Abstract

Achieving higher optical power in UV laser systems is a challenging task due to the limited performance of their built-in optical elements. As a rule of thumb, interference coatings of such elements are found to be the weakest links by the means of laser-induced damage threshold (LIDT). The optical resistance is directly attributed to the fundamental absorption properties of deposited layers. Unfortunately, there are only a limited set of available materials with discrete refractive indices that are also compatible with UV applications. In this study, an attempt is made to employ sculptured layers in order to produce durable anti-reflective (AR) coatings by using the so-called glancing angle deposition (GLAD) method. Spectral, structural, mechanical and stress properties of GLAD coatings were investigated in detail. AR coatings produced by GLAD were found to be three times more laser damage resistant at 355 nm wavelength as compared to those prepared by ion beam sputtering (IBS).

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser damage resistance of ion-beam sputtered Sc2O3/SiO2 mixture optical coatings

Mathias Mende, Stefan Schrameyer, Henrik Ehlers, Detlev Ristau, and Laurent Gallais
Appl. Opt. 52(7) 1368-1376 (2013)

Influence of coating thickness on laser-induced damage characteristics of anti-reflection coatings irradiated by 1064  nm nanosecond laser pulses

Zhi Song, Xinbin Cheng, Hongping Ma, Jinlong Zhang, Bin Ma, Hongfei Jiao, and Zhanshan Wang
Appl. Opt. 56(4) C188-C192 (2017)

Testing of the durability of single-crystal calcium fluoride with and without antireflection coatings for use with high-power KrF excimer lasers

Doug J. Krajnovich, M. Kulkarni, W. Leung, A. C. Tam, A. Spool, and B. York
Appl. Opt. 31(28) 6062-6075 (1992)

