Abstract

In this paper, we describe ultraviolet-A (UV-A) light-emitting diodes (LEDs) emitting at 325 nm based on a highly uniform structure of quantum-confined AlGaN quantum-disk nanowires (NWs). By incorporating a 20 nm TaN interlayer between a Ti pre-orienting layer and the silicon substrate, we eliminated the potential barrier for carrier injection and phonon transport, and inhibited the formation of interfacial silicide that led to device failure. Compared to previous reports on metal substrate, we achieved a 16 × reduction in root-mean-square (RMS) roughness, from 24 nm to 1.6 nm, for the samples with the Ti/TaN metal-bilayer, owing to the effective diffusion barrier characteristic of TaN. This was confirmed using energy dispersive X-ray spectroscopy (EDXS) and electron energy loss spectroscopy (EELS). We achieved a considerable increase in the injection current density (up to 90 A/cm2) compared to our previous studies, and an optical power of 1.9 μW for the 0.5 × 0.5 mm2 NWs-LED. This work provides a feasible pathway for both a reliable and stable UV-A device operation at elevated current injection, and eventually towards low-cost production of UV devices, leveraging on the scalability of silicon substrates.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Droop-free AlxGa1-xN/AlyGa1-yN quantum-disks-in-nanowires ultraviolet LED emitting at 337 nm on metal/silicon substrates

Bilal Janjua, Haiding Sun, Chao Zhao, Dalaver H. Anjum, Davide Priante, Abdullah A. Alhamoud, Feng Wu, Xiaohang Li, Abdulrahman M. Albadri, Ahmed Y. Alyamani, Munir M. El-Desouki, Tien Khee Ng, and Boon S. Ooi
Opt. Express 25(2) 1381-1390 (2017)

Selective area epitaxy of AlGaN nanowire arrays across nearly the entire compositional range for deep ultraviolet photonics

Xianhe Liu, Binh H. Le, Steffi Y. Woo, Songrui Zhao, Alexandre Pofelski, Gianluigi A. Botton, and Zetian Mi
Opt. Express 25(24) 30494-30502 (2017)

AlGaN photonics: recent advances in materials and ultraviolet devices

Dabing Li, Ke Jiang, Xiaojuan Sun, and Chunlei Guo
Adv. Opt. Photon. 10(1) 43-110 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of GaN-based ultraviolet-C light emitting diodes--UV LEDs--for water disinfection,” Water Res. 45(3), 1481–1489 (2011).
    [PubMed]
  2. L. Krcmová, A. Stjernlof, S. Mehlen, P. C. Hauser, S. Abele, B. Paull, and M. Macka, “Deep-UV-LEDs in photometric detection: A 255 nm LED on-capillary detector in capillary electrophoresis,” Analyst (Lond.) 134(12), 2394–2396 (2009).
    [PubMed]
  3. M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, and Z. Yang, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2010).
  4. G. A. Shaw, A. M. Siegel, J. Model, and D. Greisokh, “Recent progress in short-range ultraviolet communication,” in Proc. of SPIE, 2005), 215.
  5. B. Janjua, H. Sun, C. Zhao, D. H. Anjum, D. Priante, A. A. Alhamoud, F. Wu, X. Li, A. M. Albadri, and A. Y. Alyamani, “Droop-free Al x Ga 1-x N/Al y Ga 1-y N quantum-disks-in-nanowires ultraviolet LED emitting at 337 nm on metal/silicon substrates,” Opt. Express 25, 1381–1390 (2017).
    [PubMed]
  6. S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, “Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources,” Sci. Rep. 5, 8332 (2015).
    [PubMed]
  7. S. Jahangir, M. Mandl, M. Strassburg, and P. Bhattacharya, “Molecular beam epitaxial growth and optical properties of red-emitting (λ= 650 nm) InGaN/GaN disks-in-nanowires on silicon,” Appl. Phys. Lett. 102, 071101 (2013).
  8. B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9(23), 7805–7813 (2017).
    [PubMed]
  9. C. Zhao, T. K. Ng, N. Wei, A. Prabaswara, M. S. Alias, B. Janjua, C. Shen, and B. S. Ooi, “Facile formation of high-quality InGaN/GaN quantum-disks-in-nanowires on bulk-metal substrates for high-power light-emitters,” Nano Lett. 16(2), 1056–1063 (2016).
    [PubMed]
  10. C. Zhao, T. K. Ng, R. T. ElAfandy, A. Prabaswara, G. B. Consiglio, I. A. Ajia, I. S. Roqan, B. Janjua, C. Shen, J. Eid, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Droop-Free, Reliable, and High-Power InGaN/GaN Nanowire Light-Emitting Diodes for Monolithic Metal-Optoelectronics,” Nano Lett. 16(7), 4616–4623 (2016).
    [PubMed]
  11. H. Li, G. Zhao, L. Wang, Z. Chen, and S. Yang, “Morphology Controlled Fabrication of InN Nanowires on Brass Substrates,” Nanomaterials (Basel) 6(11), 195 (2016).
    [PubMed]
  12. M. Wölz, C. Hauswald, T. Flissikowski, T. Gotschke, S. Fernández-Garrido, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Epitaxial growth of GaN nanowires with high structural perfection on a metallic TiN film,” Nano Lett. 15(6), 3743–3747 (2015).
    [PubMed]
  13. B. J. May, A. G. Sarwar, and R. C. Myers, “Nanowire LEDs grown directly on flexible metal foil,” Appl. Phys. Lett. 108, 141103 (2016).
  14. A. T. Sarwar, S. D. Carnevale, F. Yang, T. F. Kent, J. J. Jamison, D. W. McComb, and R. C. Myers, “Semiconductor Nanowire Light-Emitting Diodes Grown on Metal: A Direction Toward Large-Scale Fabrication of Nanowire Devices,” Small 11(40), 5402–5408 (2015).
    [PubMed]
  15. J. Tao, N. W. Cheung, and C. Hu, “Electromigration characteristics of copper interconnects,” IEEE Electron Device Lett. 14, 249–251 (1993).
  16. I. Blech and E. Meieran, “Electromigration in thin Al films,” J. Appl. Phys. 40, 485 (1969).
  17. M. Kwak, D. Shin, T. Kang, and K. Kim, “Characteristics of TiN barrier layer against Cu diffusion,” Thin Solid Films 339, 290–293 (1999).
  18. H. Ono, T. Nakano, and T. Ohta, “Diffusion barrier effects of transition metals for Cu/M/Si multilayers (M= Cr, Ti, Nb, MO, Ta, W),” Appl. Phys. Lett. 64, 1511–1513 (1994).
  19. S. Q. Wang, S. Suthar, C. Hoeflich, and B. J. Burrow, “Diffusion barrier properties of TiW between Si and Cu,” J. Appl. Phys. 73, 2301–2320 (1993).
  20. M. Wittmer, “TiN and TaN as diffusion barriers in metallizations to silicon semiconductor devices,” Appl. Phys. Lett. 36, 456–458 (1980).
  21. C. S. Kang, H.-J. Cho, Y. Kim, R. Choi, K. Onishi, A. Shahriar, and J. Lee, “Characterization of resistivity and work function of sputtered-TaN film for gate electrode applications,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 21, 2026–2028 (2003).
  22. W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
    [PubMed]
  23. S. Maeda, K. Tomioka, S. Hara, and J. Motohisa, “Fabrication and characterization of InP nanowire light-emitting diodes,” Jpn. J. Appl. Phys. 51, 02BN03 (2012).
  24. Y.-H. Ra, R. Navamathavan, J.-H. Park, and C.-R. Lee, “High-quality uniaxial In x Ga 1-x N/GaN Multiple Quantum Well (MQW) Nanowires (NWs) on Si(111) Grown by Metal-Organic Chemical Vapor Deposition (MOCVD) and Light-Emitting Diode (LED) Fabrication,” ACS Appl. Mater. Interfaces 5(6), 2111–2117 (2013).
    [PubMed]
  25. M. A. Zimmler, D. Stichtenoth, C. Ronning, W. Yi, V. Narayanamurti, T. Voss, and F. Capasso, “Scalable fabrication of nanowire photonic and electronic circuits using spin-on glass,” Nano Lett. 8(6), 1695–1699 (2008).
    [PubMed]
  26. S. Murarka and D. Fraser, “Thin film interaction between titanium and polycrystalline silicon,” J. Appl. Phys. 51, 342–349 (1980).
  27. V. Fouquet, L. Pichon, M. Drouet, and A. Straboni, “Plasma assisted nitridation of Ti-6Al-4V,” Appl. Surf. Sci. 221, 248–258 (2004).
  28. R. Bower and J. Mayer, “Growth kinetics observed in the formation of metal silicides on silicon,” Appl. Phys. Lett. 20, 359–361 (1972).
  29. Y. L. Corcoran, A. H. King, N. de Lanerolle, and B. Kim, “Grain boundary diffusion and growth of titanium silicide layers on silicon,” J. Electron. Mater. 19, 1177–1183 (1990).
  30. H. Kato and Y. Nakamura, “Solid state reactions in titanium thin films on silicon,” Thin Solid Films 34, 135–138 (1976).
  31. S. Herd, K. Tu, and K. Ahn, “Formation of an amorphous Rh‐Si alloy by interfacial reaction between amorphous Si and crystalline Rh thin films,” Appl. Phys. Lett. 42, 597–599 (1983).
  32. W. Lur and L. Chen, “Growth kinetics of amorphous interlayer formed by interdiffusion of polycrystalline Ti thin‐film and single‐crystal silicon,” Appl. Phys. Lett. 54, 1217–1219 (1989).
  33. D. Gerthsen, E. Hahn, B. Neubauer, A. Rosenauer, O. Schön, M. Heuken, and A. Rizzi, “Composition fluctuations in InGaN analyzed by transmission electron microscopy,” physica status solidi (a) 177, 145– 155 (2000).
  34. T. Matsuoka, “Phase Separation in wurtzite In 1− x− y Ga x Al y N,” Materials Research Society Internet Journal of Nitride Semiconductor Research 3, e54(1998).
  35. A. Pierret, C. Bougerol, M. d. Hertog, B. Gayral, M. Kociak, H. Renevier, and B. Daudin, “Structural and optical properties of Alx Ga1–xN nanowires,” physica status solidi (RRL)- Rapid Research Letters 7, 868–873 (2013).
  36. M. Tao, D. Udeshi, S. Agarwal, E. Maldonado, and W. Kirk, “Negative Schottky barrier between titanium and n-type Si (001) for low-resistance ohmic contacts,” Solid-State Electron. 48, 335–338 (2004).
  37. R. Beyers, D. Coulman, and P. Merchant, “Titanium disilicide formation on heavily doped silicon substrates,” J. Appl. Phys. 61, 5110–5117 (1987).
  38. H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” nature photonics 2, 551–554 (2008).

