Abstract

Femtosecond 3D printing is an important technology for manufacturing of nano- and microscopic devices and elements. Crucial for the design of such structures is the detailed knowledge of the refractive index in the visible and near-infrared spectral range and its dispersion. Here, we characterize 5 photoresists that are used with femtosecond 3D direct laser writers, namely IP-S, IP-Dip, IP-L, IP-G, and OrmoComp with a modified and automized Pulfrich refractometer setup, utilizing critical angles of total internal reflection. We achieve an accuracy of 510−4 and reference our values to a BK-7 glass plate. We also give Abbe numbers and Schott Catalog numbers of the different resists. Their refractive indices are in the 1.49-1.57 range, while their Abbe numbers are in the range between 35 and 51.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Testing and Accurate Use of Abbe-Type Refractometers

Leroy W. Tilton
J. Opt. Soc. Am. 32(7) 371-381 (1942)

Measuring the refractive index of thin liquid films with a spectrometer

Vincenzo Greco, Lois Hoffer, and Giuseppe Molesini
Appl. Opt. 40(28) 5111-5113 (2001)

Automated measurement of the refractive index of fluids

Bruce M. Pixton and John E. Greivenkamp
Appl. Opt. 47(10) 1504-1509 (2008)

References

  • View by:
  • |
  • |
  • |

  1. M. F. Schumann, S. Wiesendanger, J. C. Goldschmidt, B. Bläsi, K. Bittkau, U. W. Paetzold, A. Sprafke, R. B. Wehrspohn, C. Rockstuhl, and M. Wegener, “Cloaked contact grids on solar cells by coordinate transformations: designs and prototypes,” Optica 2(10), 850–853 (2015).
    [Crossref]
  2. M. Wegener, “Scharfe Linsen frisch gedruckt,” Phys. J. 15, 24–25 (2016).
  3. J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
    [Crossref]
  4. Z. Tian, X. Cao, W. Yao, P. Li, Y. Yu, G. Li, Q. Chen, and H. Sun, “Hybrid Refractive–Diffractive Optical Vortex Microlens,” IEEE Photonics Technol. Lett. 28(21), 2299–2302 (2016).
    [Crossref]
  5. J. Xu, W. Yao, Z. Tian, L. Wang, K. Guan, Y. Xu, Q. Chen, J. Duan, and H. Sun, “High Curvature Concave–Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
    [Crossref]
  6. Z. N. Tian, W. G. Yao, J. J. Xu, Y. H. Yu, Q. D. Chen, and H. B. Sun, “Focal varying microlens array,” Opt. Lett. 40(18), 4222–4225 (2015).
    [Crossref] [PubMed]
  7. D. Wu, S. Wu, L. Niu, Q. Chen, R. Wang, J. Song, H. Fang, and H. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
    [Crossref]
  8. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
    [Crossref] [PubMed]
  9. M. Thiel, A. Radke, B. Fries, D. Eicke, F. Niesler, C. Baretzky, T. Bückmann, and M. Wegener, “High-Speed 3D Direct Laser Writing of Micro-Optical Elements,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper ATu2N.4.
  10. S. Thiele, T. Gissibl, H. Giessen, and A. M. Herkommer, “Ultra-compact on-chip LED collimation optics by 3D femtosecond direct laser writing,” Opt. Lett. 41(13), 3029–3032 (2016).
    [Crossref] [PubMed]
  11. T. Gissibl, M. Schmid, and H. Giessen, “Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing,” Optica 3(4), 448–451 (2016).
    [Crossref]
  12. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
    [Crossref]
  13. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7, 11763 (2016).
    [Crossref] [PubMed]
  14. S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
    [Crossref] [PubMed]
  15. D. B. Fullager, G. D. Boreman, and T. Hofmann, “Infrared dielectric response of nanoscribe IP-dip and IP-L monomers after polymerization from 250 cm−1 to 6000 cm−1,” Opt. Mater. Express 7(3), 888–894 (2017).
    [Crossref]
  16. J. Guild, “Notes on the Pulfrich Refractometer,” Proc. Phys. Soc. Lond. 30(1), 157–189 (1917).
    [Crossref]
  17. B. Schaefer, Lehrbuch der Experimentalphysik Band 3 Optik, 10th ed., de Gruyter, NY and Berlin (2004), p. 70.
  18. A. G. Schott, “Optisches Glas Datenblätter”, (2016), http://www.schott.com/d/advanced_optics/47d79895-2965-472d-83ed-af9e48ac72c0/1.1/schott-optisches-glas-datenblatt-sammlung-german-17012017.pdf
  19. F. A. Jenkins and H. E. White, Fundamentals of Optics, 4th ed., McGraw-Hill, Inc. (1981), p. 479.

