Abstract

We demonstrate a new method to fabricate a large-area polymer gravel array. The formation of the polymer gravel array on the substrates of the liquid crystal (LC) cell during polymerization is attributed to the surface tension interaction among the LC, prepolymer, and substrate surface. The gravel can be oriented along the rubbing direction of the substrate. Moreover, the diameter and pitch of the oriented gravel array can be controlled by means of UV curing intensity and supplied voltage under curing because of the competition between the dipole and quadrupole interactions of the colloidal prepolymer droplets. The estimated anchoring energy given by the oriented polymer gravel array can align LCs. The possible application of the formed periodical gravel array on optical devices is explained in this paper.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Controlling liquid crystal pretilt angle with photocurable prepolymer and vertically aligned substrate

Che-Ju Hsu, Bao-Long Chen, and Chi-Yen Huang
Opt. Express 24(2) 1463-1471 (2016)

Pinning effect on the phase separation dynamics of thin polymer-dispersed liquid crystals

Yi-Hsin Lin, Hongwen Ren, Yung-Hsun Wu, Xiao Liang, and Shin-Tson Wu
Opt. Express 13(2) 468-474 (2005)

Liquid-crystal microlens arrays using patterned polymer networks

Hongwen Ren, Yun-Hsing Fan, and Shin-Tson Wu
Opt. Lett. 29(14) 1608-1610 (2004)

References

  • View by:
  • |
  • |
  • |

  1. M. Mucha, “Polymer as an important component of blends and composites with liquid crystals,” Prog. Polym. Sci. 28, 837–873 (2003).
  2. G. W. Smith, “Cure Parameters and Phase Behavior of An Ultraviolet-Cured Polymer-Dispersed Liquid Crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 196, 89–102 (1991).
  3. Y. K. Fung, D. K. Yang, S. Ying, L. C. Chien, S. Zumer, and J. W. Doane, “Polymer networks formed in liquid crystals,” Liq. Cryst. 19, 797–801 (1995).
  4. I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71, 2454–2456 (1997).
  5. L. Bouteiller and P. L. Barny, “Polymer-dispersed liquid crystals: Preparation, operation and application,” Liq. Cryst. 21, 157–174 (1996).
  6. D. Coates, “Polymer-dispersed liquid crystals,” J. Mater. Chem. 5, 2063–2072 (1995).
  7. J. B. Nephew, T. C. Nihei, and S. A. Carter, “Reaction-Induced Phase Separation Dynamics: A Polymer in a Liquid Crystal Solvent,” Phys. Rev. Lett. 80, 3276–3279 (1998).
  8. B.-w. Liu, Z.-g. Zheng, X.-c. Chen, and D. Shen, “Low-voltage-modulated laser based on dye-doped polymer stabilized cholesteric liquid crystal,” Opt. Mater. Express 3, 519–526 (2013).
  9. Z. Zheng, J. Song, Y. Liu, F. Guo, J. Ma, and L. Xuan, “Single‐step exposure for two‐dimensional electrically‐tuneable diffraction grating based on polymer dispersed liquid crystal,” Liq. Cryst. 35, 489–499 (2008).
  10. G. Zhu, X.-W. Lin, W. Hu, Z.-G. Zheng, H.-F. Wang, H.-Q. Cui, D. Shen, and Y.-Q. Lu, “Liquid crystal blue phase induced by bent-shaped molecules with allylic end groups,” Opt. Mater. Express 1, 1478–1483 (2011).
  11. T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, “Phase-separated composite films: Experiment and theory,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(4 Pt B), 4007–4010 (2000).
    [PubMed]
  12. Q. Wang and S. Kumar, “Submillisecond switching of nematic liquid crystal in cells fabricated by anisotropic phase-separation of liquid crystal and polymer mixture,” Appl. Phys. Lett. 86, 071119 (2005).
  13. V. V. Krongauz, E. R. Schmelzer, and R. M. Yohannan, “Kinetics of anisotropic photopolymerization in polymer matrix,” Polym. 32, 1654–1662 (1991).
  14. H. Kang, J. M. Lee, J.-H. Kim, J.-H. Lee, J. S. Park, J. G. Seo, and D. Kang, “Homeotropic Alignment Properties of Liquid Crystal and Photocurable Monomer System via UV Irradiation,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 606, 101–110 (2015).
  15. H. Kang, J.-H. Lee, D.-G. Kim, and D. Kang, “Control of Pretilt Angle in Liquid Crystal and Photocurable Monomer System,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 607, 94–103 (2015).
  16. H. Kang, S. W. Joo, and D. Kang, “Photopolymerization-Induced Vertical Phase Separation and Homeotropic Alignment in Liquid Crystal and Polymer Mixtures,” Bull. Korean Chem. Soc. 33, 2806–2808 (2012).
  17. A. J. Lovinger, K. R. Amundson, and D. D. Davis, “Morphological Investigation of UV-Curable Polymer-Dispersed Liquid-Crystal (PDLC) Materials,” Chem. Mater. 6, 1726–1736 (1994).
  18. C.-J. Hsu, B.-L. Chen, and C.-Y. Huang, “Controlling liquid crystal pretilt angle with photocurable prepolymer and vertically aligned substrate,” Opt. Express 24(2), 1463–1471 (2016).
    [PubMed]
  19. J. Foresi, P. R. Villeneuve, J. Ferrera, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. I. Smith, and E. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nat. 390, 143–145 (1997).
  20. A. Lipson and E. M. Yeatman, “A 1-D photonic band gap tunable optical filter in (110) silicon,” J. Microelectromech. Syst. 16, 521–527 (2007).
  21. J. OʼBrien, O. Painter, R. Lee, C. C. Cheng, A. Yariv, and A. Scherer, “Two-dimensional photonic band-gap mirrors at 850 and 980 nm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 1996), CThJ3.
  22. T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved Pattern Transfer in Soft Lithography Using Composite Stamps,” Langmuir 18, 5314–5320 (2002).
  23. J. Chen, J. Shi, D. Decanini, E. Cambril, Y. Chen, and A.-M. Haghiri-Gosnet, “Gold nanohole arrays for biochemical sensing fabricated by soft UV nanoimprint lithography,” Microelectron. Eng. 86, 632–635 (2009).
  24. S. H. Lee, K. C. Bantz, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Self-Assembled Plasmonic Nanohole Arrays,” Langmuir 25(23), 13685–13693 (2009).
    [PubMed]
  25. Y. Zhang, T. Wei, Z. Xiong, Y. Chen, A. Zhen, L. Shan, Y. Zhao, Q. Hu, J. Li, and J. Wang, “Enhancing optical power of GaN-based light-emitting diodes by nanopatterning on indium tin oxide with tunable fill factor using multiple-exposure nanosphere-lens lithography,” J. Appl. Phys. 116, 194301 (2014).
  26. A. N. Noemaun, F. W. Mont, G.-B. Lin, J. Cho, E. Fred Schubert, G. Bum Kim, C. Sone, and J. Kyu Kim, “Optically functional surface composed of patterned graded-refractive-index coatings to enhance light-extraction of GaInN light-emitting diodes,” J. Appl. Phys. 110, 054510 (2011).
  27. M. Škarabot, M. Ravnik, S. Žumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, and I. Muševič, “Two-dimensional dipolar nematic colloidal crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(5 Pt 1), 051406 (2007).
    [PubMed]
  28. M. Yada, J. Yamamoto, and H. Yokoyama, “Direct observation of anisotropic interparticle forces in nematic colloids with optical tweezers,” Phys. Rev. Lett. 92(18), 185501 (2004).
    [PubMed]
  29. M. Y. Jin, T.-H. Lee, J.-W. Jung, and J.-H. Kim, “Surface effects on photopolymerization induced anisotropic phase separation in liquid crystal and polymer composites,” Appl. Phys. Lett. 90, 193510 (2007).
  30. J. Jong-Wook, P. Seo-Kyu, K. Soon-Bum, and K. Jae-Hoon, “Pixel-Isolated Liquid Crystal Mode for Flexible Display Applications,” Jpn. J. Appl. Phys. 43, 4269 (2004).
  31. J.-C. Loudet, P. Barois, and P. Poulin, “Colloidal ordering from phase separation in a liquid-crystalline continuous phase,” Nature 407(6804), 611–613 (2000).
    [PubMed]
  32. P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel Colloidal Interactions in Anisotropic Fluids,” Science 275(5307), 1770–1773 (1997).
    [PubMed]
  33. D. Voloschenko, O. P. Pishnyak, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effect of director distortions on morphologies of phase separation in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6 Pt 1), 060701 (2002).
    [PubMed]
  34. O. Yaroshchuk, F. Elouali, and U. Maschke, “Control of phase separation and morphology of thiol–ene based PDLCs by curing light intensity,” Opt. Mater. 32, 982–989 (2010).
  35. J. C. Loudet, “Colloidal inclusions in liquid crystals: Phase separation mechanisms and some dynamical aspects,” Liq. Cryst. Today 14, 1–14 (2005).
  36. D. Nwabunma, H.-W. Chiu, and T. Kyu, “Morphology Development and Dynamics of Photopolymerization-Induced Phase Separation in Mixtures of a Nematic Liquid Crystal and Photocuratives,” Macromol. 33, 1416–1424 (2000).
  37. D. W. Berreman, “Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal,” Phys. Rev. Lett. 28, 1683–1686 (1972).
  38. C. J. Newsome, M. O’Neill, R. J. Farley, and G. P. Bryan-Brown, “Laser etched gratings on polymer layers for alignment of liquid crystals,” Appl. Phys. Lett. 72, 2078–2080 (1998).
  39. S.-I. Chang, J.-B. Yoon, H. Kim, J.-J. Kim, B.-K. Lee, and D. H. Shin, “Microlens array diffuser for a light-emitting diode backlight system,” Opt. Lett. 31(20), 3016–3018 (2006).
    [PubMed]
  40. M. Djavid, X. Liu, and Z. Mi, “Improvement of the light extraction efficiency of GaN-based LEDs using rolled-up nanotube arrays,” Opt. Express 22(Suppl 7), A1680–A1686 (2014).
    [PubMed]

