Abstract

In this paper we propose a new and cost-effective fabrication scheme for porous polymer optical fibers. Different porous polymer fibers made from polycarbonate (PC) and poly(methyl methacrylate) (PMMA) using this method have been thermally drawn and characterized. Porosity in the fiber cladding is introduced by the absorbed water in one layer of the polymer fiber preforms under heat treatment and/or thermal drawing, and can be controlled by adjusting the water concentration. In addition, we have shown that the fabricated porous polymer fibers have the potential application in localized drug delivery for cancer treatment.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors

Andrea Fasano, Getinet Woyessa, Pavol Stajanca, Christos Markos, Alessio Stefani, Kristian Nielsen, Henrik K. Rasmussen, Katerina Krebber, and Ole Bang
Opt. Mater. Express 6(2) 649-659 (2016)

Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing

Getinet Woyessa, Andrea Fasano, Christos Markos, Alessio Stefani, Henrik K. Rasmussen, and Ole Bang
Opt. Mater. Express 7(1) 286-295 (2017)

THz porous fibers: design, fabrication and experimental characterization

Shaghik Atakaramians, Shahraam Afshar V., Heike Ebendorff-Heidepriem, Michael Nagel, Bernd M. Fischer, Derek Abbott, and Tanya M. Monro
Opt. Express 17(16) 14053-14062 (2009)

References

  • View by:
  • |
  • |
  • |

  1. T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, “Ultimate low-loss single-mode fibre at 1.55 μm,” Electron. Lett. 15(4), 106 (1979).
    [Crossref]
  2. I. D. Aggarwal and G. Lu, Fluoride Glass Fiber Optics (Academic Press, 1991).
  3. J. Wang, E. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
    [Crossref]
  4. D. H. Jundt, M. M. Fejer, and R. L. Byer, “Characterization of single‐crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
    [Crossref]
  5. J. Zubia and J. Arrue, “Plastic optical fibers: an introduction to their technological processes and applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
    [Crossref]
  6. R. Ramaswami, “Optical fiber communication: from transmission to networking,” IEEE Commun. Mag. 40(5), 138–147 (2002).
    [Crossref]
  7. C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
    [Crossref] [PubMed]
  8. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
    [Crossref] [PubMed]
  9. K. Kuriki, Y. Koike, and Y. Okamoto, “Plastic optical fiber lasers and amplifiers containing lanthanide complexes,” Chem. Rev. 102(6), 2347–2356 (2002).
    [Crossref] [PubMed]
  10. A. Canales, X. Jia, U. P. Froriep, R. A. Koppes, C. M. Tringides, J. Selvidge, C. Lu, C. Hou, L. Wei, Y. Fink, and P. Anikeeva, “Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo,” Nat. Biotechnol. 33(3), 277–284 (2015).
    [Crossref] [PubMed]
  11. K. Rezwan, Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini, “Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering,” Biomaterials 27(18), 3413–3431 (2006).
    [Crossref] [PubMed]
  12. Y. Lu and S. C. Chen, “Micro and nano-fabrication of biodegradable polymers for drug delivery,” Adv. Drug Deliv. Rev. 56(11), 1621–1633 (2004).
    [Crossref] [PubMed]
  13. S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
    [Crossref] [PubMed]
  14. C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
    [Crossref] [PubMed]
  15. M. C. J. Large, D. Blacket, and C.-A. Bunge, “Microstructured polymer optical fibers compared to conventional POF: novel properties and applications,” IEEE Sens. J. 10(7), 1213–1217 (2010).
    [Crossref]
  16. D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), (2003).
  17. S. Mallidi, S. Anbil, A.-L. Bulin, G. Obaid, M. Ichikawa, and T. Hasan, “Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy,” Theranostics 6(13), 2458–2487 (2016).
    [Crossref] [PubMed]
  18. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
    [Crossref] [PubMed]
  19. M. van Eijkelenborg, M. Large, A. Argyros, J. Zagari, S. Manos, N. Issa, I. Bassett, S. Fleming, R. McPhedran, C. M. de Sterke, and N. A. Nicorovici, “Microstructured polymer optical fibre,” Opt. Express 9(7), 319–327 (2001).
    [Crossref] [PubMed]
  20. T. M. Monro, P. J. Bennett, N. G. R. Broderick, and D. J. Richardson, “Holey fibers with random cladding distributions,” Opt. Lett. 25(4), 206–208 (2000).
    [Crossref] [PubMed]
  21. D. Kominsky, G. Pickrell, and R. Stolen, “Generation of random-hole optical fiber,” Opt. Lett. 28(16), 1409–1411 (2003).
    [Crossref] [PubMed]
  22. M. R. Shahriari, Q. Zhou, and G. H. Sigel., “Porous optical fibers for high-sensitivity ammonia-vapor sensors,” Opt. Lett. 13(5), 407–409 (1988).
    [Crossref] [PubMed]
  23. A. Dupuis, N. Guo, Y. Gao, N. Godbout, S. Lacroix, C. Dubois, and M. Skorobogatiy, “Prospective for biodegradable microstructured optical fibers,” Opt. Lett. 32(2), 109–111 (2007).
    [Crossref] [PubMed]
  24. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008).
    [Crossref] [PubMed]
  25. M. N’Diaye, F. Pascaretti-Grizon, P. Massin, M. F. Baslé, and D. Chappard, “Water absorption of poly(methyl methacrylate) measured by vertical interference microscopy,” Langmuir 28(31), 11609–11614 (2012).
    [Crossref] [PubMed]
  26. G. Baschek, G. Hartwig, and F. Zahradnik, “Effect of water absorption in polymers at low and high temperatures,” Polymer (Guildf.) 40(12), 3433–3441 (1999).
    [Crossref]
  27. E. Ito and Y. Kobayashi, “Changes in physical properties of polycarbonate by absorbed water,” J. Appl. Polym. Sci. 22(4), 1143–1149 (1978).
    [Crossref]
  28. J. P. Harmon and G. K. Noren, Optical Polymers: Fibers and Waveguides (American Chemical Society, 2001).
  29. T. J. Sill and H. A. von Recum, “Electrospinning: Applications in drug delivery and tissue engineering,” Biomaterials 29(13), 1989–2006 (2008).
    [Crossref] [PubMed]