References

  • View by:
  • |
  • |
  • |

  1. H. A. MacLeod, Thin-Film Optical Filters, 4 ed., (CRC Press, 2001).
    [Crossref]
  2. J. T. Cox and G. Hass, “Antireflection coatings for germanium and silicon in the infrared,” J. Opt. Soc. Am. 48, 677–680 (1958).
    [Crossref]
  3. H. Shim, D. Kim, I. Kang, and J. Kim, “Nickel-oxide film as an AR coating of Si window for IR sensor packaging,” Proc. SPIE8704, Infrared Technology and Applications XXXIX, (2013).
    [Crossref]
  4. A. Melninkaitis, T. Tolenis, L. Mažulė, J. Mirauskas, V. Sirutkaitis, B. Mangote, X. Fu, M. Zerrad, L. Gallais, M. Commandré, S. Kičas, and R. Drazdys, “Characterization of zirconia– and niobia–silica mixture coatings produced by ion-beam sputtering,” Appl. Opt. 50, C188–C196 (2011).
    [Crossref] [PubMed]
  5. X. Li, M. Gross, K. Green, B. Oreb, and J. Shen, “Ultraviolet laser-induced damage on fused silica substrate and its sol-gel coating,” Opt. Lett.,  37(12), 2364–2366 (2012).
    [Crossref] [PubMed]
  6. J. P. Nole, “Novel micro-structures with high laser-induced-damage-thresholds,” SPIE Newsroom (2008).
  7. D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” Proc. SPIE6545, Window and Dome Technologies and Materials X, (2007).
  8. L. E. Busse, C. M. Florea, J. A. Frantz, L. B. Shaw, I. D. Aggarwal, M. K. Poutous, R. Joshi, and J. S. Sanghera, “Anti-reflective surface structures for spinel ceramics and fused silica windows, lenses and optical fibers,” Opt. Mater. Express,  4, 2504–2515 (2014).
    [Crossref]
  9. D. S. Hobbs and B. D. MacLeod, “High laser damage threshold surface relief micro-structures for anti-reflection applications,” Proc. SPIE6720, Laser-Induced Damage in Optical Materials (2007).
  10. B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kičas, T. Tolenis, and R. Drazdys, “Femtosecond laser damage resistance of oxide and mixture oxide optical coatings,” Opt. Lett.,  37(9), 1478–1480 (2012).
    [Crossref] [PubMed]
  11. L. B. Freund and S. Suresh, Stress: Defect Formation and Surface Evolution, (Cambridge University, 2004).
  12. W. J. Kong, Z. C. Shen, S. H. Wang, J. D. Shao, Z. X. Fan, C. J. Lu, and Y. Silberberg, “Graded index broadband antireflection coating prepared by glancing angle deposition for high-power laser system,” Chin. Phys. B 19(4), 044210 (2010).
    [Crossref]
  13. S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt.,  42(22), 4573–4579 (2003).
    [Crossref] [PubMed]
  14. K. M. A. Sobahan, Y. J. Park, J. J. Kim, and C. K. Hwangbo, “Nanostructured porous SiO2 films for antireflection coatings,” Opt. Commun.,  284, 873–876 (2011).
    [Crossref]
  15. K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Bret, “Fabrication of thin films with highly porous microstructures,” JVST A,  13, 1032–1035 (1995).
  16. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nature Photonics,  1, 176–179 (2007).
  17. 11254-1: Lasers and laser-related equipment–Determination of laser-induced damage threshold of optical surfaces–Part 1: 1-on-1 test, ISO (2011).
  18. G. Batavičiūtė, M. Ščiuka, and A. Melninkaitis, “Direct comparison of defect ensembles extracted from damage probability and raster scan measurements,” J. Appl. Phys. 118, 105306 (2015).
    [Crossref]
  19. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper ausisotropen Substanzen,” Ann. Phys. 416, 636–664 (1935).
    [Crossref]
  20. O. Stenzel, Optical Coatings. Material Aspects in Theory and Practice (Springer, 2014).
  21. D. Schmidt and M. Schubert, “Anisotropic Bruggeman effective medium approaches for slanted columnar thin films,” J. Appl. Phys,  114(8), 083510 (2013).
    [Crossref]
  22. L. T. Zhuravlev, “The surface chemistry of amorphous silica. Zhuravlev model,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 173(1–3), 1–38, (2000).
    [Crossref]
  23. H. Leplan, B. Greenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962–968, (1995).
    [Crossref]
  24. S. Kičas, U. Gimževskis, and S. Melnikas, “Post deposition annealing of IBS mixture coatings for compensation of film induced stress,” Opt. Mater. Express 6(7), 2236–2243, (2016).
    [Crossref]
  25. M. D. Feit, J. H. Campbell, D. R. Faux, F. Y. Genin, M. R. Kozlowski, A. M. Rubenchik, R. A. Riddle, A. Salleo, and J. M. Yoshiyama, “Modelling of laser-induced surface cracks in silica at 355 nm,” Proc. SPIE3244, Laser-Induced Damage in Optical Materials (1998).
    [Crossref]
  26. L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
    [Crossref]
  27. G. Abromavičius, R. Buzelis, R. Drazdys, A. Melninkaitis, and V. Sirutkaitis, “Influence of electric field distribution on laser induced damage threshold and morphology of high reflectance optical coatings,” Proc. SPIE 6720, 67200Y (2007).
    [Crossref]
  28. D. Vick, T. Smy, and M. J. Brett, “Growth behavior of evaporated porous thin films,” J. Mat. Sc. Res. 17(11), 2904–2911 (2002).
    [Crossref]
  29. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12(4), 661–664 (1973).
    [Crossref] [PubMed]

2016 (1)

2015 (2)

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

G. Batavičiūtė, M. Ščiuka, and A. Melninkaitis, “Direct comparison of defect ensembles extracted from damage probability and raster scan measurements,” J. Appl. Phys. 118, 105306 (2015).
[Crossref]

2014 (1)

2013 (1)

D. Schmidt and M. Schubert, “Anisotropic Bruggeman effective medium approaches for slanted columnar thin films,” J. Appl. Phys,  114(8), 083510 (2013).
[Crossref]

2012 (2)

2011 (2)

2010 (1)

W. J. Kong, Z. C. Shen, S. H. Wang, J. D. Shao, Z. X. Fan, C. J. Lu, and Y. Silberberg, “Graded index broadband antireflection coating prepared by glancing angle deposition for high-power laser system,” Chin. Phys. B 19(4), 044210 (2010).
[Crossref]

2007 (2)

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nature Photonics,  1, 176–179 (2007).

