Abstract

Plasmonic and dielectric Mie resonances in subwavelength nanostructures provide an efficient way to manipulate light below the diffraction limit that has fostered the growth of plasmonics and nanophotonics. Plasmonic resonances have been mainly related with the excitation of free charge carriers, initially in metals, and dielectric Mie resonances have been identified in Si nanostructures. Remarkably, although much less studied, semi-metals, semiconductors and topological insulators of the p-block enable plasmonic resonances without free charge carriers and dielectric Mie resonances with enhanced properties compared with Si. In this review, we explain how interband transitions in these materials show a major role in this duality. We evaluate the plasmonic and Mie performance of nanostructures made of relevant p-block elements and compounds, especially Bi, and discuss their promising potential for applications ranging from switchable plasmonics and nanophotonics to energy conversion, especially photocatalysis.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  4. M. B. Ross and G. C. Schatz, “Aluminium and indium plasmonic nanoantennas in the ultraviolet,” J. Phys. Chem. C 118(23), 12506–12514 (2014).
    [Crossref]
  5. M. P. Fischer, C. Schmidt, E. Sakat, J. Stock, A. Samarelli, J. Frigerio, M. Ortolani, D. J. Paul, G. Isella, A. Leitenstorfer, P. Biagioni, and D. Brida, “Optical activation of germanium plasmonic antennas in the mid-infrared,” Phys. Rev. Lett. 117(4), 047401 (2016).
    [Crossref] [PubMed]
  6. J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
    [Crossref] [PubMed]
  7. N. Kinsey, A. A. Syed, D. Courtwright, C. DeVault, C. E. Bonner, V. I. Gavrilenko, V. M. Shalaev, D. J. Hagan, E. W. Van Stryland, and A. Boltasseva, “Effective third-order nonlinearities in metallic refractory titanium nitride thin films,” Opt. Mater. Express 5(11), 2395–2403 (2015).
    [Crossref]
  8. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
    [Crossref] [PubMed]
  9. J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
    [Crossref] [PubMed]
  10. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
    [Crossref] [PubMed]
  11. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
    [Crossref] [PubMed]
  12. R. Gómez-Medina, B. Garcia-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy and optical forces,” J. Nanophotonics 5(1), 053512 (2011).
    [Crossref]
  13. B. García-Cámara, R. Gómez-Medina, J. J. Sáenz, and B. Sepúlveda, “Sensing with magnetic dipolar resonances in semiconductor nanospheres,” Opt. Express 21(20), 23007–23020 (2013).
    [Crossref] [PubMed]
  14. J. Toudert, R. Serna, and M. Jiménez de Castro, “Exploring the optical potential of nano-Bismuth: Tunable surface plasmon resonances in the near ultraviolet to near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
    [Crossref]
  15. J. Y. Ou, J. K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2,” Nat. Commun. 5, 5139 (2014).
    [Crossref] [PubMed]
  16. T. Pakizeh, “Optical absorption of plasmonic nanoparticles in presence of a local interband transition,” J. Phys. Chem. C 115(44), 21826–21831 (2011).
    [Crossref]
  17. T. Pakizeh, “Optical absorption of nanoparticles described by an electronic local interband transition,” J. Opt. 15(2), 025001 (2013).
    [Crossref]
  18. Z. Pirzadeh, T. Pakizeh, V. Miljkovic, C. Langhammer, and A. Dmitriev, “Plasmon-interband coupling in nickel nanoantennas,” ACS Photonics 1(3), 158–162 (2014).
    [Crossref]
  19. J. Toudert, “Spectroscopic ellipsometry for active nano- and meta- materials,” Nanotechnol. Rev. 3(3), 223–245 (2014).
    [Crossref]
  20. MiePlot software – www.philiplaven.com/mieplot.htm
  21. E. D. Palik, Handbook of Optical Properties of Solids (Academic Press, 2008).
  22. P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,” Phys. Rev. B Condens. Matter 36(9), 4821–4830 (1987).
    [Crossref] [PubMed]
  23. Y. Jiang, S. Pillai, and M. A. Green, “Realistic silver optical constants for plasmonics,” Sci. Rep. 6(1), 30605 (2016).
    [Crossref] [PubMed]
  24. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  25. J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
    [Crossref]
  26. F. Khalilzadeh-Rezaie, C. W. Smith, J. Nath, N. Nader, M. Shahzad, J. W. Cleary, I. Avrutsky, and R. E. Peale, “Infrared surface polaritons on bismuth,” J. Nanophotonics 9(1), 093792 (2015).
    [Crossref]
  27. J. W. Cleary, G. Mehdi, R. E. Peale, W. R. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 767306, 767306 (2010).
    [Crossref]
  28. S. Y. Park, R. A. Weeks, and R. A. Zuhr, “Optical absorption by colloidal precipitates in bismuth implanted fused silica: annealing behavior,” Appl. Phys. Lett. 69, 3175 (1996).
  29. Z. Wang, C. Jiang, R. Huang, H. Peng, and X. Tang, “Investigation of the optical and photocatalytic properties of bismuth nanospheres prepared by a facile thermolysis method,” J. Phys. Chem. C 118(2), 1155–1160 (2014).
    [Crossref]
  30. F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
    [Crossref] [PubMed]
  31. W. Fan, C. Li, H. Bai, Y. Zhao, B. Luo, Y. Li, Y. Ge, W. Shi, and H. Li, “An in situ photoelectroreduction approach to fabricate Bi/BiOCl heterostructure photocathodes: understanding the role of Bi metal for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 5(10), 4894–4903 (2017).
    [Crossref]
  32. A. Cuadrado, J. Toudert, and R. Serna, “Polaritonic-to-plasmonic transition in bismuth nanospheres for high-contrast ultraviolet meta-filters,” IEEE Photonics J. 8, 1 (2016).
    [Crossref]
  33. J. D. Yao, J. M. Shao, and G. W. Yang, “Ultra-broadband and high-responsive photodetectors based on bismuth film at room temperature,” Sci. Rep. 5(1), 12320 (2015).
    [Crossref] [PubMed]
  34. M. Jiménez de Castro, F. Cabello, J. Toudert, R. Serna, and E. Haro-Poniatowski, “Potential of bismuth nanoparticles embedded in a glass matrix for spectral-selective thermos-optical devices,” Appl. Phys. Lett. 105(11), 113102 (2014).
    [Crossref]
  35. M. R. Black, Y. M. Lin, S. B. Cronin, O. Rabin, and M. S. Dresselhaus, “Infrared absorption in bismuth nanowires resulting from quantum confinement,” Phys. Rev. B 65(19), 195417 (2002).
    [Crossref]
  36. M. R. Black, P. L. Hagelstein, S. B. Cronin, Y. M. Lin, and M. S. Dresselhaus, “Optical absorption from an indirect transition in bismuth nanowires,” Phys. Rev. B 68(23), 235417 (2003).
    [Crossref]
  37. N. Morita and A. Yamamoto, “Optical and electrical properties of boron,” Jpn. J. Appl. Phys. 14(6), 825–831 (1975).
    [Crossref]
  38. O. Hunderi and R. Ryberg, “Band structure and optical properties of gallium,” J. Phys. F Met. Phys. 4(11), 2084–2095 (1974).
    [Crossref]
  39. R. Y. Koyama, N. V. Smith, and W. E. Spicer, “Optical properties of indium,” Phys. Rev. B 8(6), 2426–2432 (1973).
    [Crossref]
  40. G. Jezequel, J. C. Lemonnier, and J. Thomas, “Optical properties of gallium films between 2 and 15 eV,” J. Phys. F Met. Phys. 7(8), 1613–1622 (1977).
    [Crossref]
  41. G. Jézéquel, J. Thomas, and I. Pollini, “Optical properties of thallium films studied with synchrotron radiation,” Phys. Rev. B Condens. Matter 37(15), 8639–8646 (1988).
    [Crossref] [PubMed]
  42. Si.mat datafile, WVASE32 software (J.A. Woollam Co.).
  43. UNL database, WVASE32 software (J.A. Woollam Co.).
  44. H. G. Liljenvall, A. G. Mathewson, and H. P. Myers, “The optical properties of lead in the energy range 0.6-6 eV,” Philos. Mag. 22(176), 243–253 (1970).
    [Crossref]
  45. N. Mao, J. Tang, L. Xie, J. Wu, B. Han, J. Lin, S. Deng, W. Ji, H. Xu, K. Liu, L. Tong, and J. Zhang, “Optical anisotropy of black phosphorus in the visible regime,” J. Am. Chem. Soc. 138(1), 300–305 (2016).
    [Crossref] [PubMed]
  46. A. Vaidyanathan, Y. F. Tsay, and S. S. Mitra, “Electronic structure and optical properties of rhomboedral arsenic and their variations in the internal displacement parameter,” Phys. Status Solidi92(1), 73–81 (1979) (b).
    [Crossref]
  47. T. J. Fox, R. P. Howson, and D. C. Emmony, “Optical properties of thin films of antimony,” J. Phys. D Appl. Phys. 7(13), 1864–1872 (1974).
    [Crossref]
  48. J. C. Lemonnier, J. Thomas, and S. Robin, “Optical properties and electronic structure of antimony in the energy range 2.5 – 14.5 eV,” J. Phys. C Solid State Phys. 6(21), 3205–3212 (1973).
    [Crossref]
  49. R. Sasson, R. Wright, E. T. Arakawa, B. N. Khare, and C. Sagan, “Optical properties of solid and liquid sulfur at visible and infrared wavelengths,” Icarus 64(3), 368–374 (1985).
    [Crossref]
  50. S. Tutihasi and I. Chen, “Optical properties and band structure of trigonal selenium,” Phys. Rev. 158(3), 623–630 (1967).
    [Crossref]
  51. P. Bammes, R. Klucker, E. E. Koch, and T. Tuomi, “Anistropy of the dielectric constants of trigonal selenium and tellurium between 3 and 30 eV,” Phys. Status Solidi49(2), 561–570 (1972) (b).
    [Crossref]
  52. S. Tutihasi, G. G. Roberts, R. C. Keezer, and R. E. Drews, “Optical properties of tellurium in the fundamental absorption region,” Phys. Rev. 177(3), 1143–1150 (1969).
    [Crossref]
  53. J. Toudert and R. Serna, “Ultraviolet-visible interband plasmonics with p-block elements,” Opt. Mat. Express 6(7), 2434–2447 (2016).
  54. S. Y. Huang, T. J. Kim, Y. W. Jung, N. S. Barange, H. G. Park, J. Y. Kim, Y. R. Kang, Y. D. Kim, S. H. Shin, J. D. Song, C.-T. Liang, and Y.-C. Chang, “Dielectric function and critical points of AlP determined by spectroscopic ellipsometry,” J. Alloys Compd. 587, 361–364 (2014).
    [Crossref]
  55. F. Meyer, E. E. de Kluizenaar, and D. den Engelsen, “Ellipsometric determination of the optical anisotropy of gallium selenide,” J. Opt. Soc. Am. 63(3), 529–532 (1973).
    [Crossref]
  56. S. Adachi, Handbook on Physical Properties of Semiconductors (Kluwer, 2004).
  57. J.-W. Park, M. Song, S. Yoon, H. Lim, D.S. Jeong, B.-K. Cheong, and H. Lee, “Stuctural and optical properties of phase-change amorphous and crystalline Ge1-xTex (0 < x < 1) thin films,” Phys. Status Solidi., A Appl. Mater. Sci. 210(2), 265–275 (2013).
    [Crossref]
  58. S. Logothetidis and H. M. Polatoglou, “Ellipsometric studies of the dielectric function of SnSe and a simple model of the electronic structure and the bonds of the orthorhombic IV-VI compounds,” Phys. Rev. B 36(14), 7491–7499 (1987).
    [Crossref]
  59. N. Suzuki and S. Adachi, “Optical properties of SnTe,” Jpn. J. Appl. Phys. 34(11), 5977–5983 (1995).
    [Crossref]
  60. J. N. Zemel, J. D. Jensen, and R. B. Schoolar, “Electrical and optical properties of epitaxial films of PbS, PbSe, PbTe, and SnTe,” Phys. Rev. 140(1), A330–A342 (1965).
    [Crossref]
  61. M. Eddrief, F. Vidal, and B. Gallas, “Optical properties of Bi2Se3: from bulk to ultrathin films,” J. Phys. D Appl. Phys. 49(50), 505304 (2016).
    [Crossref]
  62. J. Humlicek, D. Hemzal, A. Dubroka, O. Caha, H. Steiner, G. Bauer, and G. Springholz, “Raman and interband optical spectra of epitaxial layers of the topological insulators Bi2Te3 and Bi2Se3 on BaF2 substrates,” Phys. Scr. T 162, 014007 (2014).
    [Crossref]
  63. J. M. McMahon, G. C. Schatz, and S. K. Gray, “Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys. 15(15), 5415–5423 (2013).
    [Crossref] [PubMed]
  64. A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119(45), 25518–25528 (2015).
    [Crossref]
  65. J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
    [Crossref]
  66. Y. Gutierrez, D. Ortiz, J. M. Sanz, J. M. Saiz, F. Gonzalez, H. O. Everitt, and F. Moreno, “How an oxide shell affects the ultraviolet plasmonic behavior of Ga, Mg, and Al nanostructures,” Opt. Express 24(18), 20621–20631 (2016).
    [Crossref] [PubMed]
  67. P. C. Wu, M. Losurdo, T.-H. Kim, M. Giangregorio, G. Bruno, H. O. Everitt, and A. S. Brown, “Plasmonic gallium nanoparticles on polar semiconductors: interplay between nanoparticle wetting, localized surface plasmon dynamics, and interface charge,” Langmuir 25(2), 924–930 (2009).
    [Crossref] [PubMed]
  68. P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
    [Crossref] [PubMed]
  69. P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T.-H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11(9), 3531–3537 (2011).
    [Crossref] [PubMed]
  70. R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
    [Crossref] [PubMed]
  71. R. Alcaraz de la Osa, J. M. Sanz, J. M. Saiz, F. González, and F. Moreno, “Quantum optical response of metallic nanoparticles and dimers,” Opt. Lett. 37(23), 5015–5017 (2012).
    [Crossref] [PubMed]
  72. J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
    [Crossref] [PubMed]
  73. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
    [Crossref] [PubMed]
  74. A.M. Dubrovkin, G. Adamo, J. Yin, L. Wang, C. Soci, Q.J. Wang, and N.I. Zheludev, “Visible range plasmonic modes on topological insulator nanostructures,” Adv. Optical Mater. 5(3), 1600768 (2017).
  75. J. Yin, H. N. S. Krishnamoorthy, G. Adamo, A. M. Dubrovkin, Y. D. Chong, N. I. Zheludev, and C. Soci, “Plasmonics of topological insulators at optical frequencies,” arXiv:1702.00302 (2017).
  76. P. I. Kuznetsov, G. G. Yakushcheva, B. S. Shchamkhalova, V. A. Luzanov, A. G. Temiryazev, and V. A. Jitov, “Metalorganic vapor phase epitaxy of ternary rhomboedral (Bi1-xSbx)2Se3 solid solutions,” J. Cryst. Growth 433, 114–121 (2016).
    [Crossref]
  77. C. G. Das, R. Das, and D. Chakravorty, “Optical properties of bismuth granules in a glass matrix,” Bull. Mater. Sci. 5(3-4), 277–286 (1983).
    [Crossref]
  78. Y. W. Wang, B. H. Hong, and K. S. Kim, “Size control of semimetal bismuth nanoparticles and the UV-visible and IR absorption spectra,” J. Phys. Chem. B 109(15), 7067–7072 (2005).
    [Crossref] [PubMed]
  79. S. Sivaramakrishnan, V. S. Muthukumar, S. Sivasankara Sai, K. Venkataramaniah, J. Reppert, A. M. Rao, M. Anija, R. Philip, and N. Kuthirummal, “Nonlinear optical scattering and absorption in bismuth nanorod suspensions,” Appl. Phys. Lett. 91(9), 093104 (2007).
    [Crossref]
  80. X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29(14), 1605886 (2017).
    [Crossref] [PubMed]
  81. M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
    [Crossref] [PubMed]
  82. F. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet-visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
    [Crossref]
  83. M. Losurdo, A. Suvorova, S. Rubanov, K. Hingerl, and A. S. Brown, “Thermally stable coexistence of liquid and solid phases in gallium nanoparticles,” Nat. Mater. 15(9), 995–1002 (2016).
    [Crossref] [PubMed]
  84. K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photonics Rev. 4(4), 562–567 (2010).
    [Crossref]
  85. B. F. Soares, K. F. MacDonald, V. A. Fedotov, and N. I. Zheludev, “Light-induced switching between structural forms with different optical properties in a single gallium nanoparticulate,” Nano Lett. 5(10), 2104–2107 (2005).
    [Crossref] [PubMed]
  86. N. I. Zheludev, “Nonlinear optics on the nanoscale,” Contemp. Phys. 43(5), 365–377 (2002).
    [Crossref]
  87. S. R. C. Vivekchand, C. J. Engel, S. M. Lubin, M. G. Blaber, W. Zhou, J. Y. Suh, G. C. Schatz, and T. W. Odom, “Liquid plasmonics: manipulating surface plasmon polaritons via phase transitions,” Nano Lett. 12(8), 4324–4328 (2012).
    [Crossref] [PubMed]
  88. E. Haro-Poniatowski, R. Serna, M. Jiménez de Castro, A. Suárez-García, C. N. Afonso, and I. Vickridge, “Size-dependent thermo-optical properties of embedded Bi nanostructures,” Nanotechnology 19(48), 485708 (2008).
    [Crossref] [PubMed]
  89. T. Lewi, P. P. Iyer, N. A. Butakov, A. A. Mikhailovsky, and J. A. Schuller, “Widely tunable infrared antennas using free carrier refraction,” Nano Lett. 15(12), 8188–8193 (2015).
    [Crossref] [PubMed]
  90. S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15(9), 6187–6192 (2015).
    [Crossref] [PubMed]
  91. D. G. Baranov, S. V. Makarov, V. A. Milichko, S. I. Kudryashov, A. E. Krasnov, and P. A. Belov, “Nonlinear transient dynamics of photoexcited resonant silicon nanostructures,” ACS Photonics 3(9), 1546–1551 (2016).
    [Crossref]
  92. E. H. Sargent, “Infrared quantum dots,” Adv. Mater. 17(5), 515–521 (2005).
    [Crossref]
  93. T. Lewi, H. A. Evans, N. A. Butakov, and J. A. Schuller, “Thermo-optically reconfigurable PbTe metal-atoms,” arXiv:1703.00886 (2017).
  94. J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: stepping into the spotlight,” Am. Ceram. Soc. Bull. 94(4), 24–29 (2015).
  95. Y. Zhou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
    [Crossref]
  96. H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
    [Crossref] [PubMed]
  97. A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
    [Crossref] [PubMed]
  98. A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonance with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
    [Crossref]
  99. A. Karvounis, B. Gholipour, F. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
    [Crossref]
  100. C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y.-H. Chen, H.-C. Wang, T.-Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Lasers and Photon. News 10(6), 986–994 (2016).
    [Crossref]
  101. M. Zhao, M. Bosman, M. Danesh, M. Zeng, P. Song, Y. Darma, A. Rusydi, H. Lin, C.-W. Qiu, and K. P. Loh, “Visible surface plasmon modes in single Bi2Te3 nanoplate,” Nano Lett. 15(12), 8331–8335 (2015).
    [Crossref] [PubMed]
  102. M. Zhao, J. Zhang, N. Gao, P. Song, M. Bosman, B. Peng, B. Sun, C.-W. Qiu, Q.-H. Xu, Q. Bao, and K. P. Loh, “Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications,” Adv. Mater. 28(16), 3138–3144 (2016).
    [Crossref] [PubMed]
  103. J. Guozhi, W. Peng, Z. Yanbang, and C. Kai, “Localized surface plasmon enhanced photothermal conversion in Bi2Se3 topological insulator nanoflowers,” Sci. Rep. 6(1), 25884 (2016).
    [Crossref] [PubMed]
  104. A. Vargas, S. Basak, F. Liu, B. Wang, E. Panaitescu, H. Lin, R. Markiewicz, A. Bansil, and S. Kar, “The changing colors of a quantum-confined topological insulator,” ACS Nano 8(2), 1222–1230 (2014).
    [Crossref] [PubMed]
  105. A. Vargas, F. Liu, and S. Kar, “Giant enhancement of light emission from nanoscale Bi2Se3,” Appl. Phys. Lett. 106(24), 243107 (2015).
    [Crossref]
  106. J. J. Cha, K. J. Koski, K. C. Y. Huang, K. X. Wang, W. Luo, D. Kong, Z. Yu, S. Fan, M. L. Brongersma, and Y. Cui, “Two-dimensional chalcogenide nanoplates as tunable metamaterials via chemical intercalation,” Nano Lett. 13(12), 5913–5918 (2013).
    [Crossref] [PubMed]
  107. W. S. Whitney, V. W. Brar, Y. Ou, Y. Shao, A. R. Davoyan, D. N. Basov, K. He, Q.-K. Xue, and H. A. Atwater, “Gate-variable mid-infrared optical transitions in a (Bi1-xSbx)2Te3 topological insulator,” Nano Lett. 17(1), 255–260 (2017).
    [Crossref] [PubMed]
  108. M. Esslinger, R. Vogelsgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to visible,” ACS Photonics 1(12), 1285–1289 (2014).
    [Crossref]
  109. N. Talebi, C. Ozsoy-Keskinbora, H. M. Benia, K. Kern, C. T. Koch, and P. A. van Aken, “Wedge Dyakonov waves and Dyakonov plasmons in topological insulator of Bi2Se3 probed by electron beams,” ACS Nano 10(7), 6988–6994 (2016).
    [Crossref] [PubMed]
  110. J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by nature: from ultraviolet to terahertz,” ACS Photonics 1(4), 293–303 (2014).
    [Crossref]
  111. K. Korzeb, M. Gajc, and D. A. Pawlak, “Compendium of natural hyperbolic materials,” Opt. Express 23(20), 25406–25424 (2015).
    [Crossref] [PubMed]
  112. H. Cui, I. B. Bhat, and R. Venkatasubramanian, “Optical constants of Bi2Te3 and Sb2Te3 measured using spectroscopic ellipsometry,” J. Electron. Mater. 28(10), 1111–1114 (1999).
    [Crossref]
  113. A. Green, S. Dey, Y. Q. An, B. O’Brien, S. O’Mullane, B. Thiel, and A. C. Diebold, “Surface oxidation of the topological insulator Bi2Se3,” J. Vac. Sci. Technol. A 34(6), 061403 (2016).
    [Crossref]
  114. D. L. Greenaway and G. Harbeke, “Band structure of bismuth telluride, bismuth selenide and their respective alloys,” J. Phys. Chem. Solids 26(10), 1585–1604 (1965).
    [Crossref]
  115. H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z. X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4(4), 281–286 (2012).
    [Crossref] [PubMed]
  116. J. Yan, Z. Lin, C. Ma, Z. Zheng, P. Liu, and G. Yang, “Plasmon resonances in semiconductor materials for detecting photocatalysis at the single-particle level,” Nanoscale 8(32), 15001–15007 (2016).
    [Crossref] [PubMed]
  117. L. Braic, N. Vasilantonakis, A. P. Mihai, I. J. Villar Garcia, S. Fearn, B. You, B. Doiron, R. F. Oulton, L. Cohen, S. A. Maier, N. McN. Alford, A. V. Zayats, and P. K. Petrov, “Titanium oxynitride thin films with tunable double epsilon-near-zero-behaviour,” arXiv:1703.09467 (2017).
  118. S. De Zuani, M. Rommel, B. Gompf, A. Berrier, J. Weis, and M. Dressel, “Suppressed percolation in nearly closed gold films,” ACS Photonics 3(6), 1109–1115 (2016).
    [Crossref]

2017 (5)

J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
[Crossref]

W. Fan, C. Li, H. Bai, Y. Zhao, B. Luo, Y. Li, Y. Ge, W. Shi, and H. Li, “An in situ photoelectroreduction approach to fabricate Bi/BiOCl heterostructure photocathodes: understanding the role of Bi metal for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 5(10), 4894–4903 (2017).
[Crossref]

A.M. Dubrovkin, G. Adamo, J. Yin, L. Wang, C. Soci, Q.J. Wang, and N.I. Zheludev, “Visible range plasmonic modes on topological insulator nanostructures,” Adv. Optical Mater. 5(3), 1600768 (2017).