2017 (2)

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, D. Priante, A. A. Alhamoud, F. Wu, X. Li, A. M. Albadri, and A. Y. Alyamani, “Droop-free Al x Ga 1-x N/Al y Ga 1-y N quantum-disks-in-nanowires ultraviolet LED emitting at 337 nm on metal/silicon substrates,” Opt. Express 25, 1381–1390 (2017).
[PubMed]

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9(23), 7805–7813 (2017).
[PubMed]

2016 (4)

C. Zhao, T. K. Ng, N. Wei, A. Prabaswara, M. S. Alias, B. Janjua, C. Shen, and B. S. Ooi, “Facile formation of high-quality InGaN/GaN quantum-disks-in-nanowires on bulk-metal substrates for high-power light-emitters,” Nano Lett. 16(2), 1056–1063 (2016).
[PubMed]

C. Zhao, T. K. Ng, R. T. ElAfandy, A. Prabaswara, G. B. Consiglio, I. A. Ajia, I. S. Roqan, B. Janjua, C. Shen, J. Eid, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Droop-Free, Reliable, and High-Power InGaN/GaN Nanowire Light-Emitting Diodes for Monolithic Metal-Optoelectronics,” Nano Lett. 16(7), 4616–4623 (2016).
[PubMed]

H. Li, G. Zhao, L. Wang, Z. Chen, and S. Yang, “Morphology Controlled Fabrication of InN Nanowires on Brass Substrates,” Nanomaterials (Basel) 6(11), 195 (2016).
[PubMed]

B. J. May, A. G. Sarwar, and R. C. Myers, “Nanowire LEDs grown directly on flexible metal foil,” Appl. Phys. Lett. 108, 141103 (2016).

2015 (3)

A. T. Sarwar, S. D. Carnevale, F. Yang, T. F. Kent, J. J. Jamison, D. W. McComb, and R. C. Myers, “Semiconductor Nanowire Light-Emitting Diodes Grown on Metal: A Direction Toward Large-Scale Fabrication of Nanowire Devices,” Small 11(40), 5402–5408 (2015).
[PubMed]

M. Wölz, C. Hauswald, T. Flissikowski, T. Gotschke, S. Fernández-Garrido, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Epitaxial growth of GaN nanowires with high structural perfection on a metallic TiN film,” Nano Lett. 15(6), 3743–3747 (2015).
[PubMed]

S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, “Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources,” Sci. Rep. 5, 8332 (2015).
[PubMed]

2013 (3)

S. Jahangir, M. Mandl, M. Strassburg, and P. Bhattacharya, “Molecular beam epitaxial growth and optical properties of red-emitting (λ= 650 nm) InGaN/GaN disks-in-nanowires on silicon,” Appl. Phys. Lett. 102, 071101 (2013).

Y.-H. Ra, R. Navamathavan, J.-H. Park, and C.-R. Lee, “High-quality uniaxial In x Ga 1-x N/GaN Multiple Quantum Well (MQW) Nanowires (NWs) on Si(111) Grown by Metal-Organic Chemical Vapor Deposition (MOCVD) and Light-Emitting Diode (LED) Fabrication,” ACS Appl. Mater. Interfaces 5(6), 2111–2117 (2013).
[PubMed]

A. Pierret, C. Bougerol, M. d. Hertog, B. Gayral, M. Kociak, H. Renevier, and B. Daudin, “Structural and optical properties of Alx Ga1–xN nanowires,” physica status solidi (RRL)- Rapid Research Letters 7, 868–873 (2013).

2012 (1)

S. Maeda, K. Tomioka, S. Hara, and J. Motohisa, “Fabrication and characterization of InP nanowire light-emitting diodes,” Jpn. J. Appl. Phys. 51, 02BN03 (2012).

2011 (1)

M. A. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of GaN-based ultraviolet-C light emitting diodes--UV LEDs--for water disinfection,” Water Res. 45(3), 1481–1489 (2011).
[PubMed]

2010 (2)

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[PubMed]

M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, and Z. Yang, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2010).

2009 (1)

L. Krcmová, A. Stjernlof, S. Mehlen, P. C. Hauser, S. Abele, B. Paull, and M. Macka, “Deep-UV-LEDs in photometric detection: A 255 nm LED on-capillary detector in capillary electrophoresis,” Analyst (Lond.) 134(12), 2394–2396 (2009).
[PubMed]

2008 (2)

M. A. Zimmler, D. Stichtenoth, C. Ronning, W. Yi, V. Narayanamurti, T. Voss, and F. Capasso, “Scalable fabrication of nanowire photonic and electronic circuits using spin-on glass,” Nano Lett. 8(6), 1695–1699 (2008).
[PubMed]

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” nature photonics 2, 551–554 (2008).

2004 (2)

M. Tao, D. Udeshi, S. Agarwal, E. Maldonado, and W. Kirk, “Negative Schottky barrier between titanium and n-type Si (001) for low-resistance ohmic contacts,” Solid-State Electron. 48, 335–338 (2004).

V. Fouquet, L. Pichon, M. Drouet, and A. Straboni, “Plasma assisted nitridation of Ti-6Al-4V,” Appl. Surf. Sci. 221, 248–258 (2004).

2003 (1)

C. S. Kang, H.-J. Cho, Y. Kim, R. Choi, K. Onishi, A. Shahriar, and J. Lee, “Characterization of resistivity and work function of sputtered-TaN film for gate electrode applications,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 21, 2026–2028 (2003).

2000 (1)

D. Gerthsen, E. Hahn, B. Neubauer, A. Rosenauer, O. Schön, M. Heuken, and A. Rizzi, “Composition fluctuations in InGaN analyzed by transmission electron microscopy,” physica status solidi (a) 177, 145– 155 (2000).

1999 (1)

M. Kwak, D. Shin, T. Kang, and K. Kim, “Characteristics of TiN barrier layer against Cu diffusion,” Thin Solid Films 339, 290–293 (1999).

1994 (1)

H. Ono, T. Nakano, and T. Ohta, “Diffusion barrier effects of transition metals for Cu/M/Si multilayers (M= Cr, Ti, Nb, MO, Ta, W),” Appl. Phys. Lett. 64, 1511–1513 (1994).

1993 (2)

S. Q. Wang, S. Suthar, C. Hoeflich, and B. J. Burrow, “Diffusion barrier properties of TiW between Si and Cu,” J. Appl. Phys. 73, 2301–2320 (1993).

J. Tao, N. W. Cheung, and C. Hu, “Electromigration characteristics of copper interconnects,” IEEE Electron Device Lett. 14, 249–251 (1993).

1990 (1)

Y. L. Corcoran, A. H. King, N. de Lanerolle, and B. Kim, “Grain boundary diffusion and growth of titanium silicide layers on silicon,” J. Electron. Mater. 19, 1177–1183 (1990).

1989 (1)

W. Lur and L. Chen, “Growth kinetics of amorphous interlayer formed by interdiffusion of polycrystalline Ti thin‐film and single‐crystal silicon,” Appl. Phys. Lett. 54, 1217–1219 (1989).

1987 (1)

R. Beyers, D. Coulman, and P. Merchant, “Titanium disilicide formation on heavily doped silicon substrates,” J. Appl. Phys. 61, 5110–5117 (1987).

1983 (1)

S. Herd, K. Tu, and K. Ahn, “Formation of an amorphous Rh‐Si alloy by interfacial reaction between amorphous Si and crystalline Rh thin films,” Appl. Phys. Lett. 42, 597–599 (1983).

1980 (2)

S. Murarka and D. Fraser, “Thin film interaction between titanium and polycrystalline silicon,” J. Appl. Phys. 51, 342–349 (1980).

M. Wittmer, “TiN and TaN as diffusion barriers in metallizations to silicon semiconductor devices,” Appl. Phys. Lett. 36, 456–458 (1980).

1976 (1)

H. Kato and Y. Nakamura, “Solid state reactions in titanium thin films on silicon,” Thin Solid Films 34, 135–138 (1976).

1972 (1)

R. Bower and J. Mayer, “Growth kinetics observed in the formation of metal silicides on silicon,” Appl. Phys. Lett. 20, 359–361 (1972).

1969 (1)

I. Blech and E. Meieran, “Electromigration in thin Al films,” J. Appl. Phys. 40, 485 (1969).

Abele, S.

L. Krcmová, A. Stjernlof, S. Mehlen, P. C. Hauser, S. Abele, B. Paull, and M. Macka, “Deep-UV-LEDs in photometric detection: A 255 nm LED on-capillary detector in capillary electrophoresis,” Analyst (Lond.) 134(12), 2394–2396 (2009).
[PubMed]

Agarwal, S.

M. Tao, D. Udeshi, S. Agarwal, E. Maldonado, and W. Kirk, “Negative Schottky barrier between titanium and n-type Si (001) for low-resistance ohmic contacts,” Solid-State Electron. 48, 335–338 (2004).