G. Abromavičius, R. Buzelis, R. Drazdys, A. Melninkaitis, and V. Sirutkaitis, “Influence of electric field distribution on laser induced damage threshold and morphology of high reflectance optical coatings,” Proc. SPIE 6720, 67200Y (2007).
[Crossref]

2003 (1)

2002 (1)

D. Vick, T. Smy, and M. J. Brett, “Growth behavior of evaporated porous thin films,” J. Mat. Sc. Res. 17(11), 2904–2911 (2002).
[Crossref]

2000 (1)

L. T. Zhuravlev, “The surface chemistry of amorphous silica. Zhuravlev model,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 173(1–3), 1–38, (2000).
[Crossref]

1995 (2)

H. Leplan, B. Greenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962–968, (1995).
[Crossref]

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Bret, “Fabrication of thin films with highly porous microstructures,” JVST A,  13, 1032–1035 (1995).

1973 (1)

1958 (1)

1935 (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper ausisotropen Substanzen,” Ann. Phys. 416, 636–664 (1935).
[Crossref]

Abromavicius, G.

G. Abromavičius, R. Buzelis, R. Drazdys, A. Melninkaitis, and V. Sirutkaitis, “Influence of electric field distribution on laser induced damage threshold and morphology of high reflectance optical coatings,” Proc. SPIE 6720, 67200Y (2007).
[Crossref]

Aggarwal, I. D.

Bataviciute, G.

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

G. Batavičiūtė, M. Ščiuka, and A. Melninkaitis, “Direct comparison of defect ensembles extracted from damage probability and raster scan measurements,” J. Appl. Phys. 118, 105306 (2015).
[Crossref]

Bloembergen, N.

Bret, M. J.

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Bret, “Fabrication of thin films with highly porous microstructures,” JVST A,  13, 1032–1035 (1995).

Brett, M. J.

S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt.,  42(22), 4573–4579 (2003).
[Crossref] [PubMed]

D. Vick, T. Smy, and M. J. Brett, “Growth behavior of evaporated porous thin films,” J. Mat. Sc. Res. 17(11), 2904–2911 (2002).
[Crossref]

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper ausisotropen Substanzen,” Ann. Phys. 416, 636–664 (1935).
[Crossref]

Busse, L. E.

Buzelis, R.

G. Abromavičius, R. Buzelis, R. Drazdys, A. Melninkaitis, and V. Sirutkaitis, “Influence of electric field distribution on laser induced damage threshold and morphology of high reflectance optical coatings,” Proc. SPIE 6720, 67200Y (2007).
[Crossref]

Campbell, J. H.

M. D. Feit, J. H. Campbell, D. R. Faux, F. Y. Genin, M. R. Kozlowski, A. M. Rubenchik, R. A. Riddle, A. Salleo, and J. M. Yoshiyama, “Modelling of laser-induced surface cracks in silica at 355 nm,” Proc. SPIE3244, Laser-Induced Damage in Optical Materials (1998).
[Crossref]

Chen, M.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nature Photonics,  1, 176–179 (2007).

Commandré, M.

Cox, J. T.

Dew, S. K.

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Bret, “Fabrication of thin films with highly porous microstructures,” JVST A,  13, 1032–1035 (1995).

Douti, D.-B.

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

Drazdys, R.

Ehlers, H.

Fan, Z. X.

W. J. Kong, Z. C. Shen, S. H. Wang, J. D. Shao, Z. X. Fan, C. J. Lu, and Y. Silberberg, “Graded index broadband antireflection coating prepared by glancing angle deposition for high-power laser system,” Chin. Phys. B 19(4), 044210 (2010).
[Crossref]

Faux, D. R.

