Abstract

The nonlinear optical absorption (NLA) of 70% deuterated DKDP crystals that were cut along different directions and annealed under different temperatures was measured at the third-harmonic-generation (THG) wavelength (355 nm) of a nanosecond Nd:YAG laser by using the Z-scan method. The nonlinear absorption (NLA) coefficient β was obtained by fitting the experimental data. According to the fitting result, the nonlinear absorption at 355 nm is identified to two-photon absorption. Results indicate that the β value of the type I THG direction (5.6 × 10−2 cm/GW) was close to that of the type II THG direction (5.2 × 10−2 cm/GW). Moreover, the β values of both types were obviously below the data of the Z-axis direction (7.2 × 10−2 cm/GW). Our experiments showed that thermal annealing can effectively decrease NLA coefficients. At the optimum annealing temperature of 140 °C, the β of the type II THG sample was 2.4 × 10−2 cm/GW, which was only 46% that of the unannealed crystal. This work will aid the THG application of DKDP crystals in inertial confinement fusion systems.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Laser-induced damage of KDP crystals by 1ω nanosecond pulses: influence of crystal orientation

Stéphane Reyné, Guillaume Duchateau, Jean-Yves Natoli, and Laurent Lamaignère
Opt. Express 17(24) 21652-21665 (2009)

Laser-induced damage in deuterated potassium dihydrogen phosphate

Alan K. Burnham, Michael Runkel, Michael D. Feit, Alexander M. Rubenchik, Randy L. Floyd, Teresa A. Land, Wigbert J. Siekhaus, and Ruth A. Hawley-Fedder
Appl. Opt. 42(27) 5483-5495 (2003)

Effects of γ-ray irradiation on optical absorption and laser damage performance of KDP crystals containing arsenic impurities

