Abstract

In this work, we present the three-dimensional reconstruction of the subsurface damage (SSD) within the optical components at the level of several microns with a self-referenced spectral domain optical coherence tomography (SDOCT) system, from which the quantitative information, including the maximum depth, the cluster depth, the shape, the size and the damage density, can be acquired. First, to compare the actual maximum depths with the ones computed by the formulas for predicting the maximum depth, the theoretical and empirical formulas proposed so far were summarized. The values of the maximum depths of SSD within eight samples were then measured. It was found that the empirical relationship between the maximum depth and the abrasive size is reliable for the situation where SSD is only generated by the abrasives, and other theoretical and empirical formulas are more suitable for calculating the maximum depth of SSD within optical components with the surface roughness at several microns. For optical components with smooth surfaces, our self- referenced SDOCT system is able to provide actual values of the maximum depths. Second, the three layer structure of the ground sample can be clearly identified from the cross sectional images, which is in agreement with the three layer model. Third, the quantitative information of SSD may provide a new guidance for the study of the laser-induced damage threshold (LIDT), which is an important factor for evaluating the lifetime of optical components and is dependent on the physical properties of material. All these results are very helpful for quantitatively evaluating the quality of the optical elements and suggesting a new standard in which the quality of optical components in the manufacturing process should also be evaluated by these parameters of SSD.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A method for evaluating subsurface damage in optical glass

Yaguo Li, Hao Huang, Ruiqing Xie, Haibo Li, Yan Deng, Xianhua Chen, Jian Wang, Qiao Xu, Wei Yang, and Yinbiao Guo
Opt. Express 18(16) 17180-17186 (2010)

