Abstract

Organic solvents exhibit strong absorption in the visible and near-infrared, making their use in many photonic applications questionable. Here we show that deuteration can overcome this issue by substantially reducing CH-overtone absorption via increased effective oscillator masses and red-shifted absorption features. Spectroscopic measurements of selected non-aromatic and benzene-based solvents show that the deuterated configurations have by at least one order of magnitude lower absorption through the entire visible and near-infrared domain, reaching attenuation levels far below 1 dB/cm. Especially deuterated chloroform and toluene reveal broadband transmission windows from 450 nm to 1.5 μm with losses below 0.1 dB/cm. Our results identify deuterated organic systems as promising candidates for applications in optofluidics, spectroscopy and nonlinear light-liquid interaction.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast third order nonlinearities of organic solvents

K. Iliopoulos, D. Potamianos, E. Kakkava, P. Aloukos, I. Orfanos, and S. Couris
Opt. Express 23(19) 24171-24176 (2015)

Temporal and polarization dependence of the nonlinear optical response of solvents

Peng Zhao, Matthew Reichert, Sepehr Benis, David J. Hagan, and Eric W. Van Stryland
Optica 5(5) 583-594 (2018)

Refractive indices of common solvents and solutions at 1550  nm

John E. Saunders, Connor Sanders, Hao Chen, and Hans-Peter Loock
Appl. Opt. 55(4) 947-953 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber,” ACS Nano 9, 12349–12357 (2015).
    [Crossref] [PubMed]
  2. L. Kroeckel, T. Frosch, and M. A. Schmidt, “Multiscale spectroscopy using a monolithic liquid core waveguide with laterally attached fiber ports,” Anal. Chim. Acta 875, 1–6 (2015).
    [Crossref]
  3. L. Kroeckel, G. Schwotzer, H. Lehmann, and T. Wieduwilt, “Spectral optical monitoring of nitrate in inland and seawater with miniaturized optical components,” Water Research 45, 1423–1431 (2011).
    [Crossref]
  4. G. Schwotzer, H. Lehmann, L. Kroeckel, T. Wieduwilt, and R. Willsch, “Optical fiber-coupled flow cells and their application in in-situ water analysis,” Proc. SPIE 7004, 70043Y (2008).
    [Crossref]
  5. S. Diemer, J. Meister, R. Jung, S. Klein, M. Haisch, W. Fuss, and P. Hering, “Liquid-core light guides for near-infrared applications,” Appl. Opt. 36, 9075–9082 (1997).
    [Crossref]
  6. J. Meister, S. Diemer, R. Jung, S. Klein, W. Fuss, and P. Hering, “Liquid Core Fused Silica Capillary Lightguides for Applications in the UV/VIS and NIR Spectral Range,” Proc. SPIE 2977, 58–66 (1997).
    [Crossref]
  7. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature (London) 442, 381–386 (2006).
    [Crossref]
  8. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nature Photon. 1, 106–114 (2007).
    [Crossref]
  9. R. M. Gerosa, A. Sudirman, L. de S. Menezes, W. Margulis, and C. J. S. de Matos, “All-fiber high repetition rate microfluidic dye laser,” Optica 2, 186–193 (2015).
    [Crossref]
  10. M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Limpert, and M. A. Schmidt, “Soliton-based MIR generation until 2.4 Îijm in a CS2-core step-index fiber,” in Frontiers in Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW5F.2.
    [Crossref]
  11. C. Conti, M. A. Schmidt, P. St, J. Russell, and F. Biancala, “Highly Noninstantaneous Solitons in Liquid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 5, 263902 (2010).
    [Crossref]
  12. J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer, and J. Herrmann, “Two-octave supercontinuum generation in a water-filled photonic crystal fiber,” Opt. Express 18, 6230–6240 (2010).
    [Crossref] [PubMed]
  13. R. V. J. Raja, A. Husakou, J. Hermann, and K. Porsezian, “Supercontinuum generation in liquid-filled photonic crystal fiber with slow nonlinear response,” J. Opt. Soc. Am. B 27, 1763–1768 (2010).
    [Crossref]
  14. M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18, 25232–25240 (2010).
    [Crossref] [PubMed]
  15. K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, “Integrated liquid-core optical fibers for ultraefficient nonlinear liquid photonics,” Opt. Express 20, 8148–8154 (2012).
    [Crossref] [PubMed]
  16. S. Kedenburg, T. Gissibl, T. Steinle, A. Steinmann, and H. Giessen, “Towards integration of a liquid-filled fiber capillary for mid-IR supercontinuum generation,” Opt. Express 23, 8281 (2014).
    [Crossref]
  17. M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Limpert, and M. A. Schmidt, “Indications of new solitonic states within mid-IR supercontinuum generated in highly non-instantaneous fiber,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper FF1M.4.
  18. S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express 2, 1588–1611 (2012).
    [Crossref]
  19. W. Groh, “Overtone absorption in macromolecules for polymer optical fibers,” Makromol. Chem. 189, 2861–2874 (1988).
    [Crossref]
  20. W. Reusch, “Infrared Spectroscopy,” http://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/Spectrpy/InfraRed/infrared.htm .
  21. J. Vincent-Geisse, “Dispersion de quelques liquides organiques dans l’infrarouge. détermination des intensités de bandes et des polarisations,” Journal de Physique 26, 289–296 (1965).
    [Crossref]
  22. N. Ioannides, E. B. Chunga, A. Bachmatiuk, I. GonzalesMartinez, B. Trzebicka, D. B. Adebimpe, D. Kalymnios, and M. H. Ruemmeli, “Approaches to mitigate polymer-core loss in plastic optical fibers: A review,” Mater. Research Express 1, 032002 (2014).
    [Crossref]
  23. N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Troupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, P. St, and J. Russell, “Mid-infrared supercontinuum generation in As2S3-silica “nano-spike” step-index waveguide,” Opt. Express 21, 10969–10977 (2013).
    [Crossref] [PubMed]
  24. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nature Photon. 8, 830–834 (2014).
    [Crossref]
  25. D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
    [Crossref]
  26. W. T. Lotshaw, D. McMorrow, C. Kalpouzos, and G. A. Kenney-Wallace, “Femtosecond dynamics of the optical kerr effect in liquid nitrobenzene and chlorobenzene,” Chem. Phys. Lett. 136, 323–328 (1987).
    [Crossref]
  27. F. Kajzar, I. Ledoux, and J. Zyss, “Electric-field-induced optical second-harmonic generation in polydiacetylene solutions,” Phys. Rev. A 36, 2210–2219 (1987).
    [Crossref]
  28. K. D. Singer, J. E. Sohn, L. A. King, H. M. Gordon, H. E. Katz, and C. W. Dirk, “Second-order nonlinear-optical properties of donor- and acceptor-substituted aromatic compounds,” J. Opt. Soc. Am. B 6, 1339–1350 (1989).
    [Crossref]
  29. A. Bozolan, C. J. S. de Matos, C. M. B. Cordeiro, E. M. dos Santos, and J. Travers, “Supercontinuum generation in a water-core photonic crystal fiber,” Opt. Express 16, 9671–9676 (2008).
    [Crossref] [PubMed]