D. C. Guo, X. D. Jiang, J. Huang, F. R. Wang, H. J. Liu, X. Xiang, G. X. Yang, W. G. Zheng, and X. T. Zu
Opt. Express 22(23) 29020-29030 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. R. Manes, M. L. Spaeth, and J. J. Adams, “Mechanisms Avoided or Managed for NIF Large Optics,” Fus. Sci. Technol. 69, 146–249 (2016).
  2. D. Yoreo, A. Burnham, and P. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev. 47(3), 113–152 (2002).
  3. C. Maunier, P. Bouchut, and S. Bouillet, “Growth and characterization of large KDP crystals for high power lasers,” Opt. Mater. 30(1), 88–90 (2007).
  4. Z. M. Liao, R. Roussell, and J. J. Adams, “Defect population variability in deuterated potassium di-hydrogen phosphate crystals,” Opt. Mater. Express 2(11), 1612–1623 (2012).
  5. S. Reyné, G. Duchateau, and L. Hallo, “Multi-wavelength study of nanosecond laser-induced bulk damage morphology in KDP crystals,” Appl. Phys., A Mater. Sci. Process. 119(4), 1317 (2015).
  6. W. Han, F. Wang, L. Zhou, F. Li, B. Feng, H. Cao, J. Zhao, S. Li, K. Zheng, X. Wei, M. Gong, and W. Zheng, “Suppression of transverse stimulated Raman scattering with laser-induced damage array in a large-aperture potassium dihydrogen phosphate crystal,” Opt. Express 21(25), 30481–30491 (2013).
    [PubMed]
  7. S. G. Demos, R. N. Raman, S. T. Yang, R. A. Negres, K. I. Schaffers, and M. A. Henesian, “Measurement of the Raman scattering cross section of the breathing mode in KDP and DKDP crystals,” Opt. Express 19(21), 21050–21059 (2011).
    [PubMed]
  8. W. Han, Y. Xiang, and F. Q. Li, “Evaluating the safe limit of large-aperture potassium dihydrogen phosphate crystals associated with transverse stimulated Raman scattering,” Appl. Opt. 54(13), 4167–4171 (2015).
  9. S. G. Demos, P. DeMange, R. A. Negres, and M. D. Feit, “Investigation of the electronic and physical properties of defect structures responsible for laser-induced damage in DKDP crystals,” Opt. Express 18(13), 13788–13804 (2010).
    [PubMed]
  10. H. X. Deng, X. T. Zu, X. Xiang, and K. Sun, “Quantum Theory for Cold Avalanche Ionization in Solids,” Phys. Rev. Lett. 105(11), 113603 (2010).
    [PubMed]
  11. C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electron or hole-assisted reactions of H defects in hydrogen-bonded KDP,” Phys. Rev. Lett. 91(1), 015505 (2003).
    [PubMed]
  12. C. S. Liu, N. Kioussis, and S. G. Demos, “Electronic structure calculations of an oxygen vacancy in KH2PO4,” Phys. Rev. B 72(13), 134110 (2005).
  13. Y. Wang, Y. Zhao, X. Xie, G. Hu, L. Yang, Z. Xu, and J. Shao, “Laser damage dependence on the size and concentration of precursor defects in KDP crystals: view through differently sized filter pores,” Opt. Lett. 41(7), 1534–1537 (2016).
    [PubMed]
  14. Z. M. Liao, J. J. Adams, C. W. Carr, “Analysis of DKDP Frequency Conversion Crystals Damage Lifetime at the National Ignition Facility (NIF),” Nonlinear Optics, NTu2A.3 (2017).
  15. A. Melninkaitis, M. Šinkevičius, and T. Lipinskas, “Characterization of the KDP crystals used in large aperture doublers and triplers,” Proc. SPIE 5647, 298–305 (2004).
  16. C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength Dependence of Laser-Induced Damage: Determining the Damage Initiation Mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
    [PubMed]
  17. X. X. Chai, Q. H. Zhu, and B. Feng, “Nonlinear absorption properties of DKDP crystal at 263 nm and 351 nm,” Opt. Mater. 64, 262–267 (2017).
  18. D. L. Wang, T. B. Li, and S. L. Wang, “Effect of Fe3+ on third-order optical nonlinearity of KDP single crystals,” CrystEngComm 18(48), 9292–9298 (2016).
  19. P. Liu, W. L. Smith, and H. Lotem, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17(12), 4620–4632 (1978).
  20. M. Divall, K. Osvay, and G. Kurdi, “Two-photon-absorption of frequency converter crystals at 248 nm,” Appl. Phys. B 81(8), 1123–1126 (2005).
  21. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14(17), 955–957 (1989).
    [PubMed]
  22. R. Thirumurugan and K. Anitha, “Structural, optical, thermal, dielectric, laser damage threshold and Z-scan studies on fumarate salt of creatinine: A promising third-order nonlinear optical material,” Mater. Lett. 206, 30–33 (2017).
  23. L. S. Zhang, M. X. Xu, and X. Sun, “New annealing method to improve KD2PO4 crystal quality: learning from high temperature phase transition,” CrystEngComm 17(25), 4705–4711 (2015).
  24. S. O. Kucheyev, C. Bostedt, T. van Buuren, “Electronic structure of KD2xH2(1−x)PO4 studied by soft x-ray absorption and emission spectroscopies,” Phys. Rev. B 70(24), 245106 (2004).
  25. G. C. Xing, W. Ji, and Y. G. Zheng, “Two- and three-photon absorption of semiconductor quantum dots in the vicinity of half of lowest exciton energy,” Appl. Phys. Lett. 93(24), 241114 (2008).
  26. Y. X. Hou, Y. Z. Zhu, and J. S. Sun, “Self-assembly and nonlinear optical properties of (μ-oxo)bis[meso-tetrakis(p-bromophenyl-porphyrinato)iron(III)],” CrystEngComm 17(25), 4699–4704 (2015).
  27. H. L. Fan, X. Q. Wang, and Q. Ren, “Third-order nonlinear optical properties in [(C4H9)4N]2[Cu(C3S5)2]-doped PMMA thin film using Z-scan technique in picosecond pulse,” Appl. Phys., A Mater. Sci. Process. 99(1), 279–284 (2010).
  28. S. X. Wang, Y. X. Zhang, and R. Zhang, “High-Order Nonlinearity of Surface Plasmon Resonance in Au Nanoparticles: Paradoxical Combination of Saturable and Reverse-Saturable Absorption,” Adv. Opt. Mater. 3(10), 1342–1348 (2015).
  29. R. A. Ganeev, I. A. Kulagin, and A. I. Ryasnyansky, “Characterization of nonlinear optical parameters of KDP, LiNbO3 and BBO crystals,” Opt. Commun. 229(1), 403–412 (2004).
  30. F. Guillet, B. Bertussi, and L. Lamaignère, “Effects of thermal annealing on KDP and DKDP on laser damage resistance at 3ω,” Proc. SPIE 7842, 78421T (2010).
  31. I. Pritula, V. Gayvoronsky, and Yu. Gromov, “Linear and nonlinear optical properties of dye-doped KDP crystals: Effect of thermal treatment,” Opt. Commun. 282(6), 1141–1147 (2009).
  32. K. Fujioka, S. Matsuo, and T. Kanabe, “Optical properties of rapidly grown KDP crystal improved by thermal conditioning,” J. Cryst. Growth 181(3), 265–271 (1997).
  33. C. Belouet, M. Monnier, and R. Crouzier, “Strong isotopic effects on the lattice parameters and stability of highly deuterated D-KDP single crystals and related growth problems,” J. Cryst. Growth 30(2), 151–157 (1975).
  34. Y. J. Fu, Z. S. Gao, and S. L. Wang, “Study on K(DxH1-x)2PO4 Crystals: Growth Habit, Optical Properties and their Improvement by Thermal-Conditioning,” Cryst. Res. Technol. 35(2), 177–184 (2000).

2017 (2)

X. X. Chai, Q. H. Zhu, and B. Feng, “Nonlinear absorption properties of DKDP crystal at 263 nm and 351 nm,” Opt. Mater. 64, 262–267 (2017).

R. Thirumurugan and K. Anitha, “Structural, optical, thermal, dielectric, laser damage threshold and Z-scan studies on fumarate salt of creatinine: A promising third-order nonlinear optical material,” Mater. Lett. 206, 30–33 (2017).

2016 (3)

D. L. Wang, T. B. Li, and S. L. Wang, “Effect of Fe3+ on third-order optical nonlinearity of KDP single crystals,” CrystEngComm 18(48), 9292–9298 (2016).

K. R. Manes, M. L. Spaeth, and J. J. Adams, “Mechanisms Avoided or Managed for NIF Large Optics,” Fus. Sci. Technol. 69, 146–249 (2016).