References

  • View by:
  • |
  • |
  • |

  1. B. Lawn, Fracture of Brittle Solids (Cambridge University Press, 1993).
  2. J. Wang, Y. G. Li, and J. H. Han, “Evaluating subsurface damage in optical glasses,” J. Eur. Opt. Soc. 11001, 2–15 (2011).
  3. P. P. Hed, D. F. Edwards, and J. B. Davis, “Subsurface damage in optical materials: origin, measurement and removal,” in Optical Fabrication and Testing Workshop, (Santa Clara, CA, 1988), pp. 1–17.
  4. B. Lawn and R. Wilshaw, “Indentation fracture: principles and applications,” J. Mater. Sci. 10(6), 1049–1081 (1975).
  5. R. M. Brusasco, B. M. Penetrante, and J. E. Peterson, “UV-laser conditioning for reduction of 351-nm damage initiation in fused silica,” International Society for Optics and Photonics, 48–55 (2002).
  6. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
    [PubMed]
  7. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12(4), 661–664 (1973).
    [PubMed]
  8. W. A. Wely, “Structure of surface layers and their role in glass technology,” J. Non-Cryst. Solids 19, 1–25 (1975).
  9. T. V. Vladimirova, N. Y. Gorban, and V. P. Maslov, “Investigation of the optical properties and structure of the surface layer of pyroceramic,” Sov. J. Opt. Technol. 46(9), 537–540 (1979).
  10. S. N. Shafrir, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage and microstructure development in precision microground hard ceramics using magnetorheological finishing spots,” Appl. Opt. 46(22), 5500–5515 (2007).
    [PubMed]
  11. H. Cheng, Z. Dong, X. Ye, and H. Y. Tam, “Subsurface damages of fused silica developed during deterministic small tool polishing,” Opt. Express 22(15), 18588–18603 (2014).
    [PubMed]
  12. K. E. Puttick, C. Jeynes, and L. Whitmore, “Surface damage in nanoground silicon,” Proc. IMECH. 49–51 (1992).
  13. T. Shibata, A. Ono, and K. Kurihara, “Cross-section transmission electron microscope observations of diamond-turned single-crystal Si surfaces,” Appl. Phys. Lett. 65(20), 2553–2555 (1994).
  14. K. R. Fine, R. Garbe, and T. Gip, “Non-destructive real-time direct measurement of subsurface damage,” Proc. SPIE 5799, 105–110 (2005).
  15. J. Neauport, P. Cormont, P. Legros, C. Ambard, and J. Destribats, “Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy,” Opt. Express 17(5), 3543–3554 (2009).
    [PubMed]
  16. O. W. Fähnle, T. Wons, E. Koch, S. Debruyne, M. Meeder, S. M. Booij, and J. J. Braat, “iTIRM as a tool for qualifying polishing processes,” Appl. Opt. 41(19), 4036–4038 (2002).
    [PubMed]
  17. R. J. van der Bijl, O. W. Fähnle, H. van Brug, and J. J. Braat, “In-process monitoring of grinding and polishing of optical surfaces,” Appl. Opt. 39(19), 3300–3303 (2000).
    [PubMed]
  18. J. Wang and R. L. Maier, “Quasi-Brewster angle technique for evaluating the quality of optical surfaces,” Proc. SPIE 5375, 1286–1294 (2004).
  19. U. Bismayer, E. Brinksmeier, and B. Güttler, “Measurement of subsurface damage in silicon wafers,” Precis. Eng. 16(2), 139–144 (1994).
  20. H. K. Tonshoff, E. Brinksmeier, and F. Hetz, “Detection of microcracks,” CIRP Ann. 36(2), 545–552 (1987).
  21. Y. Gogotsi, C. Baek, and F. Kirscht, “Raman microspectroscopy study of processing-induced phase transformations and residual stress in silicon,” Semicond. Sci. Technol. 14(10), 936 (1999).
  22. X. Wu, W. Gao, and Y. He, “Estimation of parameters for evaluating subsurface microcracks in glass with in-line digital holographic microscopy,” Appl. Opt. 55(3), A32–A42 (2016).
    [PubMed]
  23. G. De Luca, R. Breedijk, R. Hoebe, S. Stallinga, and E. Manders, “Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity,” Methods Appl. Fluoresc. 5(1), 015002 (2017).
    [PubMed]
  24. G. Hä Usler and M. W. Lindner, “Coherence radar and spectral radar-new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
    [PubMed]
  25. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. EI-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995).
  26. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [PubMed]
  27. S. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express 10(25), 1444–1450 (2002).
    [PubMed]
  28. X. Wu and W. Gao, “Dispersion analysis in micron resolution spectral domain optical coherence tomography,” JOSA B 34(1), 169–177 (2017).
  29. J. C. Lambropoulos, S. D. Jacobs, and J. Ruckman, “Material removal mechanisms from grinding to polishing,” Ceram. Trans 102, 113–128 (1999).
  30. D. B. Marshall, “Geometrical effects in elastic/plastic indentation,” J. Am. Ceram. Soc. 67(1), 57–60 (1984).
  31. P. E. Miller, T. I. Suratwala, and L. L. Wong, “The distribution of subsurface damage in fused silica,” International Society for Optics and Photonics 25, 599101 (2005).
  32. S. Li, Z. Wang, and Y. Wu, “Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes,” J. Mater. Process. Technol. 205(1), 34–41 (2008).
  33. J. A. Randi, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage in some single crystalline optical materials,” Appl. Opt. 44(12), 2241–2249 (2005).
    [PubMed]
  34. J. C. Lambropoulos, Y. Li, P. D. Funkenbusch, and J. L. Ruckman, “Noncontact estimate of grinding-induced subsurface damage,” Proc. SPIE 3782, 41–50 (1999).
  35. J. Neauport, J. Destribats, C. Maunier, C. Ambard, P. Cormont, B. Pintault, and O. Rondeau, “Loose abrasive slurries for optical glass lapping,” Appl. Opt. 49(30), 5736–5745 (2010).
    [PubMed]
  36. F. W. Preston, “Structure of abraded glass surfaces,” Trans. Opt. Soc. 23(3), 141–164 (1922).
  37. N. N. Kachalov, Principles of Glass Grinding and Polishing Processes (Academy of Sciences, 1946).
  38. F. K. Aleinikov, “The Effect of Certain Physical and Mechanical Properties on the Grinding of Brittle Materials,” Sov. Phys. Tech. Phys. 2(12), 2529–2538 (1957).
  39. F. K. Aleinikov, “The influence of abrasive powder microhardness on the values of the coefficients of volume removal,” Sov. Phys. Tech. Phys. 2(3), 505–511 (1957).
  40. P. P. Hed and D. F. Edwards, “Optical glass fabrication technology. 2: Relationship between surface roughness and subsurface damage,” Appl. Opt. 26(21), 4677–4680 (1987).
    [PubMed]
  41. Z. Dong, H. Cheng, X. Ye, and H. Y. Tam, “Subsurface damage of fused silica lapped by fixed-abrasive diamond pellets,” Appl. Opt. 53(26), 5841–5849 (2014).
    [PubMed]
  42. T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52), 5601–5617 (2006).
  43. J. C. Lambropoulos, “From abrasive size to subsurface damage in grinding,” in Optical fabrication and testing, R. Parks, ed. (Optical Society of America, 2000).
  44. J. B. Johnson, D. W. Kim, R. E. Parks, and J. H. Burge, “New approach for pre-polish grinding with low subsurface damage,” Proc. SPIE 8126, 81261E (2011).
  45. Z. J. Pei, S. R. Billingsley, and S. Miura, “Grinding induced subsurface cracks in silicon wafers,” Int. J. Mach. Tools Manuf. 39(7), 1103–1116 (1999).
  46. B. R. Lawn, A. G. Evans, and D. B. Marshall, “Elastic/plastic indentation damage in ceramics: the median/radial crack system,” J. Am. Ceram. Soc. 63(9–10), 574–581 (1982).
  47. T. Mahmoud, J. Tamaki, and J. Yan, “Three-dimensional shape modeling of diamond abrasive grains measured by a scanning laser microscope,” Key Eng. Mater. 238, 131–136 (2003).
  48. D.W. Camp, M.R. Kozlowski and L.M. Sheehan,“Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Int. Soc. Opt. Photon. 356–364 (1998).

