Abstract

The heterogeneous integration of an amorphous silicon (a-Si) film with a lithium niobate (LN) thin film combines both the mature micro-processing technology of Si and the excellent optical properties of LN. An a-Si thin film was deposited on an LN thin film, and strip-loaded waveguides were designed, fabricated, and characterized. A full-vectorial finite difference method was used to explore the single-mode conditions and appropriate dimensions for the strip-loaded waveguides. The waveguide mode size could be as small as 0.36 μm2. By adjusting the thickness and width of the a-Si loading strip, the distribution of light power could be mainly confined in the LN layer. The maximal light power that could be confined in LN was 91%, which was obtained at an a-Si thickness of 65 nm. A set of waveguides with widths of 2‒7 μm were prepared by inductively coupled plasma (ICP) etching of the a-Si thin film. Following annealing at 300°C in air for 1 hour, light transmission was observed in the waveguide. The 2-μm-wide waveguide showed propagation losses of 20 dB/cm for the quasi-TM (q-TM) mode and 42 dB/cm for the quasi-TE (q-TE) mode at 1550 nm. The root-mean-square (RMS) surface roughness of the a-Si thin film before and after annealing was 1.04 and 0.35 nm, respectively. High-resolution transmission electron microscopy (HRTEM) was performed to investigate the interface morphologies. A well-defined interface was clearly observed, and the structure of the a-Si thin film was proved to be amorphous.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe

Shuang Li, Lutong Cai, Yiwen Wang, Yunpeng Jiang, and Hui Hu
Opt. Express 23(19) 24212-24219 (2015)

Waveguides in single-crystal lithium niobate thin film by proton exchange

Lutong Cai, Shuang Li Huangpu Han, and Hui Hu
Opt. Express 23(2) 1240-1248 (2015)

Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film

Lutong Cai, Ruirui Kong, Yiwen Wang, and Hui Hu
Opt. Express 23(22) 29211-29221 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
  2. G. H. Shao, J. Song, Y. P. Ruan, G. X. Cui, and Y. Q. Lu, “Tunable dual-wavelength filter and its group delay dispersion in domain-engineered lithium niobate,” AIP Adv. 6(12), 125034 (2016).
  3. G. Poberaj, H. Hu, W. Sohler, and P. Gunter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
  4. Y. S. Lee, S. S. Lee, W. G. Lee, and W. H. Steier, “Fabrication of free standing LiNbO3 single crystal micro-platelets and their integration to Si-on-insulator platforms,” Thin Solid Films 519(13), 4271–4276 (2011).
  5. M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
  6. J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5(18), 8072 (2015).
    [PubMed]
  7. C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
    [PubMed]
  8. S. Diziain, R. Geiss, M. Steinert, C. Schmidt, W. K. Chang, S. Fasold, D. Fuessel, Y. H. Chen, and T. Pertsch, “Self-suspended micro-resonators patterned in Z-cut lithium niobate membranes,” Opt. Mater. Express 5(9), 2081–2089 (2015).
  9. T. Kovalevich, A. Ndao, M. Suarez, S. Tumenas, Z. Balevicius, A. Ramanavicius, I. Baleviciute, M. Häyrinen, M. Roussey, M. Kuittinen, T. Grosjean, and M. P. Bernal, “Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films,” Opt. Lett. 41(23), 5616–5619 (2016).
    [PubMed]
  10. C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X. F. Ren, G. C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25(6), 6963–6973 (2017).
    [PubMed]
  11. R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
    [PubMed]
  12. G. H. Shao, Y. H. Bai, G. X. Cui, C. Li, X. B. Qiu, D. Q. Geng, D. Wu, and Y. Q. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).
  13. L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3(5), 531 (2016).
  14. K. Tanaka and T. Suhara, “Fabrication of 0.7 μm2 ridge waveguide in ion-sliced LiNbO3 by proton-exchange accelerated chemical etching,” Jpn. J. Appl. Phys. 54, 128002 (2015).
  15. L. Cai, Y. Wang, and H. Hu, “Low-loss waveguides in a single-crystal lithium niobate thin film,” Opt. Lett. 40(13), 3013–3016 (2015).
    [PubMed]
  16. S. Li, L. Cai, Y. Wang, Y. Jiang, and H. Hu, “Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe,” Opt. Express 23(19), 24212–24219 (2015).
    [PubMed]
  17. S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 Thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photonics Technol. Lett. 28(7), 736–739 (2016).
  18. A. Rao, M. Malinowski, A. Honardoost, J. R. Talukder, P. Rabiei, P. Delfyett, and S. Fathpour, “Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon,” Opt. Express 24(26), 29941–29947 (2016).
    [PubMed]
  19. L. Chang, M. H. P. Pfeiffer, N. Volet, M. Zervas, J. D. Peters, C. L. Manganelli, E. J. Stanton, Y. Li, T. J. Kippenberg, and J. E. Bowers, “Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon,” Opt. Lett. 42(4), 803–806 (2017).
    [PubMed]
  20. Y. Hishikawa, N. Nakamuru, S. Tsuda, S. Nakano, Y. Kishi, and Y. Kuwano, “Interference-free determination of the optical absorption coefficient and the optical gap of amorphous silicon thin films,” Jpn. J. Appl. Phys. 30(5), 1008–1014 (1991).
  21. T. Weber, S. Kroker, T. Käsebier, E. B. Kley, and A. Tünnermann, “Silicon wire grid polarizer for ultraviolet applications,” Appl. Opt. 53(34), 8140–8144 (2014).
    [PubMed]
  22. N. Hatori, T. Shimizu, M. Okano, M. Ishizaka, T. Yamamoto, Y. Urino, M. Mori, T. Nakamura, and Y. Arakawa, “A Hybrid Integrated Light Source on a Silicon Platform Using a Trident Spot-Size Converter,” J. Lightwave Technol. 32(7), 1329–1336 (2014).
  23. V. Donzella, A. Sherwali, J. Flueckiger, S. M. Grist, S. T. Fard, and L. Chrostowski, “Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides,” Opt. Express 23(4), 4791–4803 (2015).
    [PubMed]
  24. M. G. Wood, J. R. Burr, and R. M. Reano, “7 nm/V DC tunability and millivolt scale switching in silicon carrier injection degenerate band edge resonators,” Opt. Express 24(20), 23481–23493 (2016).
    [PubMed]
  25. J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1(5), 350 (2014).
  26. L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Commun. 330(1), 40–44 (2014).
  27. Y. S. Lee, G. D. Kim, W. J. Kim, S. S. Lee, W. G. Lee, and W. H. Steier, “Hybrid Si-LiNbO3 microring electro-optically tunable resonators for active photonic devices,” Opt. Lett. 36(7), 1119–1121 (2011).
    [PubMed]
  28. L. Chen, J. Chen, J. Nagy, and R. M. Reano, “Highly linear ring modulator from hybrid silicon and lithium niobate,” Opt. Express 23(10), 13255–13264 (2015).
    [PubMed]
  29. P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics,” Sci. Rep. 6, 22301 (2016).
    [PubMed]
  30. T. Lipka, J. Mueller, and H. K. Trieu, “Systematic Nonuniformity Analysis of Amorphous Silicon-on-Insulator Photonic Microring Resonators,” J. Lightwave Technol. 34(13), 3163–3170 (2016).
  31. R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub-1 dB/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect,” Opt. Express 22(4), 4779–4788 (2014).
    [PubMed]
  32. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18(6), 5668–5673 (2010).
    [PubMed]
  33. M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002).
  34. W. J. Liu, S. Chen, H. Y. Cheng, J. D. Lin, and S. L. Fu, “Fabrication of amorphous silicon films for arrayed waveguide grating application,” Surf. Coat. Tech. 201(15), 6581–6584 (2007).
  35. W. Qiu, M. P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118(2), 261–267 (2015).
  36. N. Uchida, “Optical waveguide loaded with high refractive-index strip film,” Appl. Opt. 15(1), 179–182 (1976).
    [PubMed]
  37. O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88(6), 061101 (2006).
  38. L. Cai, Y. Kang, and H. Hu, “Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film,” Opt. Express 24(5), 4640 (2016).
  39. Z. Iqbal and S. Veprek, “Raman scattering from hydrogenated microcrystalline and amorphous silicon,” J. Phys. C Solid State Phys. 15(2), 377–392 (1982).
  40. J. Robertson, “Growth mechanism of hydrogenated amorphous silicon,” J. Non-Cryst. Solids 266(1), 79–83 (2000).
  41. S. Niesar, A. R. Stegner, R. N. Pereira, M. Hoeb, H. Wiggers, M. S. Brandt, and M. Stutzmann, “Defect reduction in silicon nanoparticles by low-temperature vacuum annealing,” Appl. Phys. Lett. 96(19), 193112 (2010).
  42. P. K. Lim and W. K. Tam, “Local vibrational modes and the optical absorption tail of amorphous silicon,” Int. J. Mod. Phys. B 20(25 & 27), 4261–4266 (2006).
  43. L. Cai, R. Kong, Y. Wang, and H. Hu, “Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film,” Opt. Express 23(22), 29211–29221 (2015).
    [PubMed]
  44. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
  45. D. Labukhin and X. Li, “Three-dimensional finite-difference time-domain simulation of facet reflection through parallel computing,” J. Comput. Electron. 4(1‒2), 15–19 (2005).

2017 (2)

2016 (10)

G. H. Shao, J. Song, Y. P. Ruan, G. X. Cui, and Y. Q. Lu, “Tunable dual-wavelength filter and its group delay dispersion in domain-engineered lithium niobate,” AIP Adv. 6(12), 125034 (2016).

G. H. Shao, Y. H. Bai, G. X. Cui, C. Li, X. B. Qiu, D. Q. Geng, D. Wu, and Y. Q. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).

S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 Thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photonics Technol. Lett. 28(7), 736–739 (2016).

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics,” Sci. Rep. 6, 22301 (2016).
[PubMed]

L. Cai, Y. Kang, and H. Hu, “Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film,” Opt. Express 24(5), 4640 (2016).

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3(5), 531 (2016).

T. Lipka, J. Mueller, and H. K. Trieu, “Systematic Nonuniformity Analysis of Amorphous Silicon-on-Insulator Photonic Microring Resonators,” J. Lightwave Technol. 34(13), 3163–3170 (2016).

