Phys. D Appl. Phys. 39(1), 184–189 (2006).
[Crossref]

Lee, S. T.

X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83(9), 1875–1877 (2003).
[Crossref]

Lim, T. S.

A. K. Kulkarni, K. H. Schulz, T. S. Lim, and M. Khan, “Dependence of the sheet resistance of indium-tin-oxide thin films on grain size and grain orientation determined from X-ray diffraction techniques,” Thin Solid Films 345(2), 273–277 (1999).
[Crossref]

Liu, J.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Ma, R.-M.

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 1–6 (2012).
[Crossref]

Maria, J. P.

E. Sachet, C. T. Shelton, J. S. Harris, B. E. Gaddy, D. L. Irving, S. Curtarolo, B. F. Donovan, P. E. Hopkins, P. A. Sharma, A. L. Sharma, J. Ihlefeld, S. Franzen, and J. P. Maria, “Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics,” Nat. Mater. 14(4), 414–420 (2015).
[Crossref] [PubMed]

Mayer, J. W.

H. Han, J. W. Mayer, and T. L. Alford, “Effect of various annealing environments on electrical and optical properties of indium tin oxide on polyethylene napthalate,” J. Appl. Phys. 99(12), 123711 (2006).
[Crossref]

Meng, L.

L. Meng and M. dos Santos, “Properties of indium tin oxide films prepared by rf reactive magnetron sputtering at different substrate temperature,” Thin Solid Films 322(1-2), 56–62 (1998).
[Crossref]

Menon, V. M.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Naik, G. V.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 4601907 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478 (2012).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [Invited],” Opt. Mater. Express 1(6), 1090 (2011).
[Crossref]

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.) 5(1), 1–7 (2011).
[Crossref]

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett. 4(10), 295–297 (2010).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Narimanov, E.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Narimanov, E. E.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Ni, X.

Padilla, W. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Podolskiy, V. A.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Rémiens, D.

L. Kerkache, A. Layadi, E. Dogheche, and D. Rémiens, “Physical properties of RF sputtered ITO thin films and annealing effect,” J. Phys. D Appl. Phys. 39(1), 184–189 (2006).
[Crossref]

Saber, S. M.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

Sabouroux, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Sachet, E.

E. Sachet, C. T. Shelton, J. S. Harris, B. E. Gaddy, D. L. Irving, S. Curtarolo, B. F. Donovan, P. E. Hopkins, P. A. Sharma, A. L. Sharma, J. Ihlefeld, S. Franzen, and J. P. Maria, “Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics,” Nat. Mater. 14(4), 414–420 (2015).
[Crossref] [PubMed]

Saha, B.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

Sands, T. D.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478 (2012).
[Crossref]

Schroeder, J. L.

Schulz, K. H.

A. K. Kulkarni, K. H. Schulz, T. S. Lim, and M. Khan, “Dependence of the sheet resistance of indium-tin-oxide thin films on grain size and grain orientation determined from X-ray diffraction techniques,” Thin Solid Films 345(2), 273–277 (1999).
[Crossref]

Shalaev, V. M.

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
[Crossref]

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Sharma, A. L.

E. Sachet, C. T. Shelton, J. S. Harris, B. E. Gaddy, D. L. Irving, S. Curtarolo, B. F. Donovan, P. E. Hopkins, P. A. Sharma, A. L. Sharma, J. Ihlefeld, S. Franzen, and J. P. Maria, “Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics,” Nat. Mater. 14(4), 414–420 (2015).
[Crossref] [PubMed]

Sharma, P. A.

E. Sachet, C. T. Shelton, J. S. Harris, B. E. Gaddy, D. L. Irving, S. Curtarolo, B. F. Donovan, P. E. Hopkins, P. A. Sharma, A. L. Sharma, J. Ihlefeld, S. Franzen, and J. P. Maria, “Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics,” Nat. Mater. 14(4), 414–420 (2015).
[Crossref] [PubMed]

Shelton, C. T.