Y. Wang, Y. Zhao, X. Xie, G. Hu, L. Yang, Z. Xu, and J. Shao, “Laser damage dependence on the size and concentration of precursor defects in KDP crystals: view through differently sized filter pores,” Opt. Lett. 41(7), 1534–1537 (2016).
[PubMed]

2015 (5)

W. Han, Y. Xiang, and F. Q. Li, “Evaluating the safe limit of large-aperture potassium dihydrogen phosphate crystals associated with transverse stimulated Raman scattering,” Appl. Opt. 54(13), 4167–4171 (2015).

S. Reyné, G. Duchateau, and L. Hallo, “Multi-wavelength study of nanosecond laser-induced bulk damage morphology in KDP crystals,” Appl. Phys., A Mater. Sci. Process. 119(4), 1317 (2015).

L. S. Zhang, M. X. Xu, and X. Sun, “New annealing method to improve KD2PO4 crystal quality: learning from high temperature phase transition,” CrystEngComm 17(25), 4705–4711 (2015).

Y. X. Hou, Y. Z. Zhu, and J. S. Sun, “Self-assembly and nonlinear optical properties of (μ-oxo)bis[meso-tetrakis(p-bromophenyl-porphyrinato)iron(III)],” CrystEngComm 17(25), 4699–4704 (2015).

S. X. Wang, Y. X. Zhang, and R. Zhang, “High-Order Nonlinearity of Surface Plasmon Resonance in Au Nanoparticles: Paradoxical Combination of Saturable and Reverse-Saturable Absorption,” Adv. Opt. Mater. 3(10), 1342–1348 (2015).

2013 (1)

2012 (1)

2011 (1)

2010 (4)

S. G. Demos, P. DeMange, R. A. Negres, and M. D. Feit, “Investigation of the electronic and physical properties of defect structures responsible for laser-induced damage in DKDP crystals,” Opt. Express 18(13), 13788–13804 (2010).
[PubMed]

F. Guillet, B. Bertussi, and L. Lamaignère, “Effects of thermal annealing on KDP and DKDP on laser damage resistance at 3ω,” Proc. SPIE 7842, 78421T (2010).

H. L. Fan, X. Q. Wang, and Q. Ren, “Third-order nonlinear optical properties in [(C4H9)4N]2[Cu(C3S5)2]-doped PMMA thin film using Z-scan technique in picosecond pulse,” Appl. Phys., A Mater. Sci. Process. 99(1), 279–284 (2010).

H. X. Deng, X. T. Zu, X. Xiang, and K. Sun, “Quantum Theory for Cold Avalanche Ionization in Solids,” Phys. Rev. Lett. 105(11), 113603 (2010).
[PubMed]

2009 (1)

I. Pritula, V. Gayvoronsky, and Yu. Gromov, “Linear and nonlinear optical properties of dye-doped KDP crystals: Effect of thermal treatment,” Opt. Commun. 282(6), 1141–1147 (2009).

2008 (1)

G. C. Xing, W. Ji, and Y. G. Zheng, “Two- and three-photon absorption of semiconductor quantum dots in the vicinity of half of lowest exciton energy,” Appl. Phys. Lett. 93(24), 241114 (2008).

2007 (1)

C. Maunier, P. Bouchut, and S. Bouillet, “Growth and characterization of large KDP crystals for high power lasers,” Opt. Mater. 30(1), 88–90 (2007).

2005 (2)

M. Divall, K. Osvay, and G. Kurdi, “Two-photon-absorption of frequency converter crystals at 248 nm,” Appl. Phys. B 81(8), 1123–1126 (2005).

C. S. Liu, N. Kioussis, and S. G. Demos, “Electronic structure calculations of an oxygen vacancy in KH2PO4,” Phys. Rev. B 72(13), 134110 (2005).

2004 (2)

A. Melninkaitis, M. Šinkevičius, and T. Lipinskas, “Characterization of the KDP crystals used in large aperture doublers and triplers,” Proc. SPIE 5647, 298–305 (2004).

R. A. Ganeev, I. A. Kulagin, and A. I. Ryasnyansky, “Characterization of nonlinear optical parameters of KDP, LiNbO3 and BBO crystals,” Opt. Commun. 229(1), 403–412 (2004).

2003 (2)

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength Dependence of Laser-Induced Damage: Determining the Damage Initiation Mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[PubMed]

C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electron or hole-assisted reactions of H defects in hydrogen-bonded KDP,” Phys. Rev. Lett. 91(1), 015505 (2003).
[PubMed]

2002 (1)

D. Yoreo, A. Burnham, and P. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev. 47(3), 113–152 (2002).

2000 (1)

Y. J. Fu, Z. S. Gao, and S. L. Wang, “Study on K(DxH1-x)2PO4 Crystals: Growth Habit, Optical Properties and their Improvement by Thermal-Conditioning,” Cryst. Res. Technol. 35(2), 177–184 (2000).

1997 (1)

K. Fujioka, S. Matsuo, and T. Kanabe, “Optical properties of rapidly grown KDP crystal improved by thermal conditioning,” J. Cryst. Growth 181(3), 265–271 (1997).

1989 (1)

1978 (1)

P. Liu, W. L. Smith, and H. Lotem, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17(12), 4620–4632 (1978).

1975 (1)

C. Belouet, M. Monnier, and R. Crouzier, “Strong isotopic effects on the lattice parameters and stability of highly deuterated D-KDP single crystals and related growth problems,” J. Cryst. Growth 30(2), 151–157 (1975).

Adams, J. J.

