Abstract

We report on the fabrication of channel waveguide by a femtosecond laser (fs-laser) micromachining system in a Pr:LiYF4 (Pr:YLF) crystal. The micro Raman (μ-Raman) spectra and scanning confocal fluorescence imaging investigations of the depressed cladding structure indicated that slight changes (with respect to widths of the emission lines and spectral positions) have been generated in the laser-modification region. In the meantime, the possible relation of these changes with the waveguide formation was analyzed. The microphotoluminescence (μ-PL) experiment manifests an excellent preservation of the fluorescence properties of the Pr3+ ions in the guiding area. π-polarized waveguide lasers at wavelengths of 605 nm and 720 nm were achieved with a pumping laser at a wavelength of 444.5 nm. The maximum output power of the lasers achieved was 66 mW and 47 mW with slope efficiencies of 9.5% and 6.3%.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance

Hongliang Liu, Yuechen Jia, Javier Rodríguez Vázquez de Aldana, Daniel Jaque, and Feng Chen
Opt. Express 20(17) 18620-18629 (2012)

Femtosecond laser micromachining of lithium niobate depressed cladding waveguides

Ruiyun He, Qiang An, Yuechen Jia, Gabriel R. Castillo-Vega, Javier R. Vázquez de Aldana, and Feng Chen
Opt. Mater. Express 3(9) 1378-1384 (2013)

Continuous wave laser operation in Nd:GGG depressed tubular cladding waveguides produced by inscription of femtosecond laser pulses

Hongliang Liu, Yuechen Jia, Feng Chen, and Javier R. Vázquez de Aldana
Opt. Mater. Express 3(2) 278-283 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Zoubir, L. Sha, K. Richardson, and M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).
  2. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
  3. K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
  4. D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
  5. F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
  6. T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Willams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), L42–L46 (2014).
  7. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
  8. J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: enableing monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi., A Appl. Mater. Sci. 208(2), 276–283 (2011).
  9. E. J. Murphy, Integrated Optical Circuits and Components (Marcel Dekker, 1999).
  10. F. Chen, “Micro- and submicrometric waveguiding structures in optical cystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
  11. Y. Jia, N. Dong, F. Chen, J. R. Vázquez de Aldana, Sh. Akhmadaliev, and S. Zhou, “Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation,” Opt. Express 20(9), 9763–9768 (2012).
    [PubMed]
  12. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [PubMed]
  13. Y. Tan, C. Cheng, S. Akhmadaliev, S. Zhou, and F. Chen, “Nd:YAG waveguide laser Q-switched by evanescent-field interaction with graphene,” Opt. Express 22(8), 9101–9106 (2014).
    [PubMed]
  14. Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett. 33(19), 2281–2283 (2008).
    [PubMed]
  15. S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
  16. D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
  17. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
    [PubMed]
  18. C. Zhang, N. Dong, J. Yang, F. Chen, J. R. Vázquez de Aldana, and Q. Lu, “Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription,” Opt. Express 19(13), 12503–12508 (2011).
    [PubMed]
  19. S. Müller, T. Calmano, P. Metz, N. O. Hansen, C. Kränkel, and G. Huber, “Femtosecond-laser-written diode-pumped Pr:LiYF4 waveguide laser,” Opt. Lett. 37(24), 5223–5225 (2012).
    [PubMed]
  20. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
  21. A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express 19(18), 17820–17833 (2011).
    [PubMed]
  22. N. N. Dong, F. Chen, and J. R. Vázquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phy. Status solidi RRL 6(7), 306– 308 (2012).
  23. H. Liu, C. Cheng, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Graphene-based Y-branch laser in femtosecond laser written Nd:YAG waveguides,” Opt. Express 23(8), 9730–9735 (2015).
    [PubMed]
  24. Y. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8 GHz graphene-based 2-μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).
  25. Y. C. Jia, F. Chen, and J. R. Vázquez de Aldana, “Efficient continuous-wave laser operation at 1064 nm in Nd:YVO4 cladding waveguides produced by femtosecond laser inscription,” Opt. Express 20(15), 16801–16806 (2012).
  26. H. L. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Efficient laser emission from cladding waveguide inscribed in Nd:GdVO4 crystal by direct femtosecond laser writing,” Opt. Lett. 39(15), 4533–4536 (2014).
    [PubMed]
  27. A. Ródenas, A. Benayas, J. R. Macdonald, J. Zhang, D. Y. Tang, D. Jaque, and A. K. Kar, “Direct laser writing of near-IR step-index buried channel waveguides in rare earth doped YAG,” Opt. Lett. 36(17), 3395–3397 (2011).
    [PubMed]
  28. R. Moncorgé, L. D. Merkle, and B. Zandi, “UV-visible lasers based on rare-earth ions,” MRS Bull. 24(9), 21–26 (1999).
  29. Y. Cheng, B. Xu, B. Qu, S. Luo, H. Yang, H. Xu, and Z. Cai, “Comparative study on diode-pumped continuous wave laser at 607 nm using differently doped Pr3+:LiYF4 crystals and wavelength tuning to 604 nm,” Appl. Opt. 53(33), 7898–7902 (2014).
    [PubMed]
  30. C. Kränkel, D. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue; semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2015).
  31. F. Starecki, W. Bolaños, A. Braud, J. L. Doualan, G. Brasse, A. Benayad, V. Nazabal, B. Xu, R. Moncorgé, and P. Camy, “Red and orange Pr3+:LiYF4 planar waveguide laser,” Opt. Lett. 38(4), 455–457 (2013).
    [PubMed]

