Abstract

Light emission is a basic process at the core of applications in optics and photonics, such as lighting, sensing and telecom. Despite extensive work on the design of light-matter interfaces, the outcoupling of electromagnetic radiation from nanoscale sources is still a challenge. Here, we show how a planar Yagi-Uda antenna based on thin-film optics can lead to more than 90% outcoupling efficiency and strong directional emission from materials with a large refractive index. Our findings are particularly relevant for semiconductor-based nanophotonic devices, which typically suffer from a large mismatch with respect to free-space and guided modes.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna

Tim H. Taminiau, Fernando D. Stefani, and Niek F. van Hulst
Opt. Express 16(14) 10858-10866 (2008)

Super directive Yagi–Uda nanoantennas with an ellipsoid reflector for optimal radiation emission

K. R. Mahmoud, Mohamed Hussein, Mohamed Farhat. O. Hameed, and S. S. A. Obayya
J. Opt. Soc. Am. B 34(10) 2041-2049 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Lieber, “Semiconductor nanowires: A platform for nanoscience and nanotechnology,” MRS Bull. 36(12), 1052–1063 (2011).
    [Crossref] [PubMed]
  2. P. Michler, ed., Single Semiconductor Quantum Dots (Springer, 2009).
  3. V. I. Klimov, ed., Nanocrystal Quantum Dots (2nd ed.) (CRC Press, 2010).
  4. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
  5. S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centers in diamond for single-photon emission – overview and critical remarks,” New J. Phys. 13(3), 035024 (2011).
    [Crossref]
  6. K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5(3), 166–169 (2011).
    [Crossref]
  7. X. L. Chu, T. J. K. Brenner, X. W. Chen, Y. Ghosh, J. A. Hollingsworth, V. Sandoghdar, and S. Götzinger, “Experimental realization of an optical antenna designed for collecting 99% of photons from a quantum emitter,” Optica 1(4), 203–208 (2014).
    [Crossref]
  8. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
    [Crossref] [PubMed]
  9. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).
  10. T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
    [Crossref] [PubMed]
  11. G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
    [Crossref]
  12. R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104(2), 026802 (2010).
    [Crossref] [PubMed]
  13. G. Lecamp, P. Lalanne, and J. P. Hugonin, “Very large spontaneous-emission β factors in photonic-crystal waveguides,” Phys. Rev. Lett. 99(2), 023902 (2007).
    [Crossref] [PubMed]
  14. Q. M. Quan, I. Bulu, and M. Lončar, “Broadband waveguide QED system on a chip,” Phys. Rev. A 80(1), 011810 (2009).
    [Crossref]
  15. Y. Ma, P. E. Kremer, and B. D. Gerardot, “Efficient photon extraction from a quantum dot in a broad-band planar cavity antenna,” J. Appl. Phys. 115(2), 023106 (2014).
    [Crossref]
  16. T. Steinmetz, Y. Colombe, D. Hunger, T. W. Hänsch, A. Balocchi, R. J. Warburton, and J. Reichel, “Stable fiber-based Fabry-Pérot cavity,” Appl. Phys. Lett. 89(11), 111110 (2006).
    [Crossref]
  17. C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97(2), 021107 (2010).
    [Crossref]
  18. H. Kelkar, D. Wang, D. Martín-Cano, B. Hoffmann, S. Christiansen, S. Götzinger, and V. Sandoghdar, “Sensing nanoparticles with a cantilever-based scannable optical cavity of low finesse and sub-λ3 volume,” Phys. Rev. Appl. 4(5), 054010 (2015).
    [Crossref]
  19. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Photoluminescence from dye molecules in silver gratings,” Opt. Commun. 122(4–6), 147–154 (1996).
    [Crossref]
  20. H. Rigneault, F. Lemarchand, A. Sentenac, and H. Giovannini, “Extraction of light from sources located inside waveguide grating structures,” Opt. Lett. 24(3), 148–150 (1999).
    [Crossref] [PubMed]
  21. M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal’zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, and X. Letartre, “Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator,” Appl. Phys. Lett. 83(13), 2542–2544 (2003).
    [Crossref]
  22. W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
    [Crossref]
  23. M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, and J. Wrachtrup, “Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling,” Rev. Sci. Instrum. 85(12), 123703 (2014).
    [Crossref] [PubMed]
  24. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  25. S. Checcucci, P. Lombardi, S. Rizvi, F. Sgrignuoli, N. Gruhler, F. B. C. Dieleman, F. S. Cataliotti, W. H. P. Pernice, M. Agio, and C. Toninelli, “Beaming light from a quantum emitter with a planar optical antenna,” Light Sci. Appl. 6(4), e16245 (2016).
    [Crossref]
  26. J. J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76(24), 245403 (2007).
    [Crossref]
  27. C. A. Balanis, Antenna Theory: Analysis and Design (3rd edn.) (John Wiley & Sons, 2005).
  28. K. A. Neyts, “Simulation of light emission from thin-film microcavities,” J. Opt. Soc. Am. A 15(4), 962–971 (1998).
    [Crossref]
  29. X. W. Chen, W. C. Choy, and S. L. He, “Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes,” J. Disp. Technol. 3(2), 110–117 (2007).
    [Crossref]
  30. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  31. A. Maradudin, J. R. Sambles, W. L. Barnes, eds., Modern Plasmonics (Elsevier Science, 2014).
  32. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, I. Prigogine, and S. A. Rice, eds., Vol. 37 (John Wiley & Sons, 1978), pp. 1–65.
  33. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, M. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
    [Crossref]
  34. D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
    [Crossref]
  35. J.-W. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
  36. M. Tabata, I. Adachi, Y. Ishii, H. Kawai, T. Sumiyoshi, and H. Yokogawa, “Development of transparent silica aerogel over a wide range of densities,” Nucl. Instrum. Methods Phys. Res. A 623(1), 339–341 (2010).
    [Crossref]