Ahn, K.

S. Herd, K. Tu, and K. Ahn, “Formation of an amorphous Rh‐Si alloy by interfacial reaction between amorphous Si and crystalline Rh thin films,” Appl. Phys. Lett. 42, 597–599 (1983).

Ajia, I. A.

C. Zhao, T. K. Ng, R. T. ElAfandy, A. Prabaswara, G. B. Consiglio, I. A. Ajia, I. S. Roqan, B. Janjua, C. Shen, J. Eid, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Droop-Free, Reliable, and High-Power InGaN/GaN Nanowire Light-Emitting Diodes for Monolithic Metal-Optoelectronics,” Nano Lett. 16(7), 4616–4623 (2016).
[PubMed]

Albadri, A. M.

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, D. Priante, A. A. Alhamoud, F. Wu, X. Li, A. M. Albadri, and A. Y. Alyamani, “Droop-free Al x Ga 1-x N/Al y Ga 1-y N quantum-disks-in-nanowires ultraviolet LED emitting at 337 nm on metal/silicon substrates,” Opt. Express 25, 1381–1390 (2017).
[PubMed]

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9(23), 7805–7813 (2017).
[PubMed]

Alhamoud, A. A.

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9(23), 7805–7813 (2017).
[PubMed]

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, D. Priante, A. A. Alhamoud, F. Wu, X. Li, A. M. Albadri, and A. Y. Alyamani, “Droop-free Al x Ga 1-x N/Al y Ga 1-y N quantum-disks-in-nanowires ultraviolet LED emitting at 337 nm on metal/silicon substrates,” Opt. Express 25, 1381–1390 (2017).
[PubMed]

Alias, M. S.

C. Zhao, T. K. Ng, N. Wei, A. Prabaswara, M. S. Alias, B. Janjua, C. Shen, and B. S. Ooi, “Facile formation of high-quality InGaN/GaN quantum-disks-in-nanowires on bulk-metal substrates for high-power light-emitters,” Nano Lett. 16(2), 1056–1063 (2016).
[PubMed]

Alyamani, A. Y.

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9(23), 7805–7813 (2017).
[PubMed]

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, D. Priante, A. A. Alhamoud, F. Wu, X. Li, A. M. Albadri, and A. Y. Alyamani, “Droop-free Al x Ga 1-x N/Al y Ga 1-y N quantum-disks-in-nanowires ultraviolet LED emitting at 337 nm on metal/silicon substrates,” Opt. Express 25, 1381–1390 (2017).
[PubMed]

C. Zhao, T. K. Ng, R. T. ElAfandy, A. Prabaswara, G. B. Consiglio, I. A. Ajia, I. S. Roqan, B. Janjua, C. Shen, J. Eid, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Droop-Free, Reliable, and High-Power InGaN/GaN Nanowire Light-Emitting Diodes for Monolithic Metal-Optoelectronics,” Nano Lett. 16(7), 4616–4623 (2016).
[PubMed]

Anjum, D. H.

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, D. Priante, A. A. Alhamoud, F. Wu, X. Li, A. M. Albadri, and A. Y. Alyamani, “Droop-free Al x Ga 1-x N/Al y Ga 1-y N quantum-disks-in-nanowires ultraviolet LED emitting at 337 nm on metal/silicon substrates,” Opt. Express 25, 1381–1390 (2017).
[PubMed]

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9(23), 7805–7813 (2017).
[PubMed]

Banerjee, A.

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[PubMed]

Beyers, R.

R. Beyers, D. Coulman, and P. Merchant, “Titanium disilicide formation on heavily doped silicon substrates,” J. Appl. Phys. 61, 5110–5117 (1987).

Bhattacharya, P.

S. Jahangir, M. Mandl, M. Strassburg, and P. Bhattacharya, “Molecular beam epitaxial growth and optical properties of red-emitting (λ= 650 nm) InGaN/GaN disks-in-nanowires on silicon,” Appl. Phys. Lett. 102, 071101 (2013).

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[PubMed]

Blech, I.

I. Blech and E. Meieran, “Electromigration in thin Al films,” J. Appl. Phys. 40, 485 (1969).

Bougerol, C.

A. Pierret, C. Bougerol, M. d. Hertog, B. Gayral, M. Kociak, H. Renevier, and B. Daudin, “Structural and optical properties of Alx Ga1–xN nanowires,” physica status solidi (RRL)- Rapid Research Letters 7, 868–873 (2013).

Bower, R.

R. Bower and J. Mayer, “Growth kinetics observed in the formation of metal silicides on silicon,” Appl. Phys. Lett. 20, 359–361 (1972).

Brandt, O.

M. Wölz, C. Hauswald, T. Flissikowski, T. Gotschke, S. Fernández-Garrido, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Epitaxial growth of GaN nanowires with high structural perfection on a metallic TiN film,” Nano Lett. 15(6), 3743–3747 (2015).
[PubMed]

Burrow, B. J.

S. Q. Wang, S. Suthar, C. Hoeflich, and B. J. Burrow, “Diffusion barrier properties of TiW between Si and Cu,” J. Appl. Phys. 73, 2301–2320 (1993).

Capasso, F.

M. A. Zimmler, D. Stichtenoth, C. Ronning, W. Yi, V. Narayanamurti, T. Voss, and F. Capasso, “Scalable fabrication of nanowire photonic and electronic circuits using spin-on glass,” Nano Lett. 8(6), 1695–1699 (2008).
[PubMed]

Carnevale, S. D.

A. T. Sarwar, S. D. Carnevale, F. Yang, T. F. Kent, J. J. Jamison, D. W. McComb, and R. C. Myers, “Semiconductor Nanowire Light-Emitting Diodes Grown on Metal: A Direction Toward Large-Scale Fabrication of Nanowire Devices,” Small 11(40), 5402–5408 (2015).
[PubMed]

Chen, L.

W. Lur and L. Chen, “Growth kinetics of amorphous interlayer formed by interdiffusion of polycrystalline Ti thin‐film and single‐crystal silicon,” Appl. Phys. Lett. 54, 1217–1219 (1989).

Chen, Z.

H. Li, G. Zhao, L. Wang, Z. Chen, and S. Yang, “Morphology Controlled Fabrication of InN Nanowires on Brass Substrates,” Nanomaterials (Basel) 6(11), 195 (2016).
[PubMed]

Cheung, N. W.

J. Tao, N. W. Cheung, and C. Hu, “Electromigration characteristics of copper interconnects,” IEEE Electron Device Lett. 14, 249–251 (1993).

Cho, H.-J.

C. S. Kang, H.-J. Cho, Y. Kim, R. Choi, K. Onishi, A. Shahriar, and J. Lee, “Characterization of resistivity and work function of sputtered-TaN film for gate electrode applications,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 21, 2026–2028 (2003).

Choi, R.

C. S. Kang, H.-J. Cho, Y. Kim, R. Choi, K. Onishi, A. Shahriar, and J. Lee, “Characterization of resistivity and work function of sputtered-TaN film for gate electrode applications,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 21, 2026–2028 (2003).

Chua, C.

M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, and Z. Yang, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2010).

Connie, A. T.

S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, “Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources,” Sci. Rep. 5, 8332 (2015).
[PubMed]

Consiglio, G. B.

C. Zhao, T. K. Ng, R. T. ElAfandy, A. Prabaswara, G. B. Consiglio, I. A. Ajia, I. S. Roqan, B. Janjua, C. Shen, J. Eid, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Droop-Free, Reliable, and High-Power InGaN/GaN Nanowire Light-Emitting Diodes for Monolithic Metal-Optoelectronics,” Nano Lett. 16(7), 4616–4623 (2016).
[PubMed]

Corcoran, Y. L.

Y. L. Corcoran, A. H. King, N. de Lanerolle, and B. Kim, “Grain boundary diffusion and growth of titanium silicide layers on silicon,” J. Electron. Mater. 19, 1177–1183 (1990).

Coulman, D.

R. Beyers, D. Coulman, and P. Merchant, “Titanium disilicide formation on heavily doped silicon substrates,” J. Appl. Phys. 61, 5110–5117 (1987).

Dastjerdi, M. H.

S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, “Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources,” Sci. Rep. 5, 8332 (2015).
[PubMed]

Daudin, B.

A. Pierret, C. Bougerol, M. d. Hertog, B. Gayral, M. Kociak, H. Renevier, and B. Daudin, “Structural and optical properties of Alx Ga1–xN nanowires,” physica status solidi (RRL)- Rapid Research Letters 7, 868–873 (2013).

de Lanerolle, N.

Y. L. Corcoran, A. H. King, N. de Lanerolle, and B. Kim, “Grain boundary diffusion and growth of titanium silicide layers on silicon,” J. Electron. Mater. 19, 1177–1183 (1990).

Djavid, M.

S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, “Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources,” Sci. Rep. 5, 8332 (2015).
[PubMed]

Drouet, M.

V. Fouquet, L. Pichon, M. Drouet, and A. Straboni, “Plasma assisted nitridation of Ti-6Al-4V,” Appl. Surf. Sci. 221, 248–258 (2004).

Eid, J.

C. Zhao, T. K. Ng, R. T. ElAfandy, A. Prabaswara, G. B. Consiglio, I. A. Ajia, I. S. Roqan, B. Janjua, C. Shen, J. Eid, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Droop-Free, Reliable, and High-Power InGaN/GaN Nanowire Light-Emitting Diodes for Monolithic Metal-Optoelectronics,” Nano Lett. 16(7), 4616–4623 (2016).
[PubMed]

Einfeldt, S.

M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, and Z. Yang, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2010).

ElAfandy, R. T.