2017 (2)

G. De Luca, R. Breedijk, R. Hoebe, S. Stallinga, and E. Manders, “Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity,” Methods Appl. Fluoresc. 5(1), 015002 (2017).
[PubMed]

X. Wu and W. Gao, “Dispersion analysis in micron resolution spectral domain optical coherence tomography,” JOSA B 34(1), 169–177 (2017).

2016 (1)

2014 (2)

2011 (2)

J. Wang, Y. G. Li, and J. H. Han, “Evaluating subsurface damage in optical glasses,” J. Eur. Opt. Soc. 11001, 2–15 (2011).

J. B. Johnson, D. W. Kim, R. E. Parks, and J. H. Burge, “New approach for pre-polish grinding with low subsurface damage,” Proc. SPIE 8126, 81261E (2011).

2010 (1)

2009 (1)

2008 (1)

S. Li, Z. Wang, and Y. Wu, “Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes,” J. Mater. Process. Technol. 205(1), 34–41 (2008).

2007 (1)

2006 (1)

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52), 5601–5617 (2006).

2005 (3)

J. A. Randi, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage in some single crystalline optical materials,” Appl. Opt. 44(12), 2241–2249 (2005).
[PubMed]

K. R. Fine, R. Garbe, and T. Gip, “Non-destructive real-time direct measurement of subsurface damage,” Proc. SPIE 5799, 105–110 (2005).

P. E. Miller, T. I. Suratwala, and L. L. Wong, “The distribution of subsurface damage in fused silica,” International Society for Optics and Photonics 25, 599101 (2005).

2004 (2)

J. Wang and R. L. Maier, “Quasi-Brewster angle technique for evaluating the quality of optical surfaces,” Proc. SPIE 5375, 1286–1294 (2004).

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[PubMed]

2003 (2)

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
[PubMed]

T. Mahmoud, J. Tamaki, and J. Yan, “Three-dimensional shape modeling of diamond abrasive grains measured by a scanning laser microscope,” Key Eng. Mater. 238, 131–136 (2003).

2002 (2)

2000 (1)

1999 (4)

J. C. Lambropoulos, Y. Li, P. D. Funkenbusch, and J. L. Ruckman, “Noncontact estimate of grinding-induced subsurface damage,” Proc. SPIE 3782, 41–50 (1999).

Z. J. Pei, S. R. Billingsley, and S. Miura, “Grinding induced subsurface cracks in silicon wafers,” Int. J. Mach. Tools Manuf. 39(7), 1103–1116 (1999).

Y. Gogotsi, C. Baek, and F. Kirscht, “Raman microspectroscopy study of processing-induced phase transformations and residual stress in silicon,” Semicond. Sci. Technol. 14(10), 936 (1999).

J. C. Lambropoulos, S. D. Jacobs, and J. Ruckman, “Material removal mechanisms from grinding to polishing,” Ceram. Trans 102, 113–128 (1999).

1998 (1)

G. Hä Usler and M. W. Lindner, “Coherence radar and spectral radar-new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[PubMed]

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. EI-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995).

1994 (2)

T. Shibata, A. Ono, and K. Kurihara, “Cross-section transmission electron microscope observations of diamond-turned single-crystal Si surfaces,” Appl. Phys. Lett. 65(20), 2553–2555 (1994).

U. Bismayer, E. Brinksmeier, and B. Güttler, “Measurement of subsurface damage in silicon wafers,” Precis. Eng. 16(2), 139–144 (1994).