2015 (3)

Y. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8 GHz graphene-based 2-μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

C. Kränkel, D. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue; semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2015).

H. Liu, C. Cheng, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Graphene-based Y-branch laser in femtosecond laser written Nd:YAG waveguides,” Opt. Express 23(8), 9730–9735 (2015).
[PubMed]

2014 (9)

Y. Tan, C. Cheng, S. Akhmadaliev, S. Zhou, and F. Chen, “Nd:YAG waveguide laser Q-switched by evanescent-field interaction with graphene,” Opt. Express 22(8), 9101–9106 (2014).
[PubMed]

H. L. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Efficient laser emission from cladding waveguide inscribed in Nd:GdVO4 crystal by direct femtosecond laser writing,” Opt. Lett. 39(15), 4533–4536 (2014).
[PubMed]

Y. Cheng, B. Xu, B. Qu, S. Luo, H. Yang, H. Xu, and Z. Cai, “Comparative study on diode-pumped continuous wave laser at 607 nm using differently doped Pr3+:LiYF4 crystals and wavelength tuning to 604 nm,” Appl. Opt. 53(33), 7898–7902 (2014).
[PubMed]

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).

K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Willams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), L42–L46 (2014).

2013 (1)

2012 (5)

2011 (4)

2010 (1)

2009 (2)

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).

2008 (2)

2003 (1)

A. Zoubir, L. Sha, K. Richardson, and M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).

1999 (1)

R. Moncorgé, L. D. Merkle, and B. Zandi, “UV-visible lasers based on rare-earth ions,” MRS Bull. 24(9), 21–26 (1999).

1996 (1)

Akhmadaliev, S.

Akhmadaliev, Sh.

Alibart, O.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Willams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), L42–L46 (2014).

Ams, M.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).

Benayad, A.

Benayas, A.

Bolaños, W.

Brasse, G.

Braud, A.

Brown, G.

Y. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8 GHz graphene-based 2-μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

Cai, Z.

Calmano, T.

Camy, P.

Chen, F.

Y. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8 GHz graphene-based 2-μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

H. Liu, C. Cheng, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Graphene-based Y-branch laser in femtosecond laser written Nd:YAG waveguides,” Opt. Express 23(8), 9730–9735 (2015).
[PubMed]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).