2015 (3)

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber,” ACS Nano 9, 12349–12357 (2015).
[Crossref] [PubMed]

L. Kroeckel, T. Frosch, and M. A. Schmidt, “Multiscale spectroscopy using a monolithic liquid core waveguide with laterally attached fiber ports,” Anal. Chim. Acta 875, 1–6 (2015).
[Crossref]

R. M. Gerosa, A. Sudirman, L. de S. Menezes, W. Margulis, and C. J. S. de Matos, “All-fiber high repetition rate microfluidic dye laser,” Optica 2, 186–193 (2015).
[Crossref]

2014 (3)

S. Kedenburg, T. Gissibl, T. Steinle, A. Steinmann, and H. Giessen, “Towards integration of a liquid-filled fiber capillary for mid-IR supercontinuum generation,” Opt. Express 23, 8281 (2014).
[Crossref]

N. Ioannides, E. B. Chunga, A. Bachmatiuk, I. GonzalesMartinez, B. Trzebicka, D. B. Adebimpe, D. Kalymnios, and M. H. Ruemmeli, “Approaches to mitigate polymer-core loss in plastic optical fibers: A review,” Mater. Research Express 1, 032002 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nature Photon. 8, 830–834 (2014).
[Crossref]

2013 (1)

2012 (2)

2011 (1)

L. Kroeckel, G. Schwotzer, H. Lehmann, and T. Wieduwilt, “Spectral optical monitoring of nitrate in inland and seawater with miniaturized optical components,” Water Research 45, 1423–1431 (2011).
[Crossref]

2010 (4)

2008 (2)