2016 (1)

2015 (2)

H. Kang, J. M. Lee, J.-H. Kim, J.-H. Lee, J. S. Park, J. G. Seo, and D. Kang, “Homeotropic Alignment Properties of Liquid Crystal and Photocurable Monomer System via UV Irradiation,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 606, 101–110 (2015).

H. Kang, J.-H. Lee, D.-G. Kim, and D. Kang, “Control of Pretilt Angle in Liquid Crystal and Photocurable Monomer System,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 607, 94–103 (2015).

2014 (2)

Y. Zhang, T. Wei, Z. Xiong, Y. Chen, A. Zhen, L. Shan, Y. Zhao, Q. Hu, J. Li, and J. Wang, “Enhancing optical power of GaN-based light-emitting diodes by nanopatterning on indium tin oxide with tunable fill factor using multiple-exposure nanosphere-lens lithography,” J. Appl. Phys. 116, 194301 (2014).

M. Djavid, X. Liu, and Z. Mi, “Improvement of the light extraction efficiency of GaN-based LEDs using rolled-up nanotube arrays,” Opt. Express 22(Suppl 7), A1680–A1686 (2014).
[PubMed]

2013 (1)

2012 (1)

H. Kang, S. W. Joo, and D. Kang, “Photopolymerization-Induced Vertical Phase Separation and Homeotropic Alignment in Liquid Crystal and Polymer Mixtures,” Bull. Korean Chem. Soc. 33, 2806–2808 (2012).

2011 (2)

A. N. Noemaun, F. W. Mont, G.-B. Lin, J. Cho, E. Fred Schubert, G. Bum Kim, C. Sone, and J. Kyu Kim, “Optically functional surface composed of patterned graded-refractive-index coatings to enhance light-extraction of GaInN light-emitting diodes,” J. Appl. Phys. 110, 054510 (2011).

G. Zhu, X.-W. Lin, W. Hu, Z.-G. Zheng, H.-F. Wang, H.-Q. Cui, D. Shen, and Y.-Q. Lu, “Liquid crystal blue phase induced by bent-shaped molecules with allylic end groups,” Opt. Mater. Express 1, 1478–1483 (2011).

2010 (1)

O. Yaroshchuk, F. Elouali, and U. Maschke, “Control of phase separation and morphology of thiol–ene based PDLCs by curing light intensity,” Opt. Mater. 32, 982–989 (2010).

2009 (2)

J. Chen, J. Shi, D. Decanini, E. Cambril, Y. Chen, and A.-M. Haghiri-Gosnet, “Gold nanohole arrays for biochemical sensing fabricated by soft UV nanoimprint lithography,” Microelectron. Eng. 86, 632–635 (2009).

S. H. Lee, K. C. Bantz, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Self-Assembled Plasmonic Nanohole Arrays,” Langmuir 25(23), 13685–13693 (2009).
[PubMed]

2008 (1)

Z. Zheng, J. Song, Y. Liu, F. Guo, J. Ma, and L. Xuan, “Single‐step exposure for two‐dimensional electrically‐tuneable diffraction grating based on polymer dispersed liquid crystal,” Liq. Cryst. 35, 489–499 (2008).

2007 (3)

M. Škarabot, M. Ravnik, S. Žumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, and I. Muševič, “Two-dimensional dipolar nematic colloidal crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(5 Pt 1), 051406 (2007).
[PubMed]

M. Y. Jin, T.-H. Lee, J.-W. Jung, and J.-H. Kim, “Surface effects on photopolymerization induced anisotropic phase separation in liquid crystal and polymer composites,” Appl. Phys. Lett. 90, 193510 (2007).

A. Lipson and E. M. Yeatman, “A 1-D photonic band gap tunable optical filter in (110) silicon,” J. Microelectromech. Syst. 16, 521–527 (2007).

2006 (1)

2005 (2)

Q. Wang and S. Kumar, “Submillisecond switching of nematic liquid crystal in cells fabricated by anisotropic phase-separation of liquid crystal and polymer mixture,” Appl. Phys. Lett. 86, 071119 (2005).

J. C. Loudet, “Colloidal inclusions in liquid crystals: Phase separation mechanisms and some dynamical aspects,” Liq. Cryst. Today 14, 1–14 (2005).

2004 (2)

J. Jong-Wook, P. Seo-Kyu, K. Soon-Bum, and K. Jae-Hoon, “Pixel-Isolated Liquid Crystal Mode for Flexible Display Applications,” Jpn. J. Appl. Phys. 43, 4269 (2004).

M. Yada, J. Yamamoto, and H. Yokoyama, “Direct observation of anisotropic interparticle forces in nematic colloids with optical tweezers,” Phys. Rev. Lett. 92(18), 185501 (2004).
[PubMed]

2003 (1)

M. Mucha, “Polymer as an important component of blends and composites with liquid crystals,” Prog. Polym. Sci. 28, 837–873 (2003).

2002 (2)

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved Pattern Transfer in Soft Lithography Using Composite Stamps,” Langmuir 18, 5314–5320 (2002).

D. Voloschenko, O. P. Pishnyak, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effect of director distortions on morphologies of phase separation in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6 Pt 1), 060701 (2002).
[PubMed]

2000 (3)

D. Nwabunma, H.-W. Chiu, and T. Kyu, “Morphology Development and Dynamics of Photopolymerization-Induced Phase Separation in Mixtures of a Nematic Liquid Crystal and Photocuratives,” Macromol. 33, 1416–1424 (2000).