K. R. Manes, M. L. Spaeth, and J. J. Adams, “Mechanisms Avoided or Managed for NIF Large Optics,” Fus. Sci. Technol. 69, 146–249 (2016).

Z. M. Liao, R. Roussell, and J. J. Adams, “Defect population variability in deuterated potassium di-hydrogen phosphate crystals,” Opt. Mater. Express 2(11), 1612–1623 (2012).

Anitha, K.

R. Thirumurugan and K. Anitha, “Structural, optical, thermal, dielectric, laser damage threshold and Z-scan studies on fumarate salt of creatinine: A promising third-order nonlinear optical material,” Mater. Lett. 206, 30–33 (2017).

Belouet, C.

C. Belouet, M. Monnier, and R. Crouzier, “Strong isotopic effects on the lattice parameters and stability of highly deuterated D-KDP single crystals and related growth problems,” J. Cryst. Growth 30(2), 151–157 (1975).

Bertussi, B.

F. Guillet, B. Bertussi, and L. Lamaignère, “Effects of thermal annealing on KDP and DKDP on laser damage resistance at 3ω,” Proc. SPIE 7842, 78421T (2010).

Bouchut, P.

C. Maunier, P. Bouchut, and S. Bouillet, “Growth and characterization of large KDP crystals for high power lasers,” Opt. Mater. 30(1), 88–90 (2007).

Bouillet, S.

C. Maunier, P. Bouchut, and S. Bouillet, “Growth and characterization of large KDP crystals for high power lasers,” Opt. Mater. 30(1), 88–90 (2007).

Burnham, A.

D. Yoreo, A. Burnham, and P. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev. 47(3), 113–152 (2002).

Cao, H.

Carr, C. W.

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength Dependence of Laser-Induced Damage: Determining the Damage Initiation Mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[PubMed]

Chai, X. X.

X. X. Chai, Q. H. Zhu, and B. Feng, “Nonlinear absorption properties of DKDP crystal at 263 nm and 351 nm,” Opt. Mater. 64, 262–267 (2017).

Crouzier, R.

C. Belouet, M. Monnier, and R. Crouzier, “Strong isotopic effects on the lattice parameters and stability of highly deuterated D-KDP single crystals and related growth problems,” J. Cryst. Growth 30(2), 151–157 (1975).

DeMange, P.

Demos, S. G.

S. G. Demos, R. N. Raman, S. T. Yang, R. A. Negres, K. I. Schaffers, and M. A. Henesian, “Measurement of the Raman scattering cross section of the breathing mode in KDP and DKDP crystals,” Opt. Express 19(21), 21050–21059 (2011).
[PubMed]

S. G. Demos, P. DeMange, R. A. Negres, and M. D. Feit, “Investigation of the electronic and physical properties of defect structures responsible for laser-induced damage in DKDP crystals,” Opt. Express 18(13), 13788–13804 (2010).
[PubMed]

C. S. Liu, N. Kioussis, and S. G. Demos, “Electronic structure calculations of an oxygen vacancy in KH2PO4,” Phys. Rev. B 72(13), 134110 (2005).

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength Dependence of Laser-Induced Damage: Determining the Damage Initiation Mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[PubMed]

C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electron or hole-assisted reactions of H defects in hydrogen-bonded KDP,” Phys. Rev. Lett. 91(1), 015505 (2003).
[PubMed]

Deng, H. X.

H. X. Deng, X. T. Zu, X. Xiang, and K. Sun, “Quantum Theory for Cold Avalanche Ionization in Solids,” Phys. Rev. Lett. 105(11), 113603 (2010).
[PubMed]

Divall, M.

M. Divall, K. Osvay, and G. Kurdi, “Two-photon-absorption of frequency converter crystals at 248 nm,” Appl. Phys. B 81(8), 1123–1126 (2005).

Duchateau, G.

S. Reyné, G. Duchateau, and L. Hallo, “Multi-wavelength study of nanosecond laser-induced bulk damage morphology in KDP crystals,” Appl. Phys., A Mater. Sci. Process. 119(4), 1317 (2015).

Fan, H. L.

H. L. Fan, X. Q. Wang, and Q. Ren, “Third-order nonlinear optical properties in [(C4H9)4N]2[Cu(C3S5)2]-doped PMMA thin film using Z-scan technique in picosecond pulse,” Appl. Phys., A Mater. Sci. Process. 99(1), 279–284 (2010).

Feit, M. D.

Feng, B.

Fu, Y. J.

Y. J. Fu, Z. S. Gao, and S. L. Wang, “Study on K(DxH1-x)2PO4 Crystals: Growth Habit, Optical Properties and their Improvement by Thermal-Conditioning,” Cryst. Res. Technol. 35(2), 177–184 (2000).

Fujioka, K.

K. Fujioka, S. Matsuo, and T. Kanabe, “Optical properties of rapidly grown KDP crystal improved by thermal conditioning,” J. Cryst. Growth 181(3), 265–271 (1997).

Ganeev, R. A.

R. A. Ganeev, I. A. Kulagin, and A. I. Ryasnyansky, “Characterization of nonlinear optical parameters of KDP, LiNbO3 and BBO crystals,” Opt. Commun. 229(1), 403–412 (2004).

Gao, Z. S.

Y. J. Fu, Z. S. Gao, and S. L. Wang, “Study on K(DxH1-x)2PO4 Crystals: Growth Habit, Optical Properties and their Improvement by Thermal-Conditioning,” Cryst. Res. Technol. 35(2), 177–184 (2000).