1987 (2)

1984 (1)

D. B. Marshall, “Geometrical effects in elastic/plastic indentation,” J. Am. Ceram. Soc. 67(1), 57–60 (1984).

1982 (1)

B. R. Lawn, A. G. Evans, and D. B. Marshall, “Elastic/plastic indentation damage in ceramics: the median/radial crack system,” J. Am. Ceram. Soc. 63(9–10), 574–581 (1982).

1979 (1)

T. V. Vladimirova, N. Y. Gorban, and V. P. Maslov, “Investigation of the optical properties and structure of the surface layer of pyroceramic,” Sov. J. Opt. Technol. 46(9), 537–540 (1979).

1975 (2)

W. A. Wely, “Structure of surface layers and their role in glass technology,” J. Non-Cryst. Solids 19, 1–25 (1975).

B. Lawn and R. Wilshaw, “Indentation fracture: principles and applications,” J. Mater. Sci. 10(6), 1049–1081 (1975).

1973 (1)

1957 (2)

F. K. Aleinikov, “The Effect of Certain Physical and Mechanical Properties on the Grinding of Brittle Materials,” Sov. Phys. Tech. Phys. 2(12), 2529–2538 (1957).

F. K. Aleinikov, “The influence of abrasive powder microhardness on the values of the coefficients of volume removal,” Sov. Phys. Tech. Phys. 2(3), 505–511 (1957).

1922 (1)

F. W. Preston, “Structure of abraded glass surfaces,” Trans. Opt. Soc. 23(3), 141–164 (1922).

Aleinikov, F. K.

F. K. Aleinikov, “The Effect of Certain Physical and Mechanical Properties on the Grinding of Brittle Materials,” Sov. Phys. Tech. Phys. 2(12), 2529–2538 (1957).

F. K. Aleinikov, “The influence of abrasive powder microhardness on the values of the coefficients of volume removal,” Sov. Phys. Tech. Phys. 2(3), 505–511 (1957).

Ambard, C.

Baek, C.

Y. Gogotsi, C. Baek, and F. Kirscht, “Raman microspectroscopy study of processing-induced phase transformations and residual stress in silicon,” Semicond. Sci. Technol. 14(10), 936 (1999).

Billingsley, S. R.

Z. J. Pei, S. R. Billingsley, and S. Miura, “Grinding induced subsurface cracks in silicon wafers,” Int. J. Mach. Tools Manuf. 39(7), 1103–1116 (1999).

Bismayer, U.

U. Bismayer, E. Brinksmeier, and B. Güttler, “Measurement of subsurface damage in silicon wafers,” Precis. Eng. 16(2), 139–144 (1994).

Bloembergen, N.

Booij, S. M.

Bouma, B. E.

Braat, J. J.

Breedijk, R.

G. De Luca, R. Breedijk, R. Hoebe, S. Stallinga, and E. Manders, “Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity,” Methods Appl. Fluoresc. 5(1), 015002 (2017).
[PubMed]

Brinksmeier, E.

U. Bismayer, E. Brinksmeier, and B. Güttler, “Measurement of subsurface damage in silicon wafers,” Precis. Eng. 16(2), 139–144 (1994).

H. K. Tonshoff, E. Brinksmeier, and F. Hetz, “Detection of microcracks,” CIRP Ann. 36(2), 545–552 (1987).

Burge, J. H.

J. B. Johnson, D. W. Kim, R. E. Parks, and J. H. Burge, “New approach for pre-polish grinding with low subsurface damage,” Proc. SPIE 8126, 81261E (2011).

Carr, C. W.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[PubMed]

Cense, B.

Cheng, H.

Cormont, P.

Davis, J. B.

P. P. Hed, D. F. Edwards, and J. B. Davis, “Subsurface damage in optical materials: origin, measurement and removal,” in Optical Fabrication and Testing Workshop, (Santa Clara, CA, 1988), pp. 1–17.

Davis, P.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52), 5601–5617 (2006).

de Boer, J. F.

De Luca, G.

G. De Luca, R. Breedijk, R. Hoebe, S. Stallinga, and E. Manders, “Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity,” Methods Appl. Fluoresc. 5(1), 015002 (2017).
[PubMed]

Debruyne, S.

Demos, S.

Demos, S. G.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[PubMed]

Destribats, J.

Dong, Z.

Edwards, D. F.

P. P. Hed and D. F. Edwards, “Optical glass fabrication technology. 2: Relationship between surface roughness and subsurface damage,” Appl. Opt. 26(21), 4677–4680 (1987).
[PubMed]

P. P. Hed, D. F. Edwards, and J. B. Davis, “Subsurface damage in optical materials: origin, measurement and removal,” in Optical Fabrication and Testing Workshop, (Santa Clara, CA, 1988), pp. 1–17.