C. Zhao, T. K. Ng, R. T. ElAfandy, A. Prabaswara, G. B. Consiglio, I. A. Ajia, I. S. Roqan, B. Janjua, C. Shen, J. Eid, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Droop-Free, Reliable, and High-Power InGaN/GaN Nanowire Light-Emitting Diodes for Monolithic Metal-Optoelectronics,” Nano Lett. 16(7), 4616–4623 (2016).
[PubMed]

El-Desouki, M. M.

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9(23), 7805–7813 (2017).
[PubMed]

C. Zhao, T. K. Ng, R. T. ElAfandy, A. Prabaswara, G. B. Consiglio, I. A. Ajia, I. S. Roqan, B. Janjua, C. Shen, J. Eid, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Droop-Free, Reliable, and High-Power InGaN/GaN Nanowire Light-Emitting Diodes for Monolithic Metal-Optoelectronics,” Nano Lett. 16(7), 4616–4623 (2016).
[PubMed]

Fernández-Garrido, S.

M. Wölz, C. Hauswald, T. Flissikowski, T. Gotschke, S. Fernández-Garrido, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Epitaxial growth of GaN nanowires with high structural perfection on a metallic TiN film,” Nano Lett. 15(6), 3743–3747 (2015).
[PubMed]

Flissikowski, T.

M. Wölz, C. Hauswald, T. Flissikowski, T. Gotschke, S. Fernández-Garrido, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Epitaxial growth of GaN nanowires with high structural perfection on a metallic TiN film,” Nano Lett. 15(6), 3743–3747 (2015).
[PubMed]

Fouquet, V.

V. Fouquet, L. Pichon, M. Drouet, and A. Straboni, “Plasma assisted nitridation of Ti-6Al-4V,” Appl. Surf. Sci. 221, 248–258 (2004).

Fraser, D.

S. Murarka and D. Fraser, “Thin film interaction between titanium and polycrystalline silicon,” J. Appl. Phys. 51, 342–349 (1980).

Gayral, B.

A. Pierret, C. Bougerol, M. d. Hertog, B. Gayral, M. Kociak, H. Renevier, and B. Daudin, “Structural and optical properties of Alx Ga1–xN nanowires,” physica status solidi (RRL)- Rapid Research Letters 7, 868–873 (2013).

Geelhaar, L.

M. Wölz, C. Hauswald, T. Flissikowski, T. Gotschke, S. Fernández-Garrido, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Epitaxial growth of GaN nanowires with high structural perfection on a metallic TiN film,” Nano Lett. 15(6), 3743–3747 (2015).
[PubMed]

Gerthsen, D.

D. Gerthsen, E. Hahn, B. Neubauer, A. Rosenauer, O. Schön, M. Heuken, and A. Rizzi, “Composition fluctuations in InGaN analyzed by transmission electron microscopy,” physica status solidi (a) 177, 145– 155 (2000).

Gotschke, T.

M. Wölz, C. Hauswald, T. Flissikowski, T. Gotschke, S. Fernández-Garrido, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Epitaxial growth of GaN nanowires with high structural perfection on a metallic TiN film,” Nano Lett. 15(6), 3743–3747 (2015).
[PubMed]

Grahn, H. T.

M. Wölz, C. Hauswald, T. Flissikowski, T. Gotschke, S. Fernández-Garrido, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Epitaxial growth of GaN nanowires with high structural perfection on a metallic TiN film,” Nano Lett. 15(6), 3743–3747 (2015).
[PubMed]

Guo, H.

S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, “Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources,” Sci. Rep. 5, 8332 (2015).
[PubMed]

Guo, W.

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[PubMed]

Hahn, E.

D. Gerthsen, E. Hahn, B. Neubauer, A. Rosenauer, O. Schön, M. Heuken, and A. Rizzi, “Composition fluctuations in InGaN analyzed by transmission electron microscopy,” physica status solidi (a) 177, 145– 155 (2000).

Hara, S.

S. Maeda, K. Tomioka, S. Hara, and J. Motohisa, “Fabrication and characterization of InP nanowire light-emitting diodes,” Jpn. J. Appl. Phys. 51, 02BN03 (2012).

Hauser, P. C.

L. Krcmová, A. Stjernlof, S. Mehlen, P. C. Hauser, S. Abele, B. Paull, and M. Macka, “Deep-UV-LEDs in photometric detection: A 255 nm LED on-capillary detector in capillary electrophoresis,” Analyst (Lond.) 134(12), 2394–2396 (2009).
[PubMed]

Hauswald, C.

M. Wölz, C. Hauswald, T. Flissikowski, T. Gotschke, S. Fernández-Garrido, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Epitaxial growth of GaN nanowires with high structural perfection on a metallic TiN film,” Nano Lett. 15(6), 3743–3747 (2015).
[PubMed]

Herd, S.

S. Herd, K. Tu, and K. Ahn, “Formation of an amorphous Rh‐Si alloy by interfacial reaction between amorphous Si and crystalline Rh thin films,” Appl. Phys. Lett. 42, 597–599 (1983).

Hertog, M. d.

A. Pierret, C. Bougerol, M. d. Hertog, B. Gayral, M. Kociak, H. Renevier, and B. Daudin, “Structural and optical properties of Alx Ga1–xN nanowires,” physica status solidi (RRL)- Rapid Research Letters 7, 868–873 (2013).

Heuken, M.

D. Gerthsen, E. Hahn, B. Neubauer, A. Rosenauer, O. Schön, M. Heuken, and A. Rizzi, “Composition fluctuations in InGaN analyzed by transmission electron microscopy,” physica status solidi (a) 177, 145– 155 (2000).

Hoeflich, C.

S. Q. Wang, S. Suthar, C. Hoeflich, and B. J. Burrow, “Diffusion barrier properties of TiW between Si and Cu,” J. Appl. Phys. 73, 2301–2320 (1993).

Hu, C.

J. Tao, N. W. Cheung, and C. Hu, “Electromigration characteristics of copper interconnects,” IEEE Electron Device Lett. 14, 249–251 (1993).

Jahangir, S.

S. Jahangir, M. Mandl, M. Strassburg, and P. Bhattacharya, “Molecular beam epitaxial growth and optical properties of red-emitting (λ= 650 nm) InGaN/GaN disks-in-nanowires on silicon,” Appl. Phys. Lett. 102, 071101 (2013).

Jamison, J. J.

A. T. Sarwar, S. D. Carnevale, F. Yang, T. F. Kent, J. J. Jamison, D. W. McComb, and R. C. Myers, “Semiconductor Nanowire Light-Emitting Diodes Grown on Metal: A Direction Toward Large-Scale Fabrication of Nanowire Devices,” Small 11(40), 5402–5408 (2015).
[PubMed]

Janjua, B.

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9(23), 7805–7813 (2017).
[PubMed]

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, D. Priante, A. A. Alhamoud, F. Wu, X. Li, A. M. Albadri, and A. Y. Alyamani, “Droop-free Al x Ga 1-x N/Al y Ga 1-y N quantum-disks-in-nanowires ultraviolet LED emitting at 337 nm on metal/silicon substrates,” Opt. Express 25, 1381–1390 (2017).
[PubMed]

C. Zhao, T. K. Ng, N. Wei, A. Prabaswara, M. S. Alias, B. Janjua, C. Shen, and B. S. Ooi, “Facile formation of high-quality InGaN/GaN quantum-disks-in-nanowires on bulk-metal substrates for high-power light-emitters,” Nano Lett. 16(2), 1056–1063 (2016).
[PubMed]

C. Zhao, T. K. Ng, R. T. ElAfandy, A. Prabaswara, G. B. Consiglio, I. A. Ajia, I. S. Roqan, B. Janjua, C. Shen, J. Eid, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Droop-Free, Reliable, and High-Power InGaN/GaN Nanowire Light-Emitting Diodes for Monolithic Metal-Optoelectronics,” Nano Lett. 16(7), 4616–4623 (2016).
[PubMed]

Jekel, M.

M. A. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of GaN-based ultraviolet-C light emitting diodes--UV LEDs--for water disinfection,” Water Res. 45(3), 1481–1489 (2011).
[PubMed]

Kan, H.

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” nature photonics 2, 551–554 (2008).

Kang, C. S.

C. S. Kang, H.-J. Cho, Y. Kim, R. Choi, K. Onishi, A. Shahriar, and J. Lee, “Characterization of resistivity and work function of sputtered-TaN film for gate electrode applications,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 21, 2026–2028 (2003).

Kang, T.

M. Kwak, D. Shin, T. Kang, and K. Kim, “Characteristics of TiN barrier layer against Cu diffusion,” Thin Solid Films 339, 290–293 (1999).

Kato, H.

H. Kato and Y. Nakamura, “Solid state reactions in titanium thin films on silicon,” Thin Solid Films 34, 135–138 (1976).

Kent, T. F.

A. T. Sarwar, S. D. Carnevale, F. Yang, T. F. Kent, J. J. Jamison, D. W. McComb, and R. C. Myers, “Semiconductor Nanowire Light-Emitting Diodes Grown on Metal: A Direction Toward Large-Scale Fabrication of Nanowire Devices,” Small 11(40), 5402–5408 (2015).
[PubMed]

Kim, B.

Y. L. Corcoran, A. H. King, N. de Lanerolle, and B. Kim, “Grain boundary diffusion and growth of titanium silicide layers on silicon,” J. Electron. Mater. 19, 1177–1183 (1990).

Kim, K.

M. Kwak, D. Shin, T. Kang, and K. Kim, “Characteristics of TiN barrier layer against Cu diffusion,” Thin Solid Films 339, 290–293 (1999).

Kim, Y.

C. S. Kang, H.-J. Cho, Y. Kim, R. Choi, K. Onishi, A. Shahriar, and J. Lee, “Characterization of resistivity and work function of sputtered-TaN film for gate electrode applications,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 21, 2026–2028 (2003).