E. Sachet, C. T. Shelton, J. S. Harris, B. E. Gaddy, D. L. Irving, S. Curtarolo, B. F. Donovan, P. E. Hopkins, P. A. Sharma, A. L. Sharma, J. Ihlefeld, S. Franzen, and J. P. Maria, “Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics,” Nat. Mater. 14(4), 414–420 (2015).
[Crossref] [PubMed]

Silveirinha, M. G.

M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E - Stat. Nonlinear. Soft Matter Phys. 75, 1–16 (2007).

Sivco, D. L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Sorger, V. J.

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 1–6 (2012).
[Crossref]

Stach, E. A.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

Stanley, R.

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(7), 409–411 (2012).
[Crossref]

Sugawara, T.

S. Takayama, T. Sugawara, A. Tanaka, and T. Himuro, “Indium tin oxide films with low resistivity and low internal stress,” J. Vac. Sci. Technol. A Vacuum, Surfaces. Film. 21, 1351–1354 (2003).

Sugimoto, H.

Y. Wang, H. Sugimoto, S. Inampudi, A. Capretti, M. Fujii, and L. Dal Negro, “Broadband enhancement of local density of states using silicon-compatible hyperbolic metamaterials,” Appl. Phys. Lett. 106(24), 241105 (2015).
[Crossref]

Takayama, S.

S. Takayama, T. Sugawara, A. Tanaka, and T. Himuro, “Indium tin oxide films with low resistivity and low internal stress,” J. Vac. Sci. Technol. A Vacuum, Surfaces. Film. 21, 1351–1354 (2003).

Tanaka, A.

S. Takayama, T. Sugawara, A. Tanaka, and T. Himuro, “Indium tin oxide films with low resistivity and low internal stress,” J. Vac. Sci. Technol. A Vacuum, Surfaces. Film. 21, 1351–1354 (2003).

Tayeb, G.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Taylor, A. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Vincent, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Wager, J. F.

J. F. Wager, “Applied physics. Transparent electronics,” Science 300(5623), 1245–1246 (2003).
[Crossref] [PubMed]

Wang, Y.

H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband Electroabsorption Modulators Design Based on Epsilon-Near-Zero Indium Tin Oxide,” IEEE J. Sel. Top. Quantum Electron. 21, 1–7 (2015).

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Comparative Study of Second-Harmonic Generation from Epsilon-Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-Infrared Spectral Range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

Y. Wang, H. Sugimoto, S. Inampudi, A. Capretti, M. Fujii, and L. Dal Negro, “Broadband enhancement of local density of states using silicon-compatible hyperbolic metamaterials,” Appl. Phys. Lett. 106(24), 241105 (2015).
[Crossref]

Y. Wang, A. Capretti, and L. Dal Negro, “Wide tuning of the optical and structural properties of alternative plasmonic materials,” Opt. Mater. Express 5(11), 2415 (2015).
[Crossref]

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third- harmonic generation in Si-compatible epsilon-near-zero ITO nanolayers,” Opt. Lett. 40(7), 1500 (2015).
[Crossref]

Wasserman, D.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Wong, F. L.

X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83(9), 1875–1877 (2003).
[Crossref]

Wu, W.-F.

W.-F. Wu, B.-S. Chiou, and S.-T. Hsieh, “Effect of sputtering power on the structural and optical properties of RF magnetron sputtered ITO films,” Semicond. Sci. Technol. 9(6), 1242–1249 (1994).
[Crossref]

Zhang, X.

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 1–6 (2012).
[Crossref]

Zhao, H.

H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband Electroabsorption Modulators Design Based on Epsilon-Near-Zero Indium Tin Oxide,” IEEE J. Sel. Top. Quantum Electron. 21, 1–7 (2015).