EI-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. EI-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995).

Evans, A. G.

B. R. Lawn, A. G. Evans, and D. B. Marshall, “Elastic/plastic indentation damage in ceramics: the median/radial crack system,” J. Am. Ceram. Soc. 63(9–10), 574–581 (1982).

Fähnle, O. W.

Feit, M. D.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52), 5601–5617 (2006).

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[PubMed]

Fercher, A. F.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. EI-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995).

Fine, K. R.

K. R. Fine, R. Garbe, and T. Gip, “Non-destructive real-time direct measurement of subsurface damage,” Proc. SPIE 5799, 105–110 (2005).

Fujimoto, J.

Funkenbusch, P. D.

J. C. Lambropoulos, Y. Li, P. D. Funkenbusch, and J. L. Ruckman, “Noncontact estimate of grinding-induced subsurface damage,” Proc. SPIE 3782, 41–50 (1999).

Gao, W.

X. Wu and W. Gao, “Dispersion analysis in micron resolution spectral domain optical coherence tomography,” JOSA B 34(1), 169–177 (2017).

X. Wu, W. Gao, and Y. He, “Estimation of parameters for evaluating subsurface microcracks in glass with in-line digital holographic microscopy,” Appl. Opt. 55(3), A32–A42 (2016).
[PubMed]

Garbe, R.

K. R. Fine, R. Garbe, and T. Gip, “Non-destructive real-time direct measurement of subsurface damage,” Proc. SPIE 5799, 105–110 (2005).

Gip, T.

K. R. Fine, R. Garbe, and T. Gip, “Non-destructive real-time direct measurement of subsurface damage,” Proc. SPIE 5799, 105–110 (2005).

Gogotsi, Y.

Y. Gogotsi, C. Baek, and F. Kirscht, “Raman microspectroscopy study of processing-induced phase transformations and residual stress in silicon,” Semicond. Sci. Technol. 14(10), 936 (1999).

Gorban, N. Y.

T. V. Vladimirova, N. Y. Gorban, and V. P. Maslov, “Investigation of the optical properties and structure of the surface layer of pyroceramic,” Sov. J. Opt. Technol. 46(9), 537–540 (1979).

Güttler, B.

U. Bismayer, E. Brinksmeier, and B. Güttler, “Measurement of subsurface damage in silicon wafers,” Precis. Eng. 16(2), 139–144 (1994).

Hä Usler, G.

G. Hä Usler and M. W. Lindner, “Coherence radar and spectral radar-new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[PubMed]

Han, J. H.

J. Wang, Y. G. Li, and J. H. Han, “Evaluating subsurface damage in optical glasses,” J. Eur. Opt. Soc. 11001, 2–15 (2011).

He, Y.

Hed, P. P.

P. P. Hed and D. F. Edwards, “Optical glass fabrication technology. 2: Relationship between surface roughness and subsurface damage,” Appl. Opt. 26(21), 4677–4680 (1987).
[PubMed]

P. P. Hed, D. F. Edwards, and J. B. Davis, “Subsurface damage in optical materials: origin, measurement and removal,” in Optical Fabrication and Testing Workshop, (Santa Clara, CA, 1988), pp. 1–17.

Hetz, F.

H. K. Tonshoff, E. Brinksmeier, and F. Hetz, “Detection of microcracks,” CIRP Ann. 36(2), 545–552 (1987).

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. EI-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995).

Hoebe, R.

G. De Luca, R. Breedijk, R. Hoebe, S. Stallinga, and E. Manders, “Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity,” Methods Appl. Fluoresc. 5(1), 015002 (2017).
[PubMed]

Jacobs, S. D.

Jeynes, C.

K. E. Puttick, C. Jeynes, and L. Whitmore, “Surface damage in nanoground silicon,” Proc. IMECH. 49–51 (1992).

Johnson, J. B.

J. B. Johnson, D. W. Kim, R. E. Parks, and J. H. Burge, “New approach for pre-polish grinding with low subsurface damage,” Proc. SPIE 8126, 81261E (2011).

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. EI-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995).

Kim, D. W.

J. B. Johnson, D. W. Kim, R. E. Parks, and J. H. Burge, “New approach for pre-polish grinding with low subsurface damage,” Proc. SPIE 8126, 81261E (2011).

Kirscht, F.

Y. Gogotsi, C. Baek, and F. Kirscht, “Raman microspectroscopy study of processing-induced phase transformations and residual stress in silicon,” Semicond. Sci. Technol. 14(10), 936 (1999).

Koch, E.