J.-C. Loudet, P. Barois, and P. Poulin, “Colloidal ordering from phase separation in a liquid-crystalline continuous phase,” Nature 407(6804), 611–613 (2000).
[PubMed]

T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, “Phase-separated composite films: Experiment and theory,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(4 Pt B), 4007–4010 (2000).
[PubMed]

1998 (2)

J. B. Nephew, T. C. Nihei, and S. A. Carter, “Reaction-Induced Phase Separation Dynamics: A Polymer in a Liquid Crystal Solvent,” Phys. Rev. Lett. 80, 3276–3279 (1998).

C. J. Newsome, M. O’Neill, R. J. Farley, and G. P. Bryan-Brown, “Laser etched gratings on polymer layers for alignment of liquid crystals,” Appl. Phys. Lett. 72, 2078–2080 (1998).

1997 (3)

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel Colloidal Interactions in Anisotropic Fluids,” Science 275(5307), 1770–1773 (1997).
[PubMed]

I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71, 2454–2456 (1997).

J. Foresi, P. R. Villeneuve, J. Ferrera, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. I. Smith, and E. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nat. 390, 143–145 (1997).

1996 (1)

L. Bouteiller and P. L. Barny, “Polymer-dispersed liquid crystals: Preparation, operation and application,” Liq. Cryst. 21, 157–174 (1996).

1995 (2)

D. Coates, “Polymer-dispersed liquid crystals,” J. Mater. Chem. 5, 2063–2072 (1995).

Y. K. Fung, D. K. Yang, S. Ying, L. C. Chien, S. Zumer, and J. W. Doane, “Polymer networks formed in liquid crystals,” Liq. Cryst. 19, 797–801 (1995).

1994 (1)

A. J. Lovinger, K. R. Amundson, and D. D. Davis, “Morphological Investigation of UV-Curable Polymer-Dispersed Liquid-Crystal (PDLC) Materials,” Chem. Mater. 6, 1726–1736 (1994).

1991 (2)

V. V. Krongauz, E. R. Schmelzer, and R. M. Yohannan, “Kinetics of anisotropic photopolymerization in polymer matrix,” Polym. 32, 1654–1662 (1991).

G. W. Smith, “Cure Parameters and Phase Behavior of An Ultraviolet-Cured Polymer-Dispersed Liquid Crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 196, 89–102 (1991).

1972 (1)

D. W. Berreman, “Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal,” Phys. Rev. Lett. 28, 1683–1686 (1972).

Afzali-Ardakani, A.

I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71, 2454–2456 (1997).

Amundson, K. R.

A. J. Lovinger, K. R. Amundson, and D. D. Davis, “Morphological Investigation of UV-Curable Polymer-Dispersed Liquid-Crystal (PDLC) Materials,” Chem. Mater. 6, 1726–1736 (1994).

Babic, D.

M. Škarabot, M. Ravnik, S. Žumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, and I. Muševič, “Two-dimensional dipolar nematic colloidal crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(5 Pt 1), 051406 (2007).
[PubMed]

Bantz, K. C.

S. H. Lee, K. C. Bantz, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Self-Assembled Plasmonic Nanohole Arrays,” Langmuir 25(23), 13685–13693 (2009).
[PubMed]

Barny, P. L.

L. Bouteiller and P. L. Barny, “Polymer-dispersed liquid crystals: Preparation, operation and application,” Liq. Cryst. 21, 157–174 (1996).

Barois, P.

J.-C. Loudet, P. Barois, and P. Poulin, “Colloidal ordering from phase separation in a liquid-crystalline continuous phase,” Nature 407(6804), 611–613 (2000).
[PubMed]

Berreman, D. W.

D. W. Berreman, “Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal,” Phys. Rev. Lett. 28, 1683–1686 (1972).

Bouteiller, L.

L. Bouteiller and P. L. Barny, “Polymer-dispersed liquid crystals: Preparation, operation and application,” Liq. Cryst. 21, 157–174 (1996).

Bryan-Brown, G. P.

C. J. Newsome, M. O’Neill, R. J. Farley, and G. P. Bryan-Brown, “Laser etched gratings on polymer layers for alignment of liquid crystals,” Appl. Phys. Lett. 72, 2078–2080 (1998).

Bum Kim, G.

A. N. Noemaun, F. W. Mont, G.-B. Lin, J. Cho, E. Fred Schubert, G. Bum Kim, C. Sone, and J. Kyu Kim, “Optically functional surface composed of patterned graded-refractive-index coatings to enhance light-extraction of GaInN light-emitting diodes,” J. Appl. Phys. 110, 054510 (2011).

Cambril, E.

J. Chen, J. Shi, D. Decanini, E. Cambril, Y. Chen, and A.-M. Haghiri-Gosnet, “Gold nanohole arrays for biochemical sensing fabricated by soft UV nanoimprint lithography,” Microelectron. Eng. 86, 632–635 (2009).

Carter, S. A.

J. B. Nephew, T. C. Nihei, and S. A. Carter, “Reaction-Induced Phase Separation Dynamics: A Polymer in a Liquid Crystal Solvent,” Phys. Rev. Lett. 80, 3276–3279 (1998).

Chang, S.-I.

Chen, B.-L.

Chen, J.

J. Chen, J. Shi, D. Decanini, E. Cambril, Y. Chen, and A.-M. Haghiri-Gosnet, “Gold nanohole arrays for biochemical sensing fabricated by soft UV nanoimprint lithography,” Microelectron. Eng. 86, 632–635 (2009).

Chen, X.-c.

Chen, Y.

Y. Zhang, T. Wei, Z. Xiong, Y. Chen, A. Zhen, L. Shan, Y. Zhao, Q. Hu, J. Li, and J. Wang, “Enhancing optical power of GaN-based light-emitting diodes by nanopatterning on indium tin oxide with tunable fill factor using multiple-exposure nanosphere-lens lithography,” J. Appl. Phys. 116, 194301 (2014).

J. Chen, J. Shi, D. Decanini, E. Cambril, Y. Chen, and A.-M. Haghiri-Gosnet, “Gold nanohole arrays for biochemical sensing fabricated by soft UV nanoimprint lithography,” Microelectron. Eng. 86, 632–635 (2009).

Chien, L. C.

Y. K. Fung, D. K. Yang, S. Ying, L. C. Chien, S. Zumer, and J. W. Doane, “Polymer networks formed in liquid crystals,” Liq. Cryst. 19, 797–801 (1995).

Chiu, H.-W.

D. Nwabunma, H.-W. Chiu, and T. Kyu, “Morphology Development and Dynamics of Photopolymerization-Induced Phase Separation in Mixtures of a Nematic Liquid Crystal and Photocuratives,” Macromol. 33, 1416–1424 (2000).

Cho, J.

A. N. Noemaun, F. W. Mont, G.-B. Lin, J. Cho, E. Fred Schubert, G. Bum Kim, C. Sone, and J. Kyu Kim, “Optically functional surface composed of patterned graded-refractive-index coatings to enhance light-extraction of GaInN light-emitting diodes,” J. Appl. Phys. 110, 054510 (2011).

Coates, D.

D. Coates, “Polymer-dispersed liquid crystals,” J. Mater. Chem. 5, 2063–2072 (1995).

Cui, H.-Q.

Davis, D. D.

A. J. Lovinger, K. R. Amundson, and D. D. Davis, “Morphological Investigation of UV-Curable Polymer-Dispersed Liquid-Crystal (PDLC) Materials,” Chem. Mater. 6, 1726–1736 (1994).

Decanini, D.

J. Chen, J. Shi, D. Decanini, E. Cambril, Y. Chen, and A.-M. Haghiri-Gosnet, “Gold nanohole arrays for biochemical sensing fabricated by soft UV nanoimprint lithography,” Microelectron. Eng. 86, 632–635 (2009).