2017 (2)

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref] [PubMed]

D. B. Fullager, G. D. Boreman, and T. Hofmann, “Infrared dielectric response of nanoscribe IP-dip and IP-L monomers after polymerization from 250 cm−1 to 6000 cm−1,” Opt. Mater. Express 7(3), 888–894 (2017).
[Crossref]

2016 (6)

M. Wegener, “Scharfe Linsen frisch gedruckt,” Phys. J. 15, 24–25 (2016).

Z. Tian, X. Cao, W. Yao, P. Li, Y. Yu, G. Li, Q. Chen, and H. Sun, “Hybrid Refractive–Diffractive Optical Vortex Microlens,” IEEE Photonics Technol. Lett. 28(21), 2299–2302 (2016).
[Crossref]

S. Thiele, T. Gissibl, H. Giessen, and A. M. Herkommer, “Ultra-compact on-chip LED collimation optics by 3D femtosecond direct laser writing,” Opt. Lett. 41(13), 3029–3032 (2016).
[Crossref] [PubMed]

T. Gissibl, M. Schmid, and H. Giessen, “Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing,” Optica 3(4), 448–451 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7, 11763 (2016).
[Crossref] [PubMed]

2015 (3)

2013 (1)

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

2010 (1)

D. Wu, S. Wu, L. Niu, Q. Chen, R. Wang, J. Song, H. Fang, and H. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

2008 (1)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

1917 (1)

J. Guild, “Notes on the Pulfrich Refractometer,” Proc. Phys. Soc. Lond. 30(1), 157–189 (1917).
[Crossref]

Arzenbacher, K.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref] [PubMed]

Bittkau, K.

Bläsi, B.

Boreman, G. D.

Cao, X.

Z. Tian, X. Cao, W. Yao, P. Li, Y. Yu, G. Li, Q. Chen, and H. Sun, “Hybrid Refractive–Diffractive Optical Vortex Microlens,” IEEE Photonics Technol. Lett. 28(21), 2299–2302 (2016).
[Crossref]

Chen, Q.

Z. Tian, X. Cao, W. Yao, P. Li, Y. Yu, G. Li, Q. Chen, and H. Sun, “Hybrid Refractive–Diffractive Optical Vortex Microlens,” IEEE Photonics Technol. Lett. 28(21), 2299–2302 (2016).
[Crossref]

J. Xu, W. Yao, Z. Tian, L. Wang, K. Guan, Y. Xu, Q. Chen, J. Duan, and H. Sun, “High Curvature Concave–Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

D. Wu, S. Wu, L. Niu, Q. Chen, R. Wang, J. Song, H. Fang, and H. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

Chen, Q. D.

Duan, J.

J. Xu, W. Yao, Z. Tian, L. Wang, K. Guan, Y. Xu, Q. Chen, J. Duan, and H. Sun, “High Curvature Concave–Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

Fang, H.

D. Wu, S. Wu, L. Niu, Q. Chen, R. Wang, J. Song, H. Fang, and H. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

Fischer, J.

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

Fullager, D. B.

Giessen, H.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref] [PubMed]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7, 11763 (2016).
[Crossref] [PubMed]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

T. Gissibl, M. Schmid, and H. Giessen, “Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing,” Optica 3(4), 448–451 (2016).
[Crossref]

S. Thiele, T. Gissibl, H. Giessen, and A. M. Herkommer, “Ultra-compact on-chip LED collimation optics by 3D femtosecond direct laser writing,” Opt. Lett. 41(13), 3029–3032 (2016).
[Crossref] [PubMed]

Gissibl, T.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref] [PubMed]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7, 11763 (2016).
[Crossref] [PubMed]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

T. Gissibl, M. Schmid, and H. Giessen, “Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing,” Optica 3(4), 448–451 (2016).
[Crossref]

S. Thiele, T. Gissibl, H. Giessen, and A. M. Herkommer, “Ultra-compact on-chip LED collimation optics by 3D femtosecond direct laser writing,” Opt. Lett. 41(13), 3029–3032 (2016).
[Crossref] [PubMed]

Goldschmidt, J. C.

Guan, K.

J. Xu, W. Yao, Z. Tian, L. Wang, K. Guan, Y. Xu, Q. Chen, J. Duan, and H. Sun, “High Curvature Concave–Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

Guild, J.

J. Guild, “Notes on the Pulfrich Refractometer,” Proc. Phys. Soc. Lond. 30(1), 157–189 (1917).
[Crossref]

Herkommer, A.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7, 11763 (2016).
[Crossref] [PubMed]

Herkommer, A. M.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref] [PubMed]

S. Thiele, T. Gissibl, H. Giessen, and A. M. Herkommer, “Ultra-compact on-chip LED collimation optics by 3D femtosecond direct laser writing,” Opt. Lett. 41(13), 3029–3032 (2016).
[Crossref] [PubMed]

Hofmann, T.