Kurihara, K.

T. Shibata, A. Ono, and K. Kurihara, “Cross-section transmission electron microscope observations of diamond-turned single-crystal Si surfaces,” Appl. Phys. Lett. 65(20), 2553–2555 (1994).

Lambropoulos, J. C.

S. N. Shafrir, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage and microstructure development in precision microground hard ceramics using magnetorheological finishing spots,” Appl. Opt. 46(22), 5500–5515 (2007).
[PubMed]

J. A. Randi, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage in some single crystalline optical materials,” Appl. Opt. 44(12), 2241–2249 (2005).
[PubMed]

J. C. Lambropoulos, S. D. Jacobs, and J. Ruckman, “Material removal mechanisms from grinding to polishing,” Ceram. Trans 102, 113–128 (1999).

J. C. Lambropoulos, Y. Li, P. D. Funkenbusch, and J. L. Ruckman, “Noncontact estimate of grinding-induced subsurface damage,” Proc. SPIE 3782, 41–50 (1999).

Lawn, B.

B. Lawn and R. Wilshaw, “Indentation fracture: principles and applications,” J. Mater. Sci. 10(6), 1049–1081 (1975).

Lawn, B. R.

B. R. Lawn, A. G. Evans, and D. B. Marshall, “Elastic/plastic indentation damage in ceramics: the median/radial crack system,” J. Am. Ceram. Soc. 63(9–10), 574–581 (1982).

Legros, P.

Li, S.

S. Li, Z. Wang, and Y. Wu, “Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes,” J. Mater. Process. Technol. 205(1), 34–41 (2008).

Li, Y.

J. C. Lambropoulos, Y. Li, P. D. Funkenbusch, and J. L. Ruckman, “Noncontact estimate of grinding-induced subsurface damage,” Proc. SPIE 3782, 41–50 (1999).

Li, Y. G.

J. Wang, Y. G. Li, and J. H. Han, “Evaluating subsurface damage in optical glasses,” J. Eur. Opt. Soc. 11001, 2–15 (2011).

Lindner, M. W.

G. Hä Usler and M. W. Lindner, “Coherence radar and spectral radar-new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[PubMed]

Mahmoud, T.

T. Mahmoud, J. Tamaki, and J. Yan, “Three-dimensional shape modeling of diamond abrasive grains measured by a scanning laser microscope,” Key Eng. Mater. 238, 131–136 (2003).

Maier, R. L.

J. Wang and R. L. Maier, “Quasi-Brewster angle technique for evaluating the quality of optical surfaces,” Proc. SPIE 5375, 1286–1294 (2004).

Manders, E.

G. De Luca, R. Breedijk, R. Hoebe, S. Stallinga, and E. Manders, “Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity,” Methods Appl. Fluoresc. 5(1), 015002 (2017).
[PubMed]

Marshall, D. B.

D. B. Marshall, “Geometrical effects in elastic/plastic indentation,” J. Am. Ceram. Soc. 67(1), 57–60 (1984).

B. R. Lawn, A. G. Evans, and D. B. Marshall, “Elastic/plastic indentation damage in ceramics: the median/radial crack system,” J. Am. Ceram. Soc. 63(9–10), 574–581 (1982).

Maslov, V. P.

T. V. Vladimirova, N. Y. Gorban, and V. P. Maslov, “Investigation of the optical properties and structure of the surface layer of pyroceramic,” Sov. J. Opt. Technol. 46(9), 537–540 (1979).

Maunier, C.

Meeder, M.

Menapace, J.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52), 5601–5617 (2006).

Miller, P.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52), 5601–5617 (2006).

Miller, P. E.

P. E. Miller, T. I. Suratwala, and L. L. Wong, “The distribution of subsurface damage in fused silica,” International Society for Optics and Photonics 25, 599101 (2005).

Minoshima, K.

Miura, S.

Z. J. Pei, S. R. Billingsley, and S. Miura, “Grinding induced subsurface cracks in silicon wafers,” Int. J. Mach. Tools Manuf. 39(7), 1103–1116 (1999).

Neauport, J.

Ono, A.

T. Shibata, A. Ono, and K. Kurihara, “Cross-section transmission electron microscope observations of diamond-turned single-crystal Si surfaces,” Appl. Phys. Lett. 65(20), 2553–2555 (1994).

Park, B. H.

Parks, R. E.

J. B. Johnson, D. W. Kim, R. E. Parks, and J. H. Burge, “New approach for pre-polish grinding with low subsurface damage,” Proc. SPIE 8126, 81261E (2011).

Pei, Z. J.