G. Schwotzer, H. Lehmann, L. Kroeckel, T. Wieduwilt, and R. Willsch, “Optical fiber-coupled flow cells and their application in in-situ water analysis,” Proc. SPIE 7004, 70043Y (2008).
[Crossref]

A. Bozolan, C. J. S. de Matos, C. M. B. Cordeiro, E. M. dos Santos, and J. Travers, “Supercontinuum generation in a water-core photonic crystal fiber,” Opt. Express 16, 9671–9676 (2008).
[Crossref] [PubMed]

2007 (1)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nature Photon. 1, 106–114 (2007).
[Crossref]

2006 (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature (London) 442, 381–386 (2006).
[Crossref]

1997 (2)

S. Diemer, J. Meister, R. Jung, S. Klein, M. Haisch, W. Fuss, and P. Hering, “Liquid-core light guides for near-infrared applications,” Appl. Opt. 36, 9075–9082 (1997).
[Crossref]

J. Meister, S. Diemer, R. Jung, S. Klein, W. Fuss, and P. Hering, “Liquid Core Fused Silica Capillary Lightguides for Applications in the UV/VIS and NIR Spectral Range,” Proc. SPIE 2977, 58–66 (1997).
[Crossref]

1989 (1)

1988 (2)

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[Crossref]

W. Groh, “Overtone absorption in macromolecules for polymer optical fibers,” Makromol. Chem. 189, 2861–2874 (1988).
[Crossref]

1987 (2)

W. T. Lotshaw, D. McMorrow, C. Kalpouzos, and G. A. Kenney-Wallace, “Femtosecond dynamics of the optical kerr effect in liquid nitrobenzene and chlorobenzene,” Chem. Phys. Lett. 136, 323–328 (1987).
[Crossref]

F. Kajzar, I. Ledoux, and J. Zyss, “Electric-field-induced optical second-harmonic generation in polydiacetylene solutions,” Phys. Rev. A 36, 2210–2219 (1987).
[Crossref]

1965 (1)

J. Vincent-Geisse, “Dispersion de quelques liquides organiques dans l’infrarouge. détermination des intensités de bandes et des polarisations,” Journal de Physique 26, 289–296 (1965).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nature Photon. 8, 830–834 (2014).
[Crossref]

Adebimpe, D. B.

N. Ioannides, E. B. Chunga, A. Bachmatiuk, I. GonzalesMartinez, B. Trzebicka, D. B. Adebimpe, D. Kalymnios, and M. H. Ruemmeli, “Approaches to mitigate polymer-core loss in plastic optical fibers: A review,” Mater. Research Express 1, 032002 (2014).
[Crossref]

Bachmatiuk, A.

N. Ioannides, E. B. Chunga, A. Bachmatiuk, I. GonzalesMartinez, B. Trzebicka, D. B. Adebimpe, D. Kalymnios, and M. H. Ruemmeli, “Approaches to mitigate polymer-core loss in plastic optical fibers: A review,” Mater. Research Express 1, 032002 (2014).
[Crossref]

Bang, O.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nature Photon. 8, 830–834 (2014).
[Crossref]

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nature Photon. 8, 830–834 (2014).
[Crossref]

Bethge, J.

Biancala, F.

C. Conti, M. A. Schmidt, P. St, J. Russell, and F. Biancala, “Highly Noninstantaneous Solitons in Liquid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 5, 263902 (2010).
[Crossref]

Bozolan, A.

Chang, W.

Chemnitz, M.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Limpert, and M. A. Schmidt, “Indications of new solitonic states within mid-IR supercontinuum generated in highly non-instantaneous fiber,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper FF1M.4.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Limpert, and M. A. Schmidt, “Soliton-based MIR generation until 2.4 Îijm in a CS2-core step-index fiber,” in Frontiers in Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW5F.2.
[Crossref]

Chunga, E. B.

N. Ioannides, E. B. Chunga, A. Bachmatiuk, I. GonzalesMartinez, B. Trzebicka, D. B. Adebimpe, D. Kalymnios, and M. H. Ruemmeli, “Approaches to mitigate polymer-core loss in plastic optical fibers: A review,” Mater. Research Express 1, 032002 (2014).
[Crossref]

Conti, C.

C. Conti, M. A. Schmidt, P. St, J. Russell, and F. Biancala, “Highly Noninstantaneous Solitons in Liquid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 5, 263902 (2010).
[Crossref]

Cordeiro, C. M. B.

Coulombier, Q.

de Matos, C. J. S.

Diemer, S.