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29(14), 1605886 (2017).
[Crossref] [PubMed]

W. S. Whitney, V. W. Brar, Y. Ou, Y. Shao, A. R. Davoyan, D. N. Basov, K. He, Q.-K. Xue, and H. A. Atwater, “Gate-variable mid-infrared optical transitions in a (Bi1-xSbx)2Te3 topological insulator,” Nano Lett. 17(1), 255–260 (2017).
[Crossref] [PubMed]

2016 (18)

N. Talebi, C. Ozsoy-Keskinbora, H. M. Benia, K. Kern, C. T. Koch, and P. A. van Aken, “Wedge Dyakonov waves and Dyakonov plasmons in topological insulator of Bi2Se3 probed by electron beams,” ACS Nano 10(7), 6988–6994 (2016).
[Crossref] [PubMed]

M. Zhao, J. Zhang, N. Gao, P. Song, M. Bosman, B. Peng, B. Sun, C.-W. Qiu, Q.-H. Xu, Q. Bao, and K. P. Loh, “Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications,” Adv. Mater. 28(16), 3138–3144 (2016).
[Crossref] [PubMed]

J. Guozhi, W. Peng, Z. Yanbang, and C. Kai, “Localized surface plasmon enhanced photothermal conversion in Bi2Se3 topological insulator nanoflowers,” Sci. Rep. 6(1), 25884 (2016).
[Crossref] [PubMed]

A. Green, S. Dey, Y. Q. An, B. O’Brien, S. O’Mullane, B. Thiel, and A. C. Diebold, “Surface oxidation of the topological insulator Bi2Se3,” J. Vac. Sci. Technol. A 34(6), 061403 (2016).
[Crossref]

J. Yan, Z. Lin, C. Ma, Z. Zheng, P. Liu, and G. Yang, “Plasmon resonances in semiconductor materials for detecting photocatalysis at the single-particle level,” Nanoscale 8(32), 15001–15007 (2016).
[Crossref] [PubMed]

S. De Zuani, M. Rommel, B. Gompf, A. Berrier, J. Weis, and M. Dressel, “Suppressed percolation in nearly closed gold films,” ACS Photonics 3(6), 1109–1115 (2016).
[Crossref]

M. Losurdo, A. Suvorova, S. Rubanov, K. Hingerl, and A. S. Brown, “Thermally stable coexistence of liquid and solid phases in gallium nanoparticles,” Nat. Mater. 15(9), 995–1002 (2016).
[Crossref] [PubMed]

D. G. Baranov, S. V. Makarov, V. A. Milichko, S. I. Kudryashov, A. E. Krasnov, and P. A. Belov, “Nonlinear transient dynamics of photoexcited resonant silicon nanostructures,” ACS Photonics 3(9), 1546–1551 (2016).
[Crossref]

A. Karvounis, B. Gholipour, F. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y.-H. Chen, H.-C. Wang, T.-Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Lasers and Photon. News 10(6), 986–994 (2016).
[Crossref]

P. I. Kuznetsov, G. G. Yakushcheva, B. S. Shchamkhalova, V. A. Luzanov, A. G. Temiryazev, and V. A. Jitov, “Metalorganic vapor phase epitaxy of ternary rhomboedral (Bi1-xSbx)2Se3 solid solutions,” J. Cryst. Growth 433, 114–121 (2016).
[Crossref]

Y. Gutierrez, D. Ortiz, J. M. Sanz, J. M. Saiz, F. Gonzalez, H. O. Everitt, and F. Moreno, “How an oxide shell affects the ultraviolet plasmonic behavior of Ga, Mg, and Al nanostructures,” Opt. Express 24(18), 20621–20631 (2016).
[Crossref] [PubMed]

N. Mao, J. Tang, L. Xie, J. Wu, B. Han, J. Lin, S. Deng, W. Ji, H. Xu, K. Liu, L. Tong, and J. Zhang, “Optical anisotropy of black phosphorus in the visible regime,” J. Am. Chem. Soc. 138(1), 300–305 (2016).
[Crossref] [PubMed]

J. Toudert and R. Serna, “Ultraviolet-visible interband plasmonics with p-block elements,” Opt. Mat. Express 6(7), 2434–2447 (2016).

M. Eddrief, F. Vidal, and B. Gallas, “Optical properties of Bi2Se3: from bulk to ultrathin films,” J. Phys. D Appl. Phys. 49(50), 505304 (2016).
[Crossref]

A. Cuadrado, J. Toudert, and R. Serna, “Polaritonic-to-plasmonic transition in bismuth nanospheres for high-contrast ultraviolet meta-filters,” IEEE Photonics J. 8, 1 (2016).
[Crossref]

Y. Jiang, S. Pillai, and M. A. Green, “Realistic silver optical constants for plasmonics,” Sci. Rep. 6(1), 30605 (2016).
[Crossref] [PubMed]

M. P. Fischer, C. Schmidt, E. Sakat, J. Stock, A. Samarelli, J. Frigerio, M. Ortolani, D. J. Paul, G. Isella, A. Leitenstorfer, P. Biagioni, and D. Brida, “Optical activation of germanium plasmonic antennas in the mid-infrared,” Phys. Rev. Lett. 117(4), 047401 (2016).
[Crossref] [PubMed]

2015 (12)

N. Kinsey, A. A. Syed, D. Courtwright, C. DeVault, C. E. Bonner, V. I. Gavrilenko, V. M. Shalaev, D. J. Hagan, E. W. Van Stryland, and A. Boltasseva, “Effective third-order nonlinearities in metallic refractory titanium nitride thin films,” Opt. Mater. Express 5(11), 2395–2403 (2015).
[Crossref]

F. Khalilzadeh-Rezaie, C. W. Smith, J. Nath, N. Nader, M. Shahzad, J. W. Cleary, I. Avrutsky, and R. E. Peale, “Infrared surface polaritons on bismuth,” J. Nanophotonics 9(1), 093792 (2015).
[Crossref]

J. D. Yao, J. M. Shao, and G. W. Yang, “Ultra-broadband and high-responsive photodetectors based on bismuth film at room temperature,” Sci. Rep. 5(1), 12320 (2015).
[Crossref] [PubMed]

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119(45), 25518–25528 (2015).
[Crossref]

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

M. Zhao, M. Bosman, M. Danesh, M. Zeng, P. Song, Y. Darma, A. Rusydi, H. Lin, C.-W. Qiu, and K. P. Loh, “Visible surface plasmon modes in single Bi2Te3 nanoplate,” Nano Lett. 15(12), 8331–8335 (2015).
[Crossref] [PubMed]

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: stepping into the spotlight,” Am. Ceram. Soc. Bull. 94(4), 24–29 (2015).

T. Lewi, P. P. Iyer, N. A. Butakov, A. A. Mikhailovsky, and J. A. Schuller, “Widely tunable infrared antennas using free carrier refraction,” Nano Lett. 15(12), 8188–8193 (2015).
[Crossref] [PubMed]

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15(9), 6187–6192 (2015).
[Crossref] [PubMed]

K. Korzeb, M. Gajc, and D. A. Pawlak, “Compendium of natural hyperbolic materials,” Opt. Express 23(20), 25406–25424 (2015).
[Crossref] [PubMed]

A. Vargas, F. Liu, and S. Kar, “Giant enhancement of light emission from nanoscale Bi2Se3,” Appl. Phys. Lett. 106(24), 243107 (2015).
[Crossref]

2014 (15)

A. Vargas, S. Basak, F. Liu, B. Wang, E. Panaitescu, H. Lin, R. Markiewicz, A. Bansil, and S. Kar, “The changing colors of a quantum-confined topological insulator,” ACS Nano 8(2), 1222–1230 (2014).
[Crossref] [PubMed]

J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by nature: from ultraviolet to terahertz,” ACS Photonics 1(4), 293–303 (2014).
[Crossref]

M. Esslinger, R. Vogelsgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Y. Zhou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonance with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

F. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet-visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

J. Humlicek, D. Hemzal, A. Dubroka, O. Caha, H. Steiner, G. Bauer, and G. Springholz, “Raman and interband optical spectra of epitaxial layers of the topological insulators Bi2Te3 and Bi2Se3 on BaF2 substrates,” Phys. Scr. T 162, 014007 (2014).
[Crossref]

S. Y. Huang, T. J. Kim, Y. W. Jung, N. S. Barange, H. G. Park, J. Y. Kim, Y. R. Kang, Y. D. Kim, S. H. Shin, J. D. Song, C.-T. Liang, and Y.-C. Chang, “Dielectric function and critical points of AlP determined by spectroscopic ellipsometry,” J. Alloys Compd. 587, 361–364 (2014).
[Crossref]

M. Jiménez de Castro, F. Cabello, J. Toudert, R. Serna, and E. Haro-Poniatowski, “Potential of bismuth nanoparticles embedded in a glass matrix for spectral-selective thermos-optical devices,” Appl. Phys. Lett. 105(11), 113102 (2014).
[Crossref]

Z. Wang, C. Jiang, R. Huang, H. Peng, and X. Tang, “Investigation of the optical and photocatalytic properties of bismuth nanospheres prepared by a facile thermolysis method,” J. Phys. Chem. C 118(2), 1155–1160 (2014).
[Crossref]

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
[Crossref] [PubMed]

M. B. Ross and G. C. Schatz, “Aluminium and indium plasmonic nanoantennas in the ultraviolet,” J. Phys. Chem. C 118(23), 12506–12514 (2014).
[Crossref]

J. Y. Ou, J. K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2,” Nat. Commun. 5, 5139 (2014).
[Crossref] [PubMed]

Z. Pirzadeh, T. Pakizeh, V. Miljkovic, C. Langhammer, and A. Dmitriev, “Plasmon-interband coupling in nickel nanoantennas,” ACS Photonics 1(3), 158–162 (2014).
[Crossref]

J. Toudert, “Spectroscopic ellipsometry for active nano- and meta- materials,” Nanotechnol. Rev. 3(3), 223–245 (2014).
[Crossref]

2013 (9)

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

B. García-Cámara, R. Gómez-Medina, J. J. Sáenz, and B. Sepúlveda, “Sensing with magnetic dipolar resonances in semiconductor nanospheres,” Opt. Express 21(20), 23007–23020 (2013).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

J.-W. Park, M. Song, S. Yoon, H. Lim, D.S. Jeong, B.-K. Cheong, and H. Lee, “Stuctural and optical properties of phase-change amorphous and crystalline Ge1-xTex (0 < x < 1) thin films,” Phys. Status Solidi., A Appl. Mater. Sci. 210(2), 265–275 (2013).
[Crossref]

J. M. McMahon, G. C. Schatz, and S. K. Gray, “Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys. 15(15), 5415–5423 (2013).
[Crossref] [PubMed]

T. Pakizeh, “Optical absorption of nanoparticles described by an electronic local interband transition,” J. Opt. 15(2), 025001 (2013).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref] [PubMed]

J. J. Cha, K. J. Koski, K. C. Y. Huang, K. X. Wang, W. Luo, D. Kong, Z. Yu, S. Fan, M. L. Brongersma, and Y. Cui, “Two-dimensional chalcogenide nanoplates as tunable metamaterials via chemical intercalation,” Nano Lett. 13(12), 5913–5918 (2013).
[Crossref] [PubMed]

2012 (8)

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z. X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4(4), 281–286 (2012).
[Crossref] [PubMed]

S. R. C. Vivekchand, C. J. Engel, S. M. Lubin, M. G. Blaber, W. Zhou, J. Y. Suh, G. C. Schatz, and T. W. Odom, “Liquid plasmonics: manipulating surface plasmon polaritons via phase transitions,” Nano Lett. 12(8), 4324–4328 (2012).
[Crossref] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

R. Alcaraz de la Osa, J. M. Sanz, J. M. Saiz, F. González, and F. Moreno, “Quantum optical response of metallic nanoparticles and dimers,” Opt. Lett. 37(23), 5015–5017 (2012).
[Crossref] [PubMed]

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

J. Toudert, R. Serna, and M. Jiménez de Castro, “Exploring the optical potential of nano-Bismuth: Tunable surface plasmon resonances in the near ultraviolet to near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[Crossref]

2011 (5)

R. Gómez-Medina, B. Garcia-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy and optical forces,” J. Nanophotonics 5(1), 053512 (2011).
[Crossref]

T. Pakizeh, “Optical absorption of plasmonic nanoparticles in presence of a local interband transition,” J. Phys. Chem. C 115(44), 21826–21831 (2011).
[Crossref]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref] [PubMed]

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T.-H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

2010 (3)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

J. W. Cleary, G. Mehdi, R. E. Peale, W. R. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 767306, 767306 (2010).
[Crossref]

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photonics Rev. 4(4), 562–567 (2010).
[Crossref]

2009 (2)

P. C. Wu, M. Losurdo, T.-H. Kim, M. Giangregorio, G. Bruno, H. O. Everitt, and A. S. Brown, “Plasmonic gallium nanoparticles on polar semiconductors: interplay between nanoparticle wetting, localized surface plasmon dynamics, and interface charge,” Langmuir 25(2), 924–930 (2009).
[Crossref] [PubMed]

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[Crossref] [PubMed]

2008 (2)

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

E. Haro-Poniatowski, R. Serna, M. Jiménez de Castro, A. Suárez-García, C. N. Afonso, and I. Vickridge, “Size-dependent thermo-optical properties of embedded Bi nanostructures,” Nanotechnology 19(48), 485708 (2008).
[Crossref] [PubMed]

2007 (1)

S. Sivaramakrishnan, V. S. Muthukumar, S. Sivasankara Sai, K. Venkataramaniah, J. Reppert, A. M. Rao, M. Anija, R. Philip, and N. Kuthirummal, “Nonlinear optical scattering and absorption in bismuth nanorod suspensions,” Appl. Phys. Lett. 91(9), 093104 (2007).
[Crossref]

2005 (3)

Y. W. Wang, B. H. Hong, and K. S. Kim, “Size control of semimetal bismuth nanoparticles and the UV-visible and IR absorption spectra,” J. Phys. Chem. B 109(15), 7067–7072 (2005).
[Crossref] [PubMed]

B. F. Soares, K. F. MacDonald, V. A. Fedotov, and N. I. Zheludev, “Light-induced switching between structural forms with different optical properties in a single gallium nanoparticulate,” Nano Lett. 5(10), 2104–2107 (2005).
[Crossref] [PubMed]

E. H. Sargent, “Infrared quantum dots,” Adv. Mater. 17(5), 515–521 (2005).
[Crossref]

2003 (1)

M. R. Black, P. L. Hagelstein, S. B. Cronin, Y. M. Lin, and M. S. Dresselhaus, “Optical absorption from an indirect transition in bismuth nanowires,” Phys. Rev. B 68(23), 235417 (2003).
[Crossref]

2002 (2)

M. R. Black, Y. M. Lin, S. B. Cronin, O. Rabin, and M. S. Dresselhaus, “Infrared absorption in bismuth nanowires resulting from quantum confinement,” Phys. Rev. B 65(19), 195417 (2002).
[Crossref]

N. I. Zheludev, “Nonlinear optics on the nanoscale,” Contemp. Phys. 43(5), 365–377 (2002).
[Crossref]

1999 (1)

H. Cui, I. B. Bhat, and R. Venkatasubramanian, “Optical constants of Bi2Te3 and Sb2Te3 measured using spectroscopic ellipsometry,” J. Electron. Mater. 28(10), 1111–1114 (1999).
[Crossref]

1996 (1)

S. Y. Park, R. A. Weeks, and R. A. Zuhr, “Optical absorption by colloidal precipitates in bismuth implanted fused silica: annealing behavior,” Appl. Phys. Lett. 69, 3175 (1996).

1995 (1)

N. Suzuki and S. Adachi, “Optical properties of SnTe,” Jpn. J. Appl. Phys. 34(11), 5977–5983 (1995).
[Crossref]

1988 (1)

G. Jézéquel, J. Thomas, and I. Pollini, “Optical properties of thallium films studied with synchrotron radiation,” Phys. Rev. B Condens. Matter 37(15), 8639–8646 (1988).
[Crossref] [PubMed]

1987 (2)

S. Logothetidis and H. M. Polatoglou, “Ellipsometric studies of the dielectric function of SnSe and a simple model of the electronic structure and the bonds of the orthorhombic IV-VI compounds,” Phys. Rev. B 36(14), 7491–7499 (1987).
[Crossref]

P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,” Phys. Rev. B Condens. Matter 36(9), 4821–4830 (1987).
[Crossref] [PubMed]

1985 (1)

R. Sasson, R. Wright, E. T. Arakawa, B. N. Khare, and C. Sagan, “Optical properties of solid and liquid sulfur at visible and infrared wavelengths,” Icarus 64(3), 368–374 (1985).
[Crossref]

1983 (1)

C. G. Das, R. Das, and D. Chakravorty, “Optical properties of bismuth granules in a glass matrix,” Bull. Mater. Sci. 5(3-4), 277–286 (1983).
[Crossref]

1977 (1)

G. Jezequel, J. C. Lemonnier, and J. Thomas, “Optical properties of gallium films between 2 and 15 eV,” J. Phys. F Met. Phys. 7(8), 1613–1622 (1977).
[Crossref]

1975 (1)

N. Morita and A. Yamamoto, “Optical and electrical properties of boron,” Jpn. J. Appl. Phys. 14(6), 825–831 (1975).
[Crossref]

1974 (2)

O. Hunderi and R. Ryberg, “Band structure and optical properties of gallium,” J. Phys. F Met. Phys. 4(11), 2084–2095 (1974).
[Crossref]

T. J. Fox, R. P. Howson, and D. C. Emmony, “Optical properties of thin films of antimony,” J. Phys. D Appl. Phys. 7(13), 1864–1872 (1974).
[Crossref]

1973 (3)

J. C. Lemonnier, J. Thomas, and S. Robin, “Optical properties and electronic structure of antimony in the energy range 2.5 – 14.5 eV,” J. Phys. C Solid State Phys. 6(21), 3205–3212 (1973).
[Crossref]

F. Meyer, E. E. de Kluizenaar, and D. den Engelsen, “Ellipsometric determination of the optical anisotropy of gallium selenide,” J. Opt. Soc. Am. 63(3), 529–532 (1973).
[Crossref]

R. Y. Koyama, N. V. Smith, and W. E. Spicer, “Optical properties of indium,” Phys. Rev. B 8(6), 2426–2432 (1973).
[Crossref]

1970 (1)

H. G. Liljenvall, A. G. Mathewson, and H. P. Myers, “The optical properties of lead in the energy range 0.6-6 eV,” Philos. Mag. 22(176), 243–253 (1970).
[Crossref]

1969 (1)

S. Tutihasi, G. G. Roberts, R. C. Keezer, and R. E. Drews, “Optical properties of tellurium in the fundamental absorption region,” Phys. Rev. 177(3), 1143–1150 (1969).
[Crossref]

1967 (1)

S. Tutihasi and I. Chen, “Optical properties and band structure of trigonal selenium,” Phys. Rev. 158(3), 623–630 (1967).
[Crossref]

1965 (2)

J. N. Zemel, J. D. Jensen, and R. B. Schoolar, “Electrical and optical properties of epitaxial films of PbS, PbSe, PbTe, and SnTe,” Phys. Rev. 140(1), A330–A342 (1965).
[Crossref]

D. L. Greenaway and G. Harbeke, “Band structure of bismuth telluride, bismuth selenide and their respective alloys,” J. Phys. Chem. Solids 26(10), 1585–1604 (1965).
[Crossref]

Adachi, S.

N. Suzuki and S. Adachi, “Optical properties of SnTe,” Jpn. J. Appl. Phys. 34(11), 5977–5983 (1995).
[Crossref]

Adamo, G.

A.M. Dubrovkin, G. Adamo, J. Yin, L. Wang, C. Soci, Q.J. Wang, and N.I. Zheludev, “Visible range plasmonic modes on topological insulator nanostructures,” Adv. Optical Mater. 5(3), 1600768 (2017).

J. Y. Ou, J. K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2,” Nat. Commun. 5, 5139 (2014).
[Crossref] [PubMed]

Afonso, C. N.

E. Haro-Poniatowski, R. Serna, M. Jiménez de Castro, A. Suárez-García, C. N. Afonso, and I. Vickridge, “Size-dependent thermo-optical properties of embedded Bi nanostructures,” Nanotechnology 19(48), 485708 (2008).
[Crossref] [PubMed]

Agarwal, A.

Aizpurua, J.

Akozbek, N.

F. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet-visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

Albella, P.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref] [PubMed]

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T.-H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

Alcaraz de la Osa, R.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

R. Alcaraz de la Osa, J. M. Sanz, J. M. Saiz, F. González, and F. Moreno, “Quantum optical response of metallic nanoparticles and dimers,” Opt. Lett. 37(23), 5015–5017 (2012).
[Crossref] [PubMed]

Alivisatos, A. P.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

An, Y. Q.

A. Green, S. Dey, Y. Q. An, B. O’Brien, S. O’Mullane, B. Thiel, and A. C. Diebold, “Surface oxidation of the topological insulator Bi2Se3,” J. Vac. Sci. Technol. A 34(6), 061403 (2016).
[Crossref]

Anija, M.

S. Sivaramakrishnan, V. S. Muthukumar, S. Sivasankara Sai, K. Venkataramaniah, J. Reppert, A. M. Rao, M. Anija, R. Philip, and N. Kuthirummal, “Nonlinear optical scattering and absorption in bismuth nanorod suspensions,” Appl. Phys. Lett. 91(9), 093104 (2007).
[Crossref]

Arakawa, E. T.

R. Sasson, R. Wright, E. T. Arakawa, B. N. Khare, and C. Sagan, “Optical properties of solid and liquid sulfur at visible and infrared wavelengths,” Icarus 64(3), 368–374 (1985).
[Crossref]

Atwater, H. A.

W. S. Whitney, V. W. Brar, Y. Ou, Y. Shao, A. R. Davoyan, D. N. Basov, K. He, Q.-K. Xue, and H. A. Atwater, “Gate-variable mid-infrared optical transitions in a (Bi1-xSbx)2Te3 topological insulator,” Nano Lett. 17(1), 255–260 (2017).
[Crossref] [PubMed]

Avrutsky, I.

F. Khalilzadeh-Rezaie, C. W. Smith, J. Nath, N. Nader, M. Shahzad, J. W. Cleary, I. Avrutsky, and R. E. Peale, “Infrared surface polaritons on bismuth,” J. Nanophotonics 9(1), 093792 (2015).
[Crossref]

Baffou, G.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119(45), 25518–25528 (2015).
[Crossref]

Bai, H.