Li, G.

Z. Tian, X. Cao, W. Yao, P. Li, Y. Yu, G. Li, Q. Chen, and H. Sun, “Hybrid Refractive–Diffractive Optical Vortex Microlens,” IEEE Photonics Technol. Lett. 28(21), 2299–2302 (2016).
[Crossref]

Li, P.

Z. Tian, X. Cao, W. Yao, P. Li, Y. Yu, G. Li, Q. Chen, and H. Sun, “Hybrid Refractive–Diffractive Optical Vortex Microlens,” IEEE Photonics Technol. Lett. 28(21), 2299–2302 (2016).
[Crossref]

Linden, S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Niu, L.

D. Wu, S. Wu, L. Niu, Q. Chen, R. Wang, J. Song, H. Fang, and H. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

Paetzold, U. W.

Plet, C.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Rill, M. S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Rockstuhl, C.

Schmid, M.

Schumann, M. F.

Song, J.

D. Wu, S. Wu, L. Niu, Q. Chen, R. Wang, J. Song, H. Fang, and H. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

Sprafke, A.

Staude, I.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Sun, H.

Z. Tian, X. Cao, W. Yao, P. Li, Y. Yu, G. Li, Q. Chen, and H. Sun, “Hybrid Refractive–Diffractive Optical Vortex Microlens,” IEEE Photonics Technol. Lett. 28(21), 2299–2302 (2016).
[Crossref]

J. Xu, W. Yao, Z. Tian, L. Wang, K. Guan, Y. Xu, Q. Chen, J. Duan, and H. Sun, “High Curvature Concave–Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

D. Wu, S. Wu, L. Niu, Q. Chen, R. Wang, J. Song, H. Fang, and H. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

Sun, H. B.

Thiel, M.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Thiele, S.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref] [PubMed]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7, 11763 (2016).
[Crossref] [PubMed]

S. Thiele, T. Gissibl, H. Giessen, and A. M. Herkommer, “Ultra-compact on-chip LED collimation optics by 3D femtosecond direct laser writing,” Opt. Lett. 41(13), 3029–3032 (2016).
[Crossref] [PubMed]

Tian, Z.

Z. Tian, X. Cao, W. Yao, P. Li, Y. Yu, G. Li, Q. Chen, and H. Sun, “Hybrid Refractive–Diffractive Optical Vortex Microlens,” IEEE Photonics Technol. Lett. 28(21), 2299–2302 (2016).
[Crossref]

J. Xu, W. Yao, Z. Tian, L. Wang, K. Guan, Y. Xu, Q. Chen, J. Duan, and H. Sun, “High Curvature Concave–Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

Tian, Z. N.

von Freymann, G.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Wang, L.

J. Xu, W. Yao, Z. Tian, L. Wang, K. Guan, Y. Xu, Q. Chen, J. Duan, and H. Sun, “High Curvature Concave–Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

Wang, R.

D. Wu, S. Wu, L. Niu, Q. Chen, R. Wang, J. Song, H. Fang, and H. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

Wegener, M.

M. Wegener, “Scharfe Linsen frisch gedruckt,” Phys. J. 15, 24–25 (2016).

M. F. Schumann, S. Wiesendanger, J. C. Goldschmidt, B. Bläsi, K. Bittkau, U. W. Paetzold, A. Sprafke, R. B. Wehrspohn, C. Rockstuhl, and M. Wegener, “Cloaked contact grids on solar cells by coordinate transformations: designs and prototypes,” Optica 2(10), 850–853 (2015).
[Crossref]

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Wehrspohn, R. B.

Wiesendanger, S.

Wu, D.

D. Wu, S. Wu, L. Niu, Q. Chen, R. Wang, J. Song, H. Fang, and H. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

Wu, S.

D. Wu, S. Wu, L. Niu, Q. Chen, R. Wang, J. Song, H. Fang, and H. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

Xu, J.

J. Xu, W. Yao, Z. Tian, L. Wang, K. Guan, Y. Xu, Q. Chen, J. Duan, and H. Sun, “High Curvature Concave–Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

Xu, J. J.

Xu, Y.

J. Xu, W. Yao, Z. Tian, L. Wang, K. Guan, Y. Xu, Q. Chen, J. Duan, and H. Sun, “High Curvature Concave–Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

Yao, W.

Z. Tian, X. Cao, W. Yao, P. Li, Y. Yu, G. Li, Q. Chen, and H. Sun, “Hybrid Refractive–Diffractive Optical Vortex Microlens,” IEEE Photonics Technol. Lett. 28(21), 2299–2302 (2016).
[Crossref]

J. Xu, W. Yao, Z. Tian, L. Wang, K. Guan, Y. Xu, Q. Chen, J. Duan, and H. Sun, “High Curvature Concave–Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

Yao, W. G.

Yu, Y.