M. G. Wood, J. R. Burr, and R. M. Reano, “7 nm/V DC tunability and millivolt scale switching in silicon carrier injection degenerate band edge resonators,” Opt. Express 24(20), 23481–23493 (2016).
[PubMed]

T. Kovalevich, A. Ndao, M. Suarez, S. Tumenas, Z. Balevicius, A. Ramanavicius, I. Baleviciute, M. Häyrinen, M. Roussey, M. Kuittinen, T. Grosjean, and M. P. Bernal, “Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films,” Opt. Lett. 41(23), 5616–5619 (2016).
[PubMed]

A. Rao, M. Malinowski, A. Honardoost, J. R. Talukder, P. Rabiei, P. Delfyett, and S. Fathpour, “Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon,” Opt. Express 24(26), 29941–29947 (2016).
[PubMed]

2015 (10)

V. Donzella, A. Sherwali, J. Flueckiger, S. M. Grist, S. T. Fard, and L. Chrostowski, “Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides,” Opt. Express 23(4), 4791–4803 (2015).
[PubMed]

L. Chen, J. Chen, J. Nagy, and R. M. Reano, “Highly linear ring modulator from hybrid silicon and lithium niobate,” Opt. Express 23(10), 13255–13264 (2015).
[PubMed]

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40(12), 2715–2718 (2015).
[PubMed]

L. Cai, Y. Wang, and H. Hu, “Low-loss waveguides in a single-crystal lithium niobate thin film,” Opt. Lett. 40(13), 3013–3016 (2015).
[PubMed]

S. Diziain, R. Geiss, M. Steinert, C. Schmidt, W. K. Chang, S. Fasold, D. Fuessel, Y. H. Chen, and T. Pertsch, “Self-suspended micro-resonators patterned in Z-cut lithium niobate membranes,” Opt. Mater. Express 5(9), 2081–2089 (2015).

S. Li, L. Cai, Y. Wang, Y. Jiang, and H. Hu, “Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe,” Opt. Express 23(19), 24212–24219 (2015).
[PubMed]

L. Cai, R. Kong, Y. Wang, and H. Hu, “Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film,” Opt. Express 23(22), 29211–29221 (2015).
[PubMed]

W. Qiu, M. P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118(2), 261–267 (2015).

K. Tanaka and T. Suhara, “Fabrication of 0.7 μm2 ridge waveguide in ion-sliced LiNbO3 by proton-exchange accelerated chemical etching,” Jpn. J. Appl. Phys. 54, 128002 (2015).

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5(18), 8072 (2015).
[PubMed]

2014 (6)

2012 (1)

G. Poberaj, H. Hu, W. Sohler, and P. Gunter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).

2011 (2)

Y. S. Lee, S. S. Lee, W. G. Lee, and W. H. Steier, “Fabrication of free standing LiNbO3 single crystal micro-platelets and their integration to Si-on-insulator platforms,” Thin Solid Films 519(13), 4271–4276 (2011).

Y. S. Lee, G. D. Kim, W. J. Kim, S. S. Lee, W. G. Lee, and W. H. Steier, “Hybrid Si-LiNbO3 microring electro-optically tunable resonators for active photonic devices,” Opt. Lett. 36(7), 1119–1121 (2011).
[PubMed]

2010 (2)

Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18(6), 5668–5673 (2010).
[PubMed]

S. Niesar, A. R. Stegner, R. N. Pereira, M. Hoeb, H. Wiggers, M. S. Brandt, and M. Stutzmann, “Defect reduction in silicon nanoparticles by low-temperature vacuum annealing,” Appl. Phys. Lett. 96(19), 193112 (2010).

2007 (1)

W. J. Liu, S. Chen, H. Y. Cheng, J. D. Lin, and S. L. Fu, “Fabrication of amorphous silicon films for arrayed waveguide grating application,” Surf. Coat. Tech. 201(15), 6581–6584 (2007).

2006 (2)

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88(6), 061101 (2006).

P. K. Lim and W. K. Tam, “Local vibrational modes and the optical absorption tail of amorphous silicon,” Int. J. Mod. Phys. B 20(25 & 27), 4261–4266 (2006).

2005 (1)

D. Labukhin and X. Li, “Three-dimensional finite-difference time-domain simulation of facet reflection through parallel computing,” J. Comput. Electron. 4(1‒2), 15–19 (2005).

2002 (1)

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002).

2000 (1)

J. Robertson, “Growth mechanism of hydrogenated amorphous silicon,” J. Non-Cryst. Solids 266(1), 79–83 (2000).

1998 (1)

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).

1991 (1)

Y. Hishikawa, N. Nakamuru, S. Tsuda, S. Nakano, Y. Kishi, and Y. Kuwano, “Interference-free determination of the optical absorption coefficient and the optical gap of amorphous silicon thin films,” Jpn. J. Appl. Phys. 30(5), 1008–1014 (1991).

1985 (2)

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).

1982 (1)

Z. Iqbal and S. Veprek, “Raman scattering from hydrogenated microcrystalline and amorphous silicon,” J. Phys. C Solid State Phys. 15(2), 377–392 (1982).

1976 (1)

Aboketaf, A.

L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Commun. 330(1), 40–44 (2014).

Andrade, N.

Arakawa, Y.

Asobe, M.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88(6), 061101 (2006).

Atikian, H. A.

Bai, Y. H.

G. H. Shao, Y. H. Bai, G. X. Cui, C. Li, X. B. Qiu, D. Q. Geng, D. Wu, and Y. Q. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).

Baida, F. I.