S. Diemer, J. Meister, R. Jung, S. Klein, M. Haisch, W. Fuss, and P. Hering, “Liquid-core light guides for near-infrared applications,” Appl. Opt. 36, 9075–9082 (1997).
[Crossref]

J. Meister, S. Diemer, R. Jung, S. Klein, W. Fuss, and P. Hering, “Liquid Core Fused Silica Capillary Lightguides for Applications in the UV/VIS and NIR Spectral Range,” Proc. SPIE 2977, 58–66 (1997).
[Crossref]

Dirk, C. W.

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nature Photon. 1, 106–114 (2007).
[Crossref]

dos Santos, E. M.

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nature Photon. 8, 830–834 (2014).
[Crossref]

Eggleton, B. J.

Faez, S.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber,” ACS Nano 9, 12349–12357 (2015).
[Crossref] [PubMed]

Fermann, M. E.

Frosch, T.

L. Kroeckel, T. Frosch, and M. A. Schmidt, “Multiscale spectroscopy using a monolithic liquid core waveguide with laterally attached fiber ports,” Anal. Chim. Acta 875, 1–6 (2015).
[Crossref]

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nature Photon. 8, 830–834 (2014).
[Crossref]

Fuss, W.

J. Meister, S. Diemer, R. Jung, S. Klein, W. Fuss, and P. Hering, “Liquid Core Fused Silica Capillary Lightguides for Applications in the UV/VIS and NIR Spectral Range,” Proc. SPIE 2977, 58–66 (1997).
[Crossref]

S. Diemer, J. Meister, R. Jung, S. Klein, M. Haisch, W. Fuss, and P. Hering, “Liquid-core light guides for near-infrared applications,” Appl. Opt. 36, 9075–9082 (1997).
[Crossref]

Gaida, C.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Limpert, and M. A. Schmidt, “Indications of new solitonic states within mid-IR supercontinuum generated in highly non-instantaneous fiber,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper FF1M.4.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Limpert, and M. A. Schmidt, “Soliton-based MIR generation until 2.4 Îijm in a CS2-core step-index fiber,” in Frontiers in Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW5F.2.
[Crossref]

Garmann, R. F.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber,” ACS Nano 9, 12349–12357 (2015).
[Crossref] [PubMed]

Gebhardt, M.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Limpert, and M. A. Schmidt, “Soliton-based MIR generation until 2.4 Îijm in a CS2-core step-index fiber,” in Frontiers in Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW5F.2.
[Crossref]

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Limpert, and M. A. Schmidt, “Indications of new solitonic states within mid-IR supercontinuum generated in highly non-instantaneous fiber,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper FF1M.4.

Gerosa, R. M.

Giessen, H.

Gissibl, T.

GonzalesMartinez, I.

N. Ioannides, E. B. Chunga, A. Bachmatiuk, I. GonzalesMartinez, B. Trzebicka, D. B. Adebimpe, D. Kalymnios, and M. H. Ruemmeli, “Approaches to mitigate polymer-core loss in plastic optical fibers: A review,” Mater. Research Express 1, 032002 (2014).
[Crossref]

Gordon, H. M.

Granzow, N.

Griebner, U.

Groh, W.

W. Groh, “Overtone absorption in macromolecules for polymer optical fibers,” Makromol. Chem. 189, 2861–2874 (1988).
[Crossref]

Haisch, M.

Hartl, I.

Hering, P.

S. Diemer, J. Meister, R. Jung, S. Klein, M. Haisch, W. Fuss, and P. Hering, “Liquid-core light guides for near-infrared applications,” Appl. Opt. 36, 9075–9082 (1997).
[Crossref]

J. Meister, S. Diemer, R. Jung, S. Klein, W. Fuss, and P. Hering, “Liquid Core Fused Silica Capillary Lightguides for Applications in the UV/VIS and NIR Spectral Range,” Proc. SPIE 2977, 58–66 (1997).
[Crossref]

Hermann, J.

Herrmann, J.

Husakou, A.

Ioannides, N.

N. Ioannides, E. B. Chunga, A. Bachmatiuk, I. GonzalesMartinez, B. Trzebicka, D. B. Adebimpe, D. Kalymnios, and M. H. Ruemmeli, “Approaches to mitigate polymer-core loss in plastic optical fibers: A review,” Mater. Research Express 1, 032002 (2014).
[Crossref]

Jung, R.