2016 (2)

S. Mallidi, S. Anbil, A.-L. Bulin, G. Obaid, M. Ichikawa, and T. Hasan, “Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy,” Theranostics 6(13), 2458–2487 (2016).
[Crossref] [PubMed]

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref] [PubMed]

2015 (2)

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

A. Canales, X. Jia, U. P. Froriep, R. A. Koppes, C. M. Tringides, J. Selvidge, C. Lu, C. Hou, L. Wei, Y. Fink, and P. Anikeeva, “Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo,” Nat. Biotechnol. 33(3), 277–284 (2015).
[Crossref] [PubMed]

2012 (2)

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

M. N’Diaye, F. Pascaretti-Grizon, P. Massin, M. F. Baslé, and D. Chappard, “Water absorption of poly(methyl methacrylate) measured by vertical interference microscopy,” Langmuir 28(31), 11609–11614 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

M. C. J. Large, D. Blacket, and C.-A. Bunge, “Microstructured polymer optical fibers compared to conventional POF: novel properties and applications,” IEEE Sens. J. 10(7), 1213–1217 (2010).
[Crossref]

2008 (2)

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008).
[Crossref] [PubMed]

T. J. Sill and H. A. von Recum, “Electrospinning: Applications in drug delivery and tissue engineering,” Biomaterials 29(13), 1989–2006 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

K. Rezwan, Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini, “Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering,” Biomaterials 27(18), 3413–3431 (2006).
[Crossref] [PubMed]

2004 (1)

Y. Lu and S. C. Chen, “Micro and nano-fabrication of biodegradable polymers for drug delivery,” Adv. Drug Deliv. Rev. 56(11), 1621–1633 (2004).
[Crossref] [PubMed]

2003 (2)

D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), (2003).