H. L. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Efficient laser emission from cladding waveguide inscribed in Nd:GdVO4 crystal by direct femtosecond laser writing,” Opt. Lett. 39(15), 4533–4536 (2014).
[PubMed]

Y. Tan, C. Cheng, S. Akhmadaliev, S. Zhou, and F. Chen, “Nd:YAG waveguide laser Q-switched by evanescent-field interaction with graphene,” Opt. Express 22(8), 9101–9106 (2014).
[PubMed]

Y. C. Jia, F. Chen, and J. R. Vázquez de Aldana, “Efficient continuous-wave laser operation at 1064 nm in Nd:YVO4 cladding waveguides produced by femtosecond laser inscription,” Opt. Express 20(15), 16801–16806 (2012).

Y. Jia, N. Dong, F. Chen, J. R. Vázquez de Aldana, Sh. Akhmadaliev, and S. Zhou, “Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation,” Opt. Express 20(9), 9763–9768 (2012).
[PubMed]

N. N. Dong, F. Chen, and J. R. Vázquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phy. Status solidi RRL 6(7), 306– 308 (2012).

F. Chen, “Micro- and submicrometric waveguiding structures in optical cystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).

C. Zhang, N. Dong, J. Yang, F. Chen, J. R. Vázquez de Aldana, and Q. Lu, “Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription,” Opt. Express 19(13), 12503–12508 (2011).
[PubMed]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
[PubMed]

Cheng, C.

Cheng, Y.

Choudhury, D.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).

Clark, A. S.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Willams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), L42–L46 (2014).

Collins, M. J.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Willams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), L42–L46 (2014).

Davis, K. M.

Dekker, P.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).

Demetriou, G.

Y. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8 GHz graphene-based 2-μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

Dong, N.

Dong, N. N.

N. N. Dong, F. Chen, and J. R. Vázquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phy. Status solidi RRL 6(7), 306– 308 (2012).

Doualan, J. L.

Dubs, C.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: enableing monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi., A Appl. Mater. Sci. 208(2), 276–283 (2011).

Eggleton, B. J.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Willams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), L42–L46 (2014).

Ferrari, A. C.

Y. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8 GHz graphene-based 2-μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).

Gross, S.

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).

Hansen, N. O.

He, F.

Heinrich, M.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: enableing monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi., A Appl. Mater. Sci. 208(2), 276–283 (2011).

Hilbert, V.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: enableing monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi., A Appl. Mater. Sci. 208(2), 276–283 (2011).

Hirao, K.

Huber, G.

C. Kränkel, D. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue; semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2015).

S. Müller, T. Calmano, P. Metz, N. O. Hansen, C. Kränkel, and G. Huber, “Femtosecond-laser-written diode-pumped Pr:LiYF4 waveguide laser,” Opt. Lett. 37(24), 5223–5225 (2012).
[PubMed]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).

Jaque, D.

Jia, Y.

Jia, Y. C.

Kar, A. K.

Y. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8 GHz graphene-based 2-μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).

A. Ródenas, A. Benayas, J. R. Macdonald, J. Zhang, D. Y. Tang, D. Jaque, and A. K. Kar, “Direct laser writing of near-IR step-index buried channel waveguides in rare earth doped YAG,” Opt. Lett. 36(17), 3395–3397 (2011).
[PubMed]

A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express 19(18), 17820–17833 (2011).
[PubMed]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
[PubMed]

Kränkel, C.

C. Kränkel, D. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue; semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2015).

S. Müller, T. Calmano, P. Metz, N. O. Hansen, C. Kränkel, and G. Huber, “Femtosecond-laser-written diode-pumped Pr:LiYF4 waveguide laser,” Opt. Lett. 37(24), 5223–5225 (2012).
[PubMed]

Liao, Y.

Liu, H.

Liu, H. L.

Love, J. D.

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).

Lu, Q.

Luo, S.

Macdonald, J. R.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).