Z. Tian, X. Cao, W. Yao, P. Li, Y. Yu, G. Li, Q. Chen, and H. Sun, “Hybrid Refractive–Diffractive Optical Vortex Microlens,” IEEE Photonics Technol. Lett. 28(21), 2299–2302 (2016).
[Crossref]

Yu, Y. H.

Appl. Phys. Lett. (1)

D. Wu, S. Wu, L. Niu, Q. Chen, R. Wang, J. Song, H. Fang, and H. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Z. Tian, X. Cao, W. Yao, P. Li, Y. Yu, G. Li, Q. Chen, and H. Sun, “Hybrid Refractive–Diffractive Optical Vortex Microlens,” IEEE Photonics Technol. Lett. 28(21), 2299–2302 (2016).
[Crossref]

J. Xu, W. Yao, Z. Tian, L. Wang, K. Guan, Y. Xu, Q. Chen, J. Duan, and H. Sun, “High Curvature Concave–Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

Laser Photonics Rev. (1)

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

Nat. Commun. (1)

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7, 11763 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (1)

Optica (2)

Phys. J. (1)

M. Wegener, “Scharfe Linsen frisch gedruckt,” Phys. J. 15, 24–25 (2016).

Proc. Phys. Soc. Lond. (1)

J. Guild, “Notes on the Pulfrich Refractometer,” Proc. Phys. Soc. Lond. 30(1), 157–189 (1917).
[Crossref]

Sci. Adv. (1)

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref] [PubMed]

Other (4)

M. Thiel, A. Radke, B. Fries, D. Eicke, F. Niesler, C. Baretzky, T. Bückmann, and M. Wegener, “High-Speed 3D Direct Laser Writing of Micro-Optical Elements,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper ATu2N.4.

B. Schaefer, Lehrbuch der Experimentalphysik Band 3 Optik, 10th ed., de Gruyter, NY and Berlin (2004), p. 70.

A. G. Schott, “Optisches Glas Datenblätter”, (2016), http://www.schott.com/d/advanced_optics/47d79895-2965-472d-83ed-af9e48ac72c0/1.1/schott-optisches-glas-datenblatt-sammlung-german-17012017.pdf

F. A. Jenkins and H. E. White, Fundamentals of Optics, 4th ed., McGraw-Hill, Inc. (1981), p. 479.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Setup for measuring the critical angle of the total internal reflection, similar to a Pulfrich refractometer. (a) The refractive index values are obtained by measuring the critical angle of different photoresists at different wavelengths. The refractive index of the prism is n2 and of the photoresist of interest is n1. (b) Dependency of the angles in the setup for the refractive index measurement. The refractive indices of air (n) and prims material (n2) are indicated.

Fig. 2
Fig. 2

Measurement of the critical angle of the total internal reflection of s-polarized light for OrmoComp and BK7 glass at a wavelength of 850 nm.

Fig. 3
Fig. 3

Dispersion measurement of the photoresists. The refractive index characteristics is fitted by using Cauchy’s equations. The error bars of IP-dip are slightly larger because of deviations from linearity of the trigonometric functions at larger angles.

Tables (3)

Tables Icon

Table 1 Refractive index measurement of the photoresists Nanoscribe IP-Dip, micro resist OrmoComp, Nanoscribe IP-G, Nanoscribe IP-L, and Nanoscribe IP-S. The refractive index values are obtained by measuring the critical angle of the total internal reflection for the used photoresists at different wavelengths. n588 nm is interpolated from the Cauchy fit, however we list it here as it corresponds to the important value of nd (at 587.6 nm).

Tables Icon

Table 2 Cauchy parameters of the photoresists Nanoscribe IP-Dip, micro resist OrmoComp, Nanoscribe IP-G, Nanoscribe IP-L, and Nanoscribe IP-S. The values are obtained by fitting Cauchy’s equation to the refractive index measurements.

Tables Icon

Table 3 Abbe number νd and Schott catalog number of the photoresists Nanoscribe IP-Dip, micro resist OrmoComp, Nanoscribe IP-G, Nanoscribe IP-L, and Nanoscribe IP-S. The values are obtained by calculating the Abbe number with the Cauchy parameters.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

γ ( α ) = arc    sin [ n n 2 sin ( arc    tan ( f 1 f 2 tan ( 2   α ) ) ) ]   n n 2 f 1 f 2 2 α for small rotation angles α ,
θ ( α ) = 60 ° + γ ( α ) .
θ c = arc    sin ( n 2 n 1 ) ,
R s = | n 1 cos   θ 1 n 2 2 n 1 2 sin 2   θ 1 n 1 cos   θ 1 + n 2 2 n 1 2 sin 2   θ 1 | 2
n ( λ ) = A +   B λ 2 +   C λ 4 .
υ d =   n d 1 n F   n C ,

Metrics