D. Kominsky, G. Pickrell, and R. Stolen, “Generation of random-hole optical fiber,” Opt. Lett. 28(16), 1409–1411 (2003).
[Crossref] [PubMed]

2002 (2)

K. Kuriki, Y. Koike, and Y. Okamoto, “Plastic optical fiber lasers and amplifiers containing lanthanide complexes,” Chem. Rev. 102(6), 2347–2356 (2002).
[Crossref] [PubMed]

R. Ramaswami, “Optical fiber communication: from transmission to networking,” IEEE Commun. Mag. 40(5), 138–147 (2002).
[Crossref]

2001 (2)

2000 (1)

1999 (1)

G. Baschek, G. Hartwig, and F. Zahradnik, “Effect of water absorption in polymers at low and high temperatures,” Polymer (Guildf.) 40(12), 3433–3441 (1999).
[Crossref]

1996 (1)

1994 (1)

J. Wang, E. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

1989 (1)

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Characterization of single‐crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
[Crossref]

1988 (1)

1979 (1)

T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, “Ultimate low-loss single-mode fibre at 1.55 μm,” Electron. Lett. 15(4), 106 (1979).
[Crossref]

1978 (1)

E. Ito and Y. Kobayashi, “Changes in physical properties of polycarbonate by absorbed water,” J. Appl. Polym. Sci. 22(4), 1143–1149 (1978).
[Crossref]

Albert, J.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

Anbil, S.

S. Mallidi, S. Anbil, A.-L. Bulin, G. Obaid, M. Ichikawa, and T. Hasan, “Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy,” Theranostics 6(13), 2458–2487 (2016).
[Crossref] [PubMed]

Anikeeva, P.

A. Canales, X. Jia, U. P. Froriep, R. A. Koppes, C. M. Tringides, J. Selvidge, C. Lu, C. Hou, L. Wei, Y. Fink, and P. Anikeeva, “Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo,” Nat. Biotechnol. 33(3), 277–284 (2015).
[Crossref] [PubMed]

Argyros, A.

Arrue, J.

J. Zubia and J. Arrue, “Plastic optical fibers: an introduction to their technological processes and applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
[Crossref]

Atkin, D. M.

Bang, O.

Baschek, G.

G. Baschek, G. Hartwig, and F. Zahradnik, “Effect of water absorption in polymers at low and high temperatures,” Polymer (Guildf.) 40(12), 3433–3441 (1999).
[Crossref]

Baslé, M. F.

M. N’Diaye, F. Pascaretti-Grizon, P. Massin, M. F. Baslé, and D. Chappard, “Water absorption of poly(methyl methacrylate) measured by vertical interference microscopy,” Langmuir 28(31), 11609–11614 (2012).
[Crossref] [PubMed]

Bassett, I.

Bennett, P. J.

Birks, T. A.

Blacket, D.

M. C. J. Large, D. Blacket, and C.-A. Bunge, “Microstructured polymer optical fibers compared to conventional POF: novel properties and applications,” IEEE Sens. J. 10(7), 1213–1217 (2010).
[Crossref]

Blaker, J. J.

K. Rezwan, Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini, “Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering,” Biomaterials 27(18), 3413–3431 (2006).
[Crossref] [PubMed]

Boccaccini, A. R.

K. Rezwan, Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini, “Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering,” Biomaterials 27(18), 3413–3431 (2006).
[Crossref] [PubMed]

Broderick, N. G. R.

Bulin, A.-L.

S. Mallidi, S. Anbil, A.-L. Bulin, G. Obaid, M. Ichikawa, and T. Hasan, “Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy,” Theranostics 6(13), 2458–2487 (2016).
[Crossref] [PubMed]

Bunge, C.-A.

M. C. J. Large, D. Blacket, and C.-A. Bunge, “Microstructured polymer optical fibers compared to conventional POF: novel properties and applications,” IEEE Sens. J. 10(7), 1213–1217 (2010).
[Crossref]

Byer, R. L.

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Characterization of single‐crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
[Crossref]

Canales, A.

A. Canales, X. Jia, U. P. Froriep, R. A. Koppes, C. M. Tringides, J. Selvidge, C. Lu, C. Hou, L. Wei, Y. Fink, and P. Anikeeva, “Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo,” Nat. Biotechnol. 33(3), 277–284 (2015).
[Crossref] [PubMed]

Caucheteur, C.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

Chappard, D.