Gayvoronsky, V.

I. Pritula, V. Gayvoronsky, and Yu. Gromov, “Linear and nonlinear optical properties of dye-doped KDP crystals: Effect of thermal treatment,” Opt. Commun. 282(6), 1141–1147 (2009).

Gong, M.

Gromov, Yu.

I. Pritula, V. Gayvoronsky, and Yu. Gromov, “Linear and nonlinear optical properties of dye-doped KDP crystals: Effect of thermal treatment,” Opt. Commun. 282(6), 1141–1147 (2009).

Guillet, F.

F. Guillet, B. Bertussi, and L. Lamaignère, “Effects of thermal annealing on KDP and DKDP on laser damage resistance at 3ω,” Proc. SPIE 7842, 78421T (2010).

Hallo, L.

S. Reyné, G. Duchateau, and L. Hallo, “Multi-wavelength study of nanosecond laser-induced bulk damage morphology in KDP crystals,” Appl. Phys., A Mater. Sci. Process. 119(4), 1317 (2015).

Han, W.

Henesian, M. A.

Hou, Y. X.

Y. X. Hou, Y. Z. Zhu, and J. S. Sun, “Self-assembly and nonlinear optical properties of (μ-oxo)bis[meso-tetrakis(p-bromophenyl-porphyrinato)iron(III)],” CrystEngComm 17(25), 4699–4704 (2015).

Hu, G.

Ji, W.

G. C. Xing, W. Ji, and Y. G. Zheng, “Two- and three-photon absorption of semiconductor quantum dots in the vicinity of half of lowest exciton energy,” Appl. Phys. Lett. 93(24), 241114 (2008).

Kanabe, T.

K. Fujioka, S. Matsuo, and T. Kanabe, “Optical properties of rapidly grown KDP crystal improved by thermal conditioning,” J. Cryst. Growth 181(3), 265–271 (1997).

Kioussis, N.

C. S. Liu, N. Kioussis, and S. G. Demos, “Electronic structure calculations of an oxygen vacancy in KH2PO4,” Phys. Rev. B 72(13), 134110 (2005).

C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electron or hole-assisted reactions of H defects in hydrogen-bonded KDP,” Phys. Rev. Lett. 91(1), 015505 (2003).
[PubMed]

Kulagin, I. A.

R. A. Ganeev, I. A. Kulagin, and A. I. Ryasnyansky, “Characterization of nonlinear optical parameters of KDP, LiNbO3 and BBO crystals,” Opt. Commun. 229(1), 403–412 (2004).

Kurdi, G.

M. Divall, K. Osvay, and G. Kurdi, “Two-photon-absorption of frequency converter crystals at 248 nm,” Appl. Phys. B 81(8), 1123–1126 (2005).

Lamaignère, L.

F. Guillet, B. Bertussi, and L. Lamaignère, “Effects of thermal annealing on KDP and DKDP on laser damage resistance at 3ω,” Proc. SPIE 7842, 78421T (2010).

Li, F.

Li, F. Q.

Li, S.

Li, T. B.

D. L. Wang, T. B. Li, and S. L. Wang, “Effect of Fe3+ on third-order optical nonlinearity of KDP single crystals,” CrystEngComm 18(48), 9292–9298 (2016).

Liao, Z. M.

Lipinskas, T.

A. Melninkaitis, M. Šinkevičius, and T. Lipinskas, “Characterization of the KDP crystals used in large aperture doublers and triplers,” Proc. SPIE 5647, 298–305 (2004).

Liu, C. S.

C. S. Liu, N. Kioussis, and S. G. Demos, “Electronic structure calculations of an oxygen vacancy in KH2PO4,” Phys. Rev. B 72(13), 134110 (2005).

C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electron or hole-assisted reactions of H defects in hydrogen-bonded KDP,” Phys. Rev. Lett. 91(1), 015505 (2003).
[PubMed]

Liu, P.

P. Liu, W. L. Smith, and H. Lotem, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17(12), 4620–4632 (1978).

Lotem, H.

P. Liu, W. L. Smith, and H. Lotem, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17(12), 4620–4632 (1978).

Manes, K. R.

K. R. Manes, M. L. Spaeth, and J. J. Adams, “Mechanisms Avoided or Managed for NIF Large Optics,” Fus. Sci. Technol. 69, 146–249 (2016).

Matsuo, S.

K. Fujioka, S. Matsuo, and T. Kanabe, “Optical properties of rapidly grown KDP crystal improved by thermal conditioning,” J. Cryst. Growth 181(3), 265–271 (1997).

Maunier, C.

C. Maunier, P. Bouchut, and S. Bouillet, “Growth and characterization of large KDP crystals for high power lasers,” Opt. Mater. 30(1), 88–90 (2007).

Melninkaitis, A.

A. Melninkaitis, M. Šinkevičius, and T. Lipinskas, “Characterization of the KDP crystals used in large aperture doublers and triplers,” Proc. SPIE 5647, 298–305 (2004).

Monnier, M.

C. Belouet, M. Monnier, and R. Crouzier, “Strong isotopic effects on the lattice parameters and stability of highly deuterated D-KDP single crystals and related growth problems,” J. Cryst. Growth 30(2), 151–157 (1975).

Negres, R. A.

Osvay, K.

M. Divall, K. Osvay, and G. Kurdi, “Two-photon-absorption of frequency converter crystals at 248 nm,” Appl. Phys. B 81(8), 1123–1126 (2005).