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

ACS Photonics (1)

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Comparative Study of Second-Harmonic Generation from Epsilon-Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-Infrared Spectral Range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett. 83(9), 1875–1877 (2003).
[Crossref]

Y. Wang, H. Sugimoto, S. Inampudi, A. Capretti, M. Fujii, and L. Dal Negro, “Broadband enhancement of local density of states using silicon-compatible hyperbolic metamaterials,” Appl. Phys. Lett. 106(24), 241105 (2015).
[Crossref]

Chem. Phys. (1)

S. H. Brewer and S. Franzen, “Calculation of the electronic and optical properties of indium tin oxide by density functional theory,” Chem. Phys. 300(1-3), 285–293 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband Electroabsorption Modulators Design Based on Epsilon-Near-Zero Indium Tin Oxide,” IEEE J. Sel. Top. Quantum Electron. 21, 1–7 (2015).

J. Kim, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 4601907 (2013).
[Crossref]

J. Alloys Compd. (1)

S. H. Brewer and S. Franzen, “Optical properties of indium tin oxide and fluorine-doped tin oxide surfaces: Correlation of reflectivity, skin depth, and plasmon frequency with conductivity,” J. Alloys Compd. 338(1-2), 73–79 (2002).
[Crossref]

J. Appl. Phys. (1)

H. Han, J. W. Mayer, and T. L. Alford, “Effect of various annealing environments on electrical and optical properties of indium tin oxide on polyethylene napthalate,” J. Appl. Phys. 99(12), 123711 (2006).
[Crossref]

J. Phys. Chem. B (1)

S. H. Brewer and S. Franzen, “Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy,” J. Phys. Chem. B 106(50), 12986–12992 (2002).
[Crossref]

J. Phys. Chem. C (1)

S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C 112(15), 6027–6032 (2008).
[Crossref]

J. Phys. D Appl. Phys. (1)

L. Kerkache, A. Layadi, E. Dogheche, and D. Rémiens, “Physical properties of RF sputtered ITO thin films and annealing effect,” J. Phys. D Appl. Phys. 39(1), 184–189 (2006).
[Crossref]

J. Vac. Sci. Technol. A Vacuum, Surfaces. Film. (1)

S. Takayama, T. Sugawara, A. Tanaka, and T. Himuro, “Indium tin oxide films with low resistivity and low internal stress,” J. Vac. Sci. Technol. A Vacuum, Surfaces. Film. 21, 1351–1354 (2003).

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Metamaterials (Amst.) (1)

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.) 5(1), 1–7 (2011).
[Crossref]

Nano Lett. (1)

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Nanophotonics (1)

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 1–6 (2012).
[Crossref]

Nat. Mater. (2)

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

E. Sachet, C. T. Shelton, J. S. Harris, B. E. Gaddy, D. L. Irving, S. Curtarolo, B. F. Donovan, P. E. Hopkins, P. A. Sharma, A. L. Sharma, J. Ihlefeld, S. Franzen, and J. P. Maria, “Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics,” Nat. Mater. 14(4), 414–420 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(7), 409–411 (2012).
[Crossref]

Nature (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (3)

Optica (1)

Phys. Rev. B (1)

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85(4), 45129 (2012).
[Crossref]

Phys. Rev. E - Stat. Nonlinear,” Soft Matter Phys. (1)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E - Stat. Nonlinear,” Soft Matter Phys. 72, 1–9 (2005).

Phys. Rev. E - Stat. Nonlinear. Soft Matter Phys. (1)

M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E - Stat. Nonlinear. Soft Matter Phys. 75, 1–16 (2007).

Phys. Rev. Lett. (2)

A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett. 102(23), 233901 (2009).
[Crossref] [PubMed]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Phys. Status Solidi Rapid Res. Lett. (1)

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett. 4(10), 295–297 (2010).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (2)

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014).
[Crossref] [PubMed]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Science (3)

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

J. F. Wager, “Applied physics. Transparent electronics,” Science 300(5623), 1245–1246 (2003).
[Crossref] [PubMed]

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

W.-F. Wu, B.-S. Chiou, and S.-T. Hsieh, “Effect of sputtering power on the structural and optical properties of RF magnetron sputtered ITO films,” Semicond. Sci. Technol. 9(6), 1242–1249 (1994).
[Crossref]