M. N’Diaye, F. Pascaretti-Grizon, P. Massin, M. F. Baslé, and D. Chappard, “Water absorption of poly(methyl methacrylate) measured by vertical interference microscopy,” Langmuir 28(31), 11609–11614 (2012).
[Crossref] [PubMed]

Chen, Q. Z.

K. Rezwan, Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini, “Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering,” Biomaterials 27(18), 3413–3431 (2006).
[Crossref] [PubMed]

Chen, S. C.

Y. Lu and S. C. Chen, “Micro and nano-fabrication of biodegradable polymers for drug delivery,” Adv. Drug Deliv. Rev. 56(11), 1621–1633 (2004).
[Crossref] [PubMed]

Choi, M.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref] [PubMed]

Choi, W.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Choi, Y.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Dasari, R. R.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

de Sterke, C. M.

Dolmans, D. E. J. G. J.

D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), (2003).

Dubois, C.

Dupuis, A.

Fang-Yen, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Fejer, M. M.

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Characterization of single‐crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
[Crossref]

Fink, Y.

A. Canales, X. Jia, U. P. Froriep, R. A. Koppes, C. M. Tringides, J. Selvidge, C. Lu, C. Hou, L. Wei, Y. Fink, and P. Anikeeva, “Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo,” Nat. Biotechnol. 33(3), 277–284 (2015).
[Crossref] [PubMed]

Fleming, S.

Froriep, U. P.

A. Canales, X. Jia, U. P. Froriep, R. A. Koppes, C. M. Tringides, J. Selvidge, C. Lu, C. Hou, L. Wei, Y. Fink, and P. Anikeeva, “Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo,” Nat. Biotechnol. 33(3), 277–284 (2015).
[Crossref] [PubMed]

Fukumura, D.

D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), (2003).

Gao, Y.

Gather, M. C.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref] [PubMed]

Godbout, N.

Guo, N.

Guo, T.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

Hahn, S. K.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref] [PubMed]

Hartwig, G.

G. Baschek, G. Hartwig, and F. Zahradnik, “Effect of water absorption in polymers at low and high temperatures,” Polymer (Guildf.) 40(12), 3433–3441 (1999).
[Crossref]

Hasan, T.

S. Mallidi, S. Anbil, A.-L. Bulin, G. Obaid, M. Ichikawa, and T. Hasan, “Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy,” Theranostics 6(13), 2458–2487 (2016).
[Crossref] [PubMed]

Hassani, A.

Hosaka, T.

T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, “Ultimate low-loss single-mode fibre at 1.55 μm,” Electron. Lett. 15(4), 106 (1979).
[Crossref]

Hou, C.

A. Canales, X. Jia, U. P. Froriep, R. A. Koppes, C. M. Tringides, J. Selvidge, C. Lu, C. Hou, L. Wei, Y. Fink, and P. Anikeeva, “Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo,” Nat. Biotechnol. 33(3), 277–284 (2015).
[Crossref] [PubMed]

Humar, M.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref] [PubMed]

Ichikawa, M.

S. Mallidi, S. Anbil, A.-L. Bulin, G. Obaid, M. Ichikawa, and T. Hasan, “Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy,” Theranostics 6(13), 2458–2487 (2016).
[Crossref] [PubMed]

Issa, N.

Ito, E.

E. Ito and Y. Kobayashi, “Changes in physical properties of polycarbonate by absorbed water,” J. Appl. Polym. Sci. 22(4), 1143–1149 (1978).
[Crossref]

Jain, R. K.

D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), (2003).

Jia, X.

A. Canales, X. Jia, U. P. Froriep, R. A. Koppes, C. M. Tringides, J. Selvidge, C. Lu, C. Hou, L. Wei, Y. Fink, and P. Anikeeva, “Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo,” Nat. Biotechnol. 33(3), 277–284 (2015).
[Crossref] [PubMed]

Jundt, D. H.

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Characterization of single‐crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
[Crossref]

Kim, K. S.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref] [PubMed]

Kim, M.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Kim, S.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref] [PubMed]

Knight, J. C.

Kobayashi, Y.

E. Ito and Y. Kobayashi, “Changes in physical properties of polycarbonate by absorbed water,” J. Appl. Polym. Sci. 22(4), 1143–1149 (1978).
[Crossref]

Koike, Y.