Pritula, I.

I. Pritula, V. Gayvoronsky, and Yu. Gromov, “Linear and nonlinear optical properties of dye-doped KDP crystals: Effect of thermal treatment,” Opt. Commun. 282(6), 1141–1147 (2009).

Radousky, H. B.

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength Dependence of Laser-Induced Damage: Determining the Damage Initiation Mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[PubMed]

C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electron or hole-assisted reactions of H defects in hydrogen-bonded KDP,” Phys. Rev. Lett. 91(1), 015505 (2003).
[PubMed]

Raman, R. N.

Ren, Q.

H. L. Fan, X. Q. Wang, and Q. Ren, “Third-order nonlinear optical properties in [(C4H9)4N]2[Cu(C3S5)2]-doped PMMA thin film using Z-scan technique in picosecond pulse,” Appl. Phys., A Mater. Sci. Process. 99(1), 279–284 (2010).

Reyné, S.

S. Reyné, G. Duchateau, and L. Hallo, “Multi-wavelength study of nanosecond laser-induced bulk damage morphology in KDP crystals,” Appl. Phys., A Mater. Sci. Process. 119(4), 1317 (2015).

Roussell, R.

Ryasnyansky, A. I.

R. A. Ganeev, I. A. Kulagin, and A. I. Ryasnyansky, “Characterization of nonlinear optical parameters of KDP, LiNbO3 and BBO crystals,” Opt. Commun. 229(1), 403–412 (2004).

Said, A. A.

Schaffers, K. I.

Shao, J.

Sheik-Bahae, M.

Šinkevicius, M.

A. Melninkaitis, M. Šinkevičius, and T. Lipinskas, “Characterization of the KDP crystals used in large aperture doublers and triplers,” Proc. SPIE 5647, 298–305 (2004).

Smith, W. L.

P. Liu, W. L. Smith, and H. Lotem, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17(12), 4620–4632 (1978).

Spaeth, M. L.

K. R. Manes, M. L. Spaeth, and J. J. Adams, “Mechanisms Avoided or Managed for NIF Large Optics,” Fus. Sci. Technol. 69, 146–249 (2016).

Sun, J. S.

Y. X. Hou, Y. Z. Zhu, and J. S. Sun, “Self-assembly and nonlinear optical properties of (μ-oxo)bis[meso-tetrakis(p-bromophenyl-porphyrinato)iron(III)],” CrystEngComm 17(25), 4699–4704 (2015).

Sun, K.

H. X. Deng, X. T. Zu, X. Xiang, and K. Sun, “Quantum Theory for Cold Avalanche Ionization in Solids,” Phys. Rev. Lett. 105(11), 113603 (2010).
[PubMed]

Sun, X.

L. S. Zhang, M. X. Xu, and X. Sun, “New annealing method to improve KD2PO4 crystal quality: learning from high temperature phase transition,” CrystEngComm 17(25), 4705–4711 (2015).

Thirumurugan, R.

R. Thirumurugan and K. Anitha, “Structural, optical, thermal, dielectric, laser damage threshold and Z-scan studies on fumarate salt of creatinine: A promising third-order nonlinear optical material,” Mater. Lett. 206, 30–33 (2017).

Van Stryland, E. W.

Wang, D. L.

D. L. Wang, T. B. Li, and S. L. Wang, “Effect of Fe3+ on third-order optical nonlinearity of KDP single crystals,” CrystEngComm 18(48), 9292–9298 (2016).

Wang, F.

Wang, S. L.

D. L. Wang, T. B. Li, and S. L. Wang, “Effect of Fe3+ on third-order optical nonlinearity of KDP single crystals,” CrystEngComm 18(48), 9292–9298 (2016).

Y. J. Fu, Z. S. Gao, and S. L. Wang, “Study on K(DxH1-x)2PO4 Crystals: Growth Habit, Optical Properties and their Improvement by Thermal-Conditioning,” Cryst. Res. Technol. 35(2), 177–184 (2000).

Wang, S. X.

S. X. Wang, Y. X. Zhang, and R. Zhang, “High-Order Nonlinearity of Surface Plasmon Resonance in Au Nanoparticles: Paradoxical Combination of Saturable and Reverse-Saturable Absorption,” Adv. Opt. Mater. 3(10), 1342–1348 (2015).

Wang, X. Q.

H. L. Fan, X. Q. Wang, and Q. Ren, “Third-order nonlinear optical properties in [(C4H9)4N]2[Cu(C3S5)2]-doped PMMA thin film using Z-scan technique in picosecond pulse,” Appl. Phys., A Mater. Sci. Process. 99(1), 279–284 (2010).

Wang, Y.

Wei, X.

Whitman, P.

D. Yoreo, A. Burnham, and P. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev. 47(3), 113–152 (2002).

Xiang, X.

H. X. Deng, X. T. Zu, X. Xiang, and K. Sun, “Quantum Theory for Cold Avalanche Ionization in Solids,” Phys. Rev. Lett. 105(11), 113603 (2010).
[PubMed]

Xiang, Y.

Xie, X.

Xing, G. C.

G. C. Xing, W. Ji, and Y. G. Zheng, “Two- and three-photon absorption of semiconductor quantum dots in the vicinity of half of lowest exciton energy,” Appl. Phys. Lett. 93(24), 241114 (2008).

Xu, M. X.