W. Fan, C. Li, H. Bai, Y. Zhao, B. Luo, Y. Li, Y. Ge, W. Shi, and H. Li, “An in situ photoelectroreduction approach to fabricate Bi/BiOCl heterostructure photocathodes: understanding the role of Bi metal for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 5(10), 4894–4903 (2017).
[Crossref]

Bammes, P.

P. Bammes, R. Klucker, E. E. Koch, and T. Tuomi, “Anistropy of the dielectric constants of trigonal selenium and tellurium between 3 and 30 eV,” Phys. Status Solidi49(2), 561–570 (1972) (b).
[Crossref]

Bansil, A.

A. Vargas, S. Basak, F. Liu, B. Wang, E. Panaitescu, H. Lin, R. Markiewicz, A. Bansil, and S. Kar, “The changing colors of a quantum-confined topological insulator,” ACS Nano 8(2), 1222–1230 (2014).
[Crossref] [PubMed]

Bao, Q.

M. Zhao, J. Zhang, N. Gao, P. Song, M. Bosman, B. Peng, B. Sun, C.-W. Qiu, Q.-H. Xu, Q. Bao, and K. P. Loh, “Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications,” Adv. Mater. 28(16), 3138–3144 (2016).
[Crossref] [PubMed]

Barange, N. S.

S. Y. Huang, T. J. Kim, Y. W. Jung, N. S. Barange, H. G. Park, J. Y. Kim, Y. R. Kang, Y. D. Kim, S. H. Shin, J. D. Song, C.-T. Liang, and Y.-C. Chang, “Dielectric function and critical points of AlP determined by spectroscopic ellipsometry,” J. Alloys Compd. 587, 361–364 (2014).
[Crossref]

Baranov, D. G.

D. G. Baranov, S. V. Makarov, V. A. Milichko, S. I. Kudryashov, A. E. Krasnov, and P. A. Belov, “Nonlinear transient dynamics of photoexcited resonant silicon nanostructures,” ACS Photonics 3(9), 1546–1551 (2016).
[Crossref]

Basak, S.

A. Vargas, S. Basak, F. Liu, B. Wang, E. Panaitescu, H. Lin, R. Markiewicz, A. Bansil, and S. Kar, “The changing colors of a quantum-confined topological insulator,” ACS Nano 8(2), 1222–1230 (2014).
[Crossref] [PubMed]

Basov, D. N.

W. S. Whitney, V. W. Brar, Y. Ou, Y. Shao, A. R. Davoyan, D. N. Basov, K. He, Q.-K. Xue, and H. A. Atwater, “Gate-variable mid-infrared optical transitions in a (Bi1-xSbx)2Te3 topological insulator,” Nano Lett. 17(1), 255–260 (2017).
[Crossref] [PubMed]

Bauer, G.

J. Humlicek, D. Hemzal, A. Dubroka, O. Caha, H. Steiner, G. Bauer, and G. Springholz, “Raman and interband optical spectra of epitaxial layers of the topological insulators Bi2Te3 and Bi2Se3 on BaF2 substrates,” Phys. Scr. T 162, 014007 (2014).
[Crossref]

Belov, P.

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15(9), 6187–6192 (2015).
[Crossref] [PubMed]

Belov, P. A.

D. G. Baranov, S. V. Makarov, V. A. Milichko, S. I. Kudryashov, A. E. Krasnov, and P. A. Belov, “Nonlinear transient dynamics of photoexcited resonant silicon nanostructures,” ACS Photonics 3(9), 1546–1551 (2016).
[Crossref]

Benia, H. M.

N. Talebi, C. Ozsoy-Keskinbora, H. M. Benia, K. Kern, C. T. Koch, and P. A. van Aken, “Wedge Dyakonov waves and Dyakonov plasmons in topological insulator of Bi2Se3 probed by electron beams,” ACS Nano 10(7), 6988–6994 (2016).
[Crossref] [PubMed]

Berrier, A.

S. De Zuani, M. Rommel, B. Gompf, A. Berrier, J. Weis, and M. Dressel, “Suppressed percolation in nearly closed gold films,” ACS Photonics 3(6), 1109–1115 (2016).
[Crossref]

Bhat, I. B.

H. Cui, I. B. Bhat, and R. Venkatasubramanian, “Optical constants of Bi2Te3 and Sb2Te3 measured using spectroscopic ellipsometry,” J. Electron. Mater. 28(10), 1111–1114 (1999).
[Crossref]

Biagioni, P.

M. P. Fischer, C. Schmidt, E. Sakat, J. Stock, A. Samarelli, J. Frigerio, M. Ortolani, D. J. Paul, G. Isella, A. Leitenstorfer, P. Biagioni, and D. Brida, “Optical activation of germanium plasmonic antennas in the mid-infrared,” Phys. Rev. Lett. 117(4), 047401 (2016).
[Crossref] [PubMed]

Bianco, G. V.

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[Crossref] [PubMed]

Birkmire, R.

Y. Zhou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

Blaber, M. G.

S. R. C. Vivekchand, C. J. Engel, S. M. Lubin, M. G. Blaber, W. Zhou, J. Y. Suh, G. C. Schatz, and T. W. Odom, “Liquid plasmonics: manipulating surface plasmon polaritons via phase transitions,” Nano Lett. 12(8), 4324–4328 (2012).
[Crossref] [PubMed]

Black, M. R.

M. R. Black, P. L. Hagelstein, S. B. Cronin, Y. M. Lin, and M. S. Dresselhaus, “Optical absorption from an indirect transition in bismuth nanowires,” Phys. Rev. B 68(23), 235417 (2003).
[Crossref]

M. R. Black, Y. M. Lin, S. B. Cronin, O. Rabin, and M. S. Dresselhaus, “Infrared absorption in bismuth nanowires resulting from quantum confinement,” Phys. Rev. B 65(19), 195417 (2002).
[Crossref]

Boltasseva, A.

N. Kinsey, A. A. Syed, D. Courtwright, C. DeVault, C. E. Bonner, V. I. Gavrilenko, V. M. Shalaev, D. J. Hagan, E. W. Van Stryland, and A. Boltasseva, “Effective third-order nonlinearities in metallic refractory titanium nitride thin films,” Opt. Mater. Express 5(11), 2395–2403 (2015).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Bonner, C. E.

Borisov, A. G.

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

Bosman, M.

M. Zhao, J. Zhang, N. Gao, P. Song, M. Bosman, B. Peng, B. Sun, C.-W. Qiu, Q.-H. Xu, Q. Bao, and K. P. Loh, “Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications,” Adv. Mater. 28(16), 3138–3144 (2016).
[Crossref] [PubMed]

M. Zhao, M. Bosman, M. Danesh, M. Zeng, P. Song, Y. Darma, A. Rusydi, H. Lin, C.-W. Qiu, and K. P. Loh, “Visible surface plasmon modes in single Bi2Te3 nanoplate,” Nano Lett. 15(12), 8331–8335 (2015).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Brar, V. W.

W. S. Whitney, V. W. Brar, Y. Ou, Y. Shao, A. R. Davoyan, D. N. Basov, K. He, Q.-K. Xue, and H. A. Atwater, “Gate-variable mid-infrared optical transitions in a (Bi1-xSbx)2Te3 topological insulator,” Nano Lett. 17(1), 255–260 (2017).
[Crossref] [PubMed]

Brenny, B. J. M.

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

Brida, D.

M. P. Fischer, C. Schmidt, E. Sakat, J. Stock, A. Samarelli, J. Frigerio, M. Ortolani, D. J. Paul, G. Isella, A. Leitenstorfer, P. Biagioni, and D. Brida, “Optical activation of germanium plasmonic antennas in the mid-infrared,” Phys. Rev. Lett. 117(4), 047401 (2016).
[Crossref] [PubMed]

Brongersma, M. L.

J. J. Cha, K. J. Koski, K. C. Y. Huang, K. X. Wang, W. Luo, D. Kong, Z. Yu, S. Fan, M. L. Brongersma, and Y. Cui, “Two-dimensional chalcogenide nanoplates as tunable metamaterials via chemical intercalation,” Nano Lett. 13(12), 5913–5918 (2013).
[Crossref] [PubMed]

Brown, A.

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T.-H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

Brown, A. S.

M. Losurdo, A. Suvorova, S. Rubanov, K. Hingerl, and A. S. Brown, “Thermally stable coexistence of liquid and solid phases in gallium nanoparticles,” Nat. Mater. 15(9), 995–1002 (2016).
[Crossref] [PubMed]

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

F. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet-visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[Crossref] [PubMed]

P. C. Wu, M. Losurdo, T.-H. Kim, M. Giangregorio, G. Bruno, H. O. Everitt, and A. S. Brown, “Plasmonic gallium nanoparticles on polar semiconductors: interplay between nanoparticle wetting, localized surface plasmon dynamics, and interface charge,” Langmuir 25(2), 924–930 (2009).
[Crossref] [PubMed]

Bruno, G.

P. C. Wu, M. Losurdo, T.-H. Kim, M. Giangregorio, G. Bruno, H. O. Everitt, and A. S. Brown, “Plasmonic gallium nanoparticles on polar semiconductors: interplay between nanoparticle wetting, localized surface plasmon dynamics, and interface charge,” Langmuir 25(2), 924–930 (2009).
[Crossref] [PubMed]

Buchwald, W. R.

J. W. Cleary, G. Mehdi, R. E. Peale, W. R. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 767306, 767306 (2010).
[Crossref]

Butakov, N. A.

T. Lewi, P. P. Iyer, N. A. Butakov, A. A. Mikhailovsky, and J. A. Schuller, “Widely tunable infrared antennas using free carrier refraction,” Nano Lett. 15(12), 8188–8193 (2015).
[Crossref] [PubMed]

Cabello, F.

M. Jiménez de Castro, F. Cabello, J. Toudert, R. Serna, and E. Haro-Poniatowski, “Potential of bismuth nanoparticles embedded in a glass matrix for spectral-selective thermos-optical devices,” Appl. Phys. Lett. 105(11), 113102 (2014).
[Crossref]

Caha, O.

J. Humlicek, D. Hemzal, A. Dubroka, O. Caha, H. Steiner, G. Bauer, and G. Springholz, “Raman and interband optical spectra of epitaxial layers of the topological insulators Bi2Te3 and Bi2Se3 on BaF2 substrates,” Phys. Scr. T 162, 014007 (2014).
[Crossref]

Camps, I.

J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
[Crossref]

Cao, J.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z. X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4(4), 281–286 (2012).
[Crossref] [PubMed]

Cardona, M.

P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,” Phys. Rev. B Condens. Matter 36(9), 4821–4830 (1987).
[Crossref] [PubMed]

Cha, J. J.

J. J. Cha, K. J. Koski, K. C. Y. Huang, K. X. Wang, W. Luo, D. Kong, Z. Yu, S. Fan, M. L. Brongersma, and Y. Cui, “Two-dimensional chalcogenide nanoplates as tunable metamaterials via chemical intercalation,” Nano Lett. 13(12), 5913–5918 (2013).
[Crossref] [PubMed]

Chakravorty, D.

C. G. Das, R. Das, and D. Chakravorty, “Optical properties of bismuth granules in a glass matrix,” Bull. Mater. Sci. 5(3-4), 277–286 (1983).
[Crossref]

Chang, Y.-C.

S. Y. Huang, T. J. Kim, Y. W. Jung, N. S. Barange, H. G. Park, J. Y. Kim, Y. R. Kang, Y. D. Kim, S. H. Shin, J. D. Song, C.-T. Liang, and Y.-C. Chang, “Dielectric function and critical points of AlP determined by spectroscopic ellipsometry,” J. Alloys Compd. 587, 361–364 (2014).
[Crossref]

Chantada, L.

Chen, I.

S. Tutihasi and I. Chen, “Optical properties and band structure of trigonal selenium,” Phys. Rev. 158(3), 623–630 (1967).
[Crossref]

Chen, J.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y.-H. Chen, H.-C. Wang, T.-Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Lasers and Photon. News 10(6), 986–994 (2016).
[Crossref]

Chen, T.-Y.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y.-H. Chen, H.-C. Wang, T.-Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Lasers and Photon. News 10(6), 986–994 (2016).
[Crossref]

Chen, Y.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z. X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4(4), 281–286 (2012).
[Crossref] [PubMed]

Chen, Y.-H.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y.-H. Chen, H.-C. Wang, T.-Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Lasers and Photon. News 10(6), 986–994 (2016).
[Crossref]

Cheong, B.-K.

J.-W. Park, M. Song, S. Yoon, H. Lim, D.S. Jeong, B.-K. Cheong, and H. Lee, “Stuctural and optical properties of phase-change amorphous and crystalline Ge1-xTex (0 < x < 1) thin films,” Phys. Status Solidi., A Appl. Mater. Sci. 210(2), 265–275 (2013).
[Crossref]

Chichkov, B. N.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Chigrin, D. N.

A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonance with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

Chu, C. H.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y.-H. Chen, H.-C. Wang, T.-Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Lasers and Photon. News 10(6), 986–994 (2016).
[Crossref]

Cleary, J. W.

F. Khalilzadeh-Rezaie, C. W. Smith, J. Nath, N. Nader, M. Shahzad, J. W. Cleary, I. Avrutsky, and R. E. Peale, “Infrared surface polaritons on bismuth,” J. Nanophotonics 9(1), 093792 (2015).
[Crossref]

J. W. Cleary, G. Mehdi, R. E. Peale, W. R. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 767306, 767306 (2010).
[Crossref]

Coenen, T.

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

Courtwright, D.

Cronin, S. B.

M. R. Black, P. L. Hagelstein, S. B. Cronin, Y. M. Lin, and M. S. Dresselhaus, “Optical absorption from an indirect transition in bismuth nanowires,” Phys. Rev. B 68(23), 235417 (2003).
[Crossref]

M. R. Black, Y. M. Lin, S. B. Cronin, O. Rabin, and M. S. Dresselhaus, “Infrared absorption in bismuth nanowires resulting from quantum confinement,” Phys. Rev. B 65(19), 195417 (2002).
[Crossref]

Cuadrado, A.

A. Cuadrado, J. Toudert, and R. Serna, “Polaritonic-to-plasmonic transition in bismuth nanospheres for high-contrast ultraviolet meta-filters,” IEEE Photonics J. 8, 1 (2016).
[Crossref]

Cui, H.

H. Cui, I. B. Bhat, and R. Venkatasubramanian, “Optical constants of Bi2Te3 and Sb2Te3 measured using spectroscopic ellipsometry,” J. Electron. Mater. 28(10), 1111–1114 (1999).
[Crossref]

Cui, L.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Cui, Y.

J. J. Cha, K. J. Koski, K. C. Y. Huang, K. X. Wang, W. Luo, D. Kong, Z. Yu, S. Fan, M. L. Brongersma, and Y. Cui, “Two-dimensional chalcogenide nanoplates as tunable metamaterials via chemical intercalation,” Nano Lett. 13(12), 5913–5918 (2013).
[Crossref] [PubMed]

Danesh, M.

M. Zhao, M. Bosman, M. Danesh, M. Zeng, P. Song, Y. Darma, A. Rusydi, H. Lin, C.-W. Qiu, and K. P. Loh, “Visible surface plasmon modes in single Bi2Te3 nanoplate,” Nano Lett. 15(12), 8331–8335 (2015).
[Crossref] [PubMed]

Dang, W.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z. X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4(4), 281–286 (2012).
[Crossref] [PubMed]

Danto, S.

Y. Zhou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref] [PubMed]

Darma, Y.

M. Zhao, M. Bosman, M. Danesh, M. Zeng, P. Song, Y. Darma, A. Rusydi, H. Lin, C.-W. Qiu, and K. P. Loh, “Visible surface plasmon modes in single Bi2Te3 nanoplate,” Nano Lett. 15(12), 8331–8335 (2015).
[Crossref] [PubMed]

Das, C. G.

C. G. Das, R. Das, and D. Chakravorty, “Optical properties of bismuth granules in a glass matrix,” Bull. Mater. Sci. 5(3-4), 277–286 (1983).
[Crossref]

Das, R.

C. G. Das, R. Das, and D. Chakravorty, “Optical properties of bismuth granules in a glass matrix,” Bull. Mater. Sci. 5(3-4), 277–286 (1983).
[Crossref]

Davoyan, A. R.

W. S. Whitney, V. W. Brar, Y. Ou, Y. Shao, A. R. Davoyan, D. N. Basov, K. He, Q.-K. Xue, and H. A. Atwater, “Gate-variable mid-infrared optical transitions in a (Bi1-xSbx)2Te3 topological insulator,” Nano Lett. 17(1), 255–260 (2017).
[Crossref] [PubMed]

de Kluizenaar, E. E.

De Zuani, S.

S. De Zuani, M. Rommel, B. Gompf, A. Berrier, J. Weis, and M. Dressel, “Suppressed percolation in nearly closed gold films,” ACS Photonics 3(6), 1109–1115 (2016).
[Crossref]

M. Esslinger, R. Vogelsgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

den Engelsen, D.

Deng, S.

N. Mao, J. Tang, L. Xie, J. Wu, B. Han, J. Lin, S. Deng, W. Ji, H. Xu, K. Liu, L. Tong, and J. Zhang, “Optical anisotropy of black phosphorus in the visible regime,” J. Am. Chem. Soc. 138(1), 300–305 (2016).
[Crossref] [PubMed]

DeVault, C.

Dey, S.

A. Green, S. Dey, Y. Q. An, B. O’Brien, S. O’Mullane, B. Thiel, and A. C. Diebold, “Surface oxidation of the topological insulator Bi2Se3,” J. Vac. Sci. Technol. A 34(6), 061403 (2016).
[Crossref]

Diebold, A. C.

A. Green, S. Dey, Y. Q. An, B. O’Brien, S. O’Mullane, B. Thiel, and A. C. Diebold, “Surface oxidation of the topological insulator Bi2Se3,” J. Vac. Sci. Technol. A 34(6), 061403 (2016).
[Crossref]

Dionne, J. A.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

Dmitriev, A.

Z. Pirzadeh, T. Pakizeh, V. Miljkovic, C. Langhammer, and A. Dmitriev, “Plasmon-interband coupling in nickel nanoantennas,” ACS Photonics 1(3), 158–162 (2014).
[Crossref]

Dobson, K. D.

Y. Zhou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

Dong, F.

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
[Crossref] [PubMed]

Dressel, M.

S. De Zuani, M. Rommel, B. Gompf, A. Berrier, J. Weis, and M. Dressel, “Suppressed percolation in nearly closed gold films,” ACS Photonics 3(6), 1109–1115 (2016).
[Crossref]

Dresselhaus, M. S.

M. R. Black, P. L. Hagelstein, S. B. Cronin, Y. M. Lin, and M. S. Dresselhaus, “Optical absorption from an indirect transition in bismuth nanowires,” Phys. Rev. B 68(23), 235417 (2003).
[Crossref]

M. R. Black, Y. M. Lin, S. B. Cronin, O. Rabin, and M. S. Dresselhaus, “Infrared absorption in bismuth nanowires resulting from quantum confinement,” Phys. Rev. B 65(19), 195417 (2002).
[Crossref]

Drews, R. E.

S. Tutihasi, G. G. Roberts, R. C. Keezer, and R. E. Drews, “Optical properties of tellurium in the fundamental absorption region,” Phys. Rev. 177(3), 1143–1150 (1969).
[Crossref]

Du, Q.

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: stepping into the spotlight,” Am. Ceram. Soc. Bull. 94(4), 24–29 (2015).

Y. Zhou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

Dubroka, A.

J. Humlicek, D. Hemzal, A. Dubroka, O. Caha, H. Steiner, G. Bauer, and G. Springholz, “Raman and interband optical spectra of epitaxial layers of the topological insulators Bi2Te3 and Bi2Se3 on BaF2 substrates,” Phys. Scr. T 162, 014007 (2014).
[Crossref]

Dubrovkin, A.M.

A.M. Dubrovkin, G. Adamo, J. Yin, L. Wang, C. Soci, Q.J. Wang, and N.I. Zheludev, “Visible range plasmonic modes on topological insulator nanostructures,” Adv. Optical Mater. 5(3), 1600768 (2017).

Eddrief, M.

M. Eddrief, F. Vidal, and B. Gallas, “Optical properties of Bi2Se3: from bulk to ultrathin films,” J. Phys. D Appl. Phys. 49(50), 505304 (2016).
[Crossref]

Edwards, O.

J. W. Cleary, G. Mehdi, R. E. Peale, W. R. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 767306, 767306 (2010).
[Crossref]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Emmony, D. C.

T. J. Fox, R. P. Howson, and D. C. Emmony, “Optical properties of thin films of antimony,” J. Phys. D Appl. Phys. 7(13), 1864–1872 (1974).
[Crossref]

Engel, C. J.

S. R. C. Vivekchand, C. J. Engel, S. M. Lubin, M. G. Blaber, W. Zhou, J. Y. Suh, G. C. Schatz, and T. W. Odom, “Liquid plasmonics: manipulating surface plasmon polaritons via phase transitions,” Nano Lett. 12(8), 4324–4328 (2012).
[Crossref] [PubMed]

Eriksen, R. L.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Esslinger, M.

M. Esslinger, R. Vogelsgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Esteban, R.

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

Everitt, H. O.

Y. Gutierrez, D. Ortiz, J. M. Sanz, J. M. Saiz, F. Gonzalez, H. O. Everitt, and F. Moreno, “How an oxide shell affects the ultraviolet plasmonic behavior of Ga, Mg, and Al nanostructures,” Opt. Express 24(18), 20621–20631 (2016).
[Crossref] [PubMed]

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

F. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet-visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T.-H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[Crossref] [PubMed]

P. C. Wu, M. Losurdo, T.-H. Kim, M. Giangregorio, G. Bruno, H. O. Everitt, and A. S. Brown, “Plasmonic gallium nanoparticles on polar semiconductors: interplay between nanoparticle wetting, localized surface plasmon dynamics, and interface charge,” Langmuir 25(2), 924–930 (2009).
[Crossref] [PubMed]

Evlyukhin, A. B.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Ewers, T.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

Eyraud, C.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref] [PubMed]

Ezquerra, T. A.

J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
[Crossref]

Fan, S.

J. J. Cha, K. J. Koski, K. C. Y. Huang, K. X. Wang, W. Luo, D. Kong, Z. Yu, S. Fan, M. L. Brongersma, and Y. Cui, “Two-dimensional chalcogenide nanoplates as tunable metamaterials via chemical intercalation,” Nano Lett. 13(12), 5913–5918 (2013).
[Crossref] [PubMed]

Fan, W.

W. Fan, C. Li, H. Bai, Y. Zhao, B. Luo, Y. Li, Y. Ge, W. Shi, and H. Li, “An in situ photoelectroreduction approach to fabricate Bi/BiOCl heterostructure photocathodes: understanding the role of Bi metal for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 5(10), 4894–4903 (2017).
[Crossref]

Fedotov, V. A.

B. F. Soares, K. F. MacDonald, V. A. Fedotov, and N. I. Zheludev, “Light-induced switching between structural forms with different optical properties in a single gallium nanoparticulate,” Nano Lett. 5(10), 2104–2107 (2005).
[Crossref] [PubMed]

Feng, X.

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
[Crossref] [PubMed]

Fischer, M. P.