King, A. H.

Y. L. Corcoran, A. H. King, N. de Lanerolle, and B. Kim, “Grain boundary diffusion and growth of titanium silicide layers on silicon,” J. Electron. Mater. 19, 1177–1183 (1990).

Kirk, W.

M. Tao, D. Udeshi, S. Agarwal, E. Maldonado, and W. Kirk, “Negative Schottky barrier between titanium and n-type Si (001) for low-resistance ohmic contacts,” Solid-State Electron. 48, 335–338 (2004).

Knauer, A.

M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, and Z. Yang, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2010).

Kneissl, M.

M. A. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of GaN-based ultraviolet-C light emitting diodes--UV LEDs--for water disinfection,” Water Res. 45(3), 1481–1489 (2011).
[PubMed]

M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, and Z. Yang, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2010).

Kociak, M.

A. Pierret, C. Bougerol, M. d. Hertog, B. Gayral, M. Kociak, H. Renevier, and B. Daudin, “Structural and optical properties of Alx Ga1–xN nanowires,” physica status solidi (RRL)- Rapid Research Letters 7, 868–873 (2013).

Kolbe, T.

M. A. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of GaN-based ultraviolet-C light emitting diodes--UV LEDs--for water disinfection,” Water Res. 45(3), 1481–1489 (2011).
[PubMed]

M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, and Z. Yang, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2010).

Kong, X. H.

S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, “Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources,” Sci. Rep. 5, 8332 (2015).
[PubMed]

Krcmová, L.

L. Krcmová, A. Stjernlof, S. Mehlen, P. C. Hauser, S. Abele, B. Paull, and M. Macka, “Deep-UV-LEDs in photometric detection: A 255 nm LED on-capillary detector in capillary electrophoresis,” Analyst (Lond.) 134(12), 2394–2396 (2009).
[PubMed]

Kueller, V.

M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, and Z. Yang, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2010).

Külberg, A.

M. A. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of GaN-based ultraviolet-C light emitting diodes--UV LEDs--for water disinfection,” Water Res. 45(3), 1481–1489 (2011).
[PubMed]

Kuwabara, M.

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” nature photonics 2, 551–554 (2008).

Kwak, M.

M. Kwak, D. Shin, T. Kang, and K. Kim, “Characteristics of TiN barrier layer against Cu diffusion,” Thin Solid Films 339, 290–293 (1999).

Lee, C.-R.

Y.-H. Ra, R. Navamathavan, J.-H. Park, and C.-R. Lee, “High-quality uniaxial In x Ga 1-x N/GaN Multiple Quantum Well (MQW) Nanowires (NWs) on Si(111) Grown by Metal-Organic Chemical Vapor Deposition (MOCVD) and Light-Emitting Diode (LED) Fabrication,” ACS Appl. Mater. Interfaces 5(6), 2111–2117 (2013).
[PubMed]

Lee, J.

C. S. Kang, H.-J. Cho, Y. Kim, R. Choi, K. Onishi, A. Shahriar, and J. Lee, “Characterization of resistivity and work function of sputtered-TaN film for gate electrode applications,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 21, 2026–2028 (2003).

Li, H.

H. Li, G. Zhao, L. Wang, Z. Chen, and S. Yang, “Morphology Controlled Fabrication of InN Nanowires on Brass Substrates,” Nanomaterials (Basel) 6(11), 195 (2016).
[PubMed]

Li, X.

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, D. Priante, A. A. Alhamoud, F. Wu, X. Li, A. M. Albadri, and A. Y. Alyamani, “Droop-free Al x Ga 1-x N/Al y Ga 1-y N quantum-disks-in-nanowires ultraviolet LED emitting at 337 nm on metal/silicon substrates,” Opt. Express 25, 1381–1390 (2017).
[PubMed]

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9(23), 7805–7813 (2017).
[PubMed]

Lipsz, M.

M. A. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of GaN-based ultraviolet-C light emitting diodes--UV LEDs--for water disinfection,” Water Res. 45(3), 1481–1489 (2011).
[PubMed]

Liu, X. D.

S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, “Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources,” Sci. Rep. 5, 8332 (2015).
[PubMed]

Lobo, N.

M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, and Z. Yang, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2010).

Lur, W.

W. Lur and L. Chen, “Growth kinetics of amorphous interlayer formed by interdiffusion of polycrystalline Ti thin‐film and single‐crystal silicon,” Appl. Phys. Lett. 54, 1217–1219 (1989).

Macka, M.

L. Krcmová, A. Stjernlof, S. Mehlen, P. C. Hauser, S. Abele, B. Paull, and M. Macka, “Deep-UV-LEDs in photometric detection: A 255 nm LED on-capillary detector in capillary electrophoresis,” Analyst (Lond.) 134(12), 2394–2396 (2009).
[PubMed]

Maeda, S.

S. Maeda, K. Tomioka, S. Hara, and J. Motohisa, “Fabrication and characterization of InP nanowire light-emitting diodes,” Jpn. J. Appl. Phys. 51, 02BN03 (2012).

Maldonado, E.

M. Tao, D. Udeshi, S. Agarwal, E. Maldonado, and W. Kirk, “Negative Schottky barrier between titanium and n-type Si (001) for low-resistance ohmic contacts,” Solid-State Electron. 48, 335–338 (2004).

Mandl, M.

S. Jahangir, M. Mandl, M. Strassburg, and P. Bhattacharya, “Molecular beam epitaxial growth and optical properties of red-emitting (λ= 650 nm) InGaN/GaN disks-in-nanowires on silicon,” Appl. Phys. Lett. 102, 071101 (2013).

May, B. J.

B. J. May, A. G. Sarwar, and R. C. Myers, “Nanowire LEDs grown directly on flexible metal foil,” Appl. Phys. Lett. 108, 141103 (2016).

Mayer, J.

R. Bower and J. Mayer, “Growth kinetics observed in the formation of metal silicides on silicon,” Appl. Phys. Lett. 20, 359–361 (1972).

McComb, D. W.

A. T. Sarwar, S. D. Carnevale, F. Yang, T. F. Kent, J. J. Jamison, D. W. McComb, and R. C. Myers, “Semiconductor Nanowire Light-Emitting Diodes Grown on Metal: A Direction Toward Large-Scale Fabrication of Nanowire Devices,” Small 11(40), 5402–5408 (2015).
[PubMed]

Mehlen, S.

L. Krcmová, A. Stjernlof, S. Mehlen, P. C. Hauser, S. Abele, B. Paull, and M. Macka, “Deep-UV-LEDs in photometric detection: A 255 nm LED on-capillary detector in capillary electrophoresis,” Analyst (Lond.) 134(12), 2394–2396 (2009).
[PubMed]

Meieran, E.

I. Blech and E. Meieran, “Electromigration in thin Al films,” J. Appl. Phys. 40, 485 (1969).

Merchant, P.

R. Beyers, D. Coulman, and P. Merchant, “Titanium disilicide formation on heavily doped silicon substrates,” J. Appl. Phys. 61, 5110–5117 (1987).

Mi, Z.

S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, “Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources,” Sci. Rep. 5, 8332 (2015).
[PubMed]

Motohisa, J.

S. Maeda, K. Tomioka, S. Hara, and J. Motohisa, “Fabrication and characterization of InP nanowire light-emitting diodes,” Jpn. J. Appl. Phys. 51, 02BN03 (2012).

Murarka, S.

S. Murarka and D. Fraser, “Thin film interaction between titanium and polycrystalline silicon,” J. Appl. Phys. 51, 342–349 (1980).

Myers, R. C.

B. J. May, A. G. Sarwar, and R. C. Myers, “Nanowire LEDs grown directly on flexible metal foil,” Appl. Phys. Lett. 108, 141103 (2016).

A. T. Sarwar, S. D. Carnevale, F. Yang, T. F. Kent, J. J. Jamison, D. W. McComb, and R. C. Myers, “Semiconductor Nanowire Light-Emitting Diodes Grown on Metal: A Direction Toward Large-Scale Fabrication of Nanowire Devices,” Small 11(40), 5402–5408 (2015).
[PubMed]

Nakamura, Y.

H. Kato and Y. Nakamura, “Solid state reactions in titanium thin films on silicon,” Thin Solid Films 34, 135–138 (1976).

Nakano, T.

H. Ono, T. Nakano, and T. Ohta, “Diffusion barrier effects of transition metals for Cu/M/Si multilayers (M= Cr, Ti, Nb, MO, Ta, W),” Appl. Phys. Lett. 64, 1511–1513 (1994).

Narayanamurti, V.

M. A. Zimmler, D. Stichtenoth, C. Ronning, W. Yi, V. Narayanamurti, T. Voss, and F. Capasso, “Scalable fabrication of nanowire photonic and electronic circuits using spin-on glass,” Nano Lett. 8(6), 1695–1699 (2008).
[PubMed]

Navamathavan, R.

Y.-H. Ra, R. Navamathavan, J.-H. Park, and C.-R. Lee, “High-quality uniaxial In x Ga 1-x N/GaN Multiple Quantum Well (MQW) Nanowires (NWs) on Si(111) Grown by Metal-Organic Chemical Vapor Deposition (MOCVD) and Light-Emitting Diode (LED) Fabrication,” ACS Appl. Mater. Interfaces 5(6), 2111–2117 (2013).
[PubMed]

Neubauer, B.

D. Gerthsen, E. Hahn, B. Neubauer, A. Rosenauer, O. Schön, M. Heuken, and A. Rizzi, “Composition fluctuations in InGaN analyzed by transmission electron microscopy,” physica status solidi (a) 177, 145– 155 (2000).

Ng, T. K.