W. Qiu, M. P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118(2), 261–267 (2015).

Bakhru, H.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).

Balevicius, Z.

Baleviciute, I.

Bernal, M. P.

T. Kovalevich, A. Ndao, M. Suarez, S. Tumenas, Z. Balevicius, A. Ramanavicius, I. Baleviciute, M. Häyrinen, M. Roussey, M. Kuittinen, T. Grosjean, and M. P. Bernal, “Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films,” Opt. Lett. 41(23), 5616–5619 (2016).
[PubMed]

W. Qiu, M. P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118(2), 261–267 (2015).

Bowers, J. E.

Brandt, M. S.

S. Niesar, A. R. Stegner, R. N. Pereira, M. Hoeb, H. Wiggers, M. S. Brandt, and M. Stutzmann, “Defect reduction in silicon nanoparticles by low-temperature vacuum annealing,” Appl. Phys. Lett. 96(19), 193112 (2010).

Burek, M. J.

Burr, J. R.

Cai, L.

Cao, L.

L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Commun. 330(1), 40–44 (2014).

Cargill, G. S.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).

Chang, L.

Chang, W. K.

Chen, J.

Chen, L.

Chen, S.

W. J. Liu, S. Chen, H. Y. Cheng, J. D. Lin, and S. L. Fu, “Fabrication of amorphous silicon films for arrayed waveguide grating application,” Surf. Coat. Tech. 201(15), 6581–6584 (2007).

Chen, Y. H.

Cheng, H. Y.

W. J. Liu, S. Chen, H. Y. Cheng, J. D. Lin, and S. L. Fu, “Fabrication of amorphous silicon films for arrayed waveguide grating application,” Surf. Coat. Tech. 201(15), 6581–6584 (2007).

Cheng, Y.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5(18), 8072 (2015).
[PubMed]

Chiles, J.

Chrostowski, L.

Courjal, N.

W. Qiu, M. P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118(2), 261–267 (2015).

Cross, L. E.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).

Cui, G. X.

G. H. Shao, J. Song, Y. P. Ruan, G. X. Cui, and Y. Q. Lu, “Tunable dual-wavelength filter and its group delay dispersion in domain-engineered lithium niobate,” AIP Adv. 6(12), 125034 (2016).

G. H. Shao, Y. H. Bai, G. X. Cui, C. Li, X. B. Qiu, D. Q. Geng, D. Wu, and Y. Q. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).

de Dood, M. J. A.

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002).

Delfyett, P.

DeRose, C. T.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics,” Sci. Rep. 6, 22301 (2016).
[PubMed]

Diziain, S.

Donzella, V.

Fang, W.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5(18), 8072 (2015).
[PubMed]

Fang, Z.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5(18), 8072 (2015).
[PubMed]

Fard, S. T.

Fasold, S.

Fathpour, S.

Flueckiger, J.

Fu, S. L.

W. J. Liu, S. Chen, H. Y. Cheng, J. D. Lin, and S. L. Fu, “Fabrication of amorphous silicon films for arrayed waveguide grating application,” Surf. Coat. Tech. 201(15), 6581–6584 (2007).

Fuessel, D.

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).

Geiss, R.

Geng, D. Q.

G. H. Shao, Y. H. Bai, G. X. Cui, C. Li, X. B. Qiu, D. Q. Geng, D. Wu, and Y. Q. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).

Grange, R.

Grist, S. M.

Grosjean, T.

Gunter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Gunter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).

Guo, G. C.

Guyot, C.

W. Qiu, M. P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118(2), 261–267 (2015).

Hameed, N. M.

W. Qiu, M. P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118(2), 261–267 (2015).

Hasama, T.

Hatori, N.

Häyrinen, M.

Hishikawa, Y.

Y. Hishikawa, N. Nakamuru, S. Tsuda, S. Nakano, Y. Kishi, and Y. Kuwano, “Interference-free determination of the optical absorption coefficient and the optical gap of amorphous silicon thin films,” Jpn. J. Appl. Phys. 30(5), 1008–1014 (1991).

Hoeb, M.

S. Niesar, A. R. Stegner, R. N. Pereira, M. Hoeb, H. Wiggers, M. S. Brandt, and M. Stutzmann, “Defect reduction in silicon nanoparticles by low-temperature vacuum annealing,” Appl. Phys. Lett. 96(19), 193112 (2010).

Honardoost, A.

Hu, H.

Huang, I. C.

Iqbal, Z.

Z. Iqbal and S. Veprek, “Raman scattering from hydrogenated microcrystalline and amorphous silicon,” J. Phys. C Solid State Phys. 15(2), 377–392 (1982).

Ishikawa, H.

Ishizaka, M.

Jiang, Y.

Jin, S.

S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 Thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photonics Technol. Lett. 28(7), 736–739 (2016).

Kamei, T.

Kang, Y.

Käsebier, T.

Kawashima, H.

Kim, G. D.

Kim, W. J.

Kintaka, K.

Kippenberg, T. J.

Kishi, Y.

Y. Hishikawa, N. Nakamuru, S. Tsuda, S. Nakano, Y. Kishi, and Y. Kuwano, “Interference-free determination of the optical absorption coefficient and the optical gap of amorphous silicon thin films,” Jpn. J. Appl. Phys. 30(5), 1008–1014 (1991).

Kley, E. B.