Dierking, I.

I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71, 2454–2456 (1997).

Djavid, M.

Doane, J. W.

Y. K. Fung, D. K. Yang, S. Ying, L. C. Chien, S. Zumer, and J. W. Doane, “Polymer networks formed in liquid crystals,” Liq. Cryst. 19, 797–801 (1995).

Elouali, F.

O. Yaroshchuk, F. Elouali, and U. Maschke, “Control of phase separation and morphology of thiol–ene based PDLCs by curing light intensity,” Opt. Mater. 32, 982–989 (2010).

Fan, S.

J. Foresi, P. R. Villeneuve, J. Ferrera, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. I. Smith, and E. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nat. 390, 143–145 (1997).

Farley, R. J.

C. J. Newsome, M. O’Neill, R. J. Farley, and G. P. Bryan-Brown, “Laser etched gratings on polymer layers for alignment of liquid crystals,” Appl. Phys. Lett. 72, 2078–2080 (1998).

Ferrera, J.

J. Foresi, P. R. Villeneuve, J. Ferrera, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. I. Smith, and E. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nat. 390, 143–145 (1997).

Foresi, J.

J. Foresi, P. R. Villeneuve, J. Ferrera, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. I. Smith, and E. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nat. 390, 143–145 (1997).

Fred Schubert, E.

A. N. Noemaun, F. W. Mont, G.-B. Lin, J. Cho, E. Fred Schubert, G. Bum Kim, C. Sone, and J. Kyu Kim, “Optically functional surface composed of patterned graded-refractive-index coatings to enhance light-extraction of GaInN light-emitting diodes,” J. Appl. Phys. 110, 054510 (2011).

Fung, Y. K.

Y. K. Fung, D. K. Yang, S. Ying, L. C. Chien, S. Zumer, and J. W. Doane, “Polymer networks formed in liquid crystals,” Liq. Cryst. 19, 797–801 (1995).

Guo, F.

Z. Zheng, J. Song, Y. Liu, F. Guo, J. Ma, and L. Xuan, “Single‐step exposure for two‐dimensional electrically‐tuneable diffraction grating based on polymer dispersed liquid crystal,” Liq. Cryst. 35, 489–499 (2008).

Haghiri-Gosnet, A.-M.

J. Chen, J. Shi, D. Decanini, E. Cambril, Y. Chen, and A.-M. Haghiri-Gosnet, “Gold nanohole arrays for biochemical sensing fabricated by soft UV nanoimprint lithography,” Microelectron. Eng. 86, 632–635 (2009).

Haynes, C. L.

S. H. Lee, K. C. Bantz, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Self-Assembled Plasmonic Nanohole Arrays,” Langmuir 25(23), 13685–13693 (2009).
[PubMed]

Held, G. A.

I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71, 2454–2456 (1997).

Hsu, C.-J.

Hu, Q.

Y. Zhang, T. Wei, Z. Xiong, Y. Chen, A. Zhen, L. Shan, Y. Zhao, Q. Hu, J. Li, and J. Wang, “Enhancing optical power of GaN-based light-emitting diodes by nanopatterning on indium tin oxide with tunable fill factor using multiple-exposure nanosphere-lens lithography,” J. Appl. Phys. 116, 194301 (2014).

Hu, W.

Huang, C.-Y.

Ippen, E.

J. Foresi, P. R. Villeneuve, J. Ferrera, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. I. Smith, and E. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nat. 390, 143–145 (1997).

Jae-Hoon, K.

J. Jong-Wook, P. Seo-Kyu, K. Soon-Bum, and K. Jae-Hoon, “Pixel-Isolated Liquid Crystal Mode for Flexible Display Applications,” Jpn. J. Appl. Phys. 43, 4269 (2004).

Jin, M. Y.

M. Y. Jin, T.-H. Lee, J.-W. Jung, and J.-H. Kim, “Surface effects on photopolymerization induced anisotropic phase separation in liquid crystal and polymer composites,” Appl. Phys. Lett. 90, 193510 (2007).

Joannopoulos, J.

J. Foresi, P. R. Villeneuve, J. Ferrera, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. I. Smith, and E. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nat. 390, 143–145 (1997).

Jong-Wook, J.

J. Jong-Wook, P. Seo-Kyu, K. Soon-Bum, and K. Jae-Hoon, “Pixel-Isolated Liquid Crystal Mode for Flexible Display Applications,” Jpn. J. Appl. Phys. 43, 4269 (2004).

Joo, S. W.

H. Kang, S. W. Joo, and D. Kang, “Photopolymerization-Induced Vertical Phase Separation and Homeotropic Alignment in Liquid Crystal and Polymer Mixtures,” Bull. Korean Chem. Soc. 33, 2806–2808 (2012).

Jung, J.-W.

M. Y. Jin, T.-H. Lee, J.-W. Jung, and J.-H. Kim, “Surface effects on photopolymerization induced anisotropic phase separation in liquid crystal and polymer composites,” Appl. Phys. Lett. 90, 193510 (2007).

Kang, D.

H. Kang, J.-H. Lee, D.-G. Kim, and D. Kang, “Control of Pretilt Angle in Liquid Crystal and Photocurable Monomer System,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 607, 94–103 (2015).

H. Kang, J. M. Lee, J.-H. Kim, J.-H. Lee, J. S. Park, J. G. Seo, and D. Kang, “Homeotropic Alignment Properties of Liquid Crystal and Photocurable Monomer System via UV Irradiation,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 606, 101–110 (2015).

H. Kang, S. W. Joo, and D. Kang, “Photopolymerization-Induced Vertical Phase Separation and Homeotropic Alignment in Liquid Crystal and Polymer Mixtures,” Bull. Korean Chem. Soc. 33, 2806–2808 (2012).

Kang, H.

H. Kang, J.-H. Lee, D.-G. Kim, and D. Kang, “Control of Pretilt Angle in Liquid Crystal and Photocurable Monomer System,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 607, 94–103 (2015).

H. Kang, J. M. Lee, J.-H. Kim, J.-H. Lee, J. S. Park, J. G. Seo, and D. Kang, “Homeotropic Alignment Properties of Liquid Crystal and Photocurable Monomer System via UV Irradiation,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 606, 101–110 (2015).

H. Kang, S. W. Joo, and D. Kang, “Photopolymerization-Induced Vertical Phase Separation and Homeotropic Alignment in Liquid Crystal and Polymer Mixtures,” Bull. Korean Chem. Soc. 33, 2806–2808 (2012).

Kim, D.-G.

H. Kang, J.-H. Lee, D.-G. Kim, and D. Kang, “Control of Pretilt Angle in Liquid Crystal and Photocurable Monomer System,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 607, 94–103 (2015).

Kim, H.

Kim, J.-H.

H. Kang, J. M. Lee, J.-H. Kim, J.-H. Lee, J. S. Park, J. G. Seo, and D. Kang, “Homeotropic Alignment Properties of Liquid Crystal and Photocurable Monomer System via UV Irradiation,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 606, 101–110 (2015).

M. Y. Jin, T.-H. Lee, J.-W. Jung, and J.-H. Kim, “Surface effects on photopolymerization induced anisotropic phase separation in liquid crystal and polymer composites,” Appl. Phys. Lett. 90, 193510 (2007).

T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, “Phase-separated composite films: Experiment and theory,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(4 Pt B), 4007–4010 (2000).
[PubMed]

Kim, J.-J.

Kimerling, L.

J. Foresi, P. R. Villeneuve, J. Ferrera, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. I. Smith, and E. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nat. 390, 143–145 (1997).

Kosbar, L. L.

I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71, 2454–2456 (1997).

Krongauz, V. V.

V. V. Krongauz, E. R. Schmelzer, and R. M. Yohannan, “Kinetics of anisotropic photopolymerization in polymer matrix,” Polym. 32, 1654–1662 (1991).