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9(23), 7805–7813 (2017).
[PubMed]

C. Zhao, T. K. Ng, N. Wei, A. Prabaswara, M. S. Alias, B. Janjua, C. Shen, and B. S. Ooi, “Facile formation of high-quality InGaN/GaN quantum-disks-in-nanowires on bulk-metal substrates for high-power light-emitters,” Nano Lett. 16(2), 1056–1063 (2016).
[PubMed]

C. Zhao, T. K. Ng, R. T. ElAfandy, A. Prabaswara, G. B. Consiglio, I. A. Ajia, I. S. Roqan, B. Janjua, C. Shen, J. Eid, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Droop-Free, Reliable, and High-Power InGaN/GaN Nanowire Light-Emitting Diodes for Monolithic Metal-Optoelectronics,” Nano Lett. 16(7), 4616–4623 (2016).
[PubMed]

Ohta, T.

H. Ono, T. Nakano, and T. Ohta, “Diffusion barrier effects of transition metals for Cu/M/Si multilayers (M= Cr, Ti, Nb, MO, Ta, W),” Appl. Phys. Lett. 64, 1511–1513 (1994).

Onishi, K.

C. S. Kang, H.-J. Cho, Y. Kim, R. Choi, K. Onishi, A. Shahriar, and J. Lee, “Characterization of resistivity and work function of sputtered-TaN film for gate electrode applications,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 21, 2026–2028 (2003).

Ono, H.

H. Ono, T. Nakano, and T. Ohta, “Diffusion barrier effects of transition metals for Cu/M/Si multilayers (M= Cr, Ti, Nb, MO, Ta, W),” Appl. Phys. Lett. 64, 1511–1513 (1994).

Ooi, B. S.

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9(23), 7805–7813 (2017).
[PubMed]

C. Zhao, T. K. Ng, N. Wei, A. Prabaswara, M. S. Alias, B. Janjua, C. Shen, and B. S. Ooi, “Facile formation of high-quality InGaN/GaN quantum-disks-in-nanowires on bulk-metal substrates for high-power light-emitters,” Nano Lett. 16(2), 1056–1063 (2016).
[PubMed]

C. Zhao, T. K. Ng, R. T. ElAfandy, A. Prabaswara, G. B. Consiglio, I. A. Ajia, I. S. Roqan, B. Janjua, C. Shen, J. Eid, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Droop-Free, Reliable, and High-Power InGaN/GaN Nanowire Light-Emitting Diodes for Monolithic Metal-Optoelectronics,” Nano Lett. 16(7), 4616–4623 (2016).
[PubMed]

Park, J.-H.

Y.-H. Ra, R. Navamathavan, J.-H. Park, and C.-R. Lee, “High-quality uniaxial In x Ga 1-x N/GaN Multiple Quantum Well (MQW) Nanowires (NWs) on Si(111) Grown by Metal-Organic Chemical Vapor Deposition (MOCVD) and Light-Emitting Diode (LED) Fabrication,” ACS Appl. Mater. Interfaces 5(6), 2111–2117 (2013).
[PubMed]

Paull, B.

L. Krcmová, A. Stjernlof, S. Mehlen, P. C. Hauser, S. Abele, B. Paull, and M. Macka, “Deep-UV-LEDs in photometric detection: A 255 nm LED on-capillary detector in capillary electrophoresis,” Analyst (Lond.) 134(12), 2394–2396 (2009).
[PubMed]

Pichon, L.

V. Fouquet, L. Pichon, M. Drouet, and A. Straboni, “Plasma assisted nitridation of Ti-6Al-4V,” Appl. Surf. Sci. 221, 248–258 (2004).

Pierret, A.

A. Pierret, C. Bougerol, M. d. Hertog, B. Gayral, M. Kociak, H. Renevier, and B. Daudin, “Structural and optical properties of Alx Ga1–xN nanowires,” physica status solidi (RRL)- Rapid Research Letters 7, 868–873 (2013).

Prabaswara, A.

C. Zhao, T. K. Ng, N. Wei, A. Prabaswara, M. S. Alias, B. Janjua, C. Shen, and B. S. Ooi, “Facile formation of high-quality InGaN/GaN quantum-disks-in-nanowires on bulk-metal substrates for high-power light-emitters,” Nano Lett. 16(2), 1056–1063 (2016).
[PubMed]

C. Zhao, T. K. Ng, R. T. ElAfandy, A. Prabaswara, G. B. Consiglio, I. A. Ajia, I. S. Roqan, B. Janjua, C. Shen, J. Eid, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Droop-Free, Reliable, and High-Power InGaN/GaN Nanowire Light-Emitting Diodes for Monolithic Metal-Optoelectronics,” Nano Lett. 16(7), 4616–4623 (2016).
[PubMed]

Priante, D.

Ra, Y.-H.

Y.-H. Ra, R. Navamathavan, J.-H. Park, and C.-R. Lee, “High-quality uniaxial In x Ga 1-x N/GaN Multiple Quantum Well (MQW) Nanowires (NWs) on Si(111) Grown by Metal-Organic Chemical Vapor Deposition (MOCVD) and Light-Emitting Diode (LED) Fabrication,” ACS Appl. Mater. Interfaces 5(6), 2111–2117 (2013).
[PubMed]

Renevier, H.

A. Pierret, C. Bougerol, M. d. Hertog, B. Gayral, M. Kociak, H. Renevier, and B. Daudin, “Structural and optical properties of Alx Ga1–xN nanowires,” physica status solidi (RRL)- Rapid Research Letters 7, 868–873 (2013).

Riechert, H.

M. Wölz, C. Hauswald, T. Flissikowski, T. Gotschke, S. Fernández-Garrido, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Epitaxial growth of GaN nanowires with high structural perfection on a metallic TiN film,” Nano Lett. 15(6), 3743–3747 (2015).
[PubMed]

Rizzi, A.

D. Gerthsen, E. Hahn, B. Neubauer, A. Rosenauer, O. Schön, M. Heuken, and A. Rizzi, “Composition fluctuations in InGaN analyzed by transmission electron microscopy,” physica status solidi (a) 177, 145– 155 (2000).

Rodriguez, H.

M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, and Z. Yang, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2010).

Ronning, C.

M. A. Zimmler, D. Stichtenoth, C. Ronning, W. Yi, V. Narayanamurti, T. Voss, and F. Capasso, “Scalable fabrication of nanowire photonic and electronic circuits using spin-on glass,” Nano Lett. 8(6), 1695–1699 (2008).
[PubMed]

Roqan, I. S.

C. Zhao, T. K. Ng, R. T. ElAfandy, A. Prabaswara, G. B. Consiglio, I. A. Ajia, I. S. Roqan, B. Janjua, C. Shen, J. Eid, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Droop-Free, Reliable, and High-Power InGaN/GaN Nanowire Light-Emitting Diodes for Monolithic Metal-Optoelectronics,” Nano Lett. 16(7), 4616–4623 (2016).
[PubMed]

Rosenauer, A.

D. Gerthsen, E. Hahn, B. Neubauer, A. Rosenauer, O. Schön, M. Heuken, and A. Rizzi, “Composition fluctuations in InGaN analyzed by transmission electron microscopy,” physica status solidi (a) 177, 145– 155 (2000).

Sadaf, S.

S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, “Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources,” Sci. Rep. 5, 8332 (2015).
[PubMed]

Sarwar, A. G.

B. J. May, A. G. Sarwar, and R. C. Myers, “Nanowire LEDs grown directly on flexible metal foil,” Appl. Phys. Lett. 108, 141103 (2016).

Sarwar, A. T.

A. T. Sarwar, S. D. Carnevale, F. Yang, T. F. Kent, J. J. Jamison, D. W. McComb, and R. C. Myers, “Semiconductor Nanowire Light-Emitting Diodes Grown on Metal: A Direction Toward Large-Scale Fabrication of Nanowire Devices,” Small 11(40), 5402–5408 (2015).
[PubMed]

Schön, O.

D. Gerthsen, E. Hahn, B. Neubauer, A. Rosenauer, O. Schön, M. Heuken, and A. Rizzi, “Composition fluctuations in InGaN analyzed by transmission electron microscopy,” physica status solidi (a) 177, 145– 155 (2000).

Shahriar, A.

C. S. Kang, H.-J. Cho, Y. Kim, R. Choi, K. Onishi, A. Shahriar, and J. Lee, “Characterization of resistivity and work function of sputtered-TaN film for gate electrode applications,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 21, 2026–2028 (2003).

Shen, C.

C. Zhao, T. K. Ng, R. T. ElAfandy, A. Prabaswara, G. B. Consiglio, I. A. Ajia, I. S. Roqan, B. Janjua, C. Shen, J. Eid, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Droop-Free, Reliable, and High-Power InGaN/GaN Nanowire Light-Emitting Diodes for Monolithic Metal-Optoelectronics,” Nano Lett. 16(7), 4616–4623 (2016).
[PubMed]

C. Zhao, T. K. Ng, N. Wei, A. Prabaswara, M. S. Alias, B. Janjua, C. Shen, and B. S. Ooi, “Facile formation of high-quality InGaN/GaN quantum-disks-in-nanowires on bulk-metal substrates for high-power light-emitters,” Nano Lett. 16(2), 1056–1063 (2016).
[PubMed]

Shih, I.

S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, “Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources,” Sci. Rep. 5, 8332 (2015).
[PubMed]

Shin, D.

M. Kwak, D. Shin, T. Kang, and K. Kim, “Characteristics of TiN barrier layer against Cu diffusion,” Thin Solid Films 339, 290–293 (1999).

Stellmach, J.

M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, and Z. Yang, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2010).

Stichtenoth, D.

M. A. Zimmler, D. Stichtenoth, C. Ronning, W. Yi, V. Narayanamurti, T. Voss, and F. Capasso, “Scalable fabrication of nanowire photonic and electronic circuits using spin-on glass,” Nano Lett. 8(6), 1695–1699 (2008).
[PubMed]

Stjernlof, A.