M. P. Fischer, C. Schmidt, E. Sakat, J. Stock, A. Samarelli, J. Frigerio, M. Ortolani, D. J. Paul, G. Isella, A. Leitenstorfer, P. Biagioni, and D. Brida, “Optical activation of germanium plasmonic antennas in the mid-infrared,” Phys. Rev. Lett. 117(4), 047401 (2016).
[Crossref] [PubMed]

Fox, T. J.

T. J. Fox, R. P. Howson, and D. C. Emmony, “Optical properties of thin films of antimony,” J. Phys. D Appl. Phys. 7(13), 1864–1872 (1974).
[Crossref]

Frigerio, J.

M. P. Fischer, C. Schmidt, E. Sakat, J. Stock, A. Samarelli, J. Frigerio, M. Ortolani, D. J. Paul, G. Isella, A. Leitenstorfer, P. Biagioni, and D. Brida, “Optical activation of germanium plasmonic antennas in the mid-infrared,” Phys. Rev. Lett. 117(4), 047401 (2016).
[Crossref] [PubMed]

Froufe-Pérez, L. S.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref] [PubMed]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref] [PubMed]

Fu, Y. H.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Gajc, M.

Gallas, B.

M. Eddrief, F. Vidal, and B. Gallas, “Optical properties of Bi2Se3: from bulk to ultrathin films,” J. Phys. D Appl. Phys. 49(50), 505304 (2016).
[Crossref]

Gao, N.

M. Zhao, J. Zhang, N. Gao, P. Song, M. Bosman, B. Peng, B. Sun, C.-W. Qiu, Q.-H. Xu, Q. Bao, and K. P. Loh, “Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications,” Adv. Mater. 28(16), 3138–3144 (2016).
[Crossref] [PubMed]

Garcia-Cámara, B.

R. Gómez-Medina, B. Garcia-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy and optical forces,” J. Nanophotonics 5(1), 053512 (2011).
[Crossref]

García-Cámara, B.

B. García-Cámara, R. Gómez-Medina, J. J. Sáenz, and B. Sepúlveda, “Sensing with magnetic dipolar resonances in semiconductor nanospheres,” Opt. Express 21(20), 23007–23020 (2013).
[Crossref] [PubMed]

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref] [PubMed]

Garcia-Cueto, B.

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T.-H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

García-Etxarri, A.

Garriga, M.

P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,” Phys. Rev. B Condens. Matter 36(9), 4821–4830 (1987).
[Crossref] [PubMed]

Gavrilenko, V. I.

Ge, Y.

W. Fan, C. Li, H. Bai, Y. Zhao, B. Luo, Y. Li, Y. Ge, W. Shi, and H. Li, “An in situ photoelectroreduction approach to fabricate Bi/BiOCl heterostructure photocathodes: understanding the role of Bi metal for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 5(10), 4894–4903 (2017).
[Crossref]

Geffrin, J. M.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref] [PubMed]

Gehring, P.

M. Esslinger, R. Vogelsgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Gholipour, B.

A. Karvounis, B. Gholipour, F. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Giangregorio, M.

P. C. Wu, M. Losurdo, T.-H. Kim, M. Giangregorio, G. Bruno, H. O. Everitt, and A. S. Brown, “Plasmonic gallium nanoparticles on polar semiconductors: interplay between nanoparticle wetting, localized surface plasmon dynamics, and interface charge,” Langmuir 25(2), 924–930 (2009).
[Crossref] [PubMed]

Giessen, H.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Gómez-Medina, R.

B. García-Cámara, R. Gómez-Medina, J. J. Sáenz, and B. Sepúlveda, “Sensing with magnetic dipolar resonances in semiconductor nanospheres,” Opt. Express 21(20), 23007–23020 (2013).
[Crossref] [PubMed]

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref] [PubMed]

R. Gómez-Medina, B. Garcia-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy and optical forces,” J. Nanophotonics 5(1), 053512 (2011).
[Crossref]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref] [PubMed]

Gompf, B.

S. De Zuani, M. Rommel, B. Gompf, A. Berrier, J. Weis, and M. Dressel, “Suppressed percolation in nearly closed gold films,” ACS Photonics 3(6), 1109–1115 (2016).
[Crossref]

M. Esslinger, R. Vogelsgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Gonzalez, F.

González, F.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref] [PubMed]

R. Alcaraz de la Osa, J. M. Sanz, J. M. Saiz, F. González, and F. Moreno, “Quantum optical response of metallic nanoparticles and dimers,” Opt. Lett. 37(23), 5015–5017 (2012).
[Crossref] [PubMed]

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T.-H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

R. Gómez-Medina, B. Garcia-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy and optical forces,” J. Nanophotonics 5(1), 053512 (2011).
[Crossref]

Gray, S. K.

J. M. McMahon, G. C. Schatz, and S. K. Gray, “Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys. 15(15), 5415–5423 (2013).
[Crossref] [PubMed]

Green, A.

A. Green, S. Dey, Y. Q. An, B. O’Brien, S. O’Mullane, B. Thiel, and A. C. Diebold, “Surface oxidation of the topological insulator Bi2Se3,” J. Vac. Sci. Technol. A 34(6), 061403 (2016).
[Crossref]

Green, M. A.

Y. Jiang, S. Pillai, and M. A. Green, “Realistic silver optical constants for plasmonics,” Sci. Rep. 6(1), 30605 (2016).
[Crossref] [PubMed]

Greenaway, D. L.

D. L. Greenaway and G. Harbeke, “Band structure of bismuth telluride, bismuth selenide and their respective alloys,” J. Phys. Chem. Solids 26(10), 1585–1604 (1965).
[Crossref]

Guo, Q.

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29(14), 1605886 (2017).
[Crossref] [PubMed]

Guozhi, J.

J. Guozhi, W. Peng, Z. Yanbang, and C. Kai, “Localized surface plasmon enhanced photothermal conversion in Bi2Se3 topological insulator nanoflowers,” Sci. Rep. 6(1), 25884 (2016).
[Crossref] [PubMed]

Gutierrez, Y.

Hagan, D. J.

Hagelstein, P. L.

M. R. Black, P. L. Hagelstein, S. B. Cronin, Y. M. Lin, and M. S. Dresselhaus, “Optical absorption from an indirect transition in bismuth nanowires,” Phys. Rev. B 68(23), 235417 (2003).
[Crossref]

Han, B.

N. Mao, J. Tang, L. Xie, J. Wu, B. Han, J. Lin, S. Deng, W. Ji, H. Xu, K. Liu, L. Tong, and J. Zhang, “Optical anisotropy of black phosphorus in the visible regime,” J. Am. Chem. Soc. 138(1), 300–305 (2016).
[Crossref] [PubMed]

Harbeke, G.

D. L. Greenaway and G. Harbeke, “Band structure of bismuth telluride, bismuth selenide and their respective alloys,” J. Phys. Chem. Solids 26(10), 1585–1604 (1965).
[Crossref]

Haro-Poniatowski, E.

M. Jiménez de Castro, F. Cabello, J. Toudert, R. Serna, and E. Haro-Poniatowski, “Potential of bismuth nanoparticles embedded in a glass matrix for spectral-selective thermos-optical devices,” Appl. Phys. Lett. 105(11), 113102 (2014).
[Crossref]

E. Haro-Poniatowski, R. Serna, M. Jiménez de Castro, A. Suárez-García, C. N. Afonso, and I. Vickridge, “Size-dependent thermo-optical properties of embedded Bi nanostructures,” Nanotechnology 19(48), 485708 (2008).
[Crossref] [PubMed]

He, K.

W. S. Whitney, V. W. Brar, Y. Ou, Y. Shao, A. R. Davoyan, D. N. Basov, K. He, Q.-K. Xue, and H. A. Atwater, “Gate-variable mid-infrared optical transitions in a (Bi1-xSbx)2Te3 topological insulator,” Nano Lett. 17(1), 255–260 (2017).
[Crossref] [PubMed]

Hemzal, D.

J. Humlicek, D. Hemzal, A. Dubroka, O. Caha, H. Steiner, G. Bauer, and G. Springholz, “Raman and interband optical spectra of epitaxial layers of the topological insulators Bi2Te3 and Bi2Se3 on BaF2 substrates,” Phys. Scr. T 162, 014007 (2014).
[Crossref]

Hingerl, K.

M. Losurdo, A. Suvorova, S. Rubanov, K. Hingerl, and A. S. Brown, “Thermally stable coexistence of liquid and solid phases in gallium nanoparticles,” Nat. Mater. 15(9), 995–1002 (2016).
[Crossref] [PubMed]

Hong, B. H.

Y. W. Wang, B. H. Hong, and K. S. Kim, “Size control of semimetal bismuth nanoparticles and the UV-visible and IR absorption spectra,” J. Phys. Chem. B 109(15), 7067–7072 (2005).
[Crossref] [PubMed]

Howson, R. P.

T. J. Fox, R. P. Howson, and D. C. Emmony, “Optical properties of thin films of antimony,” J. Phys. D Appl. Phys. 7(13), 1864–1872 (1974).
[Crossref]

Hsieh, W. T.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y.-H. Chen, H.-C. Wang, T.-Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Lasers and Photon. News 10(6), 986–994 (2016).
[Crossref]

Hu, J.

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: stepping into the spotlight,” Am. Ceram. Soc. Bull. 94(4), 24–29 (2015).

Y. Zhou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref] [PubMed]

Huang, K. C. Y.

J. J. Cha, K. J. Koski, K. C. Y. Huang, K. X. Wang, W. Luo, D. Kong, Z. Yu, S. Fan, M. L. Brongersma, and Y. Cui, “Two-dimensional chalcogenide nanoplates as tunable metamaterials via chemical intercalation,” Nano Lett. 13(12), 5913–5918 (2013).
[Crossref] [PubMed]

Huang, R.

Z. Wang, C. Jiang, R. Huang, H. Peng, and X. Tang, “Investigation of the optical and photocatalytic properties of bismuth nanospheres prepared by a facile thermolysis method,” J. Phys. Chem. C 118(2), 1155–1160 (2014).
[Crossref]

Huang, S. Y.

S. Y. Huang, T. J. Kim, Y. W. Jung, N. S. Barange, H. G. Park, J. Y. Kim, Y. R. Kang, Y. D. Kim, S. H. Shin, J. D. Song, C.-T. Liang, and Y.-C. Chang, “Dielectric function and critical points of AlP determined by spectroscopic ellipsometry,” J. Alloys Compd. 587, 361–364 (2014).
[Crossref]

Humlicek, J.

J. Humlicek, D. Hemzal, A. Dubroka, O. Caha, H. Steiner, G. Bauer, and G. Springholz, “Raman and interband optical spectra of epitaxial layers of the topological insulators Bi2Te3 and Bi2Se3 on BaF2 substrates,” Phys. Scr. T 162, 014007 (2014).
[Crossref]

Hunderi, O.

O. Hunderi and R. Ryberg, “Band structure and optical properties of gallium,” J. Phys. F Met. Phys. 4(11), 2084–2095 (1974).
[Crossref]

Isella, G.

M. P. Fischer, C. Schmidt, E. Sakat, J. Stock, A. Samarelli, J. Frigerio, M. Ortolani, D. J. Paul, G. Isella, A. Leitenstorfer, P. Biagioni, and D. Brida, “Optical activation of germanium plasmonic antennas in the mid-infrared,” Phys. Rev. Lett. 117(4), 047401 (2016).
[Crossref] [PubMed]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Iyer, P. P.

T. Lewi, P. P. Iyer, N. A. Butakov, A. A. Mikhailovsky, and J. A. Schuller, “Widely tunable infrared antennas using free carrier refraction,” Nano Lett. 15(12), 8188–8193 (2015).
[Crossref] [PubMed]

Jain, P. K.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

Jensen, J. D.

J. N. Zemel, J. D. Jensen, and R. B. Schoolar, “Electrical and optical properties of epitaxial films of PbS, PbSe, PbTe, and SnTe,” Phys. Rev. 140(1), A330–A342 (1965).
[Crossref]

Jeong, D.S.

J.-W. Park, M. Song, S. Yoon, H. Lim, D.S. Jeong, B.-K. Cheong, and H. Lee, “Stuctural and optical properties of phase-change amorphous and crystalline Ge1-xTex (0 < x < 1) thin films,” Phys. Status Solidi., A Appl. Mater. Sci. 210(2), 265–275 (2013).
[Crossref]

Jezequel, G.

G. Jezequel, J. C. Lemonnier, and J. Thomas, “Optical properties of gallium films between 2 and 15 eV,” J. Phys. F Met. Phys. 7(8), 1613–1622 (1977).
[Crossref]

Jézéquel, G.

G. Jézéquel, J. Thomas, and I. Pollini, “Optical properties of thallium films studied with synchrotron radiation,” Phys. Rev. B Condens. Matter 37(15), 8639–8646 (1988).
[Crossref] [PubMed]

Ji, W.

N. Mao, J. Tang, L. Xie, J. Wu, B. Han, J. Lin, S. Deng, W. Ji, H. Xu, K. Liu, L. Tong, and J. Zhang, “Optical anisotropy of black phosphorus in the visible regime,” J. Am. Chem. Soc. 138(1), 300–305 (2016).
[Crossref] [PubMed]

Jiang, C.

Z. Wang, C. Jiang, R. Huang, H. Peng, and X. Tang, “Investigation of the optical and photocatalytic properties of bismuth nanospheres prepared by a facile thermolysis method,” J. Phys. Chem. C 118(2), 1155–1160 (2014).
[Crossref]

Jiang, Y.

Y. Jiang, S. Pillai, and M. A. Green, “Realistic silver optical constants for plasmonics,” Sci. Rep. 6(1), 30605 (2016).
[Crossref] [PubMed]

Jiménez de Castro, M.

M. Jiménez de Castro, F. Cabello, J. Toudert, R. Serna, and E. Haro-Poniatowski, “Potential of bismuth nanoparticles embedded in a glass matrix for spectral-selective thermos-optical devices,” Appl. Phys. Lett. 105(11), 113102 (2014).
[Crossref]

J. Toudert, R. Serna, and M. Jiménez de Castro, “Exploring the optical potential of nano-Bismuth: Tunable surface plasmon resonances in the near ultraviolet to near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[Crossref]

E. Haro-Poniatowski, R. Serna, M. Jiménez de Castro, A. Suárez-García, C. N. Afonso, and I. Vickridge, “Size-dependent thermo-optical properties of embedded Bi nanostructures,” Nanotechnology 19(48), 485708 (2008).
[Crossref] [PubMed]

Jitov, V. A.

P. I. Kuznetsov, G. G. Yakushcheva, B. S. Shchamkhalova, V. A. Luzanov, A. G. Temiryazev, and V. A. Jitov, “Metalorganic vapor phase epitaxy of ternary rhomboedral (Bi1-xSbx)2Se3 solid solutions,” J. Cryst. Growth 433, 114–121 (2016).
[Crossref]

Jung, Y. W.

S. Y. Huang, T. J. Kim, Y. W. Jung, N. S. Barange, H. G. Park, J. Y. Kim, Y. R. Kang, Y. D. Kim, S. H. Shin, J. D. Song, C.-T. Liang, and Y.-C. Chang, “Dielectric function and critical points of AlP determined by spectroscopic ellipsometry,” J. Alloys Compd. 587, 361–364 (2014).
[Crossref]

Kai, C.

J. Guozhi, W. Peng, Z. Yanbang, and C. Kai, “Localized surface plasmon enhanced photothermal conversion in Bi2Se3 topological insulator nanoflowers,” Sci. Rep. 6(1), 25884 (2016).
[Crossref] [PubMed]

Kang, Y. R.

S. Y. Huang, T. J. Kim, Y. W. Jung, N. S. Barange, H. G. Park, J. Y. Kim, Y. R. Kang, Y. D. Kim, S. H. Shin, J. D. Song, C.-T. Liang, and Y.-C. Chang, “Dielectric function and critical points of AlP determined by spectroscopic ellipsometry,” J. Alloys Compd. 587, 361–364 (2014).
[Crossref]

Kar, S.

A. Vargas, F. Liu, and S. Kar, “Giant enhancement of light emission from nanoscale Bi2Se3,” Appl. Phys. Lett. 106(24), 243107 (2015).
[Crossref]

A. Vargas, S. Basak, F. Liu, B. Wang, E. Panaitescu, H. Lin, R. Markiewicz, A. Bansil, and S. Kar, “The changing colors of a quantum-confined topological insulator,” ACS Nano 8(2), 1222–1230 (2014).
[Crossref] [PubMed]

Karvounis, A.

A. Karvounis, B. Gholipour, F. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

Keezer, R. C.

S. Tutihasi, G. G. Roberts, R. C. Keezer, and R. E. Drews, “Optical properties of tellurium in the fundamental absorption region,” Phys. Rev. 177(3), 1143–1150 (1969).
[Crossref]

Kern, K.

N. Talebi, C. Ozsoy-Keskinbora, H. M. Benia, K. Kern, C. T. Koch, and P. A. van Aken, “Wedge Dyakonov waves and Dyakonov plasmons in topological insulator of Bi2Se3 probed by electron beams,” ACS Nano 10(7), 6988–6994 (2016).
[Crossref] [PubMed]

M. Esslinger, R. Vogelsgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Khalilzadeh-Rezaie, F.

F. Khalilzadeh-Rezaie, C. W. Smith, J. Nath, N. Nader, M. Shahzad, J. W. Cleary, I. Avrutsky, and R. E. Peale, “Infrared surface polaritons on bismuth,” J. Nanophotonics 9(1), 093792 (2015).
[Crossref]

Khare, B. N.

R. Sasson, R. Wright, E. T. Arakawa, B. N. Khare, and C. Sagan, “Optical properties of solid and liquid sulfur at visible and infrared wavelengths,” Icarus 64(3), 368–374 (1985).
[Crossref]

Khoury, C. G.

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[Crossref] [PubMed]

Khunsin, W.

M. Esslinger, R. Vogelsgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Kim, J. Y.

S. Y. Huang, T. J. Kim, Y. W. Jung, N. S. Barange, H. G. Park, J. Y. Kim, Y. R. Kang, Y. D. Kim, S. H. Shin, J. D. Song, C.-T. Liang, and Y.-C. Chang, “Dielectric function and critical points of AlP determined by spectroscopic ellipsometry,” J. Alloys Compd. 587, 361–364 (2014).
[Crossref]

Kim, K. S.

Y. W. Wang, B. H. Hong, and K. S. Kim, “Size control of semimetal bismuth nanoparticles and the UV-visible and IR absorption spectra,” J. Phys. Chem. B 109(15), 7067–7072 (2005).
[Crossref] [PubMed]

Kim, T. J.

S. Y. Huang, T. J. Kim, Y. W. Jung, N. S. Barange, H. G. Park, J. Y. Kim, Y. R. Kang, Y. D. Kim, S. H. Shin, J. D. Song, C.-T. Liang, and Y.-C. Chang, “Dielectric function and critical points of AlP determined by spectroscopic ellipsometry,” J. Alloys Compd. 587, 361–364 (2014).
[Crossref]

Kim, T.-H.

F. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet-visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T.-H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[Crossref] [PubMed]

P. C. Wu, M. Losurdo, T.-H. Kim, M. Giangregorio, G. Bruno, H. O. Everitt, and A. S. Brown, “Plasmonic gallium nanoparticles on polar semiconductors: interplay between nanoparticle wetting, localized surface plasmon dynamics, and interface charge,” Langmuir 25(2), 924–930 (2009).
[Crossref] [PubMed]

Kim, Y. D.

S. Y. Huang, T. J. Kim, Y. W. Jung, N. S. Barange, H. G. Park, J. Y. Kim, Y. R. Kang, Y. D. Kim, S. H. Shin, J. D. Song, C.-T. Liang, and Y.-C. Chang, “Dielectric function and critical points of AlP determined by spectroscopic ellipsometry,” J. Alloys Compd. 587, 361–364 (2014).
[Crossref]

Kimerling, L. C.

Kinsey, N.

Klucker, R.

P. Bammes, R. Klucker, E. E. Koch, and T. Tuomi, “Anistropy of the dielectric constants of trigonal selenium and tellurium between 3 and 30 eV,” Phys. Status Solidi49(2), 561–570 (1972) (b).
[Crossref]

Knight, M. W.

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

Koch, C. T.

N. Talebi, C. Ozsoy-Keskinbora, H. M. Benia, K. Kern, C. T. Koch, and P. A. van Aken, “Wedge Dyakonov waves and Dyakonov plasmons in topological insulator of Bi2Se3 probed by electron beams,” ACS Nano 10(7), 6988–6994 (2016).
[Crossref] [PubMed]

Koch, E. E.

P. Bammes, R. Klucker, E. E. Koch, and T. Tuomi, “Anistropy of the dielectric constants of trigonal selenium and tellurium between 3 and 30 eV,” Phys. Status Solidi49(2), 561–570 (1972) (b).
[Crossref]

Koh, A. L.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

Kong, D.

J. J. Cha, K. J. Koski, K. C. Y. Huang, K. X. Wang, W. Luo, D. Kong, Z. Yu, S. Fan, M. L. Brongersma, and Y. Cui, “Two-dimensional chalcogenide nanoplates as tunable metamaterials via chemical intercalation,” Nano Lett. 13(12), 5913–5918 (2013).
[Crossref] [PubMed]

Korzeb, K.

Koski, K. J.

J. J. Cha, K. J. Koski, K. C. Y. Huang, K. X. Wang, W. Luo, D. Kong, Z. Yu, S. Fan, M. L. Brongersma, and Y. Cui, “Two-dimensional chalcogenide nanoplates as tunable metamaterials via chemical intercalation,” Nano Lett. 13(12), 5913–5918 (2013).
[Crossref] [PubMed]

Koyama, R. Y.

R. Y. Koyama, N. V. Smith, and W. E. Spicer, “Optical properties of indium,” Phys. Rev. B 8(6), 2426–2432 (1973).
[Crossref]

Kozacik, S.

Krasnok, A.

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15(9), 6187–6192 (2015).
[Crossref] [PubMed]

Krasnov, A. E.

D. G. Baranov, S. V. Makarov, V. A. Milichko, S. I. Kudryashov, A. E. Krasnov, and P. A. Belov, “Nonlinear transient dynamics of photoexcited resonant silicon nanostructures,” ACS Photonics 3(9), 1546–1551 (2016).
[Crossref]

Kremers, S.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Kudryashov, S.

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15(9), 6187–6192 (2015).
[Crossref] [PubMed]

Kudryashov, S. I.

D. G. Baranov, S. V. Makarov, V. A. Milichko, S. I. Kudryashov, A. E. Krasnov, and P. A. Belov, “Nonlinear transient dynamics of photoexcited resonant silicon nanostructures,” ACS Photonics 3(9), 1546–1551 (2016).
[Crossref]

Kuthirummal, N.

S. Sivaramakrishnan, V. S. Muthukumar, S. Sivasankara Sai, K. Venkataramaniah, J. Reppert, A. M. Rao, M. Anija, R. Philip, and N. Kuthirummal, “Nonlinear optical scattering and absorption in bismuth nanorod suspensions,” Appl. Phys. Lett. 91(9), 093104 (2007).
[Crossref]

Kuznetsov, A. I.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Kuznetsov, P. I.

P. I. Kuznetsov, G. G. Yakushcheva, B. S. Shchamkhalova, V. A. Luzanov, A. G. Temiryazev, and V. A. Jitov, “Metalorganic vapor phase epitaxy of ternary rhomboedral (Bi1-xSbx)2Se3 solid solutions,” J. Cryst. Growth 433, 114–121 (2016).
[Crossref]

Lalisse, A.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119(45), 25518–25528 (2015).
[Crossref]

Langhammer, C.