M. D. Feit, J. H. Campbell, D. R. Faux, F. Y. Genin, M. R. Kozlowski, A. M. Rubenchik, R. A. Riddle, A. Salleo, and J. M. Yoshiyama, “Modelling of laser-induced surface cracks in silica at 355 nm,” Proc. SPIE3244, Laser-Induced Damage in Optical Materials (1998).
[Crossref]

Feit, M. D.

M. D. Feit, J. H. Campbell, D. R. Faux, F. Y. Genin, M. R. Kozlowski, A. M. Rubenchik, R. A. Riddle, A. Salleo, and J. M. Yoshiyama, “Modelling of laser-induced surface cracks in silica at 355 nm,” Proc. SPIE3244, Laser-Induced Damage in Optical Materials (1998).
[Crossref]

Florea, C. M.

Frantz, J. A.

Freund, L. B.

L. B. Freund and S. Suresh, Stress: Defect Formation and Surface Evolution, (Cambridge University, 2004).

Friedrich, L. J.

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Bret, “Fabrication of thin films with highly porous microstructures,” JVST A,  13, 1032–1035 (1995).

Fu, X.

Gallais, L.

Genin, F. Y.

M. D. Feit, J. H. Campbell, D. R. Faux, F. Y. Genin, M. R. Kozlowski, A. M. Rubenchik, R. A. Riddle, A. Salleo, and J. M. Yoshiyama, “Modelling of laser-induced surface cracks in silica at 355 nm,” Proc. SPIE3244, Laser-Induced Damage in Optical Materials (1998).
[Crossref]

Gimževskis, U.

Green, K.

Greenen, B.

H. Leplan, B. Greenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962–968, (1995).
[Crossref]

Gross, M.

Hass, G.

Hobbs, D. S.

D. S. Hobbs and B. D. MacLeod, “High laser damage threshold surface relief micro-structures for anti-reflection applications,” Proc. SPIE6720, Laser-Induced Damage in Optical Materials (2007).

D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” Proc. SPIE6545, Window and Dome Technologies and Materials X, (2007).

Hwangbo, C. K.

K. M. A. Sobahan, Y. J. Park, J. J. Kim, and C. K. Hwangbo, “Nanostructured porous SiO2 films for antireflection coatings,” Opt. Commun.,  284, 873–876 (2011).
[Crossref]

Jensen, L.

Joshi, R.

Jupé, M.

Kang, I.

H. Shim, D. Kim, I. Kang, and J. Kim, “Nickel-oxide film as an AR coating of Si window for IR sensor packaging,” Proc. SPIE8704, Infrared Technology and Applications XXXIX, (2013).
[Crossref]

Kennedy, S. R.

Kicas, S.

Kim, D.

H. Shim, D. Kim, I. Kang, and J. Kim, “Nickel-oxide film as an AR coating of Si window for IR sensor packaging,” Proc. SPIE8704, Infrared Technology and Applications XXXIX, (2013).
[Crossref]

Kim, J.

H. Shim, D. Kim, I. Kang, and J. Kim, “Nickel-oxide film as an AR coating of Si window for IR sensor packaging,” Proc. SPIE8704, Infrared Technology and Applications XXXIX, (2013).
[Crossref]

Kim, J. J.

K. M. A. Sobahan, Y. J. Park, J. J. Kim, and C. K. Hwangbo, “Nanostructured porous SiO2 films for antireflection coatings,” Opt. Commun.,  284, 873–876 (2011).
[Crossref]

Kim, J. K.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nature Photonics,  1, 176–179 (2007).

Kong, W. J.

W. J. Kong, Z. C. Shen, S. H. Wang, J. D. Shao, Z. X. Fan, C. J. Lu, and Y. Silberberg, “Graded index broadband antireflection coating prepared by glancing angle deposition for high-power laser system,” Chin. Phys. B 19(4), 044210 (2010).
[Crossref]

Kozlowski, M. R.