Kumar, S.

Q. Wang and S. Kumar, “Submillisecond switching of nematic liquid crystal in cells fabricated by anisotropic phase-separation of liquid crystal and polymer mixture,” Appl. Phys. Lett. 86, 071119 (2005).

T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, “Phase-separated composite films: Experiment and theory,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(4 Pt B), 4007–4010 (2000).
[PubMed]

Kyu, T.

D. Nwabunma, H.-W. Chiu, and T. Kyu, “Morphology Development and Dynamics of Photopolymerization-Induced Phase Separation in Mixtures of a Nematic Liquid Crystal and Photocuratives,” Macromol. 33, 1416–1424 (2000).

Kyu Kim, J.

A. N. Noemaun, F. W. Mont, G.-B. Lin, J. Cho, E. Fred Schubert, G. Bum Kim, C. Sone, and J. Kyu Kim, “Optically functional surface composed of patterned graded-refractive-index coatings to enhance light-extraction of GaInN light-emitting diodes,” J. Appl. Phys. 110, 054510 (2011).

Lavrentovich, O. D.

D. Voloschenko, O. P. Pishnyak, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effect of director distortions on morphologies of phase separation in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6 Pt 1), 060701 (2002).
[PubMed]

Lee, B.-K.

Lee, J. M.

H. Kang, J. M. Lee, J.-H. Kim, J.-H. Lee, J. S. Park, J. G. Seo, and D. Kang, “Homeotropic Alignment Properties of Liquid Crystal and Photocurable Monomer System via UV Irradiation,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 606, 101–110 (2015).

Lee, J.-H.

H. Kang, J.-H. Lee, D.-G. Kim, and D. Kang, “Control of Pretilt Angle in Liquid Crystal and Photocurable Monomer System,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 607, 94–103 (2015).

H. Kang, J. M. Lee, J.-H. Kim, J.-H. Lee, J. S. Park, J. G. Seo, and D. Kang, “Homeotropic Alignment Properties of Liquid Crystal and Photocurable Monomer System via UV Irradiation,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 606, 101–110 (2015).

Lee, S. H.

S. H. Lee, K. C. Bantz, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Self-Assembled Plasmonic Nanohole Arrays,” Langmuir 25(23), 13685–13693 (2009).
[PubMed]

Lee, T.-H.

M. Y. Jin, T.-H. Lee, J.-W. Jung, and J.-H. Kim, “Surface effects on photopolymerization induced anisotropic phase separation in liquid crystal and polymer composites,” Appl. Phys. Lett. 90, 193510 (2007).

Li, J.

Y. Zhang, T. Wei, Z. Xiong, Y. Chen, A. Zhen, L. Shan, Y. Zhao, Q. Hu, J. Li, and J. Wang, “Enhancing optical power of GaN-based light-emitting diodes by nanopatterning on indium tin oxide with tunable fill factor using multiple-exposure nanosphere-lens lithography,” J. Appl. Phys. 116, 194301 (2014).

Lin, G.-B.

A. N. Noemaun, F. W. Mont, G.-B. Lin, J. Cho, E. Fred Schubert, G. Bum Kim, C. Sone, and J. Kyu Kim, “Optically functional surface composed of patterned graded-refractive-index coatings to enhance light-extraction of GaInN light-emitting diodes,” J. Appl. Phys. 110, 054510 (2011).

Lin, X.-W.

Lindquist, N. C.

S. H. Lee, K. C. Bantz, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Self-Assembled Plasmonic Nanohole Arrays,” Langmuir 25(23), 13685–13693 (2009).
[PubMed]

Lipson, A.

A. Lipson and E. M. Yeatman, “A 1-D photonic band gap tunable optical filter in (110) silicon,” J. Microelectromech. Syst. 16, 521–527 (2007).

Liu, B.-w.

Liu, X.

Liu, Y.

Z. Zheng, J. Song, Y. Liu, F. Guo, J. Ma, and L. Xuan, “Single‐step exposure for two‐dimensional electrically‐tuneable diffraction grating based on polymer dispersed liquid crystal,” Liq. Cryst. 35, 489–499 (2008).

Loudet, J. C.

J. C. Loudet, “Colloidal inclusions in liquid crystals: Phase separation mechanisms and some dynamical aspects,” Liq. Cryst. Today 14, 1–14 (2005).

Loudet, J.-C.

J.-C. Loudet, P. Barois, and P. Poulin, “Colloidal ordering from phase separation in a liquid-crystalline continuous phase,” Nature 407(6804), 611–613 (2000).
[PubMed]

Love, J. C.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved Pattern Transfer in Soft Lithography Using Composite Stamps,” Langmuir 18, 5314–5320 (2002).

Lovinger, A. J.

A. J. Lovinger, K. R. Amundson, and D. D. Davis, “Morphological Investigation of UV-Curable Polymer-Dispersed Liquid-Crystal (PDLC) Materials,” Chem. Mater. 6, 1726–1736 (1994).

Lowe, A. C.

I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71, 2454–2456 (1997).

Lu, Y.-Q.

Lubensky, T. C.

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel Colloidal Interactions in Anisotropic Fluids,” Science 275(5307), 1770–1773 (1997).
[PubMed]

Ma, J.

Z. Zheng, J. Song, Y. Liu, F. Guo, J. Ma, and L. Xuan, “Single‐step exposure for two‐dimensional electrically‐tuneable diffraction grating based on polymer dispersed liquid crystal,” Liq. Cryst. 35, 489–499 (2008).

Maschke, U.

O. Yaroshchuk, F. Elouali, and U. Maschke, “Control of phase separation and morphology of thiol–ene based PDLCs by curing light intensity,” Opt. Mater. 32, 982–989 (2010).

Mi, Z.

Mont, F. W.

A. N. Noemaun, F. W. Mont, G.-B. Lin, J. Cho, E. Fred Schubert, G. Bum Kim, C. Sone, and J. Kyu Kim, “Optically functional surface composed of patterned graded-refractive-index coatings to enhance light-extraction of GaInN light-emitting diodes,” J. Appl. Phys. 110, 054510 (2011).

Mucha, M.

M. Mucha, “Polymer as an important component of blends and composites with liquid crystals,” Prog. Polym. Sci. 28, 837–873 (2003).

Muševic, I.

M. Škarabot, M. Ravnik, S. Žumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, and I. Muševič, “Two-dimensional dipolar nematic colloidal crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(5 Pt 1), 051406 (2007).
[PubMed]

Nephew, J. B.

J. B. Nephew, T. C. Nihei, and S. A. Carter, “Reaction-Induced Phase Separation Dynamics: A Polymer in a Liquid Crystal Solvent,” Phys. Rev. Lett. 80, 3276–3279 (1998).

Newsome, C. J.

C. J. Newsome, M. O’Neill, R. J. Farley, and G. P. Bryan-Brown, “Laser etched gratings on polymer layers for alignment of liquid crystals,” Appl. Phys. Lett. 72, 2078–2080 (1998).

Nihei, T. C.

J. B. Nephew, T. C. Nihei, and S. A. Carter, “Reaction-Induced Phase Separation Dynamics: A Polymer in a Liquid Crystal Solvent,” Phys. Rev. Lett. 80, 3276–3279 (1998).

Noemaun, A. N.

A. N. Noemaun, F. W. Mont, G.-B. Lin, J. Cho, E. Fred Schubert, G. Bum Kim, C. Sone, and J. Kyu Kim, “Optically functional surface composed of patterned graded-refractive-index coatings to enhance light-extraction of GaInN light-emitting diodes,” J. Appl. Phys. 110, 054510 (2011).

Nwabunma, D.