Kong, R.

Kovalevich, T.

Kroker, S.

Kuittinen, M.

Kumar, A.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).

Kuwano, Y.

Y. Hishikawa, N. Nakamuru, S. Tsuda, S. Nakano, Y. Kishi, and Y. Kuwano, “Interference-free determination of the optical absorption coefficient and the optical gap of amorphous silicon thin films,” Jpn. J. Appl. Phys. 30(5), 1008–1014 (1991).

Labukhin, D.

D. Labukhin and X. Li, “Three-dimensional finite-difference time-domain simulation of facet reflection through parallel computing,” J. Comput. Electron. 4(1‒2), 15–19 (2005).

Lee, S. S.

Y. S. Lee, G. D. Kim, W. J. Kim, S. S. Lee, W. G. Lee, and W. H. Steier, “Hybrid Si-LiNbO3 microring electro-optically tunable resonators for active photonic devices,” Opt. Lett. 36(7), 1119–1121 (2011).
[PubMed]

Y. S. Lee, S. S. Lee, W. G. Lee, and W. H. Steier, “Fabrication of free standing LiNbO3 single crystal micro-platelets and their integration to Si-on-insulator platforms,” Thin Solid Films 519(13), 4271–4276 (2011).

Lee, W. G.

Y. S. Lee, S. S. Lee, W. G. Lee, and W. H. Steier, “Fabrication of free standing LiNbO3 single crystal micro-platelets and their integration to Si-on-insulator platforms,” Thin Solid Films 519(13), 4271–4276 (2011).

Y. S. Lee, G. D. Kim, W. J. Kim, S. S. Lee, W. G. Lee, and W. H. Steier, “Hybrid Si-LiNbO3 microring electro-optically tunable resonators for active photonic devices,” Opt. Lett. 36(7), 1119–1121 (2011).
[PubMed]

Lee, Y. S.

Y. S. Lee, G. D. Kim, W. J. Kim, S. S. Lee, W. G. Lee, and W. H. Steier, “Hybrid Si-LiNbO3 microring electro-optically tunable resonators for active photonic devices,” Opt. Lett. 36(7), 1119–1121 (2011).
[PubMed]

Y. S. Lee, S. S. Lee, W. G. Lee, and W. H. Steier, “Fabrication of free standing LiNbO3 single crystal micro-platelets and their integration to Si-on-insulator platforms,” Thin Solid Films 519(13), 4271–4276 (2011).

Lentine, A. L.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics,” Sci. Rep. 6, 22301 (2016).
[PubMed]

Levy, M.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).

Li, C.

G. H. Shao, Y. H. Bai, G. X. Cui, C. Li, X. B. Qiu, D. Q. Geng, D. Wu, and Y. Q. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).

Li, S.

Li, X.

D. Labukhin and X. Li, “Three-dimensional finite-difference time-domain simulation of facet reflection through parallel computing,” J. Comput. Electron. 4(1‒2), 15–19 (2005).

Li, Y.

Lim, P. K.

P. K. Lim and W. K. Tam, “Local vibrational modes and the optical absorption tail of amorphous silicon,” Int. J. Mod. Phys. B 20(25 & 27), 4261–4266 (2006).

Lin, J.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5(18), 8072 (2015).
[PubMed]

Lin, J. D.

W. J. Liu, S. Chen, H. Y. Cheng, J. D. Lin, and S. L. Fu, “Fabrication of amorphous silicon films for arrayed waveguide grating application,” Surf. Coat. Tech. 201(15), 6581–6584 (2007).

Lin, Z.

Lipka, T.

Liu, R.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).

Liu, W. J.

W. J. Liu, S. Chen, H. Y. Cheng, J. D. Lin, and S. L. Fu, “Fabrication of amorphous silicon films for arrayed waveguide grating application,” Surf. Coat. Tech. 201(15), 6581–6584 (2007).

Loncar, M.

Lu, Y. Q.

G. H. Shao, Y. H. Bai, G. X. Cui, C. Li, X. B. Qiu, D. Q. Geng, D. Wu, and Y. Q. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).

G. H. Shao, J. Song, Y. P. Ruan, G. X. Cui, and Y. Q. Lu, “Tunable dual-wavelength filter and its group delay dispersion in domain-engineered lithium niobate,” AIP Adv. 6(12), 125034 (2016).

Magari, K.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88(6), 061101 (2006).

Maillotte, H.

W. Qiu, M. P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118(2), 261–267 (2015).

Malinowski, M.

Manako, S.

Manganelli, C. L.

Miyazawa, H.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88(6), 061101 (2006).

Mookherjea, S.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics,” Sci. Rep. 6, 22301 (2016).
[PubMed]

Mori, M.

Mueller, J.

Nagy, J.

Nakamura, T.

Nakamuru, N.

Y. Hishikawa, N. Nakamuru, S. Tsuda, S. Nakano, Y. Kishi, and Y. Kuwano, “Interference-free determination of the optical absorption coefficient and the optical gap of amorphous silicon thin films,” Jpn. J. Appl. Phys. 30(5), 1008–1014 (1991).

Nakano, S.

Y. Hishikawa, N. Nakamuru, S. Tsuda, S. Nakano, Y. Kishi, and Y. Kuwano, “Interference-free determination of the optical absorption coefficient and the optical gap of amorphous silicon thin films,” Jpn. J. Appl. Phys. 30(5), 1008–1014 (1991).