K. Kuriki, Y. Koike, and Y. Okamoto, “Plastic optical fiber lasers and amplifiers containing lanthanide complexes,” Chem. Rev. 102(6), 2347–2356 (2002).
[Crossref] [PubMed]

Kominsky, D.

Koppes, R. A.

A. Canales, X. Jia, U. P. Froriep, R. A. Koppes, C. M. Tringides, J. Selvidge, C. Lu, C. Hou, L. Wei, Y. Fink, and P. Anikeeva, “Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo,” Nat. Biotechnol. 33(3), 277–284 (2015).
[Crossref] [PubMed]

Kuriki, K.

K. Kuriki, Y. Koike, and Y. Okamoto, “Plastic optical fiber lasers and amplifiers containing lanthanide complexes,” Chem. Rev. 102(6), 2347–2356 (2002).
[Crossref] [PubMed]

Lacroix, S.

Large, M.

Large, M. C. J.

M. C. J. Large, D. Blacket, and C.-A. Bunge, “Microstructured polymer optical fibers compared to conventional POF: novel properties and applications,” IEEE Sens. J. 10(7), 1213–1217 (2010).
[Crossref]

Lee, K. J.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Lu, C.

A. Canales, X. Jia, U. P. Froriep, R. A. Koppes, C. M. Tringides, J. Selvidge, C. Lu, C. Hou, L. Wei, Y. Fink, and P. Anikeeva, “Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo,” Nat. Biotechnol. 33(3), 277–284 (2015).
[Crossref] [PubMed]

Lu, Y.

Y. Lu and S. C. Chen, “Micro and nano-fabrication of biodegradable polymers for drug delivery,” Adv. Drug Deliv. Rev. 56(11), 1621–1633 (2004).
[Crossref] [PubMed]

Mallidi, S.

S. Mallidi, S. Anbil, A.-L. Bulin, G. Obaid, M. Ichikawa, and T. Hasan, “Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy,” Theranostics 6(13), 2458–2487 (2016).
[Crossref] [PubMed]

Manos, S.

Markos, C.

Massin, P.

M. N’Diaye, F. Pascaretti-Grizon, P. Massin, M. F. Baslé, and D. Chappard, “Water absorption of poly(methyl methacrylate) measured by vertical interference microscopy,” Langmuir 28(31), 11609–11614 (2012).
[Crossref] [PubMed]

McPhedran, R.

Miya, T.

T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, “Ultimate low-loss single-mode fibre at 1.55 μm,” Electron. Lett. 15(4), 106 (1979).
[Crossref]

Miyashita, T.

T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, “Ultimate low-loss single-mode fibre at 1.55 μm,” Electron. Lett. 15(4), 106 (1979).
[Crossref]

Monro, T. M.

N’Diaye, M.

M. N’Diaye, F. Pascaretti-Grizon, P. Massin, M. F. Baslé, and D. Chappard, “Water absorption of poly(methyl methacrylate) measured by vertical interference microscopy,” Langmuir 28(31), 11609–11614 (2012).
[Crossref] [PubMed]

Nicorovici, N. A.

Nizamoglu, S.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref] [PubMed]

Obaid, G.

S. Mallidi, S. Anbil, A.-L. Bulin, G. Obaid, M. Ichikawa, and T. Hasan, “Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy,” Theranostics 6(13), 2458–2487 (2016).
[Crossref] [PubMed]

Okamoto, Y.

K. Kuriki, Y. Koike, and Y. Okamoto, “Plastic optical fiber lasers and amplifiers containing lanthanide complexes,” Chem. Rev. 102(6), 2347–2356 (2002).
[Crossref] [PubMed]

Pascaretti-Grizon, F.

M. N’Diaye, F. Pascaretti-Grizon, P. Massin, M. F. Baslé, and D. Chappard, “Water absorption of poly(methyl methacrylate) measured by vertical interference microscopy,” Langmuir 28(31), 11609–11614 (2012).
[Crossref] [PubMed]

Pickrell, G.

Ramaswami, R.

R. Ramaswami, “Optical fiber communication: from transmission to networking,” IEEE Commun. Mag. 40(5), 138–147 (2002).
[Crossref]

Randolph, M.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref] [PubMed]

Redmond, R. W.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref] [PubMed]

Rezwan, K.