Z. Pirzadeh, T. Pakizeh, V. Miljkovic, C. Langhammer, and A. Dmitriev, “Plasmon-interband coupling in nickel nanoantennas,” ACS Photonics 1(3), 158–162 (2014).
[Crossref]

Lautenschlager, P.

P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,” Phys. Rev. B Condens. Matter 36(9), 4821–4830 (1987).
[Crossref] [PubMed]

Lee, H.

J.-W. Park, M. Song, S. Yoon, H. Lim, D.S. Jeong, B.-K. Cheong, and H. Lee, “Stuctural and optical properties of phase-change amorphous and crystalline Ge1-xTex (0 < x < 1) thin films,” Phys. Status Solidi., A Appl. Mater. Sci. 210(2), 265–275 (2013).
[Crossref]

Leitenstorfer, A.

M. P. Fischer, C. Schmidt, E. Sakat, J. Stock, A. Samarelli, J. Frigerio, M. Ortolani, D. J. Paul, G. Isella, A. Leitenstorfer, P. Biagioni, and D. Brida, “Optical activation of germanium plasmonic antennas in the mid-infrared,” Phys. Rev. Lett. 117(4), 047401 (2016).
[Crossref] [PubMed]

Lemonnier, J. C.

G. Jezequel, J. C. Lemonnier, and J. Thomas, “Optical properties of gallium films between 2 and 15 eV,” J. Phys. F Met. Phys. 7(8), 1613–1622 (1977).
[Crossref]

J. C. Lemonnier, J. Thomas, and S. Robin, “Optical properties and electronic structure of antimony in the energy range 2.5 – 14.5 eV,” J. Phys. C Solid State Phys. 6(21), 3205–3212 (1973).
[Crossref]

Lencer, D.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Lewi, T.

T. Lewi, P. P. Iyer, N. A. Butakov, A. A. Mikhailovsky, and J. A. Schuller, “Widely tunable infrared antennas using free carrier refraction,” Nano Lett. 15(12), 8188–8193 (2015).
[Crossref] [PubMed]

Li, C.

W. Fan, C. Li, H. Bai, Y. Zhao, B. Luo, Y. Li, Y. Ge, W. Shi, and H. Li, “An in situ photoelectroreduction approach to fabricate Bi/BiOCl heterostructure photocathodes: understanding the role of Bi metal for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 5(10), 4894–4903 (2017).
[Crossref]

Li, H.

W. Fan, C. Li, H. Bai, Y. Zhao, B. Luo, Y. Li, Y. Ge, W. Shi, and H. Li, “An in situ photoelectroreduction approach to fabricate Bi/BiOCl heterostructure photocathodes: understanding the role of Bi metal for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 5(10), 4894–4903 (2017).
[Crossref]

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z. X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4(4), 281–286 (2012).
[Crossref] [PubMed]

Li, L.

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: stepping into the spotlight,” Am. Ceram. Soc. Bull. 94(4), 24–29 (2015).

Y. Zhou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref] [PubMed]

Li, Y.

W. Fan, C. Li, H. Bai, Y. Zhao, B. Luo, Y. Li, Y. Ge, W. Shi, and H. Li, “An in situ photoelectroreduction approach to fabricate Bi/BiOCl heterostructure photocathodes: understanding the role of Bi metal for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 5(10), 4894–4903 (2017).
[Crossref]

Liang, C.-T.

S. Y. Huang, T. J. Kim, Y. W. Jung, N. S. Barange, H. G. Park, J. Y. Kim, Y. R. Kang, Y. D. Kim, S. H. Shin, J. D. Song, C.-T. Liang, and Y.-C. Chang, “Dielectric function and critical points of AlP determined by spectroscopic ellipsometry,” J. Alloys Compd. 587, 361–364 (2014).
[Crossref]

Liljenvall, H. G.

H. G. Liljenvall, A. G. Mathewson, and H. P. Myers, “The optical properties of lead in the energy range 0.6-6 eV,” Philos. Mag. 22(176), 243–253 (1970).
[Crossref]

Lim, H.

J.-W. Park, M. Song, S. Yoon, H. Lim, D.S. Jeong, B.-K. Cheong, and H. Lee, “Stuctural and optical properties of phase-change amorphous and crystalline Ge1-xTex (0 < x < 1) thin films,” Phys. Status Solidi., A Appl. Mater. Sci. 210(2), 265–275 (2013).
[Crossref]

Lin, H.

M. Zhao, M. Bosman, M. Danesh, M. Zeng, P. Song, Y. Darma, A. Rusydi, H. Lin, C.-W. Qiu, and K. P. Loh, “Visible surface plasmon modes in single Bi2Te3 nanoplate,” Nano Lett. 15(12), 8331–8335 (2015).
[Crossref] [PubMed]

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: stepping into the spotlight,” Am. Ceram. Soc. Bull. 94(4), 24–29 (2015).

Y. Zhou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

A. Vargas, S. Basak, F. Liu, B. Wang, E. Panaitescu, H. Lin, R. Markiewicz, A. Bansil, and S. Kar, “The changing colors of a quantum-confined topological insulator,” ACS Nano 8(2), 1222–1230 (2014).
[Crossref] [PubMed]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref] [PubMed]

Lin, J.

N. Mao, J. Tang, L. Xie, J. Wu, B. Han, J. Lin, S. Deng, W. Ji, H. Xu, K. Liu, L. Tong, and J. Zhang, “Optical anisotropy of black phosphorus in the visible regime,” J. Am. Chem. Soc. 138(1), 300–305 (2016).
[Crossref] [PubMed]

Lin, P. T.

Lin, Y. M.

M. R. Black, P. L. Hagelstein, S. B. Cronin, Y. M. Lin, and M. S. Dresselhaus, “Optical absorption from an indirect transition in bismuth nanowires,” Phys. Rev. B 68(23), 235417 (2003).
[Crossref]

M. R. Black, Y. M. Lin, S. B. Cronin, O. Rabin, and M. S. Dresselhaus, “Infrared absorption in bismuth nanowires resulting from quantum confinement,” Phys. Rev. B 65(19), 195417 (2002).
[Crossref]

Lin, Z.

J. Yan, Z. Lin, C. Ma, Z. Zheng, P. Liu, and G. Yang, “Plasmon resonances in semiconductor materials for detecting photocatalysis at the single-particle level,” Nanoscale 8(32), 15001–15007 (2016).
[Crossref] [PubMed]

Lindenberg, A. M.

A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonance with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

Litchinitser, N. M.

J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by nature: from ultraviolet to terahertz,” ACS Photonics 1(4), 293–303 (2014).
[Crossref]

Litman, A.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref] [PubMed]

Liu, F.

A. Vargas, F. Liu, and S. Kar, “Giant enhancement of light emission from nanoscale Bi2Se3,” Appl. Phys. Lett. 106(24), 243107 (2015).
[Crossref]

A. Vargas, S. Basak, F. Liu, B. Wang, E. Panaitescu, H. Lin, R. Markiewicz, A. Bansil, and S. Kar, “The changing colors of a quantum-confined topological insulator,” ACS Nano 8(2), 1222–1230 (2014).
[Crossref] [PubMed]

Liu, K.

N. Mao, J. Tang, L. Xie, J. Wu, B. Han, J. Lin, S. Deng, W. Ji, H. Xu, K. Liu, L. Tong, and J. Zhang, “Optical anisotropy of black phosphorus in the visible regime,” J. Am. Chem. Soc. 138(1), 300–305 (2016).
[Crossref] [PubMed]

Liu, P.

J. Yan, Z. Lin, C. Ma, Z. Zheng, P. Liu, and G. Yang, “Plasmon resonances in semiconductor materials for detecting photocatalysis at the single-particle level,” Nanoscale 8(32), 15001–15007 (2016).
[Crossref] [PubMed]

Liu, X.

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29(14), 1605886 (2017).
[Crossref] [PubMed]

Liu, Z.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z. X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4(4), 281–286 (2012).
[Crossref] [PubMed]

Logothetidis, S.

S. Logothetidis and H. M. Polatoglou, “Ellipsometric studies of the dielectric function of SnSe and a simple model of the electronic structure and the bonds of the orthorhombic IV-VI compounds,” Phys. Rev. B 36(14), 7491–7499 (1987).
[Crossref]

Loh, K. P.

M. Zhao, J. Zhang, N. Gao, P. Song, M. Bosman, B. Peng, B. Sun, C.-W. Qiu, Q.-H. Xu, Q. Bao, and K. P. Loh, “Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications,” Adv. Mater. 28(16), 3138–3144 (2016).
[Crossref] [PubMed]

M. Zhao, M. Bosman, M. Danesh, M. Zeng, P. Song, Y. Darma, A. Rusydi, H. Lin, C.-W. Qiu, and K. P. Loh, “Visible surface plasmon modes in single Bi2Te3 nanoplate,” Nano Lett. 15(12), 8331–8335 (2015).
[Crossref] [PubMed]

López, C.

Losurdo, M.

M. Losurdo, A. Suvorova, S. Rubanov, K. Hingerl, and A. S. Brown, “Thermally stable coexistence of liquid and solid phases in gallium nanoparticles,” Nat. Mater. 15(9), 995–1002 (2016).
[Crossref] [PubMed]

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

F. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet-visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

P. C. Wu, M. Losurdo, T.-H. Kim, M. Giangregorio, G. Bruno, H. O. Everitt, and A. S. Brown, “Plasmonic gallium nanoparticles on polar semiconductors: interplay between nanoparticle wetting, localized surface plasmon dynamics, and interface charge,” Langmuir 25(2), 924–930 (2009).
[Crossref] [PubMed]

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[Crossref] [PubMed]

Lubin, S. M.

S. R. C. Vivekchand, C. J. Engel, S. M. Lubin, M. G. Blaber, W. Zhou, J. Y. Suh, G. C. Schatz, and T. W. Odom, “Liquid plasmonics: manipulating surface plasmon polaritons via phase transitions,” Nano Lett. 12(8), 4324–4328 (2012).
[Crossref] [PubMed]

Luk’yanchuk, B.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Luo, B.

W. Fan, C. Li, H. Bai, Y. Zhao, B. Luo, Y. Li, Y. Ge, W. Shi, and H. Li, “An in situ photoelectroreduction approach to fabricate Bi/BiOCl heterostructure photocathodes: understanding the role of Bi metal for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 5(10), 4894–4903 (2017).
[Crossref]

Luo, W.

J. J. Cha, K. J. Koski, K. C. Y. Huang, K. X. Wang, W. Luo, D. Kong, Z. Yu, S. Fan, M. L. Brongersma, and Y. Cui, “Two-dimensional chalcogenide nanoplates as tunable metamaterials via chemical intercalation,” Nano Lett. 13(12), 5913–5918 (2013).
[Crossref] [PubMed]

Luther, J. M.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

Luzanov, V. A.

P. I. Kuznetsov, G. G. Yakushcheva, B. S. Shchamkhalova, V. A. Luzanov, A. G. Temiryazev, and V. A. Jitov, “Metalorganic vapor phase epitaxy of ternary rhomboedral (Bi1-xSbx)2Se3 solid solutions,” J. Cryst. Growth 433, 114–121 (2016).
[Crossref]

Ma, C.

J. Yan, Z. Lin, C. Ma, Z. Zheng, P. Liu, and G. Yang, “Plasmon resonances in semiconductor materials for detecting photocatalysis at the single-particle level,” Nanoscale 8(32), 15001–15007 (2016).
[Crossref] [PubMed]

MacDonald, F. F.

A. Karvounis, B. Gholipour, F. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

MacDonald, K. F.

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photonics Rev. 4(4), 562–567 (2010).
[Crossref]

B. F. Soares, K. F. MacDonald, V. A. Fedotov, and N. I. Zheludev, “Light-induced switching between structural forms with different optical properties in a single gallium nanoparticulate,” Nano Lett. 5(10), 2104–2107 (2005).
[Crossref] [PubMed]

Makarov, S.

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15(9), 6187–6192 (2015).
[Crossref] [PubMed]

Makarov, S. V.

D. G. Baranov, S. V. Makarov, V. A. Milichko, S. I. Kudryashov, A. E. Krasnov, and P. A. Belov, “Nonlinear transient dynamics of photoexcited resonant silicon nanostructures,” ACS Photonics 3(9), 1546–1551 (2016).
[Crossref]

Mao, N.

N. Mao, J. Tang, L. Xie, J. Wu, B. Han, J. Lin, S. Deng, W. Ji, H. Xu, K. Liu, L. Tong, and J. Zhang, “Optical anisotropy of black phosphorus in the visible regime,” J. Am. Chem. Soc. 138(1), 300–305 (2016).
[Crossref] [PubMed]

Markiewicz, R.

A. Vargas, S. Basak, F. Liu, B. Wang, E. Panaitescu, H. Lin, R. Markiewicz, A. Bansil, and S. Kar, “The changing colors of a quantum-confined topological insulator,” ACS Nano 8(2), 1222–1230 (2014).
[Crossref] [PubMed]

Mascher, P.

J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
[Crossref]

Mathewson, A. G.

H. G. Liljenvall, A. G. Mathewson, and H. P. Myers, “The optical properties of lead in the energy range 0.6-6 eV,” Philos. Mag. 22(176), 243–253 (1970).
[Crossref]

McMahon, J. M.

J. M. McMahon, G. C. Schatz, and S. K. Gray, “Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys. 15(15), 5415–5423 (2013).
[Crossref] [PubMed]

Mehdi, G.

J. W. Cleary, G. Mehdi, R. E. Peale, W. R. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 767306, 767306 (2010).
[Crossref]

Meyer, F.

Michel, A.-K. U.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonance with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

Mikhailovsky, A. A.

T. Lewi, P. P. Iyer, N. A. Butakov, A. A. Mikhailovsky, and J. A. Schuller, “Widely tunable infrared antennas using free carrier refraction,” Nano Lett. 15(12), 8188–8193 (2015).
[Crossref] [PubMed]

Milichko, V.

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15(9), 6187–6192 (2015).
[Crossref] [PubMed]

Milichko, V. A.

D. G. Baranov, S. V. Makarov, V. A. Milichko, S. I. Kudryashov, A. E. Krasnov, and P. A. Belov, “Nonlinear transient dynamics of photoexcited resonant silicon nanostructures,” ACS Photonics 3(9), 1546–1551 (2016).
[Crossref]

Miljkovic, V.

Z. Pirzadeh, T. Pakizeh, V. Miljkovic, C. Langhammer, and A. Dmitriev, “Plasmon-interband coupling in nickel nanoantennas,” ACS Photonics 1(3), 158–162 (2014).
[Crossref]

Miroshnichenko, A. E.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Mitra, S. S.

A. Vaidyanathan, Y. F. Tsay, and S. S. Mitra, “Electronic structure and optical properties of rhomboedral arsenic and their variations in the internal displacement parameter,” Phys. Status Solidi92(1), 73–81 (1979) (b).
[Crossref]

Moreel, L.

Y. Zhou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

Moreno, F.

Y. Gutierrez, D. Ortiz, J. M. Sanz, J. M. Saiz, F. Gonzalez, H. O. Everitt, and F. Moreno, “How an oxide shell affects the ultraviolet plasmonic behavior of Ga, Mg, and Al nanostructures,” Opt. Express 24(18), 20621–20631 (2016).
[Crossref] [PubMed]

F. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet-visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref] [PubMed]

R. Alcaraz de la Osa, J. M. Sanz, J. M. Saiz, F. González, and F. Moreno, “Quantum optical response of metallic nanoparticles and dimers,” Opt. Lett. 37(23), 5015–5017 (2012).
[Crossref] [PubMed]

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T.-H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

R. Gómez-Medina, B. Garcia-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy and optical forces,” J. Nanophotonics 5(1), 053512 (2011).
[Crossref]

Morita, N.

N. Morita and A. Yamamoto, “Optical and electrical properties of boron,” Jpn. J. Appl. Phys. 14(6), 825–831 (1975).
[Crossref]

Mozharov, A.

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15(9), 6187–6192 (2015).
[Crossref] [PubMed]

Mukhin, I.

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15(9), 6187–6192 (2015).
[Crossref] [PubMed]

Murakowski, M.

Musgraves, D.

Y. Zhou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

Musgraves, J. D.

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: stepping into the spotlight,” Am. Ceram. Soc. Bull. 94(4), 24–29 (2015).

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref] [PubMed]

Muthukumar, V. S.

S. Sivaramakrishnan, V. S. Muthukumar, S. Sivasankara Sai, K. Venkataramaniah, J. Reppert, A. M. Rao, M. Anija, R. Philip, and N. Kuthirummal, “Nonlinear optical scattering and absorption in bismuth nanorod suspensions,” Appl. Phys. Lett. 91(9), 093104 (2007).
[Crossref]

Myers, H. P.

H. G. Liljenvall, A. G. Mathewson, and H. P. Myers, “The optical properties of lead in the energy range 0.6-6 eV,” Philos. Mag. 22(176), 243–253 (1970).
[Crossref]

Nader, N.

F. Khalilzadeh-Rezaie, C. W. Smith, J. Nath, N. Nader, M. Shahzad, J. W. Cleary, I. Avrutsky, and R. E. Peale, “Infrared surface polaritons on bismuth,” J. Nanophotonics 9(1), 093792 (2015).
[Crossref]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nath, J.

F. Khalilzadeh-Rezaie, C. W. Smith, J. Nath, N. Nader, M. Shahzad, J. W. Cleary, I. Avrutsky, and R. E. Peale, “Infrared surface polaritons on bismuth,” J. Nanophotonics 9(1), 093792 (2015).
[Crossref]

Neubrech, F.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Nieto-Vesperinas, M.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref] [PubMed]

R. Gómez-Medina, B. Garcia-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy and optical forces,” J. Nanophotonics 5(1), 053512 (2011).
[Crossref]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref] [PubMed]

Nordlander, P.

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

Novak, S.

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: stepping into the spotlight,” Am. Ceram. Soc. Bull. 94(4), 24–29 (2015).

Novikov, S. M.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

O’Brien, B.

A. Green, S. Dey, Y. Q. An, B. O’Brien, S. O’Mullane, B. Thiel, and A. C. Diebold, “Surface oxidation of the topological insulator Bi2Se3,” J. Vac. Sci. Technol. A 34(6), 061403 (2016).
[Crossref]

O’Mullane, S.

A. Green, S. Dey, Y. Q. An, B. O’Brien, S. O’Mullane, B. Thiel, and A. C. Diebold, “Surface oxidation of the topological insulator Bi2Se3,” J. Vac. Sci. Technol. A 34(6), 061403 (2016).
[Crossref]

Odom, T. W.

S. R. C. Vivekchand, C. J. Engel, S. M. Lubin, M. G. Blaber, W. Zhou, J. Y. Suh, G. C. Schatz, and T. W. Odom, “Liquid plasmonics: manipulating surface plasmon polaritons via phase transitions,” Nano Lett. 12(8), 4324–4328 (2012).
[Crossref] [PubMed]

Ogbuu, O.

Y. Zhou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

Oladeji, I.

J. W. Cleary, G. Mehdi, R. E. Peale, W. R. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 767306, 767306 (2010).
[Crossref]

Ortiz, D.

Y. Gutierrez, D. Ortiz, J. M. Sanz, J. M. Saiz, F. Gonzalez, H. O. Everitt, and F. Moreno, “How an oxide shell affects the ultraviolet plasmonic behavior of Ga, Mg, and Al nanostructures,” Opt. Express 24(18), 20621–20631 (2016).
[Crossref] [PubMed]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Ortolani, M.

M. P. Fischer, C. Schmidt, E. Sakat, J. Stock, A. Samarelli, J. Frigerio, M. Ortolani, D. J. Paul, G. Isella, A. Leitenstorfer, P. Biagioni, and D. Brida, “Optical activation of germanium plasmonic antennas in the mid-infrared,” Phys. Rev. Lett. 117(4), 047401 (2016).
[Crossref] [PubMed]

Ou, J. Y.

J. Y. Ou, J. K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2,” Nat. Commun. 5, 5139 (2014).
[Crossref] [PubMed]

Ou, Y.

W. S. Whitney, V. W. Brar, Y. Ou, Y. Shao, A. R. Davoyan, D. N. Basov, K. He, Q.-K. Xue, and H. A. Atwater, “Gate-variable mid-infrared optical transitions in a (Bi1-xSbx)2Te3 topological insulator,” Nano Lett. 17(1), 255–260 (2017).
[Crossref] [PubMed]

Ozsoy-Keskinbora, C.

N. Talebi, C. Ozsoy-Keskinbora, H. M. Benia, K. Kern, C. T. Koch, and P. A. van Aken, “Wedge Dyakonov waves and Dyakonov plasmons in topological insulator of Bi2Se3 probed by electron beams,” ACS Nano 10(7), 6988–6994 (2016).
[Crossref] [PubMed]

Pakizeh, T.

Z. Pirzadeh, T. Pakizeh, V. Miljkovic, C. Langhammer, and A. Dmitriev, “Plasmon-interband coupling in nickel nanoantennas,” ACS Photonics 1(3), 158–162 (2014).
[Crossref]

T. Pakizeh, “Optical absorption of nanoparticles described by an electronic local interband transition,” J. Opt. 15(2), 025001 (2013).
[Crossref]

T. Pakizeh, “Optical absorption of plasmonic nanoparticles in presence of a local interband transition,” J. Phys. Chem. C 115(44), 21826–21831 (2011).
[Crossref]

Panaitescu, E.

A. Vargas, S. Basak, F. Liu, B. Wang, E. Panaitescu, H. Lin, R. Markiewicz, A. Bansil, and S. Kar, “The changing colors of a quantum-confined topological insulator,” ACS Nano 8(2), 1222–1230 (2014).
[Crossref] [PubMed]

Park, H. G.

S. Y. Huang, T. J. Kim, Y. W. Jung, N. S. Barange, H. G. Park, J. Y. Kim, Y. R. Kang, Y. D. Kim, S. H. Shin, J. D. Song, C.-T. Liang, and Y.-C. Chang, “Dielectric function and critical points of AlP determined by spectroscopic ellipsometry,” J. Alloys Compd. 587, 361–364 (2014).
[Crossref]

Park, J.-W.

J.-W. Park, M. Song, S. Yoon, H. Lim, D.S. Jeong, B.-K. Cheong, and H. Lee, “Stuctural and optical properties of phase-change amorphous and crystalline Ge1-xTex (0 < x < 1) thin films,” Phys. Status Solidi., A Appl. Mater. Sci. 210(2), 265–275 (2013).
[Crossref]

Park, S. Y.

S. Y. Park, R. A. Weeks, and R. A. Zuhr, “Optical absorption by colloidal precipitates in bismuth implanted fused silica: annealing behavior,” Appl. Phys. Lett. 69, 3175 (1996).

Paul, D. J.

M. P. Fischer, C. Schmidt, E. Sakat, J. Stock, A. Samarelli, J. Frigerio, M. Ortolani, D. J. Paul, G. Isella, A. Leitenstorfer, P. Biagioni, and D. Brida, “Optical activation of germanium plasmonic antennas in the mid-infrared,” Phys. Rev. Lett. 117(4), 047401 (2016).
[Crossref] [PubMed]

Pawlak, D. A.

Peale, R. E.