2016 (1)

S. Checcucci, P. Lombardi, S. Rizvi, F. Sgrignuoli, N. Gruhler, F. B. C. Dieleman, F. S. Cataliotti, W. H. P. Pernice, M. Agio, and C. Toninelli, “Beaming light from a quantum emitter with a planar optical antenna,” Light Sci. Appl. 6(4), e16245 (2016).
[Crossref]

2015 (1)

H. Kelkar, D. Wang, D. Martín-Cano, B. Hoffmann, S. Christiansen, S. Götzinger, and V. Sandoghdar, “Sensing nanoparticles with a cantilever-based scannable optical cavity of low finesse and sub-λ3 volume,” Phys. Rev. Appl. 4(5), 054010 (2015).
[Crossref]

2014 (5)

Y. Ma, P. E. Kremer, and B. D. Gerardot, “Efficient photon extraction from a quantum dot in a broad-band planar cavity antenna,” J. Appl. Phys. 115(2), 023106 (2014).
[Crossref]

X. L. Chu, T. J. K. Brenner, X. W. Chen, Y. Ghosh, J. A. Hollingsworth, V. Sandoghdar, and S. Götzinger, “Experimental realization of an optical antenna designed for collecting 99% of photons from a quantum emitter,” Optica 1(4), 203–208 (2014).
[Crossref]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, and J. Wrachtrup, “Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling,” Rev. Sci. Instrum. 85(12), 123703 (2014).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

2011 (4)

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

C. M. Lieber, “Semiconductor nanowires: A platform for nanoscience and nanotechnology,” MRS Bull. 36(12), 1052–1063 (2011).
[Crossref] [PubMed]

S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centers in diamond for single-photon emission – overview and critical remarks,” New J. Phys. 13(3), 035024 (2011).
[Crossref]

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5(3), 166–169 (2011).
[Crossref]

2010 (5)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104(2), 026802 (2010).
[Crossref] [PubMed]

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97(2), 021107 (2010).
[Crossref]

M. Tabata, I. Adachi, Y. Ishii, H. Kawai, T. Sumiyoshi, and H. Yokogawa, “Development of transparent silica aerogel over a wide range of densities,” Nucl. Instrum. Methods Phys. Res. A 623(1), 339–341 (2010).
[Crossref]

2009 (1)

Q. M. Quan, I. Bulu, and M. Lončar, “Broadband waveguide QED system on a chip,” Phys. Rev. A 80(1), 011810 (2009).
[Crossref]

2007 (4)

G. Lecamp, P. Lalanne, and J. P. Hugonin, “Very large spontaneous-emission β factors in photonic-crystal waveguides,” Phys. Rev. Lett. 99(2), 023902 (2007).
[Crossref] [PubMed]

J.-W. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

J. J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76(24), 245403 (2007).
[Crossref]

X. W. Chen, W. C. Choy, and S. L. He, “Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes,” J. Disp. Technol. 3(2), 110–117 (2007).
[Crossref]

2006 (1)

T. Steinmetz, Y. Colombe, D. Hunger, T. W. Hänsch, A. Balocchi, R. J. Warburton, and J. Reichel, “Stable fiber-based Fabry-Pérot cavity,” Appl. Phys. Lett. 89(11), 111110 (2006).
[Crossref]

2003 (2)

M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal’zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, and X. Letartre, “Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator,” Appl. Phys. Lett. 83(13), 2542–2544 (2003).
[Crossref]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, M. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

2002 (1)

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[Crossref]

1999 (1)

1998 (1)

1996 (1)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Photoluminescence from dye molecules in silver gratings,” Opt. Commun. 122(4–6), 147–154 (1996).
[Crossref]

1986 (1)

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Adachi, I.

M. Tabata, I. Adachi, Y. Ishii, H. Kawai, T. Sumiyoshi, and H. Yokogawa, “Development of transparent silica aerogel over a wide range of densities,” Nucl. Instrum. Methods Phys. Res. A 623(1), 339–341 (2010).
[Crossref]

Agio, M.

S. Checcucci, P. Lombardi, S. Rizvi, F. Sgrignuoli, N. Gruhler, F. B. C. Dieleman, F. S. Cataliotti, W. H. P. Pernice, M. Agio, and C. Toninelli, “Beaming light from a quantum emitter with a planar optical antenna,” Light Sci. Appl. 6(4), e16245 (2016).
[Crossref]

Akselrod, G. M.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Argyropoulos, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Aspnes, D. E.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

Balocchi, A.