K. Rezwan, Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini, “Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering,” Biomaterials 27(18), 3413–3431 (2006).
[Crossref] [PubMed]

Richardson, D. J.

Russell, P. S. J.

Scarcelli, G.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref] [PubMed]

Selvidge, J.

A. Canales, X. Jia, U. P. Froriep, R. A. Koppes, C. M. Tringides, J. Selvidge, C. Lu, C. Hou, L. Wei, Y. Fink, and P. Anikeeva, “Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo,” Nat. Biotechnol. 33(3), 277–284 (2015).
[Crossref] [PubMed]

Shahriari, M. R.

Sigel, G. H.

Sill, T. J.

T. J. Sill and H. A. von Recum, “Electrospinning: Applications in drug delivery and tissue engineering,” Biomaterials 29(13), 1989–2006 (2008).
[Crossref] [PubMed]

Skorobogatiy, M.

Snitzer, E.

J. Wang, E. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Stolen, R.

Terunuma, Y.

T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, “Ultimate low-loss single-mode fibre at 1.55 μm,” Electron. Lett. 15(4), 106 (1979).
[Crossref]

Town, G. E.

Tringides, C. M.

A. Canales, X. Jia, U. P. Froriep, R. A. Koppes, C. M. Tringides, J. Selvidge, C. Lu, C. Hou, L. Wei, Y. Fink, and P. Anikeeva, “Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo,” Nat. Biotechnol. 33(3), 277–284 (2015).
[Crossref] [PubMed]

van Eijkelenborg, M.

Vlachos, K.

Vogel, E.

J. Wang, E. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

von Recum, H. A.

T. J. Sill and H. A. von Recum, “Electrospinning: Applications in drug delivery and tissue engineering,” Biomaterials 29(13), 1989–2006 (2008).
[Crossref] [PubMed]

Wang, J.

J. Wang, E. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Wei, L.

A. Canales, X. Jia, U. P. Froriep, R. A. Koppes, C. M. Tringides, J. Selvidge, C. Lu, C. Hou, L. Wei, Y. Fink, and P. Anikeeva, “Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo,” Nat. Biotechnol. 33(3), 277–284 (2015).
[Crossref] [PubMed]

Yang, T. D.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Yoon, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Yuan, W.

Yun, S. H.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref] [PubMed]

Zagari, J.

Zahradnik, F.

G. Baschek, G. Hartwig, and F. Zahradnik, “Effect of water absorption in polymers at low and high temperatures,” Polymer (Guildf.) 40(12), 3433–3441 (1999).
[Crossref]

Zhou, Q.

Zubia, J.

J. Zubia and J. Arrue, “Plastic optical fibers: an introduction to their technological processes and applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
[Crossref]

Adv. Drug Deliv. Rev. (1)

Y. Lu and S. C. Chen, “Micro and nano-fabrication of biodegradable polymers for drug delivery,” Adv. Drug Deliv. Rev. 56(11), 1621–1633 (2004).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Characterization of single‐crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
[Crossref]

Biomaterials (2)

K. Rezwan, Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini, “Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering,” Biomaterials 27(18), 3413–3431 (2006).
[Crossref] [PubMed]

T. J. Sill and H. A. von Recum, “Electrospinning: Applications in drug delivery and tissue engineering,” Biomaterials 29(13), 1989–2006 (2008).
[Crossref] [PubMed]

Chem. Rev. (1)

K. Kuriki, Y. Koike, and Y. Okamoto, “Plastic optical fiber lasers and amplifiers containing lanthanide complexes,” Chem. Rev. 102(6), 2347–2356 (2002).
[Crossref] [PubMed]

Electron. Lett. (1)

T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, “Ultimate low-loss single-mode fibre at 1.55 μm,” Electron. Lett. 15(4), 106 (1979).
[Crossref]

IEEE Commun. Mag. (1)

R. Ramaswami, “Optical fiber communication: from transmission to networking,” IEEE Commun. Mag. 40(5), 138–147 (2002).
[Crossref]

IEEE Sens. J. (1)