M. D. Feit, J. H. Campbell, D. R. Faux, F. Y. Genin, M. R. Kozlowski, A. M. Rubenchik, R. A. Riddle, A. Salleo, and J. M. Yoshiyama, “Modelling of laser-induced surface cracks in silica at 355 nm,” Proc. SPIE3244, Laser-Induced Damage in Optical Materials (1998).
[Crossref]

Leplan, H.

H. Leplan, B. Greenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962–968, (1995).
[Crossref]

Li, X.

Lin, S.-Y.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nature Photonics,  1, 176–179 (2007).

Liu, W.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nature Photonics,  1, 176–179 (2007).

Lu, C. J.

W. J. Kong, Z. C. Shen, S. H. Wang, J. D. Shao, Z. X. Fan, C. J. Lu, and Y. Silberberg, “Graded index broadband antireflection coating prepared by glancing angle deposition for high-power laser system,” Chin. Phys. B 19(4), 044210 (2010).
[Crossref]

MacLeod, B. D.

D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” Proc. SPIE6545, Window and Dome Technologies and Materials X, (2007).

D. S. Hobbs and B. D. MacLeod, “High laser damage threshold surface relief micro-structures for anti-reflection applications,” Proc. SPIE6720, Laser-Induced Damage in Optical Materials (2007).

MacLeod, H. A.

H. A. MacLeod, Thin-Film Optical Filters, 4 ed., (CRC Press, 2001).
[Crossref]

Mangote, B.

Mažule, L.

Melnikas, S.

Melninkaitis, A.

G. Batavičiūtė, M. Ščiuka, and A. Melninkaitis, “Direct comparison of defect ensembles extracted from damage probability and raster scan measurements,” J. Appl. Phys. 118, 105306 (2015).
[Crossref]

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kičas, T. Tolenis, and R. Drazdys, “Femtosecond laser damage resistance of oxide and mixture oxide optical coatings,” Opt. Lett.,  37(9), 1478–1480 (2012).
[Crossref] [PubMed]

A. Melninkaitis, T. Tolenis, L. Mažulė, J. Mirauskas, V. Sirutkaitis, B. Mangote, X. Fu, M. Zerrad, L. Gallais, M. Commandré, S. Kičas, and R. Drazdys, “Characterization of zirconia– and niobia–silica mixture coatings produced by ion-beam sputtering,” Appl. Opt. 50, C188–C196 (2011).
[Crossref] [PubMed]

G. Abromavičius, R. Buzelis, R. Drazdys, A. Melninkaitis, and V. Sirutkaitis, “Influence of electric field distribution on laser induced damage threshold and morphology of high reflectance optical coatings,” Proc. SPIE 6720, 67200Y (2007).
[Crossref]

Mende, M.

Mirauskas, J.

Nole, J. P.

J. P. Nole, “Novel micro-structures with high laser-induced-damage-thresholds,” SPIE Newsroom (2008).

Oreb, B.

Park, Y. J.

K. M. A. Sobahan, Y. J. Park, J. J. Kim, and C. K. Hwangbo, “Nanostructured porous SiO2 films for antireflection coatings,” Opt. Commun.,  284, 873–876 (2011).
[Crossref]

Pauleau, Y.

H. Leplan, B. Greenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962–968, (1995).
[Crossref]

Poutous, M. K.

Pupka, E.

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

Riccobono, J. R.

D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” Proc. SPIE6545, Window and Dome Technologies and Materials X, (2007).

Riddle, R. A.

M. D. Feit, J. H. Campbell, D. R. Faux, F. Y. Genin, M. R. Kozlowski, A. M. Rubenchik, R. A. Riddle, A. Salleo, and J. M. Yoshiyama, “Modelling of laser-induced surface cracks in silica at 355 nm,” Proc. SPIE3244, Laser-Induced Damage in Optical Materials (1998).
[Crossref]

Ristau, D.