L. S. Zhang, M. X. Xu, and X. Sun, “New annealing method to improve KD2PO4 crystal quality: learning from high temperature phase transition,” CrystEngComm 17(25), 4705–4711 (2015).

Xu, Z.

Yang, L.

Yang, S. T.

Yoreo, D.

D. Yoreo, A. Burnham, and P. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev. 47(3), 113–152 (2002).

Zhang, L. S.

L. S. Zhang, M. X. Xu, and X. Sun, “New annealing method to improve KD2PO4 crystal quality: learning from high temperature phase transition,” CrystEngComm 17(25), 4705–4711 (2015).

Zhang, R.

S. X. Wang, Y. X. Zhang, and R. Zhang, “High-Order Nonlinearity of Surface Plasmon Resonance in Au Nanoparticles: Paradoxical Combination of Saturable and Reverse-Saturable Absorption,” Adv. Opt. Mater. 3(10), 1342–1348 (2015).

Zhang, Y. X.

S. X. Wang, Y. X. Zhang, and R. Zhang, “High-Order Nonlinearity of Surface Plasmon Resonance in Au Nanoparticles: Paradoxical Combination of Saturable and Reverse-Saturable Absorption,” Adv. Opt. Mater. 3(10), 1342–1348 (2015).

Zhao, J.

Zhao, Y.

Zheng, K.

Zheng, W.

Zheng, Y. G.

G. C. Xing, W. Ji, and Y. G. Zheng, “Two- and three-photon absorption of semiconductor quantum dots in the vicinity of half of lowest exciton energy,” Appl. Phys. Lett. 93(24), 241114 (2008).

Zhou, L.

Zhu, Q. H.

X. X. Chai, Q. H. Zhu, and B. Feng, “Nonlinear absorption properties of DKDP crystal at 263 nm and 351 nm,” Opt. Mater. 64, 262–267 (2017).

Zhu, Y. Z.

Y. X. Hou, Y. Z. Zhu, and J. S. Sun, “Self-assembly and nonlinear optical properties of (μ-oxo)bis[meso-tetrakis(p-bromophenyl-porphyrinato)iron(III)],” CrystEngComm 17(25), 4699–4704 (2015).

Zu, X. T.

H. X. Deng, X. T. Zu, X. Xiang, and K. Sun, “Quantum Theory for Cold Avalanche Ionization in Solids,” Phys. Rev. Lett. 105(11), 113603 (2010).
[PubMed]

Adv. Opt. Mater. (1)

S. X. Wang, Y. X. Zhang, and R. Zhang, “High-Order Nonlinearity of Surface Plasmon Resonance in Au Nanoparticles: Paradoxical Combination of Saturable and Reverse-Saturable Absorption,” Adv. Opt. Mater. 3(10), 1342–1348 (2015).

Appl. Opt. (1)

Appl. Phys. B (1)

M. Divall, K. Osvay, and G. Kurdi, “Two-photon-absorption of frequency converter crystals at 248 nm,” Appl. Phys. B 81(8), 1123–1126 (2005).

Appl. Phys. Lett. (1)

G. C. Xing, W. Ji, and Y. G. Zheng, “Two- and three-photon absorption of semiconductor quantum dots in the vicinity of half of lowest exciton energy,” Appl. Phys. Lett. 93(24), 241114 (2008).

Appl. Phys., A Mater. Sci. Process. (2)

H. L. Fan, X. Q. Wang, and Q. Ren, “Third-order nonlinear optical properties in [(C4H9)4N]2[Cu(C3S5)2]-doped PMMA thin film using Z-scan technique in picosecond pulse,” Appl. Phys., A Mater. Sci. Process. 99(1), 279–284 (2010).

S. Reyné, G. Duchateau, and L. Hallo, “Multi-wavelength study of nanosecond laser-induced bulk damage morphology in KDP crystals,” Appl. Phys., A Mater. Sci. Process. 119(4), 1317 (2015).

Cryst. Res. Technol. (1)

Y. J. Fu, Z. S. Gao, and S. L. Wang, “Study on K(DxH1-x)2PO4 Crystals: Growth Habit, Optical Properties and their Improvement by Thermal-Conditioning,” Cryst. Res. Technol. 35(2), 177–184 (2000).

CrystEngComm (3)

D. L. Wang, T. B. Li, and S. L. Wang, “Effect of Fe3+ on third-order optical nonlinearity of KDP single crystals,” CrystEngComm 18(48), 9292–9298 (2016).

Y. X. Hou, Y. Z. Zhu, and J. S. Sun, “Self-assembly and nonlinear optical properties of (μ-oxo)bis[meso-tetrakis(p-bromophenyl-porphyrinato)iron(III)],” CrystEngComm 17(25), 4699–4704 (2015).

L. S. Zhang, M. X. Xu, and X. Sun, “New annealing method to improve KD2PO4 crystal quality: learning from high temperature phase transition,” CrystEngComm 17(25), 4705–4711 (2015).

Fus. Sci. Technol. (1)

K. R. Manes, M. L. Spaeth, and J. J. Adams, “Mechanisms Avoided or Managed for NIF Large Optics,” Fus. Sci. Technol. 69, 146–249 (2016).

Int. Mater. Rev. (1)

D. Yoreo, A. Burnham, and P. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev. 47(3), 113–152 (2002).

J. Cryst. Growth (2)

K. Fujioka, S. Matsuo, and T. Kanabe, “Optical properties of rapidly grown KDP crystal improved by thermal conditioning,” J. Cryst. Growth 181(3), 265–271 (1997).