Ndao, A.

T. Kovalevich, A. Ndao, M. Suarez, S. Tumenas, Z. Balevicius, A. Ramanavicius, I. Baleviciute, M. Häyrinen, M. Roussey, M. Kuittinen, T. Grosjean, and M. P. Bernal, “Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films,” Opt. Lett. 41(23), 5616–5619 (2016).
[PubMed]

W. Qiu, M. P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118(2), 261–267 (2015).

Niesar, S.

S. Niesar, A. R. Stegner, R. N. Pereira, M. Hoeb, H. Wiggers, M. S. Brandt, and M. Stutzmann, “Defect reduction in silicon nanoparticles by low-temperature vacuum annealing,” Appl. Phys. Lett. 96(19), 193112 (2010).

Nishida, Y.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88(6), 061101 (2006).

Ogasawara, T.

Okano, M.

Omoda, E.

Osgood, R. M.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).

Pereira, R. N.

S. Niesar, A. R. Stegner, R. N. Pereira, M. Hoeb, H. Wiggers, M. S. Brandt, and M. Stutzmann, “Defect reduction in silicon nanoparticles by low-temperature vacuum annealing,” Appl. Phys. Lett. 96(19), 193112 (2010).

Pertsch, T.

Peters, J.

Peters, J. D.

Pfeiffer, M. H. P.

Poberaj, G.

G. Poberaj, H. Hu, W. Sohler, and P. Gunter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).

Polman, A.

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002).

Pomerene, A. T.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics,” Sci. Rep. 6, 22301 (2016).
[PubMed]

Preble, S.

L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Commun. 330(1), 40–44 (2014).

Qiao, L.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5(18), 8072 (2015).
[PubMed]

Qiu, W.

W. Qiu, M. P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118(2), 261–267 (2015).

Qiu, X. B.

G. H. Shao, Y. H. Bai, G. X. Cui, C. Li, X. B. Qiu, D. Q. Geng, D. Wu, and Y. Q. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).

Rabiei, P.

Ramanavicius, A.

Rao, A.

Reano, R. M.

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).

Ren, X. F.

Robertson, J.

J. Robertson, “Growth mechanism of hydrogenated amorphous silicon,” J. Non-Cryst. Solids 266(1), 79–83 (2000).

Roussey, M.

Ruan, Y. P.

G. H. Shao, J. Song, Y. P. Ruan, G. X. Cui, and Y. Q. Lu, “Tunable dual-wavelength filter and its group delay dispersion in domain-engineered lithium niobate,” AIP Adv. 6(12), 125034 (2016).

Sakakibara, Y.

Saravi, S.

Savanier, M.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics,” Sci. Rep. 6, 22301 (2016).
[PubMed]

Schmidt, C.

Schrempel, F.

Sergeyev, A.

Setzpfandt, F.

Shao, G. H.

G. H. Shao, J. Song, Y. P. Ruan, G. X. Cui, and Y. Q. Lu, “Tunable dual-wavelength filter and its group delay dispersion in domain-engineered lithium niobate,” AIP Adv. 6(12), 125034 (2016).

G. H. Shao, Y. H. Bai, G. X. Cui, C. Li, X. B. Qiu, D. Q. Geng, D. Wu, and Y. Q. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).

Sherwali, A.

Shimizu, T.

Shoji, Y.

Sohler, W.

G. Poberaj, H. Hu, W. Sohler, and P. Gunter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).

Song, J.

G. H. Shao, J. Song, Y. P. Ruan, G. X. Cui, and Y. Q. Lu, “Tunable dual-wavelength filter and its group delay dispersion in domain-engineered lithium niobate,” AIP Adv. 6(12), 125034 (2016).

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5(18), 8072 (2015).
[PubMed]

Stanton, E. J.

Starbuck, A. L.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics,” Sci. Rep. 6, 22301 (2016).
[PubMed]

Stark, P.

Stegner, A. R.

S. Niesar, A. R. Stegner, R. N. Pereira, M. Hoeb, H. Wiggers, M. S. Brandt, and M. Stutzmann, “Defect reduction in silicon nanoparticles by low-temperature vacuum annealing,” Appl. Phys. Lett. 96(19), 193112 (2010).

Steier, W. H.

Y. S. Lee, G. D. Kim, W. J. Kim, S. S. Lee, W. G. Lee, and W. H. Steier, “Hybrid Si-LiNbO3 microring electro-optically tunable resonators for active photonic devices,” Opt. Lett. 36(7), 1119–1121 (2011).
[PubMed]

Y. S. Lee, S. S. Lee, W. G. Lee, and W. H. Steier, “Fabrication of free standing LiNbO3 single crystal micro-platelets and their integration to Si-on-insulator platforms,” Thin Solid Films 519(13), 4271–4276 (2011).

Steinert, M.

Stenger, V.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics,” Sci. Rep. 6, 22301 (2016).
[PubMed]

Stutzmann, M.

S. Niesar, A. R. Stegner, R. N. Pereira, M. Hoeb, H. Wiggers, M. S. Brandt, and M. Stutzmann, “Defect reduction in silicon nanoparticles by low-temperature vacuum annealing,” Appl. Phys. Lett. 96(19), 193112 (2010).

Suarez, M.

Suda, S.