Robbie, K.

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Bret, “Fabrication of thin films with highly porous microstructures,” JVST A,  13, 1032–1035 (1995).

Robic, J. Y.

H. Leplan, B. Greenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962–968, (1995).
[Crossref]

Rubenchik, A. M.

M. D. Feit, J. H. Campbell, D. R. Faux, F. Y. Genin, M. R. Kozlowski, A. M. Rubenchik, R. A. Riddle, A. Salleo, and J. M. Yoshiyama, “Modelling of laser-induced surface cracks in silica at 355 nm,” Proc. SPIE3244, Laser-Induced Damage in Optical Materials (1998).
[Crossref]

Salleo, A.

M. D. Feit, J. H. Campbell, D. R. Faux, F. Y. Genin, M. R. Kozlowski, A. M. Rubenchik, R. A. Riddle, A. Salleo, and J. M. Yoshiyama, “Modelling of laser-induced surface cracks in silica at 355 nm,” Proc. SPIE3244, Laser-Induced Damage in Optical Materials (1998).
[Crossref]

Sanghera, J. S.

Schmidt, D.

D. Schmidt and M. Schubert, “Anisotropic Bruggeman effective medium approaches for slanted columnar thin films,” J. Appl. Phys,  114(8), 083510 (2013).
[Crossref]

Schubert, E. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nature Photonics,  1, 176–179 (2007).

Schubert, M.

D. Schmidt and M. Schubert, “Anisotropic Bruggeman effective medium approaches for slanted columnar thin films,” J. Appl. Phys,  114(8), 083510 (2013).
[Crossref]

Schubert, M. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nature Photonics,  1, 176–179 (2007).

Šciuka, M.

G. Batavičiūtė, M. Ščiuka, and A. Melninkaitis, “Direct comparison of defect ensembles extracted from damage probability and raster scan measurements,” J. Appl. Phys. 118, 105306 (2015).
[Crossref]

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

Shao, J. D.

W. J. Kong, Z. C. Shen, S. H. Wang, J. D. Shao, Z. X. Fan, C. J. Lu, and Y. Silberberg, “Graded index broadband antireflection coating prepared by glancing angle deposition for high-power laser system,” Chin. Phys. B 19(4), 044210 (2010).
[Crossref]

Shaw, L. B.

Shen, J.

Shen, Z. C.

W. J. Kong, Z. C. Shen, S. H. Wang, J. D. Shao, Z. X. Fan, C. J. Lu, and Y. Silberberg, “Graded index broadband antireflection coating prepared by glancing angle deposition for high-power laser system,” Chin. Phys. B 19(4), 044210 (2010).
[Crossref]

Shim, H.

H. Shim, D. Kim, I. Kang, and J. Kim, “Nickel-oxide film as an AR coating of Si window for IR sensor packaging,” Proc. SPIE8704, Infrared Technology and Applications XXXIX, (2013).
[Crossref]

Silberberg, Y.

W. J. Kong, Z. C. Shen, S. H. Wang, J. D. Shao, Z. X. Fan, C. J. Lu, and Y. Silberberg, “Graded index broadband antireflection coating prepared by glancing angle deposition for high-power laser system,” Chin. Phys. B 19(4), 044210 (2010).
[Crossref]

Sirutkaitis, V.

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kičas, T. Tolenis, and R. Drazdys, “Femtosecond laser damage resistance of oxide and mixture oxide optical coatings,” Opt. Lett.,  37(9), 1478–1480 (2012).
[Crossref] [PubMed]

A. Melninkaitis, T. Tolenis, L. Mažulė, J. Mirauskas, V. Sirutkaitis, B. Mangote, X. Fu, M. Zerrad, L. Gallais, M. Commandré, S. Kičas, and R. Drazdys, “Characterization of zirconia– and niobia–silica mixture coatings produced by ion-beam sputtering,” Appl. Opt. 50, C188–C196 (2011).
[Crossref] [PubMed]

G. Abromavičius, R. Buzelis, R. Drazdys, A. Melninkaitis, and V. Sirutkaitis, “Influence of electric field distribution on laser induced damage threshold and morphology of high reflectance optical coatings,” Proc. SPIE 6720, 67200Y (2007).
[Crossref]

Smalakys, L.