T. Steinmetz, Y. Colombe, D. Hunger, T. W. Hänsch, A. Balocchi, R. J. Warburton, and J. Reichel, “Stable fiber-based Fabry-Pérot cavity,” Appl. Phys. Lett. 89(11), 111110 (2006).
[Crossref]

Bao, K.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[Crossref]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Photoluminescence from dye molecules in silver gratings,” Opt. Commun. 122(4–6), 147–154 (1996).
[Crossref]

Bazin, M.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).

Becouarn, L.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, M. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Bhat, R.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

Björk, G.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[Crossref]

Bleuse, J.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).

Brenner, T. J. K.

Bulu, I.

Q. M. Quan, I. Bulu, and M. Lončar, “Broadband waveguide QED system on a chip,” Phys. Rev. A 80(1), 011810 (2009).
[Crossref]

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Cataliotti, F. S.

S. Checcucci, P. Lombardi, S. Rizvi, F. Sgrignuoli, N. Gruhler, F. B. C. Dieleman, F. S. Cataliotti, W. H. P. Pernice, M. Agio, and C. Toninelli, “Beaming light from a quantum emitter with a planar optical antenna,” Light Sci. Appl. 6(4), e16245 (2016).
[Crossref]

Charvolin, T.

M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal’zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, and X. Letartre, “Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator,” Appl. Phys. Lett. 83(13), 2542–2544 (2003).
[Crossref]

Checcucci, S.

S. Checcucci, P. Lombardi, S. Rizvi, F. Sgrignuoli, N. Gruhler, F. B. C. Dieleman, F. S. Cataliotti, W. H. P. Pernice, M. Agio, and C. Toninelli, “Beaming light from a quantum emitter with a planar optical antenna,” Light Sci. Appl. 6(4), e16245 (2016).
[Crossref]

Chen, M.

J.-W. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Chen, X. W.

X. L. Chu, T. J. K. Brenner, X. W. Chen, Y. Ghosh, J. A. Hollingsworth, V. Sandoghdar, and S. Götzinger, “Experimental realization of an optical antenna designed for collecting 99% of photons from a quantum emitter,” Optica 1(4), 203–208 (2014).
[Crossref]

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5(3), 166–169 (2011).
[Crossref]

X. W. Chen, W. C. Choy, and S. L. He, “Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes,” J. Disp. Technol. 3(2), 110–117 (2007).
[Crossref]

Choy, W. C.

X. W. Chen, W. C. Choy, and S. L. He, “Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes,” J. Disp. Technol. 3(2), 110–117 (2007).
[Crossref]

Christiansen, S.

H. Kelkar, D. Wang, D. Martín-Cano, B. Hoffmann, S. Christiansen, S. Götzinger, and V. Sandoghdar, “Sensing nanoparticles with a cantilever-based scannable optical cavity of low finesse and sub-λ3 volume,” Phys. Rev. Appl. 4(5), 054010 (2015).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chu, X. L.

Ciracì, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Claudon, J.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).

Colombe, Y.

T. Steinmetz, Y. Colombe, D. Hunger, T. W. Hänsch, A. Balocchi, R. J. Warburton, and J. Reichel, “Stable fiber-based Fabry-Pérot cavity,” Appl. Phys. Lett. 89(11), 111110 (2006).
[Crossref]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Dal’zotto, B.

M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal’zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, and X. Letartre, “Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator,” Appl. Phys. Lett. 83(13), 2542–2544 (2003).
[Crossref]

Delley, Y.

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97(2), 021107 (2010).
[Crossref]

Dieleman, F. B. C.

S. Checcucci, P. Lombardi, S. Rizvi, F. Sgrignuoli, N. Gruhler, F. B. C. Dieleman, F. S. Cataliotti, W. H. P. Pernice, M. Agio, and C. Toninelli, “Beaming light from a quantum emitter with a planar optical antenna,” Light Sci. Appl. 6(4), e16245 (2016).
[Crossref]

Eghlidi, H.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5(3), 166–169 (2011).
[Crossref]

Engheta, N.

J. J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76(24), 245403 (2007).
[Crossref]

Esteban, R.

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104(2), 026802 (2010).
[Crossref] [PubMed]

Eyres, L. A.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, M. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Fang, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Fedder, H.

M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, and J. Wrachtrup, “Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling,” Rev. Sci. Instrum. 85(12), 123703 (2014).
[Crossref] [PubMed]

Fejer, M. M.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, M. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Frenner, K.

M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, and J. Wrachtrup, “Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling,” Rev. Sci. Instrum. 85(12), 123703 (2014).
[Crossref] [PubMed]

Gerard, M.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, M. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Gérard, J. M.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[Crossref]

Gerardot, B. D.

Y. Ma, P. E. Kremer, and B. D. Gerardot, “Efficient photon extraction from a quantum dot in a broad-band planar cavity antenna,” J. Appl. Phys. 115(2), 023106 (2014).
[Crossref]

Gerhardt, I.

M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, and J. Wrachtrup, “Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling,” Rev. Sci. Instrum. 85(12), 123703 (2014).
[Crossref] [PubMed]

Ghosh, Y.