D. Nwabunma, H.-W. Chiu, and T. Kyu, “Morphology Development and Dynamics of Photopolymerization-Induced Phase Separation in Mixtures of a Nematic Liquid Crystal and Photocuratives,” Macromol. 33, 1416–1424 (2000).

O’Neill, M.

C. J. Newsome, M. O’Neill, R. J. Farley, and G. P. Bryan-Brown, “Laser etched gratings on polymer layers for alignment of liquid crystals,” Appl. Phys. Lett. 72, 2078–2080 (1998).

Odom, T. W.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved Pattern Transfer in Soft Lithography Using Composite Stamps,” Langmuir 18, 5314–5320 (2002).

Oh, S.-H.

S. H. Lee, K. C. Bantz, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Self-Assembled Plasmonic Nanohole Arrays,” Langmuir 25(23), 13685–13693 (2009).
[PubMed]

Osterman, N.

M. Škarabot, M. Ravnik, S. Žumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, and I. Muševič, “Two-dimensional dipolar nematic colloidal crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(5 Pt 1), 051406 (2007).
[PubMed]

Park, J. S.

H. Kang, J. M. Lee, J.-H. Kim, J.-H. Lee, J. S. Park, J. G. Seo, and D. Kang, “Homeotropic Alignment Properties of Liquid Crystal and Photocurable Monomer System via UV Irradiation,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 606, 101–110 (2015).

Paul, K. E.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved Pattern Transfer in Soft Lithography Using Composite Stamps,” Langmuir 18, 5314–5320 (2002).

Pishnyak, O. P.

D. Voloschenko, O. P. Pishnyak, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effect of director distortions on morphologies of phase separation in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6 Pt 1), 060701 (2002).
[PubMed]

Poberaj, I.

M. Škarabot, M. Ravnik, S. Žumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, and I. Muševič, “Two-dimensional dipolar nematic colloidal crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(5 Pt 1), 051406 (2007).
[PubMed]

Poulin, P.

J.-C. Loudet, P. Barois, and P. Poulin, “Colloidal ordering from phase separation in a liquid-crystalline continuous phase,” Nature 407(6804), 611–613 (2000).
[PubMed]

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel Colloidal Interactions in Anisotropic Fluids,” Science 275(5307), 1770–1773 (1997).
[PubMed]

Qian, T.

T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, “Phase-separated composite films: Experiment and theory,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(4 Pt B), 4007–4010 (2000).
[PubMed]

Ravnik, M.

M. Škarabot, M. Ravnik, S. Žumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, and I. Muševič, “Two-dimensional dipolar nematic colloidal crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(5 Pt 1), 051406 (2007).
[PubMed]

Schmelzer, E. R.

V. V. Krongauz, E. R. Schmelzer, and R. M. Yohannan, “Kinetics of anisotropic photopolymerization in polymer matrix,” Polym. 32, 1654–1662 (1991).

Seo, J. G.

H. Kang, J. M. Lee, J.-H. Kim, J.-H. Lee, J. S. Park, J. G. Seo, and D. Kang, “Homeotropic Alignment Properties of Liquid Crystal and Photocurable Monomer System via UV Irradiation,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 606, 101–110 (2015).

Seo-Kyu, P.

J. Jong-Wook, P. Seo-Kyu, K. Soon-Bum, and K. Jae-Hoon, “Pixel-Isolated Liquid Crystal Mode for Flexible Display Applications,” Jpn. J. Appl. Phys. 43, 4269 (2004).

Shan, L.

Y. Zhang, T. Wei, Z. Xiong, Y. Chen, A. Zhen, L. Shan, Y. Zhao, Q. Hu, J. Li, and J. Wang, “Enhancing optical power of GaN-based light-emitting diodes by nanopatterning on indium tin oxide with tunable fill factor using multiple-exposure nanosphere-lens lithography,” J. Appl. Phys. 116, 194301 (2014).

Shen, D.

Shi, J.

J. Chen, J. Shi, D. Decanini, E. Cambril, Y. Chen, and A.-M. Haghiri-Gosnet, “Gold nanohole arrays for biochemical sensing fabricated by soft UV nanoimprint lithography,” Microelectron. Eng. 86, 632–635 (2009).

Shin, D. H.

Shiyanovskii, S. V.

D. Voloschenko, O. P. Pishnyak, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effect of director distortions on morphologies of phase separation in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6 Pt 1), 060701 (2002).
[PubMed]

Škarabot, M.

M. Škarabot, M. Ravnik, S. Žumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, and I. Muševič, “Two-dimensional dipolar nematic colloidal crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(5 Pt 1), 051406 (2007).
[PubMed]

Smith, G. W.

G. W. Smith, “Cure Parameters and Phase Behavior of An Ultraviolet-Cured Polymer-Dispersed Liquid Crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 196, 89–102 (1991).

Smith, H. I.

J. Foresi, P. R. Villeneuve, J. Ferrera, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. I. Smith, and E. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nat. 390, 143–145 (1997).

Sone, C.

A. N. Noemaun, F. W. Mont, G.-B. Lin, J. Cho, E. Fred Schubert, G. Bum Kim, C. Sone, and J. Kyu Kim, “Optically functional surface composed of patterned graded-refractive-index coatings to enhance light-extraction of GaInN light-emitting diodes,” J. Appl. Phys. 110, 054510 (2011).

Song, J.

Z. Zheng, J. Song, Y. Liu, F. Guo, J. Ma, and L. Xuan, “Single‐step exposure for two‐dimensional electrically‐tuneable diffraction grating based on polymer dispersed liquid crystal,” Liq. Cryst. 35, 489–499 (2008).

Soon-Bum, K.

J. Jong-Wook, P. Seo-Kyu, K. Soon-Bum, and K. Jae-Hoon, “Pixel-Isolated Liquid Crystal Mode for Flexible Display Applications,” Jpn. J. Appl. Phys. 43, 4269 (2004).

Stark, H.

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel Colloidal Interactions in Anisotropic Fluids,” Science 275(5307), 1770–1773 (1997).
[PubMed]

Steinmeyer, G.

J. Foresi, P. R. Villeneuve, J. Ferrera, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. I. Smith, and E. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nat. 390, 143–145 (1997).

Taylor, P. L.

T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, “Phase-separated composite films: Experiment and theory,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(4 Pt B), 4007–4010 (2000).
[PubMed]

Thoen, E.

J. Foresi, P. R. Villeneuve, J. Ferrera, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. I. Smith, and E. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nat. 390, 143–145 (1997).

Tkalec, U.

M. Škarabot, M. Ravnik, S. Žumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, and I. Muševič, “Two-dimensional dipolar nematic colloidal crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(5 Pt 1), 051406 (2007).
[PubMed]

Villeneuve, P. R.

J. Foresi, P. R. Villeneuve, J. Ferrera, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. I. Smith, and E. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nat. 390, 143–145 (1997).

Voloschenko, D.

D. Voloschenko, O. P. Pishnyak, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effect of director distortions on morphologies of phase separation in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6 Pt 1), 060701 (2002).
[PubMed]

Wang, H.-F.

Wang, J.

Y. Zhang, T. Wei, Z. Xiong, Y. Chen, A. Zhen, L. Shan, Y. Zhao, Q. Hu, J. Li, and J. Wang, “Enhancing optical power of GaN-based light-emitting diodes by nanopatterning on indium tin oxide with tunable fill factor using multiple-exposure nanosphere-lens lithography,” J. Appl. Phys. 116, 194301 (2014).

Wang, Q.

Q. Wang and S. Kumar, “Submillisecond switching of nematic liquid crystal in cells fabricated by anisotropic phase-separation of liquid crystal and polymer mixture,” Appl. Phys. Lett. 86, 071119 (2005).

Wei, T.