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

Smart, J. A.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nature Photonics,  1, 176–179 (2007).

Smy, T.

D. Vick, T. Smy, and M. J. Brett, “Growth behavior of evaporated porous thin films,” J. Mat. Sc. Res. 17(11), 2904–2911 (2002).
[Crossref]

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Bret, “Fabrication of thin films with highly porous microstructures,” JVST A,  13, 1032–1035 (1995).

Sobahan, K. M. A.

K. M. A. Sobahan, Y. J. Park, J. J. Kim, and C. K. Hwangbo, “Nanostructured porous SiO2 films for antireflection coatings,” Opt. Commun.,  284, 873–876 (2011).
[Crossref]

Stenzel, O.

O. Stenzel, Optical Coatings. Material Aspects in Theory and Practice (Springer, 2014).

Suresh, S.

L. B. Freund and S. Suresh, Stress: Defect Formation and Surface Evolution, (Cambridge University, 2004).

Tolenis, T.

Vick, D.

D. Vick, T. Smy, and M. J. Brett, “Growth behavior of evaporated porous thin films,” J. Mat. Sc. Res. 17(11), 2904–2911 (2002).
[Crossref]

Wang, S. H.

W. J. Kong, Z. C. Shen, S. H. Wang, J. D. Shao, Z. X. Fan, C. J. Lu, and Y. Silberberg, “Graded index broadband antireflection coating prepared by glancing angle deposition for high-power laser system,” Chin. Phys. B 19(4), 044210 (2010).
[Crossref]

Xi, J.-Q.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nature Photonics,  1, 176–179 (2007).

Yoshiyama, J. M.

M. D. Feit, J. H. Campbell, D. R. Faux, F. Y. Genin, M. R. Kozlowski, A. M. Rubenchik, R. A. Riddle, A. Salleo, and J. M. Yoshiyama, “Modelling of laser-induced surface cracks in silica at 355 nm,” Proc. SPIE3244, Laser-Induced Damage in Optical Materials (1998).
[Crossref]

Zerrad, M.

Zhuravlev, L. T.

L. T. Zhuravlev, “The surface chemistry of amorphous silica. Zhuravlev model,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 173(1–3), 1–38, (2000).
[Crossref]

Ann. Phys. (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper ausisotropen Substanzen,” Ann. Phys. 416, 636–664 (1935).
[Crossref]

Appl. Opt. (3)

Chin. Phys. B (1)

W. J. Kong, Z. C. Shen, S. H. Wang, J. D. Shao, Z. X. Fan, C. J. Lu, and Y. Silberberg, “Graded index broadband antireflection coating prepared by glancing angle deposition for high-power laser system,” Chin. Phys. B 19(4), 044210 (2010).
[Crossref]

Colloids and Surfaces A: Physicochemical and Engineering Aspects (1)

L. T. Zhuravlev, “The surface chemistry of amorphous silica. Zhuravlev model,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 173(1–3), 1–38, (2000).
[Crossref]

J. Appl. Phys (1)

D. Schmidt and M. Schubert, “Anisotropic Bruggeman effective medium approaches for slanted columnar thin films,” J. Appl. Phys,  114(8), 083510 (2013).
[Crossref]

J. Appl. Phys. (3)

G. Batavičiūtė, M. Ščiuka, and A. Melninkaitis, “Direct comparison of defect ensembles extracted from damage probability and raster scan measurements,” J. Appl. Phys. 118, 105306 (2015).
[Crossref]

H. Leplan, B. Greenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962–968, (1995).
[Crossref]

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

J. Mat. Sc. Res. (1)

D. Vick, T. Smy, and M. J. Brett, “Growth behavior of evaporated porous thin films,” J. Mat. Sc. Res. 17(11), 2904–2911 (2002).
[Crossref]

J. Opt. Soc. Am. (1)

JVST A (1)

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Bret, “Fabrication of thin films with highly porous microstructures,” JVST A,  13, 1032–1035 (1995).