Suhara, T.

K. Tanaka and T. Suhara, “Fabrication of 0.7 μm2 ridge waveguide in ion-sliced LiNbO3 by proton-exchange accelerated chemical etching,” Jpn. J. Appl. Phys. 54, 128002 (2015).

Suzuki, H.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88(6), 061101 (2006).

Tadanaga, O.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88(6), 061101 (2006).

Takei, R.

Talukder, J. R.

Tam, W. K.

P. K. Lim and W. K. Tam, “Local vibrational modes and the optical absorption tail of amorphous silicon,” Int. J. Mod. Phys. B 20(25 & 27), 4261–4266 (2006).

Tanaka, K.

K. Tanaka and T. Suhara, “Fabrication of 0.7 μm2 ridge waveguide in ion-sliced LiNbO3 by proton-exchange accelerated chemical etching,” Jpn. J. Appl. Phys. 54, 128002 (2015).

Trieu, H. K.

Tsuda, S.

Y. Hishikawa, N. Nakamuru, S. Tsuda, S. Nakano, Y. Kishi, and Y. Kuwano, “Interference-free determination of the optical absorption coefficient and the optical gap of amorphous silicon thin films,” Jpn. J. Appl. Phys. 30(5), 1008–1014 (1991).

Tumenas, S.

Tünnermann, A.

Uchida, N.

Urino, Y.

van der Drift, E. W. J. M.

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002).

Venkataraman, V.

Veprek, S.

Z. Iqbal and S. Veprek, “Raman scattering from hydrogenated microcrystalline and amorphous silicon,” J. Phys. C Solid State Phys. 15(2), 377–392 (1982).

Volet, N.

Wang, C.

Wang, L.

Wang, M.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5(18), 8072 (2015).
[PubMed]

Wang, N.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5(18), 8072 (2015).
[PubMed]

Wang, Y.

Wang, Z.

L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Commun. 330(1), 40–44 (2014).

Weber, T.

Weigel, P. O.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics,” Sci. Rep. 6, 22301 (2016).
[PubMed]

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).

Wiggers, H.

S. Niesar, A. R. Stegner, R. N. Pereira, M. Hoeb, H. Wiggers, M. S. Brandt, and M. Stutzmann, “Defect reduction in silicon nanoparticles by low-temperature vacuum annealing,” Appl. Phys. Lett. 96(19), 193112 (2010).

Wood, M. G.

Wu, D.

G. H. Shao, Y. H. Bai, G. X. Cui, C. Li, X. B. Qiu, D. Q. Geng, D. Wu, and Y. Q. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).

Xiong, X.

Xu, L.

S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 Thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photonics Technol. Lett. 28(7), 736–739 (2016).

Xu, Y.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5(18), 8072 (2015).
[PubMed]

Yamamoto, T.

Yanagawa, T.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88(6), 061101 (2006).

Zervas, M.

Zhang, H.

S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 Thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photonics Technol. Lett. 28(7), 736–739 (2016).

Zijlstra, T.

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002).

AIP Adv. (2)

G. H. Shao, J. Song, Y. P. Ruan, G. X. Cui, and Y. Q. Lu, “Tunable dual-wavelength filter and its group delay dispersion in domain-engineered lithium niobate,” AIP Adv. 6(12), 125034 (2016).

G. H. Shao, Y. H. Bai, G. X. Cui, C. Li, X. B. Qiu, D. Q. Geng, D. Wu, and Y. Q. Lu, “Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses,” AIP Adv. 6(7), 075011 (2016).

Appl. Opt. (2)

Appl. Phys. B (2)

W. Qiu, M. P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118(2), 261–267 (2015).

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).

Appl. Phys. Lett. (3)

S. Niesar, A. R. Stegner, R. N. Pereira, M. Hoeb, H. Wiggers, M. S. Brandt, and M. Stutzmann, “Defect reduction in silicon nanoparticles by low-temperature vacuum annealing,” Appl. Phys. Lett. 96(19), 193112 (2010).

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88(6), 061101 (2006).

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).

Appl. Phys., A Mater. Sci. Process. (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).

IEEE Photonics Technol. Lett. (1)

S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 Thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photonics Technol. Lett. 28(7), 736–739 (2016).

Int. J. Mod. Phys. B (1)

P. K. Lim and W. K. Tam, “Local vibrational modes and the optical absorption tail of amorphous silicon,” Int. J. Mod. Phys. B 20(25 & 27), 4261–4266 (2006).

J. Appl. Phys. (1)

M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys. 92(2), 649–653 (2002).

J. Comput. Electron. (1)

D. Labukhin and X. Li, “Three-dimensional finite-difference time-domain simulation of facet reflection through parallel computing,” J. Comput. Electron. 4(1‒2), 15–19 (2005).

J. Lightwave Technol. (2)

J. Non-Cryst. Solids (1)

J. Robertson, “Growth mechanism of hydrogenated amorphous silicon,” J. Non-Cryst. Solids 266(1), 79–83 (2000).

J. Phys. C Solid State Phys. (1)

Z. Iqbal and S. Veprek, “Raman scattering from hydrogenated microcrystalline and amorphous silicon,” J. Phys. C Solid State Phys. 15(2), 377–392 (1982).