F. Khalilzadeh-Rezaie, C. W. Smith, J. Nath, N. Nader, M. Shahzad, J. W. Cleary, I. Avrutsky, and R. E. Peale, “Infrared surface polaritons on bismuth,” J. Nanophotonics 9(1), 093792 (2015).
[Crossref]

J. W. Cleary, G. Mehdi, R. E. Peale, W. R. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 767306, 767306 (2010).
[Crossref]

Peng, B.

M. Zhao, J. Zhang, N. Gao, P. Song, M. Bosman, B. Peng, B. Sun, C.-W. Qiu, Q.-H. Xu, Q. Bao, and K. P. Loh, “Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications,” Adv. Mater. 28(16), 3138–3144 (2016).
[Crossref] [PubMed]

Peng, H.

Z. Wang, C. Jiang, R. Huang, H. Peng, and X. Tang, “Investigation of the optical and photocatalytic properties of bismuth nanospheres prepared by a facile thermolysis method,” J. Phys. Chem. C 118(2), 1155–1160 (2014).
[Crossref]

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z. X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4(4), 281–286 (2012).
[Crossref] [PubMed]

Peng, W.

J. Guozhi, W. Peng, Z. Yanbang, and C. Kai, “Localized surface plasmon enhanced photothermal conversion in Bi2Se3 topological insulator nanoflowers,” Sci. Rep. 6(1), 25884 (2016).
[Crossref] [PubMed]

Philip, R.

S. Sivaramakrishnan, V. S. Muthukumar, S. Sivasankara Sai, K. Venkataramaniah, J. Reppert, A. M. Rao, M. Anija, R. Philip, and N. Kuthirummal, “Nonlinear optical scattering and absorption in bismuth nanorod suspensions,” Appl. Phys. Lett. 91(9), 093104 (2007).
[Crossref]

Pillai, S.

Y. Jiang, S. Pillai, and M. A. Green, “Realistic silver optical constants for plasmonics,” Sci. Rep. 6(1), 30605 (2016).
[Crossref] [PubMed]

Pirzadeh, Z.

Z. Pirzadeh, T. Pakizeh, V. Miljkovic, C. Langhammer, and A. Dmitriev, “Plasmon-interband coupling in nickel nanoantennas,” ACS Photonics 1(3), 158–162 (2014).
[Crossref]

Plain, J.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119(45), 25518–25528 (2015).
[Crossref]

Polatoglou, H. M.

S. Logothetidis and H. M. Polatoglou, “Ellipsometric studies of the dielectric function of SnSe and a simple model of the electronic structure and the bonds of the orthorhombic IV-VI compounds,” Phys. Rev. B 36(14), 7491–7499 (1987).
[Crossref]

Pollini, I.

G. Jézéquel, J. Thomas, and I. Pollini, “Optical properties of thallium films studied with synchrotron radiation,” Phys. Rev. B Condens. Matter 37(15), 8639–8646 (1988).
[Crossref] [PubMed]

Polman, A.

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

Prather, D.

Qiu, C.-W.

M. Zhao, J. Zhang, N. Gao, P. Song, M. Bosman, B. Peng, B. Sun, C.-W. Qiu, Q.-H. Xu, Q. Bao, and K. P. Loh, “Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications,” Adv. Mater. 28(16), 3138–3144 (2016).
[Crossref] [PubMed]

M. Zhao, M. Bosman, M. Danesh, M. Zeng, P. Song, Y. Darma, A. Rusydi, H. Lin, C.-W. Qiu, and K. P. Loh, “Visible surface plasmon modes in single Bi2Te3 nanoplate,” Nano Lett. 15(12), 8331–8335 (2015).
[Crossref] [PubMed]

Qiu, J.

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29(14), 1605886 (2017).
[Crossref] [PubMed]

Rabin, O.

M. R. Black, Y. M. Lin, S. B. Cronin, O. Rabin, and M. S. Dresselhaus, “Infrared absorption in bismuth nanowires resulting from quantum confinement,” Phys. Rev. B 65(19), 195417 (2002).
[Crossref]

Rao, A. M.

S. Sivaramakrishnan, V. S. Muthukumar, S. Sivasankara Sai, K. Venkataramaniah, J. Reppert, A. M. Rao, M. Anija, R. Philip, and N. Kuthirummal, “Nonlinear optical scattering and absorption in bismuth nanorod suspensions,” Appl. Phys. Lett. 91(9), 093104 (2007).
[Crossref]

Rebollar, E.

J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
[Crossref]

Reinhardt, C.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Reppert, J.

S. Sivaramakrishnan, V. S. Muthukumar, S. Sivasankara Sai, K. Venkataramaniah, J. Reppert, A. M. Rao, M. Anija, R. Philip, and N. Kuthirummal, “Nonlinear optical scattering and absorption in bismuth nanorod suspensions,” Appl. Phys. Lett. 91(9), 093104 (2007).
[Crossref]

Richardson, K.

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: stepping into the spotlight,” Am. Ceram. Soc. Bull. 94(4), 24–29 (2015).

Y. Zhou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref] [PubMed]

Roberts, G. G.

S. Tutihasi, G. G. Roberts, R. C. Keezer, and R. E. Drews, “Optical properties of tellurium in the fundamental absorption region,” Phys. Rev. 177(3), 1143–1150 (1969).
[Crossref]

Robertson, J.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Robin, S.

J. C. Lemonnier, J. Thomas, and S. Robin, “Optical properties and electronic structure of antimony in the energy range 2.5 – 14.5 eV,” J. Phys. C Solid State Phys. 6(21), 3205–3212 (1973).
[Crossref]

Rommel, M.

S. De Zuani, M. Rommel, B. Gompf, A. Berrier, J. Weis, and M. Dressel, “Suppressed percolation in nearly closed gold films,” ACS Photonics 3(6), 1109–1115 (2016).
[Crossref]

Ross, M. B.

M. B. Ross and G. C. Schatz, “Aluminium and indium plasmonic nanoantennas in the ultraviolet,” J. Phys. Chem. C 118(23), 12506–12514 (2014).
[Crossref]

Rubanov, S.

M. Losurdo, A. Suvorova, S. Rubanov, K. Hingerl, and A. S. Brown, “Thermally stable coexistence of liquid and solid phases in gallium nanoparticles,” Nat. Mater. 15(9), 995–1002 (2016).
[Crossref] [PubMed]

Rusydi, A.

M. Zhao, M. Bosman, M. Danesh, M. Zeng, P. Song, Y. Darma, A. Rusydi, H. Lin, C.-W. Qiu, and K. P. Loh, “Visible surface plasmon modes in single Bi2Te3 nanoplate,” Nano Lett. 15(12), 8331–8335 (2015).
[Crossref] [PubMed]

Ryberg, R.

O. Hunderi and R. Ryberg, “Band structure and optical properties of gallium,” J. Phys. F Met. Phys. 4(11), 2084–2095 (1974).
[Crossref]

Sáenz, J. J.

B. García-Cámara, R. Gómez-Medina, J. J. Sáenz, and B. Sepúlveda, “Sensing with magnetic dipolar resonances in semiconductor nanospheres,” Opt. Express 21(20), 23007–23020 (2013).
[Crossref] [PubMed]

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref] [PubMed]

R. Gómez-Medina, B. Garcia-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy and optical forces,” J. Nanophotonics 5(1), 053512 (2011).
[Crossref]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref] [PubMed]

Sagan, C.

R. Sasson, R. Wright, E. T. Arakawa, B. N. Khare, and C. Sagan, “Optical properties of solid and liquid sulfur at visible and infrared wavelengths,” Icarus 64(3), 368–374 (1985).
[Crossref]

Saiz, J. M.

Sakat, E.

M. P. Fischer, C. Schmidt, E. Sakat, J. Stock, A. Samarelli, J. Frigerio, M. Ortolani, D. J. Paul, G. Isella, A. Leitenstorfer, P. Biagioni, and D. Brida, “Optical activation of germanium plasmonic antennas in the mid-infrared,” Phys. Rev. Lett. 117(4), 047401 (2016).
[Crossref] [PubMed]

Samarelli, A.

M. P. Fischer, C. Schmidt, E. Sakat, J. Stock, A. Samarelli, J. Frigerio, M. Ortolani, D. J. Paul, G. Isella, A. Leitenstorfer, P. Biagioni, and D. Brida, “Optical activation of germanium plasmonic antennas in the mid-infrared,” Phys. Rev. Lett. 117(4), 047401 (2016).
[Crossref] [PubMed]

Sanz, J. M.

Y. Gutierrez, D. Ortiz, J. M. Sanz, J. M. Saiz, F. Gonzalez, H. O. Everitt, and F. Moreno, “How an oxide shell affects the ultraviolet plasmonic behavior of Ga, Mg, and Al nanostructures,” Opt. Express 24(18), 20621–20631 (2016).
[Crossref] [PubMed]

F. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet-visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

R. Alcaraz de la Osa, J. M. Sanz, J. M. Saiz, F. González, and F. Moreno, “Quantum optical response of metallic nanoparticles and dimers,” Opt. Lett. 37(23), 5015–5017 (2012).
[Crossref] [PubMed]

Sargent, E. H.

E. H. Sargent, “Infrared quantum dots,” Adv. Mater. 17(5), 515–521 (2005).
[Crossref]

Sasson, R.

R. Sasson, R. Wright, E. T. Arakawa, B. N. Khare, and C. Sagan, “Optical properties of solid and liquid sulfur at visible and infrared wavelengths,” Icarus 64(3), 368–374 (1985).
[Crossref]

Schäferling, M.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Schatz, G. C.

M. B. Ross and G. C. Schatz, “Aluminium and indium plasmonic nanoantennas in the ultraviolet,” J. Phys. Chem. C 118(23), 12506–12514 (2014).
[Crossref]

J. M. McMahon, G. C. Schatz, and S. K. Gray, “Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys. 15(15), 5415–5423 (2013).
[Crossref] [PubMed]

S. R. C. Vivekchand, C. J. Engel, S. M. Lubin, M. G. Blaber, W. Zhou, J. Y. Suh, G. C. Schatz, and T. W. Odom, “Liquid plasmonics: manipulating surface plasmon polaritons via phase transitions,” Nano Lett. 12(8), 4324–4328 (2012).
[Crossref] [PubMed]

Scheffold, F.

Schmidt, C.

M. P. Fischer, C. Schmidt, E. Sakat, J. Stock, A. Samarelli, J. Frigerio, M. Ortolani, D. J. Paul, G. Isella, A. Leitenstorfer, P. Biagioni, and D. Brida, “Optical activation of germanium plasmonic antennas in the mid-infrared,” Phys. Rev. Lett. 117(4), 047401 (2016).
[Crossref] [PubMed]

Scholl, J. A.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

Schoolar, R. B.

J. N. Zemel, J. D. Jensen, and R. B. Schoolar, “Electrical and optical properties of epitaxial films of PbS, PbSe, PbTe, and SnTe,” Phys. Rev. 140(1), A330–A342 (1965).
[Crossref]

Schuller, J. A.

T. Lewi, P. P. Iyer, N. A. Butakov, A. A. Mikhailovsky, and J. A. Schuller, “Widely tunable infrared antennas using free carrier refraction,” Nano Lett. 15(12), 8188–8193 (2015).
[Crossref] [PubMed]

Sepúlveda, B.

Serna, R.

J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
[Crossref]

J. Toudert and R. Serna, “Ultraviolet-visible interband plasmonics with p-block elements,” Opt. Mat. Express 6(7), 2434–2447 (2016).

A. Cuadrado, J. Toudert, and R. Serna, “Polaritonic-to-plasmonic transition in bismuth nanospheres for high-contrast ultraviolet meta-filters,” IEEE Photonics J. 8, 1 (2016).
[Crossref]

M. Jiménez de Castro, F. Cabello, J. Toudert, R. Serna, and E. Haro-Poniatowski, “Potential of bismuth nanoparticles embedded in a glass matrix for spectral-selective thermos-optical devices,” Appl. Phys. Lett. 105(11), 113102 (2014).
[Crossref]

J. Toudert, R. Serna, and M. Jiménez de Castro, “Exploring the optical potential of nano-Bismuth: Tunable surface plasmon resonances in the near ultraviolet to near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[Crossref]

E. Haro-Poniatowski, R. Serna, M. Jiménez de Castro, A. Suárez-García, C. N. Afonso, and I. Vickridge, “Size-dependent thermo-optical properties of embedded Bi nanostructures,” Nanotechnology 19(48), 485708 (2008).
[Crossref] [PubMed]

Shahzad, M.

F. Khalilzadeh-Rezaie, C. W. Smith, J. Nath, N. Nader, M. Shahzad, J. W. Cleary, I. Avrutsky, and R. E. Peale, “Infrared surface polaritons on bismuth,” J. Nanophotonics 9(1), 093792 (2015).
[Crossref]

Shalaev, V. M.

N. Kinsey, A. A. Syed, D. Courtwright, C. DeVault, C. E. Bonner, V. I. Gavrilenko, V. M. Shalaev, D. J. Hagan, E. W. Van Stryland, and A. Boltasseva, “Effective third-order nonlinearities in metallic refractory titanium nitride thin films,” Opt. Mater. Express 5(11), 2395–2403 (2015).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Shao, J. M.

J. D. Yao, J. M. Shao, and G. W. Yang, “Ultra-broadband and high-responsive photodetectors based on bismuth film at room temperature,” Sci. Rep. 5(1), 12320 (2015).
[Crossref] [PubMed]

Shao, Y.

W. S. Whitney, V. W. Brar, Y. Ou, Y. Shao, A. R. Davoyan, D. N. Basov, K. He, Q.-K. Xue, and H. A. Atwater, “Gate-variable mid-infrared optical transitions in a (Bi1-xSbx)2Te3 topological insulator,” Nano Lett. 17(1), 255–260 (2017).
[Crossref] [PubMed]

Shchamkhalova, B. S.

P. I. Kuznetsov, G. G. Yakushcheva, B. S. Shchamkhalova, V. A. Luzanov, A. G. Temiryazev, and V. A. Jitov, “Metalorganic vapor phase epitaxy of ternary rhomboedral (Bi1-xSbx)2Se3 solid solutions,” J. Cryst. Growth 433, 114–121 (2016).
[Crossref]

Shen, Z. X.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z. X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4(4), 281–286 (2012).
[Crossref] [PubMed]

Shi, W.

W. Fan, C. Li, H. Bai, Y. Zhao, B. Luo, Y. Li, Y. Ge, W. Shi, and H. Li, “An in situ photoelectroreduction approach to fabricate Bi/BiOCl heterostructure photocathodes: understanding the role of Bi metal for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 5(10), 4894–4903 (2017).
[Crossref]

Shin, S. H.

S. Y. Huang, T. J. Kim, Y. W. Jung, N. S. Barange, H. G. Park, J. Y. Kim, Y. R. Kang, Y. D. Kim, S. H. Shin, J. D. Song, C.-T. Liang, and Y.-C. Chang, “Dielectric function and critical points of AlP determined by spectroscopic ellipsometry,” J. Alloys Compd. 587, 361–364 (2014).
[Crossref]

Shportko, K.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Singh, V.

Sivaramakrishnan, S.

S. Sivaramakrishnan, V. S. Muthukumar, S. Sivasankara Sai, K. Venkataramaniah, J. Reppert, A. M. Rao, M. Anija, R. Philip, and N. Kuthirummal, “Nonlinear optical scattering and absorption in bismuth nanorod suspensions,” Appl. Phys. Lett. 91(9), 093104 (2007).
[Crossref]

Sivasankara Sai, S.

S. Sivaramakrishnan, V. S. Muthukumar, S. Sivasankara Sai, K. Venkataramaniah, J. Reppert, A. M. Rao, M. Anija, R. Philip, and N. Kuthirummal, “Nonlinear optical scattering and absorption in bismuth nanorod suspensions,” Appl. Phys. Lett. 91(9), 093104 (2007).
[Crossref]

Smith, C.

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: stepping into the spotlight,” Am. Ceram. Soc. Bull. 94(4), 24–29 (2015).

Smith, C. W.

F. Khalilzadeh-Rezaie, C. W. Smith, J. Nath, N. Nader, M. Shahzad, J. W. Cleary, I. Avrutsky, and R. E. Peale, “Infrared surface polaritons on bismuth,” J. Nanophotonics 9(1), 093792 (2015).
[Crossref]

Smith, N. V.

R. Y. Koyama, N. V. Smith, and W. E. Spicer, “Optical properties of indium,” Phys. Rev. B 8(6), 2426–2432 (1973).
[Crossref]

So, J. K.

J. Y. Ou, J. K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2,” Nat. Commun. 5, 5139 (2014).
[Crossref] [PubMed]

Soares, B. F.

B. F. Soares, K. F. MacDonald, V. A. Fedotov, and N. I. Zheludev, “Light-induced switching between structural forms with different optical properties in a single gallium nanoparticulate,” Nano Lett. 5(10), 2104–2107 (2005).
[Crossref] [PubMed]

Soci, C.

A.M. Dubrovkin, G. Adamo, J. Yin, L. Wang, C. Soci, Q.J. Wang, and N.I. Zheludev, “Visible range plasmonic modes on topological insulator nanostructures,” Adv. Optical Mater. 5(3), 1600768 (2017).

Song, J. D.

S. Y. Huang, T. J. Kim, Y. W. Jung, N. S. Barange, H. G. Park, J. Y. Kim, Y. R. Kang, Y. D. Kim, S. H. Shin, J. D. Song, C.-T. Liang, and Y.-C. Chang, “Dielectric function and critical points of AlP determined by spectroscopic ellipsometry,” J. Alloys Compd. 587, 361–364 (2014).
[Crossref]

Song, M.

J.-W. Park, M. Song, S. Yoon, H. Lim, D.S. Jeong, B.-K. Cheong, and H. Lee, “Stuctural and optical properties of phase-change amorphous and crystalline Ge1-xTex (0 < x < 1) thin films,” Phys. Status Solidi., A Appl. Mater. Sci. 210(2), 265–275 (2013).
[Crossref]

Song, P.

M. Zhao, J. Zhang, N. Gao, P. Song, M. Bosman, B. Peng, B. Sun, C.-W. Qiu, Q.-H. Xu, Q. Bao, and K. P. Loh, “Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications,” Adv. Mater. 28(16), 3138–3144 (2016).
[Crossref] [PubMed]

M. Zhao, M. Bosman, M. Danesh, M. Zeng, P. Song, Y. Darma, A. Rusydi, H. Lin, C.-W. Qiu, and K. P. Loh, “Visible surface plasmon modes in single Bi2Te3 nanoplate,” Nano Lett. 15(12), 8331–8335 (2015).
[Crossref] [PubMed]

Spicer, W. E.

R. Y. Koyama, N. V. Smith, and W. E. Spicer, “Optical properties of indium,” Phys. Rev. B 8(6), 2426–2432 (1973).
[Crossref]

Springholz, G.

J. Humlicek, D. Hemzal, A. Dubroka, O. Caha, H. Steiner, G. Bauer, and G. Springholz, “Raman and interband optical spectra of epitaxial layers of the topological insulators Bi2Te3 and Bi2Se3 on BaF2 substrates,” Phys. Scr. T 162, 014007 (2014).
[Crossref]

Steiner, H.

J. Humlicek, D. Hemzal, A. Dubroka, O. Caha, H. Steiner, G. Bauer, and G. Springholz, “Raman and interband optical spectra of epitaxial layers of the topological insulators Bi2Te3 and Bi2Se3 on BaF2 substrates,” Phys. Scr. T 162, 014007 (2014).
[Crossref]

Stock, J.

M. P. Fischer, C. Schmidt, E. Sakat, J. Stock, A. Samarelli, J. Frigerio, M. Ortolani, D. J. Paul, G. Isella, A. Leitenstorfer, P. Biagioni, and D. Brida, “Optical activation of germanium plasmonic antennas in the mid-infrared,” Phys. Rev. Lett. 117(4), 047401 (2016).
[Crossref] [PubMed]

Suárez-García, A.

E. Haro-Poniatowski, R. Serna, M. Jiménez de Castro, A. Suárez-García, C. N. Afonso, and I. Vickridge, “Size-dependent thermo-optical properties of embedded Bi nanostructures,” Nanotechnology 19(48), 485708 (2008).
[Crossref] [PubMed]

Suárez-Lacalle, I.

R. Gómez-Medina, B. Garcia-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy and optical forces,” J. Nanophotonics 5(1), 053512 (2011).
[Crossref]

Suh, J. Y.

S. R. C. Vivekchand, C. J. Engel, S. M. Lubin, M. G. Blaber, W. Zhou, J. Y. Suh, G. C. Schatz, and T. W. Odom, “Liquid plasmonics: manipulating surface plasmon polaritons via phase transitions,” Nano Lett. 12(8), 4324–4328 (2012).
[Crossref] [PubMed]

Sulaev, A.

J. Y. Ou, J. K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2,” Nat. Commun. 5, 5139 (2014).
[Crossref] [PubMed]

Sun, B.

M. Zhao, J. Zhang, N. Gao, P. Song, M. Bosman, B. Peng, B. Sun, C.-W. Qiu, Q.-H. Xu, Q. Bao, and K. P. Loh, “Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications,” Adv. Mater. 28(16), 3138–3144 (2016).
[Crossref] [PubMed]

Sun, G.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y.-H. Chen, H.-C. Wang, T.-Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Lasers and Photon. News 10(6), 986–994 (2016).
[Crossref]

Sun, J.

J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by nature: from ultraviolet to terahertz,” ACS Photonics 1(4), 293–303 (2014).
[Crossref]

Sun, Y.

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
[Crossref] [PubMed]

Suvorova, A.

M. Losurdo, A. Suvorova, S. Rubanov, K. Hingerl, and A. S. Brown, “Thermally stable coexistence of liquid and solid phases in gallium nanoparticles,” Nat. Mater. 15(9), 995–1002 (2016).
[Crossref] [PubMed]

Suzuki, N.

N. Suzuki and S. Adachi, “Optical properties of SnTe,” Jpn. J. Appl. Phys. 34(11), 5977–5983 (1995).
[Crossref]

Syed, A. A.

Talebi, N.

N. Talebi, C. Ozsoy-Keskinbora, H. M. Benia, K. Kern, C. T. Koch, and P. A. van Aken, “Wedge Dyakonov waves and Dyakonov plasmons in topological insulator of Bi2Se3 probed by electron beams,” ACS Nano 10(7), 6988–6994 (2016).
[Crossref] [PubMed]

M. Esslinger, R. Vogelsgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Tang, J.

N. Mao, J. Tang, L. Xie, J. Wu, B. Han, J. Lin, S. Deng, W. Ji, H. Xu, K. Liu, L. Tong, and J. Zhang, “Optical anisotropy of black phosphorus in the visible regime,” J. Am. Chem. Soc. 138(1), 300–305 (2016).
[Crossref] [PubMed]

Tang, X.

Z. Wang, C. Jiang, R. Huang, H. Peng, and X. Tang, “Investigation of the optical and photocatalytic properties of bismuth nanospheres prepared by a facile thermolysis method,” J. Phys. Chem. C 118(2), 1155–1160 (2014).
[Crossref]

Taubner, T.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonance with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

Temiryazev, A. G.

P. I. Kuznetsov, G. G. Yakushcheva, B. S. Shchamkhalova, V. A. Luzanov, A. G. Temiryazev, and V. A. Jitov, “Metalorganic vapor phase epitaxy of ternary rhomboedral (Bi1-xSbx)2Se3 solid solutions,” J. Cryst. Growth 433, 114–121 (2016).
[Crossref]

Tessier, G.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119(45), 25518–25528 (2015).
[Crossref]

Thiel, B.