J. Meister, S. Diemer, R. Jung, S. Klein, W. Fuss, and P. Hering, “Liquid Core Fused Silica Capillary Lightguides for Applications in the UV/VIS and NIR Spectral Range,” Proc. SPIE 2977, 58–66 (1997).
[Crossref]

S. Diemer, J. Meister, R. Jung, S. Klein, M. Haisch, W. Fuss, and P. Hering, “Liquid-core light guides for near-infrared applications,” Appl. Opt. 36, 9075–9082 (1997).
[Crossref]

Kajzar, F.

F. Kajzar, I. Ledoux, and J. Zyss, “Electric-field-induced optical second-harmonic generation in polydiacetylene solutions,” Phys. Rev. A 36, 2210–2219 (1987).
[Crossref]

Kalpouzos, C.

W. T. Lotshaw, D. McMorrow, C. Kalpouzos, and G. A. Kenney-Wallace, “Femtosecond dynamics of the optical kerr effect in liquid nitrobenzene and chlorobenzene,” Chem. Phys. Lett. 136, 323–328 (1987).
[Crossref]

Kalymnios, D.

N. Ioannides, E. B. Chunga, A. Bachmatiuk, I. GonzalesMartinez, B. Trzebicka, D. B. Adebimpe, D. Kalymnios, and M. H. Ruemmeli, “Approaches to mitigate polymer-core loss in plastic optical fibers: A review,” Mater. Research Express 1, 032002 (2014).
[Crossref]

Katz, H. E.

Kedenburg, S.

Kenney-Wallace, G. A.

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[Crossref]

W. T. Lotshaw, D. McMorrow, C. Kalpouzos, and G. A. Kenney-Wallace, “Femtosecond dynamics of the optical kerr effect in liquid nitrobenzene and chlorobenzene,” Chem. Phys. Lett. 136, 323–328 (1987).
[Crossref]

Kieu, K.

King, L. A.

Klein, S.

S. Diemer, J. Meister, R. Jung, S. Klein, M. Haisch, W. Fuss, and P. Hering, “Liquid-core light guides for near-infrared applications,” Appl. Opt. 36, 9075–9082 (1997).
[Crossref]

J. Meister, S. Diemer, R. Jung, S. Klein, W. Fuss, and P. Hering, “Liquid Core Fused Silica Capillary Lightguides for Applications in the UV/VIS and NIR Spectral Range,” Proc. SPIE 2977, 58–66 (1997).
[Crossref]

Kroeckel, L.

L. Kroeckel, T. Frosch, and M. A. Schmidt, “Multiscale spectroscopy using a monolithic liquid core waveguide with laterally attached fiber ports,” Anal. Chim. Acta 875, 1–6 (2015).
[Crossref]

L. Kroeckel, G. Schwotzer, H. Lehmann, and T. Wieduwilt, “Spectral optical monitoring of nitrate in inland and seawater with miniaturized optical components,” Water Research 45, 1423–1431 (2011).
[Crossref]

G. Schwotzer, H. Lehmann, L. Kroeckel, T. Wieduwilt, and R. Willsch, “Optical fiber-coupled flow cells and their application in in-situ water analysis,” Proc. SPIE 7004, 70043Y (2008).
[Crossref]

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nature Photon. 8, 830–834 (2014).
[Crossref]

Kuhlmey, B. T.

Lahini, Y.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber,” ACS Nano 9, 12349–12357 (2015).
[Crossref] [PubMed]

Ledoux, I.

F. Kajzar, I. Ledoux, and J. Zyss, “Electric-field-induced optical second-harmonic generation in polydiacetylene solutions,” Phys. Rev. A 36, 2210–2219 (1987).
[Crossref]

Lee, K. F.

Lehmann, H.

L. Kroeckel, G. Schwotzer, H. Lehmann, and T. Wieduwilt, “Spectral optical monitoring of nitrate in inland and seawater with miniaturized optical components,” Water Research 45, 1423–1431 (2011).
[Crossref]

G. Schwotzer, H. Lehmann, L. Kroeckel, T. Wieduwilt, and R. Willsch, “Optical fiber-coupled flow cells and their application in in-situ water analysis,” Proc. SPIE 7004, 70043Y (2008).
[Crossref]

Limpert, J.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Limpert, and M. A. Schmidt, “Soliton-based MIR generation until 2.4 Îijm in a CS2-core step-index fiber,” in Frontiers in Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW5F.2.
[Crossref]

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Limpert, and M. A. Schmidt, “Indications of new solitonic states within mid-IR supercontinuum generated in highly non-instantaneous fiber,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper FF1M.4.