Thin Solid Films (2)

L. Meng and M. dos Santos, “Properties of indium tin oxide films prepared by rf reactive magnetron sputtering at different substrate temperature,” Thin Solid Films 322(1-2), 56–62 (1998).
[Crossref]

A. K. Kulkarni, K. H. Schulz, T. S. Lim, and M. Khan, “Dependence of the sheet resistance of indium-tin-oxide thin films on grain size and grain orientation determined from X-ray diffraction techniques,” Thin Solid Films 345(2), 273–277 (1999).
[Crossref]

Other (1)

M. V. Klein and T. E. Furtak, Optics, 2. ed. (John Wiley & Sons, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Examples of FTIR reflectance spectra (solid) and Drude model fit (dashed), for the as deposited sample (grey), sample annealed at 350 °C for 1h (red), sample annealed at 550 °C for 1h (green) and sample annealed at 750 °C for 1h (blue).

Fig. 2
Fig. 2

Real (a) and imaginary (b) part of permittivity of ITO samples on Si substrate sputtered at different power: 200W (green), 100W (blue), 80W (cyan), 60W (magenta), 40W (dark yellow). All samples are annealed at 750 C in O2 for 1h.

Fig. 3
Fig. 3

λENZ (black curves on left axis with error bar) and ε2 (blue curves on right axis with error bar) as a function of the sputtering power. All samples are annealed at 750 C in O2 for 1h. The error bar is estimated based on ITO samples sputtered and annealed at same condition. For each sputtering power, 5 ITO samples are characterized to estimate the error bar.

Fig. 4
Fig. 4

Real (a) and imaginary (b) parts of permittivity of ITO thin films deposited on Si substrates with annealing conditions and sputtering powers: As-dep_200W (black), 750 C Ar 1h_200W (red), 750 C O2 1h_200W (green), 750 C O2 1h_100W (blue), 750 C O2 1h_80W (cyan), 750 C O2 1h_60W (magenta), and 750 C O2 1h_40W (dark yellow).

Fig. 5
Fig. 5

Real (a) and imaginary (b) parts of permittivity of ITO samples deposited on Si substrates and annealed at different temperatures: As deposited (black), 350 °C (red), 550 °C (green), 750 °C (blue). The annealing was performed in O2 atmosphere for 1h for all samples.

Fig. 6
Fig. 6

λENZ (black curves on left axis with error bar) and ε2 (blue curves on right axis with error bar) as a function of the annealing temperature. All samples are annealed in O2 for 1h. The error bar is estimated based on ITO samples sputtered and annealed at same condition. For each annealing temperature, 5 ITO samples are characterized to estimate the error bar.

Fig. 7
Fig. 7

(a) Schematic showing the process of fabricating arrays of ITO discs. (b) Representative SEM images of fabricated ITO disk arrays with diameters of 1 µm (left) and 2 µm (right).

Fig. 8
Fig. 8

(a) FDTD simulations of the reflectance spectra of ITO disk arrays as a function of disk diameter: 1 µm (black), 2 µm (red), 3 µm (green), 4 µm (blue), 5 µm (cyan). All ITO discs have a height of 280 nm. (b) Measured reflectance spectra of ITO disk arrays patterned on CaF2 substrates with different disk diameters: 1 µm (black), 2 µm (red), 3 µm (green), 4 µm (blue), 5 µm (cyan). (c) and (d) are field distributions inside and around the 1 µm and 5 µm ITO disks at λ = 6.1 μm and 12.0 μm, respectively (peaks of reflectance spectra).

Tables (3)

Tables Icon

Table 1 Sputtering and annealing parameters of ITO thin films on Si substrates

Tables Icon

Table 2 Effects of sputtering power on optical dispersion of ITO thin films deposited on Si substrates

Tables Icon

Table 3 Effect of annealing temperatures on optical dispersion of ITO

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)= ε 1 (ω)+i ε 2 (ω)= ε ω p 2 ω 2 +iΓω
ω p 2 = n e 2 ε 0 m *

Metrics