A. Green, S. Dey, Y. Q. An, B. O’Brien, S. O’Mullane, B. Thiel, and A. C. Diebold, “Surface oxidation of the topological insulator Bi2Se3,” J. Vac. Sci. Technol. A 34(6), 061403 (2016).
[Crossref]

Thomas, J.

G. Jézéquel, J. Thomas, and I. Pollini, “Optical properties of thallium films studied with synchrotron radiation,” Phys. Rev. B Condens. Matter 37(15), 8639–8646 (1988).
[Crossref] [PubMed]

G. Jezequel, J. C. Lemonnier, and J. Thomas, “Optical properties of gallium films between 2 and 15 eV,” J. Phys. F Met. Phys. 7(8), 1613–1622 (1977).
[Crossref]

J. C. Lemonnier, J. Thomas, and S. Robin, “Optical properties and electronic structure of antimony in the energy range 2.5 – 14.5 eV,” J. Phys. C Solid State Phys. 6(21), 3205–3212 (1973).
[Crossref]

Tittl, A.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Tong, L.

N. Mao, J. Tang, L. Xie, J. Wu, B. Han, J. Lin, S. Deng, W. Ji, H. Xu, K. Liu, L. Tong, and J. Zhang, “Optical anisotropy of black phosphorus in the visible regime,” J. Am. Chem. Soc. 138(1), 300–305 (2016).
[Crossref] [PubMed]

Toudert, J.

J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
[Crossref]

J. Toudert and R. Serna, “Ultraviolet-visible interband plasmonics with p-block elements,” Opt. Mat. Express 6(7), 2434–2447 (2016).

A. Cuadrado, J. Toudert, and R. Serna, “Polaritonic-to-plasmonic transition in bismuth nanospheres for high-contrast ultraviolet meta-filters,” IEEE Photonics J. 8, 1 (2016).
[Crossref]

M. Jiménez de Castro, F. Cabello, J. Toudert, R. Serna, and E. Haro-Poniatowski, “Potential of bismuth nanoparticles embedded in a glass matrix for spectral-selective thermos-optical devices,” Appl. Phys. Lett. 105(11), 113102 (2014).
[Crossref]

J. Toudert, “Spectroscopic ellipsometry for active nano- and meta- materials,” Nanotechnol. Rev. 3(3), 223–245 (2014).
[Crossref]

J. Toudert, R. Serna, and M. Jiménez de Castro, “Exploring the optical potential of nano-Bismuth: Tunable surface plasmon resonances in the near ultraviolet to near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[Crossref]

Tsai, D. P.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y.-H. Chen, H.-C. Wang, T.-Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Lasers and Photon. News 10(6), 986–994 (2016).
[Crossref]

Tsay, Y. F.

A. Vaidyanathan, Y. F. Tsay, and S. S. Mitra, “Electronic structure and optical properties of rhomboedral arsenic and their variations in the internal displacement parameter,” Phys. Status Solidi92(1), 73–81 (1979) (b).
[Crossref]

Tseng, M. L.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y.-H. Chen, H.-C. Wang, T.-Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Lasers and Photon. News 10(6), 986–994 (2016).
[Crossref]

Tuomi, T.

P. Bammes, R. Klucker, E. E. Koch, and T. Tuomi, “Anistropy of the dielectric constants of trigonal selenium and tellurium between 3 and 30 eV,” Phys. Status Solidi49(2), 561–570 (1972) (b).
[Crossref]

Tutihasi, S.

S. Tutihasi, G. G. Roberts, R. C. Keezer, and R. E. Drews, “Optical properties of tellurium in the fundamental absorption region,” Phys. Rev. 177(3), 1143–1150 (1969).
[Crossref]

S. Tutihasi and I. Chen, “Optical properties and band structure of trigonal selenium,” Phys. Rev. 158(3), 623–630 (1967).
[Crossref]

Vaidyanathan, A.

A. Vaidyanathan, Y. F. Tsay, and S. S. Mitra, “Electronic structure and optical properties of rhomboedral arsenic and their variations in the internal displacement parameter,” Phys. Status Solidi92(1), 73–81 (1979) (b).
[Crossref]

Vaillon, R.

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref] [PubMed]

van Aken, P. A.

N. Talebi, C. Ozsoy-Keskinbora, H. M. Benia, K. Kern, C. T. Koch, and P. A. van Aken, “Wedge Dyakonov waves and Dyakonov plasmons in topological insulator of Bi2Se3 probed by electron beams,” ACS Nano 10(7), 6988–6994 (2016).
[Crossref] [PubMed]

Van Stryland, E. W.

Vargas, A.

A. Vargas, F. Liu, and S. Kar, “Giant enhancement of light emission from nanoscale Bi2Se3,” Appl. Phys. Lett. 106(24), 243107 (2015).
[Crossref]

A. Vargas, S. Basak, F. Liu, B. Wang, E. Panaitescu, H. Lin, R. Markiewicz, A. Bansil, and S. Kar, “The changing colors of a quantum-confined topological insulator,” ACS Nano 8(2), 1222–1230 (2014).
[Crossref] [PubMed]

Venkataramaniah, K.

S. Sivaramakrishnan, V. S. Muthukumar, S. Sivasankara Sai, K. Venkataramaniah, J. Reppert, A. M. Rao, M. Anija, R. Philip, and N. Kuthirummal, “Nonlinear optical scattering and absorption in bismuth nanorod suspensions,” Appl. Phys. Lett. 91(9), 093104 (2007).
[Crossref]

Venkatasubramanian, R.

H. Cui, I. B. Bhat, and R. Venkatasubramanian, “Optical constants of Bi2Te3 and Sb2Te3 measured using spectroscopic ellipsometry,” J. Electron. Mater. 28(10), 1111–1114 (1999).
[Crossref]

Vickridge, I.

E. Haro-Poniatowski, R. Serna, M. Jiménez de Castro, A. Suárez-García, C. N. Afonso, and I. Vickridge, “Size-dependent thermo-optical properties of embedded Bi nanostructures,” Nanotechnology 19(48), 485708 (2008).
[Crossref] [PubMed]

Vidal, F.

M. Eddrief, F. Vidal, and B. Gallas, “Optical properties of Bi2Se3: from bulk to ultrathin films,” J. Phys. D Appl. Phys. 49(50), 505304 (2016).
[Crossref]

Videen, G.

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T.-H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

Vina, L.

P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,” Phys. Rev. B Condens. Matter 36(9), 4821–4830 (1987).
[Crossref] [PubMed]

Vivekchand, S. R. C.

S. R. C. Vivekchand, C. J. Engel, S. M. Lubin, M. G. Blaber, W. Zhou, J. Y. Suh, G. C. Schatz, and T. W. Odom, “Liquid plasmonics: manipulating surface plasmon polaritons via phase transitions,” Nano Lett. 12(8), 4324–4328 (2012).
[Crossref] [PubMed]

Vo-Dinh, T.

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[Crossref] [PubMed]

Vogelsgesang, R.

M. Esslinger, R. Vogelsgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Wang, B.

A. Vargas, S. Basak, F. Liu, B. Wang, E. Panaitescu, H. Lin, R. Markiewicz, A. Bansil, and S. Kar, “The changing colors of a quantum-confined topological insulator,” ACS Nano 8(2), 1222–1230 (2014).
[Crossref] [PubMed]

Wang, H.-C.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y.-H. Chen, H.-C. Wang, T.-Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Lasers and Photon. News 10(6), 986–994 (2016).
[Crossref]

Wang, K. X.

J. J. Cha, K. J. Koski, K. C. Y. Huang, K. X. Wang, W. Luo, D. Kong, Z. Yu, S. Fan, M. L. Brongersma, and Y. Cui, “Two-dimensional chalcogenide nanoplates as tunable metamaterials via chemical intercalation,” Nano Lett. 13(12), 5913–5918 (2013).
[Crossref] [PubMed]

Wang, L.

A.M. Dubrovkin, G. Adamo, J. Yin, L. Wang, C. Soci, Q.J. Wang, and N.I. Zheludev, “Visible range plasmonic modes on topological insulator nanostructures,” Adv. Optical Mater. 5(3), 1600768 (2017).

J. Y. Ou, J. K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2,” Nat. Commun. 5, 5139 (2014).
[Crossref] [PubMed]

Wang, Q.J.

A.M. Dubrovkin, G. Adamo, J. Yin, L. Wang, C. Soci, Q.J. Wang, and N.I. Zheludev, “Visible range plasmonic modes on topological insulator nanostructures,” Adv. Optical Mater. 5(3), 1600768 (2017).

Wang, Y. W.

Y. W. Wang, B. H. Hong, and K. S. Kim, “Size control of semimetal bismuth nanoparticles and the UV-visible and IR absorption spectra,” J. Phys. Chem. B 109(15), 7067–7072 (2005).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, C. Jiang, R. Huang, H. Peng, and X. Tang, “Investigation of the optical and photocatalytic properties of bismuth nanospheres prepared by a facile thermolysis method,” J. Phys. Chem. C 118(2), 1155–1160 (2014).
[Crossref]

Weeks, R. A.

S. Y. Park, R. A. Weeks, and R. A. Zuhr, “Optical absorption by colloidal precipitates in bismuth implanted fused silica: annealing behavior,” Appl. Phys. Lett. 69, 3175 (1996).

Weis, J.

S. De Zuani, M. Rommel, B. Gompf, A. Berrier, J. Weis, and M. Dressel, “Suppressed percolation in nearly closed gold films,” ACS Photonics 3(6), 1109–1115 (2016).
[Crossref]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Whitney, W. S.

W. S. Whitney, V. W. Brar, Y. Ou, Y. Shao, A. R. Davoyan, D. N. Basov, K. He, Q.-K. Xue, and H. A. Atwater, “Gate-variable mid-infrared optical transitions in a (Bi1-xSbx)2Te3 topological insulator,” Nano Lett. 17(1), 255–260 (2017).
[Crossref] [PubMed]

Woda, M.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Wojcik, J.

J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
[Crossref]

Wright, R.

R. Sasson, R. Wright, E. T. Arakawa, B. N. Khare, and C. Sagan, “Optical properties of solid and liquid sulfur at visible and infrared wavelengths,” Icarus 64(3), 368–374 (1985).
[Crossref]

Wu, D.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z. X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4(4), 281–286 (2012).
[Crossref] [PubMed]

Wu, H. J.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y.-H. Chen, H.-C. Wang, T.-Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Lasers and Photon. News 10(6), 986–994 (2016).
[Crossref]

Wu, J.

N. Mao, J. Tang, L. Xie, J. Wu, B. Han, J. Lin, S. Deng, W. Ji, H. Xu, K. Liu, L. Tong, and J. Zhang, “Optical anisotropy of black phosphorus in the visible regime,” J. Am. Chem. Soc. 138(1), 300–305 (2016).
[Crossref] [PubMed]

Wu, P. C.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y.-H. Chen, H.-C. Wang, T.-Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Lasers and Photon. News 10(6), 986–994 (2016).
[Crossref]

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T.-H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[Crossref] [PubMed]

P. C. Wu, M. Losurdo, T.-H. Kim, M. Giangregorio, G. Bruno, H. O. Everitt, and A. S. Brown, “Plasmonic gallium nanoparticles on polar semiconductors: interplay between nanoparticle wetting, localized surface plasmon dynamics, and interface charge,” Langmuir 25(2), 924–930 (2009).
[Crossref] [PubMed]

Wu, Z.

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
[Crossref] [PubMed]

Wuttig, M.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonance with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Xie, L.

N. Mao, J. Tang, L. Xie, J. Wu, B. Han, J. Lin, S. Deng, W. Ji, H. Xu, K. Liu, L. Tong, and J. Zhang, “Optical anisotropy of black phosphorus in the visible regime,” J. Am. Chem. Soc. 138(1), 300–305 (2016).
[Crossref] [PubMed]

Xiong, T.

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
[Crossref] [PubMed]

Xu, H.

N. Mao, J. Tang, L. Xie, J. Wu, B. Han, J. Lin, S. Deng, W. Ji, H. Xu, K. Liu, L. Tong, and J. Zhang, “Optical anisotropy of black phosphorus in the visible regime,” J. Am. Chem. Soc. 138(1), 300–305 (2016).
[Crossref] [PubMed]

Xu, Q.-H.

M. Zhao, J. Zhang, N. Gao, P. Song, M. Bosman, B. Peng, B. Sun, C.-W. Qiu, Q.-H. Xu, Q. Bao, and K. P. Loh, “Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications,” Adv. Mater. 28(16), 3138–3144 (2016).
[Crossref] [PubMed]

Xue, Q.-K.

W. S. Whitney, V. W. Brar, Y. Ou, Y. Shao, A. R. Davoyan, D. N. Basov, K. He, Q.-K. Xue, and H. A. Atwater, “Gate-variable mid-infrared optical transitions in a (Bi1-xSbx)2Te3 topological insulator,” Nano Lett. 17(1), 255–260 (2017).
[Crossref] [PubMed]

Yakushcheva, G. G.

P. I. Kuznetsov, G. G. Yakushcheva, B. S. Shchamkhalova, V. A. Luzanov, A. G. Temiryazev, and V. A. Jitov, “Metalorganic vapor phase epitaxy of ternary rhomboedral (Bi1-xSbx)2Se3 solid solutions,” J. Cryst. Growth 433, 114–121 (2016).
[Crossref]

Yamamoto, A.

N. Morita and A. Yamamoto, “Optical and electrical properties of boron,” Jpn. J. Appl. Phys. 14(6), 825–831 (1975).
[Crossref]

Yan, J.

J. Yan, Z. Lin, C. Ma, Z. Zheng, P. Liu, and G. Yang, “Plasmon resonances in semiconductor materials for detecting photocatalysis at the single-particle level,” Nanoscale 8(32), 15001–15007 (2016).
[Crossref] [PubMed]

Yanbang, Z.

J. Guozhi, W. Peng, Z. Yanbang, and C. Kai, “Localized surface plasmon enhanced photothermal conversion in Bi2Se3 topological insulator nanoflowers,” Sci. Rep. 6(1), 25884 (2016).
[Crossref] [PubMed]

Yang, F.

F. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet-visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

Yang, G.

J. Yan, Z. Lin, C. Ma, Z. Zheng, P. Liu, and G. Yang, “Plasmon resonances in semiconductor materials for detecting photocatalysis at the single-particle level,” Nanoscale 8(32), 15001–15007 (2016).
[Crossref] [PubMed]

Yang, G. W.

J. D. Yao, J. M. Shao, and G. W. Yang, “Ultra-broadband and high-responsive photodetectors based on bismuth film at room temperature,” Sci. Rep. 5(1), 12320 (2015).
[Crossref] [PubMed]

Yang, Y.

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T.-H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[Crossref] [PubMed]

Yao, J. D.

J. D. Yao, J. M. Shao, and G. W. Yang, “Ultra-broadband and high-responsive photodetectors based on bismuth film at room temperature,” Sci. Rep. 5(1), 12320 (2015).
[Crossref] [PubMed]

Yin, J.

A.M. Dubrovkin, G. Adamo, J. Yin, L. Wang, C. Soci, Q.J. Wang, and N.I. Zheludev, “Visible range plasmonic modes on topological insulator nanostructures,” Adv. Optical Mater. 5(3), 1600768 (2017).

Yin, X.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Yoon, S.

J.-W. Park, M. Song, S. Yoon, H. Lim, D.S. Jeong, B.-K. Cheong, and H. Lee, “Stuctural and optical properties of phase-change amorphous and crystalline Ge1-xTex (0 < x < 1) thin films,” Phys. Status Solidi., A Appl. Mater. Sci. 210(2), 265–275 (2013).
[Crossref]

Yu, Y. F.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Yu, Z.

J. J. Cha, K. J. Koski, K. C. Y. Huang, K. X. Wang, W. Luo, D. Kong, Z. Yu, S. Fan, M. L. Brongersma, and Y. Cui, “Two-dimensional chalcogenide nanoplates as tunable metamaterials via chemical intercalation,” Nano Lett. 13(12), 5913–5918 (2013).
[Crossref] [PubMed]

Zalden, P.

A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonance with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

Zemel, J. N.

J. N. Zemel, J. D. Jensen, and R. B. Schoolar, “Electrical and optical properties of epitaxial films of PbS, PbSe, PbTe, and SnTe,” Phys. Rev. 140(1), A330–A342 (1965).
[Crossref]

Zeng, M.

M. Zhao, M. Bosman, M. Danesh, M. Zeng, P. Song, Y. Darma, A. Rusydi, H. Lin, C.-W. Qiu, and K. P. Loh, “Visible surface plasmon modes in single Bi2Te3 nanoplate,” Nano Lett. 15(12), 8331–8335 (2015).
[Crossref] [PubMed]

Zhang, D.

Y. Zhou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

Zhang, J.

M. Zhao, J. Zhang, N. Gao, P. Song, M. Bosman, B. Peng, B. Sun, C.-W. Qiu, Q.-H. Xu, Q. Bao, and K. P. Loh, “Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications,” Adv. Mater. 28(16), 3138–3144 (2016).
[Crossref] [PubMed]

N. Mao, J. Tang, L. Xie, J. Wu, B. Han, J. Lin, S. Deng, W. Ji, H. Xu, K. Liu, L. Tong, and J. Zhang, “Optical anisotropy of black phosphorus in the visible regime,” J. Am. Chem. Soc. 138(1), 300–305 (2016).
[Crossref] [PubMed]

Zhao, M.

M. Zhao, J. Zhang, N. Gao, P. Song, M. Bosman, B. Peng, B. Sun, C.-W. Qiu, Q.-H. Xu, Q. Bao, and K. P. Loh, “Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications,” Adv. Mater. 28(16), 3138–3144 (2016).
[Crossref] [PubMed]

M. Zhao, M. Bosman, M. Danesh, M. Zeng, P. Song, Y. Darma, A. Rusydi, H. Lin, C.-W. Qiu, and K. P. Loh, “Visible surface plasmon modes in single Bi2Te3 nanoplate,” Nano Lett. 15(12), 8331–8335 (2015).
[Crossref] [PubMed]

Zhao, Y.

W. Fan, C. Li, H. Bai, Y. Zhao, B. Luo, Y. Li, Y. Ge, W. Shi, and H. Li, “An in situ photoelectroreduction approach to fabricate Bi/BiOCl heterostructure photocathodes: understanding the role of Bi metal for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 5(10), 4894–4903 (2017).
[Crossref]

Zhao, Z.

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
[Crossref] [PubMed]

Zheludev, N. I.

A. Karvounis, B. Gholipour, F. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

J. Y. Ou, J. K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2,” Nat. Commun. 5, 5139 (2014).
[Crossref] [PubMed]

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photonics Rev. 4(4), 562–567 (2010).
[Crossref]

B. F. Soares, K. F. MacDonald, V. A. Fedotov, and N. I. Zheludev, “Light-induced switching between structural forms with different optical properties in a single gallium nanoparticulate,” Nano Lett. 5(10), 2104–2107 (2005).
[Crossref] [PubMed]

N. I. Zheludev, “Nonlinear optics on the nanoscale,” Contemp. Phys. 43(5), 365–377 (2002).
[Crossref]

Zheludev, N.I.

A.M. Dubrovkin, G. Adamo, J. Yin, L. Wang, C. Soci, Q.J. Wang, and N.I. Zheludev, “Visible range plasmonic modes on topological insulator nanostructures,” Adv. Optical Mater. 5(3), 1600768 (2017).

Zheng, W.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z. X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4(4), 281–286 (2012).
[Crossref] [PubMed]

Zheng, Z.

J. Yan, Z. Lin, C. Ma, Z. Zheng, P. Liu, and G. Yang, “Plasmon resonances in semiconductor materials for detecting photocatalysis at the single-particle level,” Nanoscale 8(32), 15001–15007 (2016).
[Crossref] [PubMed]

Zhou, J.

Y. Zhou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by nature: from ultraviolet to terahertz,” ACS Photonics 1(4), 293–303 (2014).
[Crossref]

Zhou, W.

S. R. C. Vivekchand, C. J. Engel, S. M. Lubin, M. G. Blaber, W. Zhou, J. Y. Suh, G. C. Schatz, and T. W. Odom, “Liquid plasmonics: manipulating surface plasmon polaritons via phase transitions,” Nano Lett. 12(8), 4324–4328 (2012).
[Crossref] [PubMed]

Zhou, Y.

Y. Zhou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
[Crossref] [PubMed]

Zou, Y.

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: stepping into the spotlight,” Am. Ceram. Soc. Bull. 94(4), 24–29 (2015).

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref] [PubMed]

Zuhr, R. A.

S. Y. Park, R. A. Weeks, and R. A. Zuhr, “Optical absorption by colloidal precipitates in bismuth implanted fused silica: annealing behavior,” Appl. Phys. Lett. 69, 3175 (1996).

Zywietz, U.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

ACS Nano (3)

M. W. Knight, T. Coenen, Y. Yang, B. J. M. Brenny, M. Losurdo, A. S. Brown, H. O. Everitt, and A. Polman, “Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles,” ACS Nano 9(2), 2049–2060 (2015).
[Crossref] [PubMed]

A. Vargas, S. Basak, F. Liu, B. Wang, E. Panaitescu, H. Lin, R. Markiewicz, A. Bansil, and S. Kar, “The changing colors of a quantum-confined topological insulator,” ACS Nano 8(2), 1222–1230 (2014).
[Crossref] [PubMed]

N. Talebi, C. Ozsoy-Keskinbora, H. M. Benia, K. Kern, C. T. Koch, and P. A. van Aken, “Wedge Dyakonov waves and Dyakonov plasmons in topological insulator of Bi2Se3 probed by electron beams,” ACS Nano 10(7), 6988–6994 (2016).
[Crossref] [PubMed]

ACS Photonics (7)

J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by nature: from ultraviolet to terahertz,” ACS Photonics 1(4), 293–303 (2014).
[Crossref]

M. Esslinger, R. Vogelsgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

S. De Zuani, M. Rommel, B. Gompf, A. Berrier, J. Weis, and M. Dressel, “Suppressed percolation in nearly closed gold films,” ACS Photonics 3(6), 1109–1115 (2016).
[Crossref]

A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonance with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

D. G. Baranov, S. V. Makarov, V. A. Milichko, S. I. Kudryashov, A. E. Krasnov, and P. A. Belov, “Nonlinear transient dynamics of photoexcited resonant silicon nanostructures,” ACS Photonics 3(9), 1546–1551 (2016).
[Crossref]

F. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet-visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

Z. Pirzadeh, T. Pakizeh, V. Miljkovic, C. Langhammer, and A. Dmitriev, “Plasmon-interband coupling in nickel nanoantennas,” ACS Photonics 1(3), 158–162 (2014).
[Crossref]

Adv. Mater. (5)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

E. H. Sargent, “Infrared quantum dots,” Adv. Mater. 17(5), 515–521 (2005).
[Crossref]

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29(14), 1605886 (2017).
[Crossref] [PubMed]

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

M. Zhao, J. Zhang, N. Gao, P. Song, M. Bosman, B. Peng, B. Sun, C.-W. Qiu, Q.-H. Xu, Q. Bao, and K. P. Loh, “Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications,” Adv. Mater. 28(16), 3138–3144 (2016).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

Y. Zhou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “High-performance, high-index contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2(5), 478–486 (2014).
[Crossref]

Adv. Optical Mater. (1)

A.M. Dubrovkin, G. Adamo, J. Yin, L. Wang, C. Soci, Q.J. Wang, and N.I. Zheludev, “Visible range plasmonic modes on topological insulator nanostructures,” Adv. Optical Mater. 5(3), 1600768 (2017).