Lotshaw, W. T.

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[Crossref]

W. T. Lotshaw, D. McMorrow, C. Kalpouzos, and G. A. Kenney-Wallace, “Femtosecond dynamics of the optical kerr effect in liquid nitrobenzene and chlorobenzene,” Chem. Phys. Lett. 136, 323–328 (1987).
[Crossref]

Manoharan, V. N.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber,” ACS Nano 9, 12349–12357 (2015).
[Crossref] [PubMed]

Margulis, W.

McMorrow, D.

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[Crossref]

W. T. Lotshaw, D. McMorrow, C. Kalpouzos, and G. A. Kenney-Wallace, “Femtosecond dynamics of the optical kerr effect in liquid nitrobenzene and chlorobenzene,” Chem. Phys. Lett. 136, 323–328 (1987).
[Crossref]

Meister, J.

J. Meister, S. Diemer, R. Jung, S. Klein, W. Fuss, and P. Hering, “Liquid Core Fused Silica Capillary Lightguides for Applications in the UV/VIS and NIR Spectral Range,” Proc. SPIE 2977, 58–66 (1997).
[Crossref]

S. Diemer, J. Meister, R. Jung, S. Klein, M. Haisch, W. Fuss, and P. Hering, “Liquid-core light guides for near-infrared applications,” Appl. Opt. 36, 9075–9082 (1997).
[Crossref]

Menezes, L. de S.

Mitschke, F.

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nature Photon. 8, 830–834 (2014).
[Crossref]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nature Photon. 1, 106–114 (2007).
[Crossref]

Noack, F.

Norwood, R. A.

Orrit, M.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber,” ACS Nano 9, 12349–12357 (2015).
[Crossref] [PubMed]

Petersen, C. R.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nature Photon. 8, 830–834 (2014).
[Crossref]

Peyghambarian, N.

Porsezian, K.

Pricking, S.

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature (London) 442, 381–386 (2006).
[Crossref]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature (London) 442, 381–386 (2006).
[Crossref]

Raja, R. V. J.

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nature Photon. 8, 830–834 (2014).
[Crossref]

Ruemmeli, M. H.

N. Ioannides, E. B. Chunga, A. Bachmatiuk, I. GonzalesMartinez, B. Trzebicka, D. B. Adebimpe, D. Kalymnios, and M. H. Ruemmeli, “Approaches to mitigate polymer-core loss in plastic optical fibers: A review,” Mater. Research Express 1, 032002 (2014).
[Crossref]

Russell, J.

Schmidt, M. A.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber,” ACS Nano 9, 12349–12357 (2015).
[Crossref] [PubMed]

L. Kroeckel, T. Frosch, and M. A. Schmidt, “Multiscale spectroscopy using a monolithic liquid core waveguide with laterally attached fiber ports,” Anal. Chim. Acta 875, 1–6 (2015).
[Crossref]

N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Troupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, P. St, and J. Russell, “Mid-infrared supercontinuum generation in As2S3-silica “nano-spike” step-index waveguide,” Opt. Express 21, 10969–10977 (2013).
[Crossref] [PubMed]

C. Conti, M. A. Schmidt, P. St, J. Russell, and F. Biancala, “Highly Noninstantaneous Solitons in Liquid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 5, 263902 (2010).
[Crossref]

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Limpert, and M. A. Schmidt, “Soliton-based MIR generation until 2.4 Îijm in a CS2-core step-index fiber,” in Frontiers in Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW5F.2.
[Crossref]

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Limpert, and M. A. Schmidt, “Indications of new solitonic states within mid-IR supercontinuum generated in highly non-instantaneous fiber,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper FF1M.4.

Schneebeli, L.

Schwotzer, G.

L. Kroeckel, G. Schwotzer, H. Lehmann, and T. Wieduwilt, “Spectral optical monitoring of nitrate in inland and seawater with miniaturized optical components,” Water Research 45, 1423–1431 (2011).
[Crossref]

G. Schwotzer, H. Lehmann, L. Kroeckel, T. Wieduwilt, and R. Willsch, “Optical fiber-coupled flow cells and their application in in-situ water analysis,” Proc. SPIE 7004, 70043Y (2008).
[Crossref]

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nature Photon. 8, 830–834 (2014).
[Crossref]

Singer, K. D.

Sohn, J. E.

St, P.

Steinle, T.

Steinmann, A.

Steinmeyer, G.