Z. J. Pei, S. R. Billingsley, and S. Miura, “Grinding induced subsurface cracks in silicon wafers,” Int. J. Mach. Tools Manuf. 39(7), 1103–1116 (1999).

Pierce, M. C.

Pintault, B.

Preston, F. W.

F. W. Preston, “Structure of abraded glass surfaces,” Trans. Opt. Soc. 23(3), 141–164 (1922).

Puttick, K. E.

K. E. Puttick, C. Jeynes, and L. Whitmore, “Surface damage in nanoground silicon,” Proc. IMECH. 49–51 (1992).

Radousky, H. B.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[PubMed]

Randi, J. A.

Rondeau, O.

Rubenchik, A. M.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[PubMed]

Ruckman, J.

J. C. Lambropoulos, S. D. Jacobs, and J. Ruckman, “Material removal mechanisms from grinding to polishing,” Ceram. Trans 102, 113–128 (1999).

Ruckman, J. L.

J. C. Lambropoulos, Y. Li, P. D. Funkenbusch, and J. L. Ruckman, “Noncontact estimate of grinding-induced subsurface damage,” Proc. SPIE 3782, 41–50 (1999).

Shafrir, S. N.

Shibata, T.

T. Shibata, A. Ono, and K. Kurihara, “Cross-section transmission electron microscope observations of diamond-turned single-crystal Si surfaces,” Appl. Phys. Lett. 65(20), 2553–2555 (1994).

Staggs, M.

Stallinga, S.

G. De Luca, R. Breedijk, R. Hoebe, S. Stallinga, and E. Manders, “Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity,” Methods Appl. Fluoresc. 5(1), 015002 (2017).
[PubMed]

Steele, R.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52), 5601–5617 (2006).

Suratwala, T.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52), 5601–5617 (2006).

Suratwala, T. I.

P. E. Miller, T. I. Suratwala, and L. L. Wong, “The distribution of subsurface damage in fused silica,” International Society for Optics and Photonics 25, 599101 (2005).

Tam, H. Y.

Tamaki, J.

T. Mahmoud, J. Tamaki, and J. Yan, “Three-dimensional shape modeling of diamond abrasive grains measured by a scanning laser microscope,” Key Eng. Mater. 238, 131–136 (2003).

Tearney, G. J.

Tonshoff, H. K.

H. K. Tonshoff, E. Brinksmeier, and F. Hetz, “Detection of microcracks,” CIRP Ann. 36(2), 545–552 (1987).

van Brug, H.

van der Bijl, R. J.

Vladimirova, T. V.

T. V. Vladimirova, N. Y. Gorban, and V. P. Maslov, “Investigation of the optical properties and structure of the surface layer of pyroceramic,” Sov. J. Opt. Technol. 46(9), 537–540 (1979).

Walmer, D.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52), 5601–5617 (2006).

Wang, J.

J. Wang, Y. G. Li, and J. H. Han, “Evaluating subsurface damage in optical glasses,” J. Eur. Opt. Soc. 11001, 2–15 (2011).

J. Wang and R. L. Maier, “Quasi-Brewster angle technique for evaluating the quality of optical surfaces,” Proc. SPIE 5375, 1286–1294 (2004).

Wang, Z.

S. Li, Z. Wang, and Y. Wu, “Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes,” J. Mater. Process. Technol. 205(1), 34–41 (2008).

Wely, W. A.

W. A. Wely, “Structure of surface layers and their role in glass technology,” J. Non-Cryst. Solids 19, 1–25 (1975).

Whitmore, L.

K. E. Puttick, C. Jeynes, and L. Whitmore, “Surface damage in nanoground silicon,” Proc. IMECH. 49–51 (1992).

Wilshaw, R.

B. Lawn and R. Wilshaw, “Indentation fracture: principles and applications,” J. Mater. Sci. 10(6), 1049–1081 (1975).

Wong, L.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52), 5601–5617 (2006).

Wong, L. L.

P. E. Miller, T. I. Suratwala, and L. L. Wong, “The distribution of subsurface damage in fused silica,” International Society for Optics and Photonics 25, 599101 (2005).

Wons, T.

Wu, X.

X. Wu and W. Gao, “Dispersion analysis in micron resolution spectral domain optical coherence tomography,” JOSA B 34(1), 169–177 (2017).

X. Wu, W. Gao, and Y. He, “Estimation of parameters for evaluating subsurface microcracks in glass with in-line digital holographic microscopy,” Appl. Opt. 55(3), A32–A42 (2016).
[PubMed]

Wu, Y.