Giovannini, H.

Götzinger, S.

H. Kelkar, D. Wang, D. Martín-Cano, B. Hoffmann, S. Christiansen, S. Götzinger, and V. Sandoghdar, “Sensing nanoparticles with a cantilever-based scannable optical cavity of low finesse and sub-λ3 volume,” Phys. Rev. Appl. 4(5), 054010 (2015).
[Crossref]

X. L. Chu, T. J. K. Brenner, X. W. Chen, Y. Ghosh, J. A. Hollingsworth, V. Sandoghdar, and S. Götzinger, “Experimental realization of an optical antenna designed for collecting 99% of photons from a quantum emitter,” Optica 1(4), 203–208 (2014).
[Crossref]

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5(3), 166–169 (2011).
[Crossref]

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97(2), 021107 (2010).
[Crossref]

Greffet, J. J.

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104(2), 026802 (2010).
[Crossref] [PubMed]

Gregersen, N.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).

Gruhler, N.

S. Checcucci, P. Lombardi, S. Rizvi, F. Sgrignuoli, N. Gruhler, F. B. C. Dieleman, F. S. Cataliotti, W. H. P. Pernice, M. Agio, and C. Toninelli, “Beaming light from a quantum emitter with a planar optical antenna,” Light Sci. Appl. 6(4), e16245 (2016).
[Crossref]

Hadji, E.

M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal’zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, and X. Letartre, “Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator,” Appl. Phys. Lett. 83(13), 2542–2544 (2003).
[Crossref]

Hänsch, T. W.

T. Steinmetz, Y. Colombe, D. Hunger, T. W. Hänsch, A. Balocchi, R. J. Warburton, and J. Reichel, “Stable fiber-based Fabry-Pérot cavity,” Appl. Phys. Lett. 89(11), 111110 (2006).
[Crossref]

Harris, J. S.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, M. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

He, S. L.

X. W. Chen, W. C. Choy, and S. L. He, “Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes,” J. Disp. Technol. 3(2), 110–117 (2007).
[Crossref]

Heitzmann, M.

M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal’zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, and X. Letartre, “Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator,” Appl. Phys. Lett. 83(13), 2542–2544 (2003).
[Crossref]

Hoang, T. B.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Hoffmann, B.

H. Kelkar, D. Wang, D. Martín-Cano, B. Hoffmann, S. Christiansen, S. Götzinger, and V. Sandoghdar, “Sensing nanoparticles with a cantilever-based scannable optical cavity of low finesse and sub-λ3 volume,” Phys. Rev. Appl. 4(5), 054010 (2015).
[Crossref]

Hollingsworth, J. A.

Huang, J.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Hugonin, J. P.

G. Lecamp, P. Lalanne, and J. P. Hugonin, “Very large spontaneous-emission β factors in photonic-crystal waveguides,” Phys. Rev. Lett. 99(2), 023902 (2007).
[Crossref] [PubMed]

Hunger, D.

T. Steinmetz, Y. Colombe, D. Hunger, T. W. Hänsch, A. Balocchi, R. J. Warburton, and J. Reichel, “Stable fiber-based Fabry-Pérot cavity,” Appl. Phys. Lett. 89(11), 111110 (2006).
[Crossref]

Ishii, Y.

M. Tabata, I. Adachi, Y. Ishii, H. Kawai, T. Sumiyoshi, and H. Yokogawa, “Development of transparent silica aerogel over a wide range of densities,” Nucl. Instrum. Methods Phys. Res. A 623(1), 339–341 (2010).
[Crossref]

Jaffrennou, P.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).

Jamali, M.

M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, and J. Wrachtrup, “Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling,” Rev. Sci. Instrum. 85(12), 123703 (2014).
[Crossref] [PubMed]

Johansson, P.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jonsson, P.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[Crossref]

Käll, M.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

Kawai, H.

M. Tabata, I. Adachi, Y. Ishii, H. Kawai, T. Sumiyoshi, and H. Yokogawa, “Development of transparent silica aerogel over a wide range of densities,” Nucl. Instrum. Methods Phys. Res. A 623(1), 339–341 (2010).
[Crossref]

Kelkar, H.

H. Kelkar, D. Wang, D. Martín-Cano, B. Hoffmann, S. Christiansen, S. Götzinger, and V. Sandoghdar, “Sensing nanoparticles with a cantilever-based scannable optical cavity of low finesse and sub-λ3 volume,” Phys. Rev. Appl. 4(5), 054010 (2015).
[Crossref]

Kelso, S. M.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

Kim, J. K.

J.-W. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Kitson, S. C.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Photoluminescence from dye molecules in silver gratings,” Opt. Commun. 122(4–6), 147–154 (1996).
[Crossref]

Kremer, P. E.

Y. Ma, P. E. Kremer, and B. D. Gerardot, “Efficient photon extraction from a quantum dot in a broad-band planar cavity antenna,” J. Appl. Phys. 115(2), 023106 (2014).
[Crossref]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Kukura, P.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5(3), 166–169 (2011).
[Crossref]

Kuo, P. S.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, M. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Lalanne, P.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).