Stutzki, F.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Limpert, and M. A. Schmidt, “Indications of new solitonic states within mid-IR supercontinuum generated in highly non-instantaneous fiber,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper FF1M.4.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Limpert, and M. A. Schmidt, “Soliton-based MIR generation until 2.4 Îijm in a CS2-core step-index fiber,” in Frontiers in Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW5F.2.
[Crossref]

Sudirman, A.

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nature Photon. 8, 830–834 (2014).
[Crossref]

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nature Photon. 8, 830–834 (2014).
[Crossref]

Travers, J.

Troles, J.

Troupin, P.

Trzebicka, B.

N. Ioannides, E. B. Chunga, A. Bachmatiuk, I. GonzalesMartinez, B. Trzebicka, D. B. Adebimpe, D. Kalymnios, and M. H. Ruemmeli, “Approaches to mitigate polymer-core loss in plastic optical fibers: A review,” Mater. Research Express 1, 032002 (2014).
[Crossref]

Vieweg, M.

Vincent-Geisse, J.

J. Vincent-Geisse, “Dispersion de quelques liquides organiques dans l’infrarouge. détermination des intensités de bandes et des polarisations,” Journal de Physique 26, 289–296 (1965).
[Crossref]

Wang, L.

Weidlich, S.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber,” ACS Nano 9, 12349–12357 (2015).
[Crossref] [PubMed]

Wieduwilt, T.

L. Kroeckel, G. Schwotzer, H. Lehmann, and T. Wieduwilt, “Spectral optical monitoring of nitrate in inland and seawater with miniaturized optical components,” Water Research 45, 1423–1431 (2011).
[Crossref]

G. Schwotzer, H. Lehmann, L. Kroeckel, T. Wieduwilt, and R. Willsch, “Optical fiber-coupled flow cells and their application in in-situ water analysis,” Proc. SPIE 7004, 70043Y (2008).
[Crossref]

Willsch, R.

G. Schwotzer, H. Lehmann, L. Kroeckel, T. Wieduwilt, and R. Willsch, “Optical fiber-coupled flow cells and their application in in-situ water analysis,” Proc. SPIE 7004, 70043Y (2008).
[Crossref]

Wondraczek, K.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber,” ACS Nano 9, 12349–12357 (2015).
[Crossref] [PubMed]

Wondraczek, L.

Wu, D. C.

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature (London) 442, 381–386 (2006).
[Crossref]

Zeisberger, M.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber,” ACS Nano 9, 12349–12357 (2015).
[Crossref] [PubMed]

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nature Photon. 8, 830–834 (2014).
[Crossref]

Zyss, J.

F. Kajzar, I. Ledoux, and J. Zyss, “Electric-field-induced optical second-harmonic generation in polydiacetylene solutions,” Phys. Rev. A 36, 2210–2219 (1987).
[Crossref]

ACS Nano (1)

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber,” ACS Nano 9, 12349–12357 (2015).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

L. Kroeckel, T. Frosch, and M. A. Schmidt, “Multiscale spectroscopy using a monolithic liquid core waveguide with laterally attached fiber ports,” Anal. Chim. Acta 875, 1–6 (2015).
[Crossref]

Appl. Opt. (1)

Chem. Phys. Lett. (1)

W. T. Lotshaw, D. McMorrow, C. Kalpouzos, and G. A. Kenney-Wallace, “Femtosecond dynamics of the optical kerr effect in liquid nitrobenzene and chlorobenzene,” Chem. Phys. Lett. 136, 323–328 (1987).
[Crossref]

IEEE J. Quantum Electron. (1)

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[Crossref]

J. Opt. Soc. Am. B (2)

Journal de Physique (1)

J. Vincent-Geisse, “Dispersion de quelques liquides organiques dans l’infrarouge. détermination des intensités de bandes et des polarisations,” Journal de Physique 26, 289–296 (1965).
[Crossref]

Makromol. Chem. (1)

W. Groh, “Overtone absorption in macromolecules for polymer optical fibers,” Makromol. Chem. 189, 2861–2874 (1988).
[Crossref]

Mater. Research Express (1)

N. Ioannides, E. B. Chunga, A. Bachmatiuk, I. GonzalesMartinez, B. Trzebicka, D. B. Adebimpe, D. Kalymnios, and M. H. Ruemmeli, “Approaches to mitigate polymer-core loss in plastic optical fibers: A review,” Mater. Research Express 1, 032002 (2014).
[Crossref]

Nature (London) (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature (London) 442, 381–386 (2006).
[Crossref]