Jpn. J. Appl. Phys. (2)

Y. Hishikawa, N. Nakamuru, S. Tsuda, S. Nakano, Y. Kishi, and Y. Kuwano, “Interference-free determination of the optical absorption coefficient and the optical gap of amorphous silicon thin films,” Jpn. J. Appl. Phys. 30(5), 1008–1014 (1991).

K. Tanaka and T. Suhara, “Fabrication of 0.7 μm2 ridge waveguide in ion-sliced LiNbO3 by proton-exchange accelerated chemical etching,” Jpn. J. Appl. Phys. 54, 128002 (2015).

Laser Photonics Rev. (1)

G. Poberaj, H. Hu, W. Sohler, and P. Gunter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).

Opt. Commun. (1)

L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Commun. 330(1), 40–44 (2014).

Opt. Express (11)

S. Li, L. Cai, Y. Wang, Y. Jiang, and H. Hu, “Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe,” Opt. Express 23(19), 24212–24219 (2015).
[PubMed]

V. Donzella, A. Sherwali, J. Flueckiger, S. M. Grist, S. T. Fard, and L. Chrostowski, “Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides,” Opt. Express 23(4), 4791–4803 (2015).
[PubMed]

M. G. Wood, J. R. Burr, and R. M. Reano, “7 nm/V DC tunability and millivolt scale switching in silicon carrier injection degenerate band edge resonators,” Opt. Express 24(20), 23481–23493 (2016).
[PubMed]

R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub-1 dB/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect,” Opt. Express 22(4), 4779–4788 (2014).
[PubMed]

Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18(6), 5668–5673 (2010).
[PubMed]

L. Chen, J. Chen, J. Nagy, and R. M. Reano, “Highly linear ring modulator from hybrid silicon and lithium niobate,” Opt. Express 23(10), 13255–13264 (2015).
[PubMed]

L. Cai, Y. Kang, and H. Hu, “Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film,” Opt. Express 24(5), 4640 (2016).

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
[PubMed]

A. Rao, M. Malinowski, A. Honardoost, J. R. Talukder, P. Rabiei, P. Delfyett, and S. Fathpour, “Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon,” Opt. Express 24(26), 29941–29947 (2016).
[PubMed]

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X. F. Ren, G. C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25(6), 6963–6973 (2017).
[PubMed]

L. Cai, R. Kong, Y. Wang, and H. Hu, “Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film,” Opt. Express 23(22), 29211–29221 (2015).
[PubMed]

Opt. Lett. (5)

Opt. Mater. Express (1)

Optica (2)

Sci. Rep. (2)

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics,” Sci. Rep. 6, 22301 (2016).
[PubMed]

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5(18), 8072 (2015).
[PubMed]

Surf. Coat. Tech. (1)

W. J. Liu, S. Chen, H. Y. Cheng, J. D. Lin, and S. L. Fu, “Fabrication of amorphous silicon films for arrayed waveguide grating application,” Surf. Coat. Tech. 201(15), 6581–6584 (2007).

Thin Solid Films (1)

Y. S. Lee, S. S. Lee, W. G. Lee, and W. H. Steier, “Fabrication of free standing LiNbO3 single crystal micro-platelets and their integration to Si-on-insulator platforms,” Thin Solid Films 519(13), 4271–4276 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic cross-section of the Si-LNOI waveguide. Simulated electric field intensity distributions of the fundamental (b) q-TE mode and (c) q-TM mode in a 2-μm-wide waveguide at 1.55 μm.

Fig. 2
Fig. 2

Single-mode conditions for the Si-LNOI waveguides at a wavelength of 1550 nm.

Fig. 3
Fig. 3

Relationship between the optical power distribution in a 500-nm LN layer and the thickness (T) and width (W) of an a-Si loading strip for the (a) q-TE mode and (b) q-TM mode.

Fig. 4
Fig. 4

Relationship between the calculated mode size and the width of an a-Si loading strip for the q-TE mode and q-TM mode.

Fig. 5
Fig. 5

Fabrication process for an Si-LNOI waveguide.

Fig. 6
Fig. 6

Optical microscopy images of (a) the top view, (b) the enlarged view of a 2-μm-wide a-Si loading strip with a polished end face and (c) the cross-section of the sample. SEM images of (d) the top view of a 2-μm-wide a-Si loading strip and (e) the cross-section of a 7-μm-wide a-Si strip-loading waveguide. The thicknesses of the a-Si layer, the LN thin film and the SiO2 layer were 70 nm, 500 nm and 2 μm, respectively.

Fig. 7
Fig. 7

Schematic of the coupling system.

Fig. 8
Fig. 8

Normalized transmission of (a) q-TE and (b) q-TM polarized light in a 2-μm-wide Si-LNOI waveguide as a function of wavelength.

Fig. 9
Fig. 9

AFM images of an a-Si loading strip (a) before and (b) after annealing at 300°C for 1 hour.

Fig. 10
Fig. 10

(a) Low magnification cross-section TEM image of the Si-LNOI sample; HRTEM micrograph of the interface between the a-Si thin film and the LN thin film (b) before and (c) after annealing at 300°C for 1 hour; (d) HRTEM micrograph of the interface between the LN thin film and the SiO2 cladding layer.

Tables (1)

Tables Icon

Table 1 Si deposition parameters

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α= 4.34 L ( lnRln R ~ ), where R ˜ = 1 K ( 1 1 K 2 ) and K= I max I min I max + I min