M. C. J. Large, D. Blacket, and C.-A. Bunge, “Microstructured polymer optical fibers compared to conventional POF: novel properties and applications,” IEEE Sens. J. 10(7), 1213–1217 (2010).
[Crossref]

J. Appl. Polym. Sci. (1)

E. Ito and Y. Kobayashi, “Changes in physical properties of polycarbonate by absorbed water,” J. Appl. Polym. Sci. 22(4), 1143–1149 (1978).
[Crossref]

Langmuir (1)

M. N’Diaye, F. Pascaretti-Grizon, P. Massin, M. F. Baslé, and D. Chappard, “Water absorption of poly(methyl methacrylate) measured by vertical interference microscopy,” Langmuir 28(31), 11609–11614 (2012).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

A. Canales, X. Jia, U. P. Froriep, R. A. Koppes, C. M. Tringides, J. Selvidge, C. Lu, C. Hou, L. Wei, Y. Fink, and P. Anikeeva, “Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo,” Nat. Biotechnol. 33(3), 277–284 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7, 10374 (2016).
[Crossref] [PubMed]

Nat. Rev. Cancer (1)

D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), (2003).

Opt. Express (3)

Opt. Fiber Technol. (1)

J. Zubia and J. Arrue, “Plastic optical fibers: an introduction to their technological processes and applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
[Crossref]

Opt. Lett. (5)

Opt. Mater. (1)

J. Wang, E. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Phys. Rev. Lett. (1)

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Polymer (Guildf.) (1)

G. Baschek, G. Hartwig, and F. Zahradnik, “Effect of water absorption in polymers at low and high temperatures,” Polymer (Guildf.) 40(12), 3433–3441 (1999).
[Crossref]

Theranostics (1)

S. Mallidi, S. Anbil, A.-L. Bulin, G. Obaid, M. Ichikawa, and T. Hasan, “Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy,” Theranostics 6(13), 2458–2487 (2016).
[Crossref] [PubMed]

Other (2)

I. D. Aggarwal and G. Lu, Fluoride Glass Fiber Optics (Academic Press, 1991).

J. P. Harmon and G. K. Noren, Optical Polymers: Fibers and Waveguides (American Chemical Society, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The weight increase from water absorption of PC and PMMA during the 60 °C water bath (inset: PMMA before (left) and after one-month water bath (right)). (b) PC tubes (OD 0.75 inch, ID 0.25 inch) heated in an oven for 30 minutes. (c) 1 inch diameter PMMA rods heated in an oven for 30 minutes. (In (b) and (c) front row: in vacuum, back row: in air; from left to right: 160 °C, 180 °C and 200 °C).
Fig. 2
Fig. 2 (a) Thermal drawing of polymer fibers. (b) and (c) PC preform after consolidation at 180 °C in vacuum for 30 minutes (core diameter: 0.25 inch; cladding tube OD: 0.75 inch, ID: 0.25 inch; outer tube OD: 1 inch, ID: 0.75 inch).
Fig. 3
Fig. 3 (a) - (d) SEM images of the cross sections of porous optical fibers A-D, scale bar: 100 μm. Fibers shown in (c) and (d) were embedded in resin before SEM imaging; red dash lines circle the porous cladding area and black dash lines circle the fiber boundary.
Fig. 4
Fig. 4 (a) SEM image of the cross sections of porous optical fiber made from PC and PMMA, (b) optical microscopic image of the porous optical fiber with light injected to the core from the other end, scale bar: 100 μm. Red dash lines circle the porous cladding area and black dash lines circle the boundary of the core.
Fig. 5
Fig. 5 (a) Bright field image of agarose gel phantoms with rhodamine-loaded fibers inserted. (b) Fluorescent image of rhodamine release in gels in (a) in PBS at 37 °C after 2 days. (c) Bright field image of murine 4T1 tumors. (d) Fluorescent image of dye released in tumors in (c) at 37 °C after 3 days. The color in (b) & (d) is presented as the radiant efficiency. In all figures, from left to right test subjects were inserted with the porous-cladding PC fiber, the capillary tube-cladding PMMA fiber and the porous-cladding PMMA fiber.

Tables (2)

Tables Icon

Table 1 Preform geometry and fiber drawing parameters

Tables Icon

Table 2 Optical transmission loss of fibers A-D

Metrics