G. Lecamp, P. Lalanne, and J. P. Hugonin, “Very large spontaneous-emission β factors in photonic-crystal waveguides,” Phys. Rev. Lett. 99(2), 023902 (2007).
[Crossref] [PubMed]

Lallier, E.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, M. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Lecamp, G.

G. Lecamp, P. Lalanne, and J. P. Hugonin, “Very large spontaneous-emission β factors in photonic-crystal waveguides,” Phys. Rev. Lett. 99(2), 023902 (2007).
[Crossref] [PubMed]

Lee, K. G.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5(3), 166–169 (2011).
[Crossref]

Lemarchand, F.

Letartre, X.

M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal’zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, and X. Letartre, “Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator,” Appl. Phys. Lett. 83(13), 2542–2544 (2003).
[Crossref]

Lettow, R.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5(3), 166–169 (2011).
[Crossref]

Levi, O.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, M. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Li, J. J.

J. J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76(24), 245403 (2007).
[Crossref]

Lieber, C. M.

C. M. Lieber, “Semiconductor nanowires: A platform for nanoscience and nanotechnology,” MRS Bull. 36(12), 1052–1063 (2011).
[Crossref] [PubMed]

Lin, S.-Y.

J.-W. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Logan, R. A.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

Lombardi, P.

S. Checcucci, P. Lombardi, S. Rizvi, F. Sgrignuoli, N. Gruhler, F. B. C. Dieleman, F. S. Cataliotti, W. H. P. Pernice, M. Agio, and C. Toninelli, “Beaming light from a quantum emitter with a planar optical antenna,” Light Sci. Appl. 6(4), e16245 (2016).
[Crossref]

Loncar, M.

Q. M. Quan, I. Bulu, and M. Lončar, “Broadband waveguide QED system on a chip,” Phys. Rev. A 80(1), 011810 (2009).
[Crossref]

Ma, Y.

Y. Ma, P. E. Kremer, and B. D. Gerardot, “Efficient photon extraction from a quantum dot in a broad-band planar cavity antenna,” J. Appl. Phys. 115(2), 023106 (2014).
[Crossref]

Malik, N. S.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).

Martín-Cano, D.

H. Kelkar, D. Wang, D. Martín-Cano, B. Hoffmann, S. Christiansen, S. Götzinger, and V. Sandoghdar, “Sensing nanoparticles with a cantilever-based scannable optical cavity of low finesse and sub-λ3 volume,” Phys. Rev. Appl. 4(5), 054010 (2015).
[Crossref]

Meijer, J.

S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centers in diamond for single-photon emission – overview and critical remarks,” New J. Phys. 13(3), 035024 (2011).
[Crossref]

Mikkelsen, M. H.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Miljkovic, V. D.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

Neyts, K. A.

Nier, M. E.

M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal’zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, and X. Letartre, “Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator,” Appl. Phys. Lett. 83(13), 2542–2544 (2003).
[Crossref]

Nordlander, P.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

Pernice, W. H. P.

S. Checcucci, P. Lombardi, S. Rizvi, F. Sgrignuoli, N. Gruhler, F. B. C. Dieleman, F. S. Cataliotti, W. H. P. Pernice, M. Agio, and C. Toninelli, “Beaming light from a quantum emitter with a planar optical antenna,” Light Sci. Appl. 6(4), e16245 (2016).
[Crossref]

Pezzagna, S.

S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centers in diamond for single-photon emission – overview and critical remarks,” New J. Phys. 13(3), 035024 (2011).
[Crossref]

Picard, E.

M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal’zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, and X. Letartre, “Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator,” Appl. Phys. Lett. 83(13), 2542–2544 (2003).
[Crossref]

Pinguet, T. J.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, M. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Quan, Q. M.

Q. M. Quan, I. Bulu, and M. Lončar, “Broadband waveguide QED system on a chip,” Phys. Rev. A 80(1), 011810 (2009).
[Crossref]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Reichel, J.

T. Steinmetz, Y. Colombe, D. Hunger, T. W. Hänsch, A. Balocchi, R. J. Warburton, and J. Reichel, “Stable fiber-based Fabry-Pérot cavity,” Appl. Phys. Lett. 89(11), 111110 (2006).
[Crossref]

Renn, A.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5(3), 166–169 (2011).
[Crossref]

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97(2), 021107 (2010).
[Crossref]

Rezai, M.

M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, and J. Wrachtrup, “Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling,” Rev. Sci. Instrum. 85(12), 123703 (2014).
[Crossref] [PubMed]

Rigneault, H.

Rizvi, S.

S. Checcucci, P. Lombardi, S. Rizvi, F. Sgrignuoli, N. Gruhler, F. B. C. Dieleman, F. S. Cataliotti, W. H. P. Pernice, M. Agio, and C. Toninelli, “Beaming light from a quantum emitter with a planar optical antenna,” Light Sci. Appl. 6(4), e16245 (2016).
[Crossref]

Rogalla, D.

S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centers in diamond for single-photon emission – overview and critical remarks,” New J. Phys. 13(3), 035024 (2011).
[Crossref]

Rojo-Romeo, P.