A. Ródenas, A. Benayas, J. R. Macdonald, J. Zhang, D. Y. Tang, D. Jaque, and A. K. Kar, “Direct laser writing of near-IR step-index buried channel waveguides in rare earth doped YAG,” Opt. Lett. 36(17), 3395–3397 (2011).
[PubMed]

Marshall, G. D.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).

Mary, R.

Y. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8 GHz graphene-based 2-μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

Marzahl, D.

C. Kränkel, D. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue; semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2015).

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).

Meany, T.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Willams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), L42–L46 (2014).

Merkle, L. D.

R. Moncorgé, L. D. Merkle, and B. Zandi, “UV-visible lasers based on rare-earth ions,” MRS Bull. 24(9), 21–26 (1999).

Metz, P.

Metz, P. W.

C. Kränkel, D. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue; semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2015).

Midorikawa, K.

Miura, K.

Moglia, F.

C. Kränkel, D. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue; semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2015).

Moncorgé, R.

Müller, S.

Nazabal, V.

Ngah, L. A.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Willams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), L42–L46 (2014).

Nolte, S.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: enableing monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi., A Appl. Mater. Sci. 208(2), 276–283 (2011).

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).

Petermann, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).

Piper, J. A.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).

Popa, D.

Y. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8 GHz graphene-based 2-μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

Qu, B.

Rademaker, K.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: enableing monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi., A Appl. Mater. Sci. 208(2), 276–283 (2011).

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).

Ren, Y. Y.

Y. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8 GHz graphene-based 2-μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

Richardson, K.

A. Zoubir, L. Sha, K. Richardson, and M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).

Richardson, M.

A. Zoubir, L. Sha, K. Richardson, and M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).

Riedel, R.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: enableing monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi., A Appl. Mater. Sci. 208(2), 276–283 (2011).

Riesen, N.

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).

Ringleb, S.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: enableing monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi., A Appl. Mater. Sci. 208(2), 276–283 (2011).

Rodenas, A.

Ródenas, A.

Romero, C.

Ruske, J. P.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: enableing monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi., A Appl. Mater. Sci. 208(2), 276–283 (2011).

Sha, L.

A. Zoubir, L. Sha, K. Richardson, and M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).

Siebenmorgen, J.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).

Song, J.

Starecki, F.

Steel, M. J.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Willams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), L42–L46 (2014).

Sugimoto, N.

Sugioka, K.

Sun, H.

Tan, Y.

Tang, D. Y.

Tanzilli, S.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Willams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), L42–L46 (2014).

Thomas, J.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: enableing monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi., A Appl. Mater. Sci. 208(2), 276–283 (2011).

Thomson, R. R.

Torrisi, F.

Y. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8 GHz graphene-based 2-μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

Tunnermann, A.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).

Tünnermann, A.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: enableing monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi., A Appl. Mater. Sci. 208(2), 276–283 (2011).

Vázquez de Aldana, J. R.

H. Liu, C. Cheng, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Graphene-based Y-branch laser in femtosecond laser written Nd:YAG waveguides,” Opt. Express 23(8), 9730–9735 (2015).
[PubMed]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).

H. L. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Efficient laser emission from cladding waveguide inscribed in Nd:GdVO4 crystal by direct femtosecond laser writing,” Opt. Lett. 39(15), 4533–4536 (2014).
[PubMed]

Y. Jia, N. Dong, F. Chen, J. R. Vázquez de Aldana, Sh. Akhmadaliev, and S. Zhou, “Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation,” Opt. Express 20(9), 9763–9768 (2012).
[PubMed]

Y. C. Jia, F. Chen, and J. R. Vázquez de Aldana, “Efficient continuous-wave laser operation at 1064 nm in Nd:YVO4 cladding waveguides produced by femtosecond laser inscription,” Opt. Express 20(15), 16801–16806 (2012).

N. N. Dong, F. Chen, and J. R. Vázquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phy. Status solidi RRL 6(7), 306– 308 (2012).