L. Krcmová, A. Stjernlof, S. Mehlen, P. C. Hauser, S. Abele, B. Paull, and M. Macka, “Deep-UV-LEDs in photometric detection: A 255 nm LED on-capillary detector in capillary electrophoresis,” Analyst (Lond.) 134(12), 2394–2396 (2009).
[PubMed]

Straboni, A.

V. Fouquet, L. Pichon, M. Drouet, and A. Straboni, “Plasma assisted nitridation of Ti-6Al-4V,” Appl. Surf. Sci. 221, 248–258 (2004).

Strassburg, M.

S. Jahangir, M. Mandl, M. Strassburg, and P. Bhattacharya, “Molecular beam epitaxial growth and optical properties of red-emitting (λ= 650 nm) InGaN/GaN disks-in-nanowires on silicon,” Appl. Phys. Lett. 102, 071101 (2013).

Sun, H.

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9(23), 7805–7813 (2017).
[PubMed]

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, D. Priante, A. A. Alhamoud, F. Wu, X. Li, A. M. Albadri, and A. Y. Alyamani, “Droop-free Al x Ga 1-x N/Al y Ga 1-y N quantum-disks-in-nanowires ultraviolet LED emitting at 337 nm on metal/silicon substrates,” Opt. Express 25, 1381–1390 (2017).
[PubMed]

Suthar, S.

S. Q. Wang, S. Suthar, C. Hoeflich, and B. J. Burrow, “Diffusion barrier properties of TiW between Si and Cu,” J. Appl. Phys. 73, 2301–2320 (1993).

Tao, J.

J. Tao, N. W. Cheung, and C. Hu, “Electromigration characteristics of copper interconnects,” IEEE Electron Device Lett. 14, 249–251 (1993).

Tao, M.

M. Tao, D. Udeshi, S. Agarwal, E. Maldonado, and W. Kirk, “Negative Schottky barrier between titanium and n-type Si (001) for low-resistance ohmic contacts,” Solid-State Electron. 48, 335–338 (2004).

Tomioka, K.

S. Maeda, K. Tomioka, S. Hara, and J. Motohisa, “Fabrication and characterization of InP nanowire light-emitting diodes,” Jpn. J. Appl. Phys. 51, 02BN03 (2012).

Tu, K.

S. Herd, K. Tu, and K. Ahn, “Formation of an amorphous Rh‐Si alloy by interfacial reaction between amorphous Si and crystalline Rh thin films,” Appl. Phys. Lett. 42, 597–599 (1983).

Udeshi, D.

M. Tao, D. Udeshi, S. Agarwal, E. Maldonado, and W. Kirk, “Negative Schottky barrier between titanium and n-type Si (001) for low-resistance ohmic contacts,” Solid-State Electron. 48, 335–338 (2004).

Voss, T.

M. A. Zimmler, D. Stichtenoth, C. Ronning, W. Yi, V. Narayanamurti, T. Voss, and F. Capasso, “Scalable fabrication of nanowire photonic and electronic circuits using spin-on glass,” Nano Lett. 8(6), 1695–1699 (2008).
[PubMed]

Wang, L.

H. Li, G. Zhao, L. Wang, Z. Chen, and S. Yang, “Morphology Controlled Fabrication of InN Nanowires on Brass Substrates,” Nanomaterials (Basel) 6(11), 195 (2016).
[PubMed]

Wang, Q.

S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, “Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources,” Sci. Rep. 5, 8332 (2015).
[PubMed]

Wang, S. Q.

S. Q. Wang, S. Suthar, C. Hoeflich, and B. J. Burrow, “Diffusion barrier properties of TiW between Si and Cu,” J. Appl. Phys. 73, 2301–2320 (1993).

Wei, N.

C. Zhao, T. K. Ng, N. Wei, A. Prabaswara, M. S. Alias, B. Janjua, C. Shen, and B. S. Ooi, “Facile formation of high-quality InGaN/GaN quantum-disks-in-nanowires on bulk-metal substrates for high-power light-emitters,” Nano Lett. 16(2), 1056–1063 (2016).
[PubMed]

Weyers, M.

M. A. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of GaN-based ultraviolet-C light emitting diodes--UV LEDs--for water disinfection,” Water Res. 45(3), 1481–1489 (2011).
[PubMed]

Wittmer, M.

M. Wittmer, “TiN and TaN as diffusion barriers in metallizations to silicon semiconductor devices,” Appl. Phys. Lett. 36, 456–458 (1980).

Wölz, M.

M. Wölz, C. Hauswald, T. Flissikowski, T. Gotschke, S. Fernández-Garrido, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Epitaxial growth of GaN nanowires with high structural perfection on a metallic TiN film,” Nano Lett. 15(6), 3743–3747 (2015).
[PubMed]

Wu, F.

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, D. Priante, A. A. Alhamoud, F. Wu, X. Li, A. M. Albadri, and A. Y. Alyamani, “Droop-free Al x Ga 1-x N/Al y Ga 1-y N quantum-disks-in-nanowires ultraviolet LED emitting at 337 nm on metal/silicon substrates,” Opt. Express 25, 1381–1390 (2017).
[PubMed]

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9(23), 7805–7813 (2017).
[PubMed]

Würtele, M. A.

M. A. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of GaN-based ultraviolet-C light emitting diodes--UV LEDs--for water disinfection,” Water Res. 45(3), 1481–1489 (2011).
[PubMed]

Yamashita, Y.

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” nature photonics 2, 551–554 (2008).

Yang, F.

A. T. Sarwar, S. D. Carnevale, F. Yang, T. F. Kent, J. J. Jamison, D. W. McComb, and R. C. Myers, “Semiconductor Nanowire Light-Emitting Diodes Grown on Metal: A Direction Toward Large-Scale Fabrication of Nanowire Devices,” Small 11(40), 5402–5408 (2015).
[PubMed]

Yang, S.

H. Li, G. Zhao, L. Wang, Z. Chen, and S. Yang, “Morphology Controlled Fabrication of InN Nanowires on Brass Substrates,” Nanomaterials (Basel) 6(11), 195 (2016).
[PubMed]

Yang, Z.

M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, and Z. Yang, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2010).

Yi, W.

M. A. Zimmler, D. Stichtenoth, C. Ronning, W. Yi, V. Narayanamurti, T. Voss, and F. Capasso, “Scalable fabrication of nanowire photonic and electronic circuits using spin-on glass,” Nano Lett. 8(6), 1695–1699 (2008).
[PubMed]

Yoshida, H.

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” nature photonics 2, 551–554 (2008).

Zhang, M.

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[PubMed]

Zhao, C.

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, D. Priante, A. A. Alhamoud, F. Wu, X. Li, A. M. Albadri, and A. Y. Alyamani, “Droop-free Al x Ga 1-x N/Al y Ga 1-y N quantum-disks-in-nanowires ultraviolet LED emitting at 337 nm on metal/silicon substrates,” Opt. Express 25, 1381–1390 (2017).
[PubMed]

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9(23), 7805–7813 (2017).
[PubMed]

C. Zhao, T. K. Ng, N. Wei, A. Prabaswara, M. S. Alias, B. Janjua, C. Shen, and B. S. Ooi, “Facile formation of high-quality InGaN/GaN quantum-disks-in-nanowires on bulk-metal substrates for high-power light-emitters,” Nano Lett. 16(2), 1056–1063 (2016).
[PubMed]

C. Zhao, T. K. Ng, R. T. ElAfandy, A. Prabaswara, G. B. Consiglio, I. A. Ajia, I. S. Roqan, B. Janjua, C. Shen, J. Eid, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Droop-Free, Reliable, and High-Power InGaN/GaN Nanowire Light-Emitting Diodes for Monolithic Metal-Optoelectronics,” Nano Lett. 16(7), 4616–4623 (2016).
[PubMed]

Zhao, G.

H. Li, G. Zhao, L. Wang, Z. Chen, and S. Yang, “Morphology Controlled Fabrication of InN Nanowires on Brass Substrates,” Nanomaterials (Basel) 6(11), 195 (2016).
[PubMed]

Zhao, S.

S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, “Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources,” Sci. Rep. 5, 8332 (2015).
[PubMed]

Zimmler, M. A.

M. A. Zimmler, D. Stichtenoth, C. Ronning, W. Yi, V. Narayanamurti, T. Voss, and F. Capasso, “Scalable fabrication of nanowire photonic and electronic circuits using spin-on glass,” Nano Lett. 8(6), 1695–1699 (2008).
[PubMed]

ACS Appl. Mater. Interfaces (1)

Y.-H. Ra, R. Navamathavan, J.-H. Park, and C.-R. Lee, “High-quality uniaxial In x Ga 1-x N/GaN Multiple Quantum Well (MQW) Nanowires (NWs) on Si(111) Grown by Metal-Organic Chemical Vapor Deposition (MOCVD) and Light-Emitting Diode (LED) Fabrication,” ACS Appl. Mater. Interfaces 5(6), 2111–2117 (2013).
[PubMed]

Analyst (Lond.) (1)

L. Krcmová, A. Stjernlof, S. Mehlen, P. C. Hauser, S. Abele, B. Paull, and M. Macka, “Deep-UV-LEDs in photometric detection: A 255 nm LED on-capillary detector in capillary electrophoresis,” Analyst (Lond.) 134(12), 2394–2396 (2009).
[PubMed]

Appl. Phys. Lett. (7)

S. Jahangir, M. Mandl, M. Strassburg, and P. Bhattacharya, “Molecular beam epitaxial growth and optical properties of red-emitting (λ= 650 nm) InGaN/GaN disks-in-nanowires on silicon,” Appl. Phys. Lett. 102, 071101 (2013).

B. J. May, A. G. Sarwar, and R. C. Myers, “Nanowire LEDs grown directly on flexible metal foil,” Appl. Phys. Lett. 108, 141103 (2016).