Am. Ceram. Soc. Bull. (1)

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: stepping into the spotlight,” Am. Ceram. Soc. Bull. 94(4), 24–29 (2015).

Appl. Phys. Lett. (5)

A. Karvounis, B. Gholipour, F. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

A. Vargas, F. Liu, and S. Kar, “Giant enhancement of light emission from nanoscale Bi2Se3,” Appl. Phys. Lett. 106(24), 243107 (2015).
[Crossref]

S. Sivaramakrishnan, V. S. Muthukumar, S. Sivasankara Sai, K. Venkataramaniah, J. Reppert, A. M. Rao, M. Anija, R. Philip, and N. Kuthirummal, “Nonlinear optical scattering and absorption in bismuth nanorod suspensions,” Appl. Phys. Lett. 91(9), 093104 (2007).
[Crossref]

S. Y. Park, R. A. Weeks, and R. A. Zuhr, “Optical absorption by colloidal precipitates in bismuth implanted fused silica: annealing behavior,” Appl. Phys. Lett. 69, 3175 (1996).

M. Jiménez de Castro, F. Cabello, J. Toudert, R. Serna, and E. Haro-Poniatowski, “Potential of bismuth nanoparticles embedded in a glass matrix for spectral-selective thermos-optical devices,” Appl. Phys. Lett. 105(11), 113102 (2014).
[Crossref]

Bull. Mater. Sci. (1)

C. G. Das, R. Das, and D. Chakravorty, “Optical properties of bismuth granules in a glass matrix,” Bull. Mater. Sci. 5(3-4), 277–286 (1983).
[Crossref]

Chem. Commun. (Camb.) (1)

F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, and Z. Wu, “A semimetal bismuth element as a direct plasmonic photocatalyst,” Chem. Commun. (Camb.) 50(72), 10386–10389 (2014).
[Crossref] [PubMed]

Contemp. Phys. (1)

N. I. Zheludev, “Nonlinear optics on the nanoscale,” Contemp. Phys. 43(5), 365–377 (2002).
[Crossref]

Icarus (1)

R. Sasson, R. Wright, E. T. Arakawa, B. N. Khare, and C. Sagan, “Optical properties of solid and liquid sulfur at visible and infrared wavelengths,” Icarus 64(3), 368–374 (1985).
[Crossref]

IEEE Photonics J. (1)

A. Cuadrado, J. Toudert, and R. Serna, “Polaritonic-to-plasmonic transition in bismuth nanospheres for high-contrast ultraviolet meta-filters,” IEEE Photonics J. 8, 1 (2016).
[Crossref]

J. Alloys Compd. (1)

S. Y. Huang, T. J. Kim, Y. W. Jung, N. S. Barange, H. G. Park, J. Y. Kim, Y. R. Kang, Y. D. Kim, S. H. Shin, J. D. Song, C.-T. Liang, and Y.-C. Chang, “Dielectric function and critical points of AlP determined by spectroscopic ellipsometry,” J. Alloys Compd. 587, 361–364 (2014).
[Crossref]

J. Am. Chem. Soc. (2)

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[Crossref] [PubMed]

N. Mao, J. Tang, L. Xie, J. Wu, B. Han, J. Lin, S. Deng, W. Ji, H. Xu, K. Liu, L. Tong, and J. Zhang, “Optical anisotropy of black phosphorus in the visible regime,” J. Am. Chem. Soc. 138(1), 300–305 (2016).
[Crossref] [PubMed]

J. Cryst. Growth (1)

P. I. Kuznetsov, G. G. Yakushcheva, B. S. Shchamkhalova, V. A. Luzanov, A. G. Temiryazev, and V. A. Jitov, “Metalorganic vapor phase epitaxy of ternary rhomboedral (Bi1-xSbx)2Se3 solid solutions,” J. Cryst. Growth 433, 114–121 (2016).
[Crossref]

J. Electron. Mater. (1)

H. Cui, I. B. Bhat, and R. Venkatasubramanian, “Optical constants of Bi2Te3 and Sb2Te3 measured using spectroscopic ellipsometry,” J. Electron. Mater. 28(10), 1111–1114 (1999).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

W. Fan, C. Li, H. Bai, Y. Zhao, B. Luo, Y. Li, Y. Ge, W. Shi, and H. Li, “An in situ photoelectroreduction approach to fabricate Bi/BiOCl heterostructure photocathodes: understanding the role of Bi metal for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 5(10), 4894–4903 (2017).
[Crossref]

J. Nanophotonics (2)

F. Khalilzadeh-Rezaie, C. W. Smith, J. Nath, N. Nader, M. Shahzad, J. W. Cleary, I. Avrutsky, and R. E. Peale, “Infrared surface polaritons on bismuth,” J. Nanophotonics 9(1), 093792 (2015).
[Crossref]

R. Gómez-Medina, B. Garcia-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy and optical forces,” J. Nanophotonics 5(1), 053512 (2011).
[Crossref]

J. Opt. (1)

T. Pakizeh, “Optical absorption of nanoparticles described by an electronic local interband transition,” J. Opt. 15(2), 025001 (2013).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. C Solid State Phys. (1)

J. C. Lemonnier, J. Thomas, and S. Robin, “Optical properties and electronic structure of antimony in the energy range 2.5 – 14.5 eV,” J. Phys. C Solid State Phys. 6(21), 3205–3212 (1973).
[Crossref]

J. Phys. Chem. B (1)

Y. W. Wang, B. H. Hong, and K. S. Kim, “Size control of semimetal bismuth nanoparticles and the UV-visible and IR absorption spectra,” J. Phys. Chem. B 109(15), 7067–7072 (2005).
[Crossref] [PubMed]

J. Phys. Chem. C (7)

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119(45), 25518–25528 (2015).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

T. Pakizeh, “Optical absorption of plasmonic nanoparticles in presence of a local interband transition,” J. Phys. Chem. C 115(44), 21826–21831 (2011).
[Crossref]

J. Toudert, R. Serna, and M. Jiménez de Castro, “Exploring the optical potential of nano-Bismuth: Tunable surface plasmon resonances in the near ultraviolet to near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[Crossref]

M. B. Ross and G. C. Schatz, “Aluminium and indium plasmonic nanoantennas in the ultraviolet,” J. Phys. Chem. C 118(23), 12506–12514 (2014).
[Crossref]

Z. Wang, C. Jiang, R. Huang, H. Peng, and X. Tang, “Investigation of the optical and photocatalytic properties of bismuth nanospheres prepared by a facile thermolysis method,” J. Phys. Chem. C 118(2), 1155–1160 (2014).
[Crossref]

J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
[Crossref]

J. Phys. Chem. Solids (1)

D. L. Greenaway and G. Harbeke, “Band structure of bismuth telluride, bismuth selenide and their respective alloys,” J. Phys. Chem. Solids 26(10), 1585–1604 (1965).
[Crossref]

J. Phys. D Appl. Phys. (2)

M. Eddrief, F. Vidal, and B. Gallas, “Optical properties of Bi2Se3: from bulk to ultrathin films,” J. Phys. D Appl. Phys. 49(50), 505304 (2016).
[Crossref]

T. J. Fox, R. P. Howson, and D. C. Emmony, “Optical properties of thin films of antimony,” J. Phys. D Appl. Phys. 7(13), 1864–1872 (1974).
[Crossref]

J. Phys. F Met. Phys. (2)

O. Hunderi and R. Ryberg, “Band structure and optical properties of gallium,” J. Phys. F Met. Phys. 4(11), 2084–2095 (1974).
[Crossref]

G. Jezequel, J. C. Lemonnier, and J. Thomas, “Optical properties of gallium films between 2 and 15 eV,” J. Phys. F Met. Phys. 7(8), 1613–1622 (1977).
[Crossref]

J. Vac. Sci. Technol. A (1)

A. Green, S. Dey, Y. Q. An, B. O’Brien, S. O’Mullane, B. Thiel, and A. C. Diebold, “Surface oxidation of the topological insulator Bi2Se3,” J. Vac. Sci. Technol. A 34(6), 061403 (2016).
[Crossref]

Jpn. J. Appl. Phys. (2)

N. Morita and A. Yamamoto, “Optical and electrical properties of boron,” Jpn. J. Appl. Phys. 14(6), 825–831 (1975).
[Crossref]

N. Suzuki and S. Adachi, “Optical properties of SnTe,” Jpn. J. Appl. Phys. 34(11), 5977–5983 (1995).
[Crossref]

Langmuir (1)

P. C. Wu, M. Losurdo, T.-H. Kim, M. Giangregorio, G. Bruno, H. O. Everitt, and A. S. Brown, “Plasmonic gallium nanoparticles on polar semiconductors: interplay between nanoparticle wetting, localized surface plasmon dynamics, and interface charge,” Langmuir 25(2), 924–930 (2009).
[Crossref] [PubMed]

Laser Photonics Rev. (2)

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photonics Rev. 4(4), 562–567 (2010).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Lasers and Photon. News (1)

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y.-H. Chen, H.-C. Wang, T.-Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Lasers and Photon. News 10(6), 986–994 (2016).
[Crossref]

Nano Lett. (9)

M. Zhao, M. Bosman, M. Danesh, M. Zeng, P. Song, Y. Darma, A. Rusydi, H. Lin, C.-W. Qiu, and K. P. Loh, “Visible surface plasmon modes in single Bi2Te3 nanoplate,” Nano Lett. 15(12), 8331–8335 (2015).
[Crossref] [PubMed]

J. J. Cha, K. J. Koski, K. C. Y. Huang, K. X. Wang, W. Luo, D. Kong, Z. Yu, S. Fan, M. L. Brongersma, and Y. Cui, “Two-dimensional chalcogenide nanoplates as tunable metamaterials via chemical intercalation,” Nano Lett. 13(12), 5913–5918 (2013).
[Crossref] [PubMed]

W. S. Whitney, V. W. Brar, Y. Ou, Y. Shao, A. R. Davoyan, D. N. Basov, K. He, Q.-K. Xue, and H. A. Atwater, “Gate-variable mid-infrared optical transitions in a (Bi1-xSbx)2Te3 topological insulator,” Nano Lett. 17(1), 255–260 (2017).
[Crossref] [PubMed]

T. Lewi, P. P. Iyer, N. A. Butakov, A. A. Mikhailovsky, and J. A. Schuller, “Widely tunable infrared antennas using free carrier refraction,” Nano Lett. 15(12), 8188–8193 (2015).
[Crossref] [PubMed]

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma,” Nano Lett. 15(9), 6187–6192 (2015).
[Crossref] [PubMed]

B. F. Soares, K. F. MacDonald, V. A. Fedotov, and N. I. Zheludev, “Light-induced switching between structural forms with different optical properties in a single gallium nanoparticulate,” Nano Lett. 5(10), 2104–2107 (2005).
[Crossref] [PubMed]

S. R. C. Vivekchand, C. J. Engel, S. M. Lubin, M. G. Blaber, W. Zhou, J. Y. Suh, G. C. Schatz, and T. W. Odom, “Liquid plasmonics: manipulating surface plasmon polaritons via phase transitions,” Nano Lett. 12(8), 4324–4328 (2012).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T.-H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

Nanoscale (1)

J. Yan, Z. Lin, C. Ma, Z. Zheng, P. Liu, and G. Yang, “Plasmon resonances in semiconductor materials for detecting photocatalysis at the single-particle level,” Nanoscale 8(32), 15001–15007 (2016).
[Crossref] [PubMed]

Nanotechnol. Rev. (1)

J. Toudert, “Spectroscopic ellipsometry for active nano- and meta- materials,” Nanotechnol. Rev. 3(3), 223–245 (2014).
[Crossref]

Nanotechnology (1)

E. Haro-Poniatowski, R. Serna, M. Jiménez de Castro, A. Suárez-García, C. N. Afonso, and I. Vickridge, “Size-dependent thermo-optical properties of embedded Bi nanostructures,” Nanotechnology 19(48), 485708 (2008).
[Crossref] [PubMed]

Nat. Chem. (1)

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z. X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nat. Chem. 4(4), 281–286 (2012).
[Crossref] [PubMed]

Nat. Commun. (4)

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

J. Y. Ou, J. K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2,” Nat. Commun. 5, 5139 (2014).
[Crossref] [PubMed]

J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun. 3, 1171 (2012).
[Crossref] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

Nat. Mater. (3)

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

M. Losurdo, A. Suvorova, S. Rubanov, K. Hingerl, and A. S. Brown, “Thermally stable coexistence of liquid and solid phases in gallium nanoparticles,” Nat. Mater. 15(9), 995–1002 (2016).
[Crossref] [PubMed]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Nature (1)

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mat. Express (1)

J. Toudert and R. Serna, “Ultraviolet-visible interband plasmonics with p-block elements,” Opt. Mat. Express 6(7), 2434–2447 (2016).

Opt. Mater. Express (1)

Philos. Mag. (1)

H. G. Liljenvall, A. G. Mathewson, and H. P. Myers, “The optical properties of lead in the energy range 0.6-6 eV,” Philos. Mag. 22(176), 243–253 (1970).
[Crossref]

Phys. Chem. Chem. Phys. (1)

J. M. McMahon, G. C. Schatz, and S. K. Gray, “Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi,” Phys. Chem. Chem. Phys. 15(15), 5415–5423 (2013).
[Crossref] [PubMed]

Phys. Rev. (3)

S. Tutihasi and I. Chen, “Optical properties and band structure of trigonal selenium,” Phys. Rev. 158(3), 623–630 (1967).
[Crossref]

S. Tutihasi, G. G. Roberts, R. C. Keezer, and R. E. Drews, “Optical properties of tellurium in the fundamental absorption region,” Phys. Rev. 177(3), 1143–1150 (1969).
[Crossref]

J. N. Zemel, J. D. Jensen, and R. B. Schoolar, “Electrical and optical properties of epitaxial films of PbS, PbSe, PbTe, and SnTe,” Phys. Rev. 140(1), A330–A342 (1965).
[Crossref]

Phys. Rev. B (4)

S. Logothetidis and H. M. Polatoglou, “Ellipsometric studies of the dielectric function of SnSe and a simple model of the electronic structure and the bonds of the orthorhombic IV-VI compounds,” Phys. Rev. B 36(14), 7491–7499 (1987).
[Crossref]

R. Y. Koyama, N. V. Smith, and W. E. Spicer, “Optical properties of indium,” Phys. Rev. B 8(6), 2426–2432 (1973).
[Crossref]

M. R. Black, Y. M. Lin, S. B. Cronin, O. Rabin, and M. S. Dresselhaus, “Infrared absorption in bismuth nanowires resulting from quantum confinement,” Phys. Rev. B 65(19), 195417 (2002).
[Crossref]

M. R. Black, P. L. Hagelstein, S. B. Cronin, Y. M. Lin, and M. S. Dresselhaus, “Optical absorption from an indirect transition in bismuth nanowires,” Phys. Rev. B 68(23), 235417 (2003).
[Crossref]

Phys. Rev. B Condens. Matter (2)

G. Jézéquel, J. Thomas, and I. Pollini, “Optical properties of thallium films studied with synchrotron radiation,” Phys. Rev. B Condens. Matter 37(15), 8639–8646 (1988).
[Crossref] [PubMed]

P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,” Phys. Rev. B Condens. Matter 36(9), 4821–4830 (1987).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

M. P. Fischer, C. Schmidt, E. Sakat, J. Stock, A. Samarelli, J. Frigerio, M. Ortolani, D. J. Paul, G. Isella, A. Leitenstorfer, P. Biagioni, and D. Brida, “Optical activation of germanium plasmonic antennas in the mid-infrared,” Phys. Rev. Lett. 117(4), 047401 (2016).
[Crossref] [PubMed]

Phys. Scr. T (1)

J. Humlicek, D. Hemzal, A. Dubroka, O. Caha, H. Steiner, G. Bauer, and G. Springholz, “Raman and interband optical spectra of epitaxial layers of the topological insulators Bi2Te3 and Bi2Se3 on BaF2 substrates,” Phys. Scr. T 162, 014007 (2014).
[Crossref]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

J.-W. Park, M. Song, S. Yoon, H. Lim, D.S. Jeong, B.-K. Cheong, and H. Lee, “Stuctural and optical properties of phase-change amorphous and crystalline Ge1-xTex (0 < x < 1) thin films,” Phys. Status Solidi., A Appl. Mater. Sci. 210(2), 265–275 (2013).
[Crossref]

Proc. SPIE (1)

J. W. Cleary, G. Mehdi, R. E. Peale, W. R. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 767306, 767306 (2010).
[Crossref]

Sci. Rep. (3)

J. D. Yao, J. M. Shao, and G. W. Yang, “Ultra-broadband and high-responsive photodetectors based on bismuth film at room temperature,” Sci. Rep. 5(1), 12320 (2015).
[Crossref] [PubMed]

Y. Jiang, S. Pillai, and M. A. Green, “Realistic silver optical constants for plasmonics,” Sci. Rep. 6(1), 30605 (2016).
[Crossref] [PubMed]

J. Guozhi, W. Peng, Z. Yanbang, and C. Kai, “Localized surface plasmon enhanced photothermal conversion in Bi2Se3 topological insulator nanoflowers,” Sci. Rep. 6(1), 25884 (2016).
[Crossref] [PubMed]

Other (12)

L. Braic, N. Vasilantonakis, A. P. Mihai, I. J. Villar Garcia, S. Fearn, B. You, B. Doiron, R. F. Oulton, L. Cohen, S. A. Maier, N. McN. Alford, A. V. Zayats, and P. K. Petrov, “Titanium oxynitride thin films with tunable double epsilon-near-zero-behaviour,” arXiv:1703.09467 (2017).

J. Yin, H. N. S. Krishnamoorthy, G. Adamo, A. M. Dubrovkin, Y. D. Chong, N. I. Zheludev, and C. Soci, “Plasmonics of topological insulators at optical frequencies,” arXiv:1702.00302 (2017).

T. Lewi, H. A. Evans, N. A. Butakov, and J. A. Schuller, “Thermo-optically reconfigurable PbTe metal-atoms,” arXiv:1703.00886 (2017).

MiePlot software – www.philiplaven.com/mieplot.htm

E. D. Palik, Handbook of Optical Properties of Solids (Academic Press, 2008).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

S. Adachi, Handbook on Physical Properties of Semiconductors (Kluwer, 2004).

Si.mat datafile, WVASE32 software (J.A. Woollam Co.).

UNL database, WVASE32 software (J.A. Woollam Co.).

P. Bammes, R. Klucker, E. E. Koch, and T. Tuomi, “Anistropy of the dielectric constants of trigonal selenium and tellurium between 3 and 30 eV,” Phys. Status Solidi49(2), 561–570 (1972) (b).
[Crossref]

A. Vaidyanathan, Y. F. Tsay, and S. S. Mitra, “Electronic structure and optical properties of rhomboedral arsenic and their variations in the internal displacement parameter,” Phys. Status Solidi92(1), 73–81 (1979) (b).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Strong interband transitions drive both plasmonic and Mie resonances. (a) Real part (ε1, continuous line) and imaginary part (ε2, dotted line) of a Kramers-Kronig consistent dielectric function consisting of a single Lorentz oscillator (simulated using the WVASE32 software from J.A. Woollam Co.). (b) Optical extinction efficiency Qext of spherical nanoparticles with the dielectric function shown in (a), for different diameters D, in a transparent medium with refractive index n = 1.5 (Simulated using the MiePlot software [20]).

Fig. 2
Fig. 2

Role of the interband transition amplitude and width on the plasmonic and Mie performance. (a) Real part ε1 of Kramers-Kronig consistent dielectric functions consisting of a broad (blue line) and sharp (green line) Lorentz oscillators. The corresponding imaginary parts ε2 are shown in the inset. The real part of the dielectric function of Ag [21] and Si [22] are shown for comparison. (b) Localized surface plasmon resonance quality factor QLSPR [23, 24] for the dielectric functions of the broad and sharp oscillators (same colors as in (a)) and for Ag.

Fig. 3
Fig. 3

The dielectric function ε = ε1 + iε2 of bulk (solid) Bi from the far infrared to the ultraviolet (black lines), together with former data from the literature. Reprinted with permission from [25] Copyright 2017 American Chemical Society.

Fig. 4
Fig. 4

(a) Experimental ultraviolet – visible – near infrared plasmonic resonances of Bi nanoparticles of different sizes and shapes embedded in a transparent matrix (adapted from [14]). The images shown in the insets correspond to the optical absorbance spectra with the same colors. (b) Simulated mid infrared Mie resonances of a spherical Bi nanoparticle embedded in a transparent matrix. Its optical extinction efficiency spectrum (Qext) was calculated for a nanoparticle diameter D = 600 nm. The dielectric function ε of Bi was taken from [25]), and that of the matrix was εm = 2.72. The simulated scattering patterns of this nanoparticle are also shown, at photon wavelengths in vacuo of 5.2 μm and 7.2 μm, for unpolarized incident plane waves traveling from the left to the right.

Fig. 5
Fig. 5

Bulk dielectric functions (ε1 solid line, ε2 dashed line) of the elemental p-block materials (in the solid state), taken from the literature: B [37], Al [21], Ga [38], In [39,40], Tl [41], Si [42], Ge [43], Sn [21], Pb [44], P (black phosphorus, flakes) [45], As (amorphous) [46], Sb [47,48], Bi [25], S [49], Se [50,51], Te [52]. The most relevant elements for the study of interband plasmonic and Mie resonances are those represented in red, orange, green and blue (see text).

Fig. 6
Fig. 6

Bulk dielectric functions (ε1 solid line, ε2 dashed line) of some solid binary compounds of p-block elements, taken from the literature: III-V compounds (AlP [54], AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, and InSb [43]) and III-VI chalcogenide compounds (GaSe [55], GaTe [56], InSe [56]).

Fig. 7
Fig. 7

Bulk dielectric functions (ε1 solid line, ε2 dashed line) of some solid binary compounds of p-block elements, taken from the literature: IV-VI chalcogenide compounds (GeS [56], GeSe [56], GeTe [57], SnSe [58], SnTe [56,59], PbS [43,60], PbSe [56], PbTe [56]); V-VI chalcogenide compounds (Sb2Se3 [56], Sb2Te3 [56], Bi2Se3 [61], Bi2Te3 [62]).

Fig. 8
Fig. 8

Performance of selected single-elements and compounds of the p-block for interband plasmonic and Mie resonances: (a) Plasmonic quality factor QLSPR vs photon energy in the ultraviolet to near infrared region. The quality factors of Au and Ag are also shown. (b) ε1 at the main onset of optical absorption vs the onset photon energy for semiconductors and topological insulators (note: the onset is related with the main interband transition band, it is not the bandgap). For semi-metals, ε1 was taken at the photon energy for which ε1 is maximum and ε2 is minimum. All the calculations were done using the dielectric functions shown in Figs. 5, 6, 7.

Fig. 9
Fig. 9

(a) Schematic representation of Mie resonance switching with pulsed light. Reprinted with permission from [90] Copyright 2015 American Chemical Society. (b) Plasmonic resonances of a Bi2Te3 nanoplate measured by EELS. Reprinted with permission from [101] Copyright 2015 American Chemical Society.

Fig. 10
Fig. 10

Spectra of the Faraday and Joule factors (Fa and Jo) calculated for a spherical nanostructures in vacuum, using the relations given in [64]. The calculation was done using the dielectric functions given in Figs. 2, 5, 6, 7.

Metrics