C. Belouet, M. Monnier, and R. Crouzier, “Strong isotopic effects on the lattice parameters and stability of highly deuterated D-KDP single crystals and related growth problems,” J. Cryst. Growth 30(2), 151–157 (1975).

Mater. Lett. (1)

R. Thirumurugan and K. Anitha, “Structural, optical, thermal, dielectric, laser damage threshold and Z-scan studies on fumarate salt of creatinine: A promising third-order nonlinear optical material,” Mater. Lett. 206, 30–33 (2017).

Opt. Commun. (2)

R. A. Ganeev, I. A. Kulagin, and A. I. Ryasnyansky, “Characterization of nonlinear optical parameters of KDP, LiNbO3 and BBO crystals,” Opt. Commun. 229(1), 403–412 (2004).

I. Pritula, V. Gayvoronsky, and Yu. Gromov, “Linear and nonlinear optical properties of dye-doped KDP crystals: Effect of thermal treatment,” Opt. Commun. 282(6), 1141–1147 (2009).

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. (2)

X. X. Chai, Q. H. Zhu, and B. Feng, “Nonlinear absorption properties of DKDP crystal at 263 nm and 351 nm,” Opt. Mater. 64, 262–267 (2017).

C. Maunier, P. Bouchut, and S. Bouillet, “Growth and characterization of large KDP crystals for high power lasers,” Opt. Mater. 30(1), 88–90 (2007).

Opt. Mater. Express (1)

Phys. Rev. B (2)

C. S. Liu, N. Kioussis, and S. G. Demos, “Electronic structure calculations of an oxygen vacancy in KH2PO4,” Phys. Rev. B 72(13), 134110 (2005).

P. Liu, W. L. Smith, and H. Lotem, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17(12), 4620–4632 (1978).

Phys. Rev. Lett. (3)

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength Dependence of Laser-Induced Damage: Determining the Damage Initiation Mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[PubMed]

H. X. Deng, X. T. Zu, X. Xiang, and K. Sun, “Quantum Theory for Cold Avalanche Ionization in Solids,” Phys. Rev. Lett. 105(11), 113603 (2010).
[PubMed]

C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electron or hole-assisted reactions of H defects in hydrogen-bonded KDP,” Phys. Rev. Lett. 91(1), 015505 (2003).
[PubMed]

Proc. SPIE (2)

F. Guillet, B. Bertussi, and L. Lamaignère, “Effects of thermal annealing on KDP and DKDP on laser damage resistance at 3ω,” Proc. SPIE 7842, 78421T (2010).

A. Melninkaitis, M. Šinkevičius, and T. Lipinskas, “Characterization of the KDP crystals used in large aperture doublers and triplers,” Proc. SPIE 5647, 298–305 (2004).

Other (2)

Z. M. Liao, J. J. Adams, C. W. Carr, “Analysis of DKDP Frequency Conversion Crystals Damage Lifetime at the National Ignition Facility (NIF),” Nonlinear Optics, NTu2A.3 (2017).

S. O. Kucheyev, C. Bostedt, T. van Buuren, “Electronic structure of KD2xH2(1−x)PO4 studied by soft x-ray absorption and emission spectroscopies,” Phys. Rev. B 70(24), 245106 (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Cutting schematic diagram of samples.

Fig. 2
Fig. 2

Annealing process of II-type samples.

Fig. 3
Fig. 3

Schematic diagram of experimental set-up.

Fig. 4
Fig. 4

Transmission spectra of the samples.

Fig. 5
Fig. 5

NLA curves of different cutting.

Fig. 6
Fig. 6

NLA curves of different cutting.

Fig. 7
Fig. 7

NLA curves of type II annealed in different temperature

Tables (3)

Tables Icon

Table 1 Characteristics of Tested Samples

Tables Icon

Table 2 Experimental Results of Transmission Spectra

Tables Icon

Table 3 Experimental Results of The NLA Coefficients

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

α( I )=α+βI
T 2PA (z,s=1)= 1 π q 0 ( z,0 ) + ln[ 1+ q 0 ( z,0 ) e t 2 ] dt
T 3PA (z,s=1)= 1 π p 0 ( z,0 ) + ln{ [ 1+ p 0 2 ( z,0 ) e 2 t 2 ] 1/2 + P 0 exp( t 2 ) } dt
q 0 ( z,t )=β I 0 ( t ) L eff /( 1+ z 2 / z 0 2 )
p 0 ( z,t )= [ 2β I 0 2 ( t ) L ef f ' / ( 1+ z 2 / z 0 2 ) 2 ] 1/2
T 2PA (z,s=1)= n=0 [ q 0 ( z,0 ) ] n ( n+1 ) 3/2 ( | q 0 <1 | )
T 3PA = m=1 ( 1 ) m1 p 0 2m2 ( z,0 ) ( 2m1 )! ( 2m1 ) 1/2 ( | q 0 <1 | )
α=ln[ T 0 / ( 1R ) 2 ]/L
β(m/W)= 240 π 2 ω n 0 2 c 2 χ I (3) (esu).
χ k (3) = 1 4 [3( χ xxxx + χ xxyy )+( χ xxxx χ xxyy )cos4φ] cos 4 θ+ 3 2 χ yyzz sin 2 2θ+ χ zzzz sin 4 θ

Metrics