M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal’zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, and X. Letartre, “Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator,” Appl. Phys. Lett. 83(13), 2542–2544 (2003).
[Crossref]

Salandrino, A.

J. J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76(24), 245403 (2007).
[Crossref]

Sambles, J. R.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Photoluminescence from dye molecules in silver gratings,” Opt. Commun. 122(4–6), 147–154 (1996).
[Crossref]

Sandoghdar, V.

H. Kelkar, D. Wang, D. Martín-Cano, B. Hoffmann, S. Christiansen, S. Götzinger, and V. Sandoghdar, “Sensing nanoparticles with a cantilever-based scannable optical cavity of low finesse and sub-λ3 volume,” Phys. Rev. Appl. 4(5), 054010 (2015).
[Crossref]

X. L. Chu, T. J. K. Brenner, X. W. Chen, Y. Ghosh, J. A. Hollingsworth, V. Sandoghdar, and S. Götzinger, “Experimental realization of an optical antenna designed for collecting 99% of photons from a quantum emitter,” Optica 1(4), 203–208 (2014).
[Crossref]

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5(3), 166–169 (2011).
[Crossref]

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97(2), 021107 (2010).
[Crossref]

Sauvan, C.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).

Schubert, E. F.

J.-W. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Schubert, M. F.

J.-W. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Seassal, C.

M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal’zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, and X. Letartre, “Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator,” Appl. Phys. Lett. 83(13), 2542–2544 (2003).
[Crossref]

Sentenac, A.

Sgrignuoli, F.

S. Checcucci, P. Lombardi, S. Rizvi, F. Sgrignuoli, N. Gruhler, F. B. C. Dieleman, F. S. Cataliotti, W. H. P. Pernice, M. Agio, and C. Toninelli, “Beaming light from a quantum emitter with a planar optical antenna,” Light Sci. Appl. 6(4), e16245 (2016).
[Crossref]

Shegai, T.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

Skauli, T.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, M. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Smart, J. A.

J.-W. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Smith, D. R.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Steinmetz, T.

T. Steinmetz, Y. Colombe, D. Hunger, T. W. Hänsch, A. Balocchi, R. J. Warburton, and J. Reichel, “Stable fiber-based Fabry-Pérot cavity,” Appl. Phys. Lett. 89(11), 111110 (2006).
[Crossref]

Stöferle, T.

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97(2), 021107 (2010).
[Crossref]

Sumiyoshi, T.

M. Tabata, I. Adachi, Y. Ishii, H. Kawai, T. Sumiyoshi, and H. Yokogawa, “Development of transparent silica aerogel over a wide range of densities,” Nucl. Instrum. Methods Phys. Res. A 623(1), 339–341 (2010).
[Crossref]

Tabata, M.

M. Tabata, I. Adachi, Y. Ishii, H. Kawai, T. Sumiyoshi, and H. Yokogawa, “Development of transparent silica aerogel over a wide range of densities,” Nucl. Instrum. Methods Phys. Res. A 623(1), 339–341 (2010).
[Crossref]

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Teperik, T. V.

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104(2), 026802 (2010).
[Crossref] [PubMed]

Toninelli, C.

S. Checcucci, P. Lombardi, S. Rizvi, F. Sgrignuoli, N. Gruhler, F. B. C. Dieleman, F. S. Cataliotti, W. H. P. Pernice, M. Agio, and C. Toninelli, “Beaming light from a quantum emitter with a planar optical antenna,” Light Sci. Appl. 6(4), e16245 (2016).
[Crossref]

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97(2), 021107 (2010).
[Crossref]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Vodopyanov, K. L.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, M. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Wang, D.

H. Kelkar, D. Wang, D. Martín-Cano, B. Hoffmann, S. Christiansen, S. Götzinger, and V. Sandoghdar, “Sensing nanoparticles with a cantilever-based scannable optical cavity of low finesse and sub-λ3 volume,” Phys. Rev. Appl. 4(5), 054010 (2015).
[Crossref]

Warburton, R. J.

T. Steinmetz, Y. Colombe, D. Hunger, T. W. Hänsch, A. Balocchi, R. J. Warburton, and J. Reichel, “Stable fiber-based Fabry-Pérot cavity,” Appl. Phys. Lett. 89(11), 111110 (2006).
[Crossref]

Wasey, J. A. E.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[Crossref]

Wildanger, D.

S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centers in diamond for single-photon emission – overview and critical remarks,” New J. Phys. 13(3), 035024 (2011).
[Crossref]

Worthing, P. T.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[Crossref]

Wrachtrup, J.

M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, and J. Wrachtrup, “Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling,” Rev. Sci. Instrum. 85(12), 123703 (2014).
[Crossref] [PubMed]

Xi, J.-W.

J.-W. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Xu, H.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

Yokogawa, H.

M. Tabata, I. Adachi, Y. Ishii, H. Kawai, T. Sumiyoshi, and H. Yokogawa, “Development of transparent silica aerogel over a wide range of densities,” Nucl. Instrum. Methods Phys. Res. A 623(1), 339–341 (2010).
[Crossref]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Zaitsev, A.