Nature Photonics (1)

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nature Photonics,  1, 176–179 (2007).

Opt. Commun. (1)

K. M. A. Sobahan, Y. J. Park, J. J. Kim, and C. K. Hwangbo, “Nanostructured porous SiO2 films for antireflection coatings,” Opt. Commun.,  284, 873–876 (2011).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (2)

Proc. SPIE (1)

G. Abromavičius, R. Buzelis, R. Drazdys, A. Melninkaitis, and V. Sirutkaitis, “Influence of electric field distribution on laser induced damage threshold and morphology of high reflectance optical coatings,” Proc. SPIE 6720, 67200Y (2007).
[Crossref]

Other (9)

M. D. Feit, J. H. Campbell, D. R. Faux, F. Y. Genin, M. R. Kozlowski, A. M. Rubenchik, R. A. Riddle, A. Salleo, and J. M. Yoshiyama, “Modelling of laser-induced surface cracks in silica at 355 nm,” Proc. SPIE3244, Laser-Induced Damage in Optical Materials (1998).
[Crossref]

O. Stenzel, Optical Coatings. Material Aspects in Theory and Practice (Springer, 2014).

D. S. Hobbs and B. D. MacLeod, “High laser damage threshold surface relief micro-structures for anti-reflection applications,” Proc. SPIE6720, Laser-Induced Damage in Optical Materials (2007).

H. Shim, D. Kim, I. Kang, and J. Kim, “Nickel-oxide film as an AR coating of Si window for IR sensor packaging,” Proc. SPIE8704, Infrared Technology and Applications XXXIX, (2013).
[Crossref]

J. P. Nole, “Novel micro-structures with high laser-induced-damage-thresholds,” SPIE Newsroom (2008).

D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” Proc. SPIE6545, Window and Dome Technologies and Materials X, (2007).

L. B. Freund and S. Suresh, Stress: Defect Formation and Surface Evolution, (Cambridge University, 2004).

H. A. MacLeod, Thin-Film Optical Filters, 4 ed., (CRC Press, 2001).
[Crossref]

11254-1: Lasers and laser-related equipment–Determination of laser-induced damage threshold of optical surfaces–Part 1: 1-on-1 test, ISO (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Figure 1
Figure 1 (a) Modelled dispersions of refractive indices and (b) calculated porosity of GLAD SiO2 thin films deposited at various angles. (c) SiO2 thin films porosity for different refractive indexes at 355 wavelength according to Bruggeman model [19].
Figure 2
Figure 2 (a) Transmittance and (b) reflectance of experimental samples: IBS1 (red curve), GLAD1 (blue curve), GLAD2 (cyan curve) and fused silica substrate (black curve). Multilayer anti-reflection coatings were deposited only on one side of the substrate.
Figure 3
Figure 3 Measured stress values of (a) single layer thin films deposited at various angles and (b) multilayer anti-reflection coatings.
Figure 4
Figure 4 LIDT measurement results for (a) single layer thin films deposited at various angles and (b) multilayer anti-reflection coatings.
Figure 5
Figure 5 Damage probability curves of (a) IBS1 and (b) GLAD1 anti-reflection coatings.
Figure 6
Figure 6 Modelled electric field for anti-reflection coating produced by (a) IBS technology and (b) GLAD process (GLAD1 sample). Blue line represents dense Al2O3 material, red line — dense SiO2, pale red line — porous SiO2.
Figure 7
Figure 7 SEM measurements of GLAD1 coating (cross-section) and thin films deposited at (from left to right) 0°, 30°, 50°, 70°, 70° (cross-section), 85° and 85° (cross-section).

Tables (1)

Tables Icon

Table 1 Information about the samples.

Metrics