Y. Zhang, T. Wei, Z. Xiong, Y. Chen, A. Zhen, L. Shan, Y. Zhao, Q. Hu, J. Li, and J. Wang, “Enhancing optical power of GaN-based light-emitting diodes by nanopatterning on indium tin oxide with tunable fill factor using multiple-exposure nanosphere-lens lithography,” J. Appl. Phys. 116, 194301 (2014).

Weitz, D. A.

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel Colloidal Interactions in Anisotropic Fluids,” Science 275(5307), 1770–1773 (1997).
[PubMed]

Whitesides, G. M.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved Pattern Transfer in Soft Lithography Using Composite Stamps,” Langmuir 18, 5314–5320 (2002).

Wolfe, D. B.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved Pattern Transfer in Soft Lithography Using Composite Stamps,” Langmuir 18, 5314–5320 (2002).

Xiong, Z.

Y. Zhang, T. Wei, Z. Xiong, Y. Chen, A. Zhen, L. Shan, Y. Zhao, Q. Hu, J. Li, and J. Wang, “Enhancing optical power of GaN-based light-emitting diodes by nanopatterning on indium tin oxide with tunable fill factor using multiple-exposure nanosphere-lens lithography,” J. Appl. Phys. 116, 194301 (2014).

Xuan, L.

Z. Zheng, J. Song, Y. Liu, F. Guo, J. Ma, and L. Xuan, “Single‐step exposure for two‐dimensional electrically‐tuneable diffraction grating based on polymer dispersed liquid crystal,” Liq. Cryst. 35, 489–499 (2008).

Yada, M.

M. Yada, J. Yamamoto, and H. Yokoyama, “Direct observation of anisotropic interparticle forces in nematic colloids with optical tweezers,” Phys. Rev. Lett. 92(18), 185501 (2004).
[PubMed]

Yamamoto, J.

M. Yada, J. Yamamoto, and H. Yokoyama, “Direct observation of anisotropic interparticle forces in nematic colloids with optical tweezers,” Phys. Rev. Lett. 92(18), 185501 (2004).
[PubMed]

Yang, D. K.

Y. K. Fung, D. K. Yang, S. Ying, L. C. Chien, S. Zumer, and J. W. Doane, “Polymer networks formed in liquid crystals,” Liq. Cryst. 19, 797–801 (1995).

Yaroshchuk, O.

O. Yaroshchuk, F. Elouali, and U. Maschke, “Control of phase separation and morphology of thiol–ene based PDLCs by curing light intensity,” Opt. Mater. 32, 982–989 (2010).

Yeatman, E. M.

A. Lipson and E. M. Yeatman, “A 1-D photonic band gap tunable optical filter in (110) silicon,” J. Microelectromech. Syst. 16, 521–527 (2007).

Ying, S.

Y. K. Fung, D. K. Yang, S. Ying, L. C. Chien, S. Zumer, and J. W. Doane, “Polymer networks formed in liquid crystals,” Liq. Cryst. 19, 797–801 (1995).

Yohannan, R. M.

V. V. Krongauz, E. R. Schmelzer, and R. M. Yohannan, “Kinetics of anisotropic photopolymerization in polymer matrix,” Polym. 32, 1654–1662 (1991).

Yokoyama, H.

M. Yada, J. Yamamoto, and H. Yokoyama, “Direct observation of anisotropic interparticle forces in nematic colloids with optical tweezers,” Phys. Rev. Lett. 92(18), 185501 (2004).
[PubMed]

Yoon, J.-B.

Zhang, Y.

Y. Zhang, T. Wei, Z. Xiong, Y. Chen, A. Zhen, L. Shan, Y. Zhao, Q. Hu, J. Li, and J. Wang, “Enhancing optical power of GaN-based light-emitting diodes by nanopatterning on indium tin oxide with tunable fill factor using multiple-exposure nanosphere-lens lithography,” J. Appl. Phys. 116, 194301 (2014).

Zhao, Y.

Y. Zhang, T. Wei, Z. Xiong, Y. Chen, A. Zhen, L. Shan, Y. Zhao, Q. Hu, J. Li, and J. Wang, “Enhancing optical power of GaN-based light-emitting diodes by nanopatterning on indium tin oxide with tunable fill factor using multiple-exposure nanosphere-lens lithography,” J. Appl. Phys. 116, 194301 (2014).

Zhen, A.

Y. Zhang, T. Wei, Z. Xiong, Y. Chen, A. Zhen, L. Shan, Y. Zhao, Q. Hu, J. Li, and J. Wang, “Enhancing optical power of GaN-based light-emitting diodes by nanopatterning on indium tin oxide with tunable fill factor using multiple-exposure nanosphere-lens lithography,” J. Appl. Phys. 116, 194301 (2014).

Zheng, Z.

Z. Zheng, J. Song, Y. Liu, F. Guo, J. Ma, and L. Xuan, “Single‐step exposure for two‐dimensional electrically‐tuneable diffraction grating based on polymer dispersed liquid crystal,” Liq. Cryst. 35, 489–499 (2008).

Zheng, Z.-g.

Zhu, G.

Zumer, S.

Y. K. Fung, D. K. Yang, S. Ying, L. C. Chien, S. Zumer, and J. W. Doane, “Polymer networks formed in liquid crystals,” Liq. Cryst. 19, 797–801 (1995).

Žumer, S.

M. Škarabot, M. Ravnik, S. Žumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, and I. Muševič, “Two-dimensional dipolar nematic colloidal crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(5 Pt 1), 051406 (2007).
[PubMed]

Appl. Phys. Lett. (4)

I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Network morphology of polymer stabilized liquid crystals,” Appl. Phys. Lett. 71, 2454–2456 (1997).

Q. Wang and S. Kumar, “Submillisecond switching of nematic liquid crystal in cells fabricated by anisotropic phase-separation of liquid crystal and polymer mixture,” Appl. Phys. Lett. 86, 071119 (2005).

M. Y. Jin, T.-H. Lee, J.-W. Jung, and J.-H. Kim, “Surface effects on photopolymerization induced anisotropic phase separation in liquid crystal and polymer composites,” Appl. Phys. Lett. 90, 193510 (2007).

C. J. Newsome, M. O’Neill, R. J. Farley, and G. P. Bryan-Brown, “Laser etched gratings on polymer layers for alignment of liquid crystals,” Appl. Phys. Lett. 72, 2078–2080 (1998).

Bull. Korean Chem. Soc. (1)

H. Kang, S. W. Joo, and D. Kang, “Photopolymerization-Induced Vertical Phase Separation and Homeotropic Alignment in Liquid Crystal and Polymer Mixtures,” Bull. Korean Chem. Soc. 33, 2806–2808 (2012).

Chem. Mater. (1)

A. J. Lovinger, K. R. Amundson, and D. D. Davis, “Morphological Investigation of UV-Curable Polymer-Dispersed Liquid-Crystal (PDLC) Materials,” Chem. Mater. 6, 1726–1736 (1994).

J. Appl. Phys. (2)

Y. Zhang, T. Wei, Z. Xiong, Y. Chen, A. Zhen, L. Shan, Y. Zhao, Q. Hu, J. Li, and J. Wang, “Enhancing optical power of GaN-based light-emitting diodes by nanopatterning on indium tin oxide with tunable fill factor using multiple-exposure nanosphere-lens lithography,” J. Appl. Phys. 116, 194301 (2014).

A. N. Noemaun, F. W. Mont, G.-B. Lin, J. Cho, E. Fred Schubert, G. Bum Kim, C. Sone, and J. Kyu Kim, “Optically functional surface composed of patterned graded-refractive-index coatings to enhance light-extraction of GaInN light-emitting diodes,” J. Appl. Phys. 110, 054510 (2011).

J. Mater. Chem. (1)

D. Coates, “Polymer-dispersed liquid crystals,” J. Mater. Chem. 5, 2063–2072 (1995).

J. Microelectromech. Syst. (1)

A. Lipson and E. M. Yeatman, “A 1-D photonic band gap tunable optical filter in (110) silicon,” J. Microelectromech. Syst. 16, 521–527 (2007).