S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centers in diamond for single-photon emission – overview and critical remarks,” New J. Phys. 13(3), 035024 (2011).
[Crossref]

Zelsmann, M.

M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal’zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, and X. Letartre, “Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator,” Appl. Phys. Lett. 83(13), 2542–2544 (2003).
[Crossref]

Zwiller, V.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[Crossref]

Appl. Phys. Lett. (3)

T. Steinmetz, Y. Colombe, D. Hunger, T. W. Hänsch, A. Balocchi, R. J. Warburton, and J. Reichel, “Stable fiber-based Fabry-Pérot cavity,” Appl. Phys. Lett. 89(11), 111110 (2006).
[Crossref]

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97(2), 021107 (2010).
[Crossref]

M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal’zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, and X. Letartre, “Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator,” Appl. Phys. Lett. 83(13), 2542–2544 (2003).
[Crossref]

Eur. Phys. J. D (1)

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[Crossref]

J. Appl. Phys. (3)

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, M. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

Y. Ma, P. E. Kremer, and B. D. Gerardot, “Efficient photon extraction from a quantum dot in a broad-band planar cavity antenna,” J. Appl. Phys. 115(2), 023106 (2014).
[Crossref]

J. Disp. Technol. (1)

X. W. Chen, W. C. Choy, and S. L. He, “Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes,” J. Disp. Technol. 3(2), 110–117 (2007).
[Crossref]

J. Opt. Soc. Am. A (1)

Light Sci. Appl. (1)

S. Checcucci, P. Lombardi, S. Rizvi, F. Sgrignuoli, N. Gruhler, F. B. C. Dieleman, F. S. Cataliotti, W. H. P. Pernice, M. Agio, and C. Toninelli, “Beaming light from a quantum emitter with a planar optical antenna,” Light Sci. Appl. 6(4), e16245 (2016).
[Crossref]

MRS Bull. (1)

C. M. Lieber, “Semiconductor nanowires: A platform for nanoscience and nanotechnology,” MRS Bull. 36(12), 1052–1063 (2011).
[Crossref] [PubMed]

Nano Lett. (1)

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Nat. Photonics (4)

J.-W. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5(3), 166–169 (2011).
[Crossref]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010).

New J. Phys. (1)

S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centers in diamond for single-photon emission – overview and critical remarks,” New J. Phys. 13(3), 035024 (2011).
[Crossref]

Nucl. Instrum. Methods Phys. Res. A (1)

M. Tabata, I. Adachi, Y. Ishii, H. Kawai, T. Sumiyoshi, and H. Yokogawa, “Development of transparent silica aerogel over a wide range of densities,” Nucl. Instrum. Methods Phys. Res. A 623(1), 339–341 (2010).
[Crossref]

Opt. Commun. (1)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Photoluminescence from dye molecules in silver gratings,” Opt. Commun. 122(4–6), 147–154 (1996).
[Crossref]

Opt. Lett. (1)

Optica (1)

Phys. Rev. A (1)

Q. M. Quan, I. Bulu, and M. Lončar, “Broadband waveguide QED system on a chip,” Phys. Rev. A 80(1), 011810 (2009).
[Crossref]

Phys. Rev. Appl. (1)

H. Kelkar, D. Wang, D. Martín-Cano, B. Hoffmann, S. Christiansen, S. Götzinger, and V. Sandoghdar, “Sensing nanoparticles with a cantilever-based scannable optical cavity of low finesse and sub-λ3 volume,” Phys. Rev. Appl. 4(5), 054010 (2015).
[Crossref]

Phys. Rev. B (2)

J. J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76(24), 245403 (2007).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (2)

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104(2), 026802 (2010).
[Crossref] [PubMed]

G. Lecamp, P. Lalanne, and J. P. Hugonin, “Very large spontaneous-emission β factors in photonic-crystal waveguides,” Phys. Rev. Lett. 99(2), 023902 (2007).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, and J. Wrachtrup, “Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling,” Rev. Sci. Instrum. 85(12), 123703 (2014).
[Crossref] [PubMed]

Science (1)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Other (6)

P. Michler, ed., Single Semiconductor Quantum Dots (Springer, 2009).

V. I. Klimov, ed., Nanocrystal Quantum Dots (2nd ed.) (CRC Press, 2010).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).