H. Ono, T. Nakano, and T. Ohta, “Diffusion barrier effects of transition metals for Cu/M/Si multilayers (M= Cr, Ti, Nb, MO, Ta, W),” Appl. Phys. Lett. 64, 1511–1513 (1994).

M. Wittmer, “TiN and TaN as diffusion barriers in metallizations to silicon semiconductor devices,” Appl. Phys. Lett. 36, 456–458 (1980).

R. Bower and J. Mayer, “Growth kinetics observed in the formation of metal silicides on silicon,” Appl. Phys. Lett. 20, 359–361 (1972).

S. Herd, K. Tu, and K. Ahn, “Formation of an amorphous Rh‐Si alloy by interfacial reaction between amorphous Si and crystalline Rh thin films,” Appl. Phys. Lett. 42, 597–599 (1983).

W. Lur and L. Chen, “Growth kinetics of amorphous interlayer formed by interdiffusion of polycrystalline Ti thin‐film and single‐crystal silicon,” Appl. Phys. Lett. 54, 1217–1219 (1989).

Appl. Surf. Sci. (1)

V. Fouquet, L. Pichon, M. Drouet, and A. Straboni, “Plasma assisted nitridation of Ti-6Al-4V,” Appl. Surf. Sci. 221, 248–258 (2004).

IEEE Electron Device Lett. (1)

J. Tao, N. W. Cheung, and C. Hu, “Electromigration characteristics of copper interconnects,” IEEE Electron Device Lett. 14, 249–251 (1993).

J. Appl. Phys. (4)

I. Blech and E. Meieran, “Electromigration in thin Al films,” J. Appl. Phys. 40, 485 (1969).

S. Q. Wang, S. Suthar, C. Hoeflich, and B. J. Burrow, “Diffusion barrier properties of TiW between Si and Cu,” J. Appl. Phys. 73, 2301–2320 (1993).

R. Beyers, D. Coulman, and P. Merchant, “Titanium disilicide formation on heavily doped silicon substrates,” J. Appl. Phys. 61, 5110–5117 (1987).

S. Murarka and D. Fraser, “Thin film interaction between titanium and polycrystalline silicon,” J. Appl. Phys. 51, 342–349 (1980).

J. Electron. Mater. (1)

Y. L. Corcoran, A. H. King, N. de Lanerolle, and B. Kim, “Grain boundary diffusion and growth of titanium silicide layers on silicon,” J. Electron. Mater. 19, 1177–1183 (1990).

J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. (1)

C. S. Kang, H.-J. Cho, Y. Kim, R. Choi, K. Onishi, A. Shahriar, and J. Lee, “Characterization of resistivity and work function of sputtered-TaN film for gate electrode applications,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 21, 2026–2028 (2003).

Jpn. J. Appl. Phys. (1)

S. Maeda, K. Tomioka, S. Hara, and J. Motohisa, “Fabrication and characterization of InP nanowire light-emitting diodes,” Jpn. J. Appl. Phys. 51, 02BN03 (2012).

Nano Lett. (5)

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[PubMed]

M. A. Zimmler, D. Stichtenoth, C. Ronning, W. Yi, V. Narayanamurti, T. Voss, and F. Capasso, “Scalable fabrication of nanowire photonic and electronic circuits using spin-on glass,” Nano Lett. 8(6), 1695–1699 (2008).
[PubMed]

M. Wölz, C. Hauswald, T. Flissikowski, T. Gotschke, S. Fernández-Garrido, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Epitaxial growth of GaN nanowires with high structural perfection on a metallic TiN film,” Nano Lett. 15(6), 3743–3747 (2015).
[PubMed]

C. Zhao, T. K. Ng, N. Wei, A. Prabaswara, M. S. Alias, B. Janjua, C. Shen, and B. S. Ooi, “Facile formation of high-quality InGaN/GaN quantum-disks-in-nanowires on bulk-metal substrates for high-power light-emitters,” Nano Lett. 16(2), 1056–1063 (2016).
[PubMed]

C. Zhao, T. K. Ng, R. T. ElAfandy, A. Prabaswara, G. B. Consiglio, I. A. Ajia, I. S. Roqan, B. Janjua, C. Shen, J. Eid, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Droop-Free, Reliable, and High-Power InGaN/GaN Nanowire Light-Emitting Diodes for Monolithic Metal-Optoelectronics,” Nano Lett. 16(7), 4616–4623 (2016).
[PubMed]

Nanomaterials (Basel) (1)

H. Li, G. Zhao, L. Wang, Z. Chen, and S. Yang, “Morphology Controlled Fabrication of InN Nanowires on Brass Substrates,” Nanomaterials (Basel) 6(11), 195 (2016).
[PubMed]

Nanoscale (1)

B. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El-Desouki, T. K. Ng, and B. S. Ooi, “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy,” Nanoscale 9(23), 7805–7813 (2017).
[PubMed]

nature photonics (1)

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” nature photonics 2, 551–554 (2008).

Opt. Express (1)

physica status solidi (a) (1)

D. Gerthsen, E. Hahn, B. Neubauer, A. Rosenauer, O. Schön, M. Heuken, and A. Rizzi, “Composition fluctuations in InGaN analyzed by transmission electron microscopy,” physica status solidi (a) 177, 145– 155 (2000).

physica status solidi (RRL)- Rapid Research Letters (1)

A. Pierret, C. Bougerol, M. d. Hertog, B. Gayral, M. Kociak, H. Renevier, and B. Daudin, “Structural and optical properties of Alx Ga1–xN nanowires,” physica status solidi (RRL)- Rapid Research Letters 7, 868–873 (2013).

Sci. Rep. (1)

S. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, and Z. Mi, “Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources,” Sci. Rep. 5, 8332 (2015).
[PubMed]

Semicond. Sci. Technol. (1)

M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, and Z. Yang, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2010).

Small (1)

A. T. Sarwar, S. D. Carnevale, F. Yang, T. F. Kent, J. J. Jamison, D. W. McComb, and R. C. Myers, “Semiconductor Nanowire Light-Emitting Diodes Grown on Metal: A Direction Toward Large-Scale Fabrication of Nanowire Devices,” Small 11(40), 5402–5408 (2015).
[PubMed]

Solid-State Electron. (1)

M. Tao, D. Udeshi, S. Agarwal, E. Maldonado, and W. Kirk, “Negative Schottky barrier between titanium and n-type Si (001) for low-resistance ohmic contacts,” Solid-State Electron. 48, 335–338 (2004).

Thin Solid Films (2)

H. Kato and Y. Nakamura, “Solid state reactions in titanium thin films on silicon,” Thin Solid Films 34, 135–138 (1976).

M. Kwak, D. Shin, T. Kang, and K. Kim, “Characteristics of TiN barrier layer against Cu diffusion,” Thin Solid Films 339, 290–293 (1999).

Water Res. (1)

M. A. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of GaN-based ultraviolet-C light emitting diodes--UV LEDs--for water disinfection,” Water Res. 45(3), 1481–1489 (2011).
[PubMed]

Other (2)

G. A. Shaw, A. M. Siegel, J. Model, and D. Greisokh, “Recent progress in short-range ultraviolet communication,” in Proc. of SPIE, 2005), 215.

T. Matsuoka, “Phase Separation in wurtzite In 1− x− y Ga x Al y N,” Materials Research Society Internet Journal of Nitride Semiconductor Research 3, e54(1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Morphological and structural characterization of template substrates developed in this investigation: AFM analysis of (a) Ti/Si (Ti on Si substrate) and (b) Ti/TaN/Si (Ti on TaN/Si). (c) Comparative statistical analysis of RMS roughness for (a) and (b). (d) STEM and EELS maps of the Ti/TaN/Si template substrate prior to growth of NWs, showing a sharp interface and distinct layer-structure, indicating the absence of Ti-Si interdiffusion.
Fig. 2
Fig. 2 (a-b) Comparison of SEM micrographs for AlGaN NWs LED structure showing the rough surface and the height inhomogeneity for NWs grown on (a) Ti/Si, and the improvement for NWs on (b) Ti/TaN/Si. (c) Cross section dark-field STEM (Z-contrast) image of the Ti/TaN/Si sample (the red dash-line shows the boundary of a single nanowire). (d-g) EDXS elemental mapping of the Ti/TaN/Si sample for (d) Si, (e) Ta, (f) N, and (g) Ti, Ga, and Al. (h) EELS elemental mapping of Ti/Si template substrate showing a clear interdiffusion with 20% Ti (~15 nm) remaining after outgassing at 600 °C, and subsequent growth of NWs at 640 °C.
Fig. 3
Fig. 3 (a) Temperature-dependent PL (TDPL) spectra of AlGaN NWs using a 266-nm pulsed laser excitation, showing both quantum barrier (QB) (288 nm) and QDisks emission peaks. Inset shows an example of fitting PL intensity versus wavelength spectrum using two Gaussian peaks to extract the Qdisks peak wavelengths. (b) Peak shift and FWHM as a function of temperature.
Fig. 4
Fig. 4 AlGaN NWs LED characterization: (a) linear and semilog plots of current-voltage characteristics showing ~8-V turn-on voltage; and (b) power-voltage characteristics showing up to 1.9 μW optical power. Inset shows AlGaN NWs LED structure. (c) Electroluminescence spectra at different injection currents (from 10 mA to 110 mA), showing a peak wavelength of 325 nm. Inset depicts the shift in peak wavelength (Peak λ) and FWHM with increasing current (I). (d) Plot of relative external quantum efficiency (relative EQE, or ηext) vs. injection current.
Fig. 5
Fig. 5 LED power stability test with injection current of 72 A/cm2. Inset shows the probed device in operation.

Tables (1)

Tables Icon

Table 1 Sheet resistance of different layer structures.

Metrics