Jpn. J. Appl. Phys. (1)

J. Jong-Wook, P. Seo-Kyu, K. Soon-Bum, and K. Jae-Hoon, “Pixel-Isolated Liquid Crystal Mode for Flexible Display Applications,” Jpn. J. Appl. Phys. 43, 4269 (2004).

Langmuir (2)

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved Pattern Transfer in Soft Lithography Using Composite Stamps,” Langmuir 18, 5314–5320 (2002).

S. H. Lee, K. C. Bantz, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Self-Assembled Plasmonic Nanohole Arrays,” Langmuir 25(23), 13685–13693 (2009).
[PubMed]

Liq. Cryst. (3)

Z. Zheng, J. Song, Y. Liu, F. Guo, J. Ma, and L. Xuan, “Single‐step exposure for two‐dimensional electrically‐tuneable diffraction grating based on polymer dispersed liquid crystal,” Liq. Cryst. 35, 489–499 (2008).

Y. K. Fung, D. K. Yang, S. Ying, L. C. Chien, S. Zumer, and J. W. Doane, “Polymer networks formed in liquid crystals,” Liq. Cryst. 19, 797–801 (1995).

L. Bouteiller and P. L. Barny, “Polymer-dispersed liquid crystals: Preparation, operation and application,” Liq. Cryst. 21, 157–174 (1996).

Liq. Cryst. Today (1)

J. C. Loudet, “Colloidal inclusions in liquid crystals: Phase separation mechanisms and some dynamical aspects,” Liq. Cryst. Today 14, 1–14 (2005).

Macromol. (1)

D. Nwabunma, H.-W. Chiu, and T. Kyu, “Morphology Development and Dynamics of Photopolymerization-Induced Phase Separation in Mixtures of a Nematic Liquid Crystal and Photocuratives,” Macromol. 33, 1416–1424 (2000).

Microelectron. Eng. (1)

J. Chen, J. Shi, D. Decanini, E. Cambril, Y. Chen, and A.-M. Haghiri-Gosnet, “Gold nanohole arrays for biochemical sensing fabricated by soft UV nanoimprint lithography,” Microelectron. Eng. 86, 632–635 (2009).

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (3)

G. W. Smith, “Cure Parameters and Phase Behavior of An Ultraviolet-Cured Polymer-Dispersed Liquid Crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 196, 89–102 (1991).

H. Kang, J. M. Lee, J.-H. Kim, J.-H. Lee, J. S. Park, J. G. Seo, and D. Kang, “Homeotropic Alignment Properties of Liquid Crystal and Photocurable Monomer System via UV Irradiation,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 606, 101–110 (2015).

H. Kang, J.-H. Lee, D.-G. Kim, and D. Kang, “Control of Pretilt Angle in Liquid Crystal and Photocurable Monomer System,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 607, 94–103 (2015).

Nat. (1)

J. Foresi, P. R. Villeneuve, J. Ferrera, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. I. Smith, and E. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nat. 390, 143–145 (1997).

Nature (1)

J.-C. Loudet, P. Barois, and P. Poulin, “Colloidal ordering from phase separation in a liquid-crystalline continuous phase,” Nature 407(6804), 611–613 (2000).
[PubMed]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (1)

O. Yaroshchuk, F. Elouali, and U. Maschke, “Control of phase separation and morphology of thiol–ene based PDLCs by curing light intensity,” Opt. Mater. 32, 982–989 (2010).

Opt. Mater. Express (2)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

D. Voloschenko, O. P. Pishnyak, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effect of director distortions on morphologies of phase separation in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6 Pt 1), 060701 (2002).
[PubMed]

M. Škarabot, M. Ravnik, S. Žumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, and I. Muševič, “Two-dimensional dipolar nematic colloidal crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(5 Pt 1), 051406 (2007).
[PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, “Phase-separated composite films: Experiment and theory,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(4 Pt B), 4007–4010 (2000).
[PubMed]

Phys. Rev. Lett. (3)

J. B. Nephew, T. C. Nihei, and S. A. Carter, “Reaction-Induced Phase Separation Dynamics: A Polymer in a Liquid Crystal Solvent,” Phys. Rev. Lett. 80, 3276–3279 (1998).

M. Yada, J. Yamamoto, and H. Yokoyama, “Direct observation of anisotropic interparticle forces in nematic colloids with optical tweezers,” Phys. Rev. Lett. 92(18), 185501 (2004).
[PubMed]

D. W. Berreman, “Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal,” Phys. Rev. Lett. 28, 1683–1686 (1972).

Polym. (1)

V. V. Krongauz, E. R. Schmelzer, and R. M. Yohannan, “Kinetics of anisotropic photopolymerization in polymer matrix,” Polym. 32, 1654–1662 (1991).

Prog. Polym. Sci. (1)

M. Mucha, “Polymer as an important component of blends and composites with liquid crystals,” Prog. Polym. Sci. 28, 837–873 (2003).

Science (1)

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel Colloidal Interactions in Anisotropic Fluids,” Science 275(5307), 1770–1773 (1997).
[PubMed]

Other (1)

J. OʼBrien, O. Painter, R. Lee, C. C. Cheng, A. Yariv, and A. Scherer, “Two-dimensional photonic band-gap mirrors at 850 and 980 nm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 1996), CThJ3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the photopolymerization process of the small amount of NOA65 in the LC cell.

Fig. 2
Fig. 2

Polymer morphologies on (a) ITO, (b) H-PI, and (c) V-PI substrates.

Fig. 3
Fig. 3

Optical images of E7 dropped on (a) ITO, (b) H-PI, and (c) V-PI substrates; optical images of NOA65 dropped on (a) ITO, (b) H-PI, and (c) V-PI substrates.

Fig. 4
Fig. 4

Polymer gravels on (a) V-PI and (b) H-PI substrates with rubbing treatment; polymer gravels on (c) top and (d) bottom H-PI substrates with TN cell. Red arrow indicates the rubbing direction. In Fig. 4(d), the inset indicates the magnified image.

Fig. 5
Fig. 5

Scheme of the LC director field around colloidal particles in nematic LCs. (a) Small colloidal particle, (b) large colloidal particle, and (c) long chains of droplet–defect pairs. The blue spheres and the black lines indicate the colloidal particles and the axis of preferential orientation of the LCs, respectively.

Fig. 6
Fig. 6

Polymer gravels on the V-PI substrate when the rubbed cell is cured at (a) 3 mw/cm2, 0 V, (b) 3 mw/cm2, 40 V, and (c) 30 mw/cm2, 0 V. The red arrow indicates the rubbing direction of the cell.

Fig. 7
Fig. 7

(a) Schematic of quadrupolar Saturn ring configuration of LCs near the colloidal particle under the electric field. In the direction of the substrate surface normal, (b) the colloidal particles are apart from each other owing to the quadrupolar repulsion. When the induced electrostatic dipole–dipole interaction is higher than the quadrupolar repulsion with the strengthened electric field, the colloidal particles would be driven to (c) connect and (d) further coalesce to form a larger colloidal droplet along the substrate surface normal.

Fig. 8
Fig. 8

(a) Schematic of the simulated LED; (b) normalized electric pattern of the LED without polymer gravel array deposited on the top of p-GaN layer; (c) normalized electric pattern of the LED with polymer gravel array deposited on the top of p-GaN layer.

Tables (2)

Tables Icon

Table 1 Estimated contact angles of E7 and NOA65 dropped on the ITO, H-PI, and V-PI substrates

Tables Icon

Table 2 Estimated anchoring energy

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F= 12πk p z 2 r 4 {(13 cos 2 θ) e ^ r 2cosθsinθ e ^ θ },

Metrics