C. A. Balanis, Antenna Theory: Analysis and Design (3rd edn.) (John Wiley & Sons, 2005).

A. Maradudin, J. R. Sambles, W. L. Barnes, eds., Modern Plasmonics (Elsevier Science, 2014).

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, I. Prigogine, and S. A. Rice, eds., Vol. 37 (John Wiley & Sons, 1978), pp. 1–65.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Planar Yagi-Uda antennas. (a) Basic configuration (reflector, active layer and director) and adopted coordinate system. (b) Configuration to improve outcoupling efficiency and directionality (reflector, bottom intermediate layer, active layer, top intermediate layer, director). (c) Configuration to further improve outcoupling efficiency and directionality (reflector, bottom intermediate layer, active layer, top intermediate layer, director, top layer). A horizontal arrow indicates a Hertzian dipole in the active medium placed at a distance d1 and d2 from reflector and director, respectively. The refractive indices of the intermediate layers in Figs. 1(b) and 1(c) must be smaller than the refractive index of the active medium, but not necessarily equal to each other. The refractive index of the top layer should be smaller than the refractive index of the collection medium.
Fig. 2
Fig. 2 Improving outcoupling efficiency and directionality. (a) Basic antenna configuration (100 nm-thick silver reflector, 100 nm-thick diamond layer, 20 nm-thick silver director). (b) Improved antenna configuration (100 nm-thick silver reflector, 30 nm-thick glass layer, 50 nm-thick diamond layer, 50 nm-thick glass layer, 20 nm-thick silver director). For both configurations the Hertzian dipole is 55 nm from the reflector, and the collection medium is air. (c) Power density for Ptot as a function of the in-plane wavevector kp and (d) Normalized radiation pattern integrated over the azimuthal angle for the configurations depicted in Fig. 2(a) (red curve) and Fig. 2(b) (blue curve). The peaks in (c) correspond to the excitation of SPPs. (e) and (f) Normalized radiation pattern for the configurations depicted in Fig. 2(a) (red curve) and Fig. 2(b) (blue curve) with gain 6 dB and 12.7 dB, respectively. The power is normalized with respect to its maximum value.
Fig. 3
Fig. 3 Suppressing the coupling to SPP modes. Hertzian dipole in diamond near a silver reflector without (a) and with (c) glass intermediate layer. (b) and (d) Power densities for Prad (blue curve) and Ptot (red curve) as a function of the in-plane wavevector kp for the configurations in Figs. 3(a) and 3(c), respectively. Hertzian dipole in diamond near a silver director without (e) and with (g) glass intermediate layer. (f) and (h) Power densities for Prad (blue curve) and Ptot (red curve) as a function of the in-plane wavevector kp for the configurations in Figs. 3(e) and 3(g), respectively.
Fig. 4
Fig. 4 Controlling the SPP dispersion at reflector and director and role of director thickness. (a) Dispersion of the SPP mode at the reflector: a glass/silver (blue curve) and at a diamond/silver (red curve) interface. (b) Dispersion of the SPP modes at the director in an air/20-nm silver/diamond layer structure: upper (blue curve) and lower (red curve) hybrid mode. (c) Dispersion of the SPP modes at the director in an air/20-nm silver/glass layer structure: upper (blue curve) and lower (red curve) hybrid mode. The dashed curves represent the light-lines (LL) at each interface. (d) Power density for Ptot as a function of the in-plane wavevector kp for different director thicknesses for the configuration of Fig. 2(a). The imaginary part of the dielectric function of silver is much smaller than its real counterpart [30], and therefore has been neglected in the calculation of the SPP dispersion relations.
Fig. 5
Fig. 5 Outcoupling efficiency and beaming. (a) and (b) Prad (blue solid curve), Ptot (blue dashed curve), η (red solid curve) and β (red dashed curve) as a function of wavelength for the configurations of Figs. 2(a) and 2(b), respectively. Material dispersion is taken into account.
Fig. 6
Fig. 6 Tolerance with respect to dipole position. (a) and (b) Prad (blue solid curve), Ptot (blue dashed curve), η (red solid curve) and β (red dashed curve) as a function of dipole position in the active layer for the configurations of Figs. 2(a) and 2(b), respectively.
Fig. 7
Fig. 7 Refractive index of the intermediate layers and efficiencies. (a) Planar antenna configuration (100 nm-thick silver reflector, 25 nm-thick intermediate layer, 50 nm-thick GaAs layer, intermediate layer with variable thickness, 18 nm-thick silver director). The Hertzian dipole is 50 nm from the reflector and the collection medium is glass. (b) Prad (blue solid curve), Ptot (blue dashed curve), η (red solid curve) and β (red dashed curve) as a function of the refractive index of the intermediate layers (nB, nT) for the configuration depicted in (a). The thickness of the upper intermediate layer (tT) is adapted in order to maximize efficiency. The gain is 13.4 dB when the intermediate layers are made of SiO2. (c) Evolution of the power density for Ptot, as a function of the in-plane wavevector kp, in response to the change of the effective refractive index on the bottom side of the director. The refractive indices of the bottom and top intermediate layers are the same and simultaneously changed. Accordingly, only the thickness of the top intermediate layer is tuned to maximize β.
Fig. 8
Fig. 8 Narrowing the emission pattern and collection medium. (a) and (b) Antenna configuration (100 nm-thick silver reflector, 30 nm-thick glass layer, 50 nm-thick diamond layer, 50 nm-thick glass layer, 20 nm-thick silver director, air layer of variable thickness) with glass and silicon nitride as collection medium, respectively. The Hertzian dipole is 55 nm from the reflector. (c) and (d) Prad (blue solid curve), Ptot (blue dashed curve), η (red solid curve) and β (red dashed curve) as a function of thickness of the air top layer for the configurations depicted in Figs. 8(a) and 8(b), respectively. (e) and (f) Normalized radiation pattern, integrated over the azimuthal angle, as a function of thickness of the air top layer for the configurations depicted in Figs. 8(a) and 8(b). For tTL = 50 nm the gain is 16.1 dB and 18.4 dB, respectively.

Metrics