Nature Photon. (2)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nature Photon. 1, 106–114 (2007).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nature Photon. 8, 830–834 (2014).
[Crossref]

Opt. Express (6)

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. A (1)

F. Kajzar, I. Ledoux, and J. Zyss, “Electric-field-induced optical second-harmonic generation in polydiacetylene solutions,” Phys. Rev. A 36, 2210–2219 (1987).
[Crossref]

Phys. Rev. Lett. (1)

C. Conti, M. A. Schmidt, P. St, J. Russell, and F. Biancala, “Highly Noninstantaneous Solitons in Liquid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 5, 263902 (2010).
[Crossref]

Proc. SPIE (2)

G. Schwotzer, H. Lehmann, L. Kroeckel, T. Wieduwilt, and R. Willsch, “Optical fiber-coupled flow cells and their application in in-situ water analysis,” Proc. SPIE 7004, 70043Y (2008).
[Crossref]

J. Meister, S. Diemer, R. Jung, S. Klein, W. Fuss, and P. Hering, “Liquid Core Fused Silica Capillary Lightguides for Applications in the UV/VIS and NIR Spectral Range,” Proc. SPIE 2977, 58–66 (1997).
[Crossref]

Water Research (1)

L. Kroeckel, G. Schwotzer, H. Lehmann, and T. Wieduwilt, “Spectral optical monitoring of nitrate in inland and seawater with miniaturized optical components,” Water Research 45, 1423–1431 (2011).
[Crossref]

Other (3)

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Limpert, and M. A. Schmidt, “Soliton-based MIR generation until 2.4 Îijm in a CS2-core step-index fiber,” in Frontiers in Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW5F.2.
[Crossref]

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Limpert, and M. A. Schmidt, “Indications of new solitonic states within mid-IR supercontinuum generated in highly non-instantaneous fiber,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper FF1M.4.

W. Reusch, “Infrared Spectroscopy,” http://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/Spectrpy/InfraRed/infrared.htm .

Supplementary Material (8)

NameDescription
» Data File 1: CSV (21 KB)      Underlying data for blue curve in Fig. 1(a)
» Data File 2: CSV (21 KB)      Underlying data for red curve in Fig. 1(a)
» Data File 3: CSV (21 KB)      Underlying data for blue curve in Fig. 1(b)
» Data File 4: CSV (21 KB)      Underlying data for red curve in Fig. 1(b)
» Data File 5: CSV (21 KB)      Underlying data for blue curve in Fig. 2(a)
» Data File 6: CSV (21 KB)      Underlying data for red curve in Fig. 2(a)
» Data File 7: CSV (21 KB)      Underlying data for blue curve in Fig. 2(b)
» Data File 8: CSV (21 KB)      Underlying data for red curve in Fig. 2(b)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Spectral distribution of visible to near-infrared absorption of two examples of deuterated (red) and non-deuterated (blue) non-aromatic solvents: (a) Chloroform (CHCl3), and (b) DMSO (C2H6SO). The top (bottom) plots show the spectra of the respective liquid in linear (logarithmic) scale. The black arrows in the lower plots indicate the red-shift of the respective overtone absorption features. The semitransparent shading refers to the absolute measurement error imposed by the noise of the spectrometer. See Data File 1, Data File 2, Data File 3 and Data File 4 for underlying values.
Fig. 2
Fig. 2 Spectral distribution of visible to near-infrared absorption of two examples of deuterated (red) and non-deuterated (blue) benzene derivatives: (a) Toluene (C6H5CH3), and (b) Nitrobenzene (C6H5NO2). The top (bottom) plots show the spectra in linear (logarithmic) scale. The black arrows in the lower plots indicate the red-shift of the respective overtone absorption features. The semitransparent shading refers to the absolute measurement error imposed by the noise of the spectrometer. See Data File 5, Data File 6, Data File 7 and Data File 8 for underlying values.
Fig. 3
Fig. 3 Comparison of transparency of the eight characterized organic solvents with other important photonic materials (silica (SiO2), chalcogenide glass (As2S3), water (H2O) and heavy water (D2O)). The transparency is defined as a transmission > 50% over a length of 10 cm (equals to an absorption < 0.3 dB/cm).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P L P 0 = 10 α L
T i ( λ ) = ( 1 | n SiO 2 ( λ ) n i ( λ ) n SiO 2 ( λ ) + n i ( λ ) | 2 ) 2
α = 10 L log 10 ( P L / T P 0 / T 0 )

Metrics