C. Zhang, N. Dong, J. Yang, F. Chen, J. R. Vázquez de Aldana, and Q. Lu, “Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription,” Opt. Express 19(13), 12503–12508 (2011).
[PubMed]

Wang, X.

Willams, R. J.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Willams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), L42–L46 (2014).

Withford, M. J.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Willams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), L42–L46 (2014).

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).

Xu, B.

Xu, H.

Xu, J.

Xu, Z.

Yang, H.

Yang, J.

Zandi, B.

R. Moncorgé, L. D. Merkle, and B. Zandi, “UV-visible lasers based on rare-earth ions,” MRS Bull. 24(9), 21–26 (1999).

Zeil, P.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: enableing monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi., A Appl. Mater. Sci. 208(2), 276–283 (2011).

Zhang, C.

Zhang, J.

Zhou, S.

Zhou, Z.

Zoubir, A.

A. Zoubir, L. Sha, K. Richardson, and M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).

Appl. Opt. (1)

Appl. Phys. B (1)

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).

Appl. Phys., A Mater. Sci. Process. (1)

A. Zoubir, L. Sha, K. Richardson, and M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8 GHz graphene-based 2-μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

Laser Photonics Rev. (8)

C. Kränkel, D. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of the blue; semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2015).

F. Chen, “Micro- and submicrometric waveguiding structures in optical cystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Willams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), L42–L46 (2014).

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).

Light Sci. Appl. (1)

K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).

MRS Bull. (1)

R. Moncorgé, L. D. Merkle, and B. Zandi, “UV-visible lasers based on rare-earth ions,” MRS Bull. 24(9), 21–26 (1999).

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).

Opt. Express (7)

Opt. Lett. (6)

Phy. Status solidi RRL (1)

N. N. Dong, F. Chen, and J. R. Vázquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phy. Status solidi RRL 6(7), 306– 308 (2012).

Phys. Status Solidi., A Appl. Mater. Sci. (1)

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: enableing monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi., A Appl. Mater. Sci. 208(2), 276–283 (2011).

Other (1)

E. J. Murphy, Integrated Optical Circuits and Components (Marcel Dekker, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a)Sketch map of the structure in Pr:YLF crystal, and microscope images of the femtosecond-laser micromachined channel waveguides with diameter of 30 μm (b)under top view and (c)cross-section view.

Fig. 2
Fig. 2

Schematic diagram for the laser pumping setup. PL: pump laser; BC: Beam collimator; P1: polarizer; P2: half-wave plate; L1: coupling convex lens; Ci and Co: pump mirror and output mirror; L2: coupling lens; FI: filter; AP: aperture

Fig. 3
Fig. 3

μ-Raman spectral collected from the bulk material (green line), the waveguide (red line) and the filament (blue line) excited by a cw 532 nm laser.

Fig. 4
Fig. 4

Room-temperature fluorescence emission spectra related to the 3PJ3H6 and 3PJ3F2 transition of Pr3+ ions obtained from the fs-laser inscribed cladding waveguides in Pr:YLF crystal(red line), bulk of the sample (green line) and the filaments (blue line).

Fig. 5
Fig. 5

2D spatial distribution of the emitted intensity of the Pr3+ emission lines obtained from the waveguide with a diameter of 30 μm cross section (a) and enlarged part of the damaged tracks (b). (c) and (d) correspond to the 3D spatial distribution, respectively.

Fig. 6
Fig. 6

Measured (a) 2D and (b) 3D waveguide laser modal distributions of circular waveguide under 444.5 nm optical pump, and the corresponding simulated 2D and 3D laser modes.

Fig. 7
Fig. 7

(a) The cw laser emission spectrum from the Pr:YLF crystal waveguide. The FWHM of the lasers at 605 and 720 nm are 1.8 and 1.4 nm, respectively. (b) The cw waveguide laser output power at 605 nm (red solid line) and 720 nm (green solid line) as a function of the input power.

Tables (1)

Tables Icon

Table 1 Results of the Raman spectra of the bulk crystal, the waveguide and the filament

Metrics