S. Li, Z. Wang, and Y. Wu, “Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes,” J. Mater. Process. Technol. 205(1), 34–41 (2008).

Yan, J.

T. Mahmoud, J. Tamaki, and J. Yan, “Three-dimensional shape modeling of diamond abrasive grains measured by a scanning laser microscope,” Key Eng. Mater. 238, 131–136 (2003).

Ye, X.

Appl. Opt. (9)

N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12(4), 661–664 (1973).
[PubMed]

S. N. Shafrir, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage and microstructure development in precision microground hard ceramics using magnetorheological finishing spots,” Appl. Opt. 46(22), 5500–5515 (2007).
[PubMed]

O. W. Fähnle, T. Wons, E. Koch, S. Debruyne, M. Meeder, S. M. Booij, and J. J. Braat, “iTIRM as a tool for qualifying polishing processes,” Appl. Opt. 41(19), 4036–4038 (2002).
[PubMed]

R. J. van der Bijl, O. W. Fähnle, H. van Brug, and J. J. Braat, “In-process monitoring of grinding and polishing of optical surfaces,” Appl. Opt. 39(19), 3300–3303 (2000).
[PubMed]

X. Wu, W. Gao, and Y. He, “Estimation of parameters for evaluating subsurface microcracks in glass with in-line digital holographic microscopy,” Appl. Opt. 55(3), A32–A42 (2016).
[PubMed]

J. A. Randi, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage in some single crystalline optical materials,” Appl. Opt. 44(12), 2241–2249 (2005).
[PubMed]

J. Neauport, J. Destribats, C. Maunier, C. Ambard, P. Cormont, B. Pintault, and O. Rondeau, “Loose abrasive slurries for optical glass lapping,” Appl. Opt. 49(30), 5736–5745 (2010).
[PubMed]

P. P. Hed and D. F. Edwards, “Optical glass fabrication technology. 2: Relationship between surface roughness and subsurface damage,” Appl. Opt. 26(21), 4677–4680 (1987).
[PubMed]

Z. Dong, H. Cheng, X. Ye, and H. Y. Tam, “Subsurface damage of fused silica lapped by fixed-abrasive diamond pellets,” Appl. Opt. 53(26), 5841–5849 (2014).
[PubMed]

Appl. Phys. Lett. (1)

T. Shibata, A. Ono, and K. Kurihara, “Cross-section transmission electron microscope observations of diamond-turned single-crystal Si surfaces,” Appl. Phys. Lett. 65(20), 2553–2555 (1994).

Ceram. Trans (1)

J. C. Lambropoulos, S. D. Jacobs, and J. Ruckman, “Material removal mechanisms from grinding to polishing,” Ceram. Trans 102, 113–128 (1999).

CIRP Ann. (1)

H. K. Tonshoff, E. Brinksmeier, and F. Hetz, “Detection of microcracks,” CIRP Ann. 36(2), 545–552 (1987).

Int. J. Mach. Tools Manuf. (1)

Z. J. Pei, S. R. Billingsley, and S. Miura, “Grinding induced subsurface cracks in silicon wafers,” Int. J. Mach. Tools Manuf. 39(7), 1103–1116 (1999).

International Society for Optics and Photonics (1)

P. E. Miller, T. I. Suratwala, and L. L. Wong, “The distribution of subsurface damage in fused silica,” International Society for Optics and Photonics 25, 599101 (2005).

J. Am. Ceram. Soc. (2)

D. B. Marshall, “Geometrical effects in elastic/plastic indentation,” J. Am. Ceram. Soc. 67(1), 57–60 (1984).

B. R. Lawn, A. G. Evans, and D. B. Marshall, “Elastic/plastic indentation damage in ceramics: the median/radial crack system,” J. Am. Ceram. Soc. 63(9–10), 574–581 (1982).

J. Biomed. Opt. (1)

G. Hä Usler and M. W. Lindner, “Coherence radar and spectral radar-new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[PubMed]

J. Eur. Opt. Soc. (1)

J. Wang, Y. G. Li, and J. H. Han, “Evaluating subsurface damage in optical glasses,” J. Eur. Opt. Soc. 11001, 2–15 (2011).

J. Mater. Process. Technol. (1)

S. Li, Z. Wang, and Y. Wu, “Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes,” J. Mater. Process. Technol. 205(1), 34–41 (2008).

J. Mater. Sci. (1)

B. Lawn and R. Wilshaw, “Indentation fracture: principles and applications,” J. Mater. Sci. 10(6), 1049–1081 (1975).

J. Non-Cryst. Solids (2)

W. A. Wely, “Structure of surface layers and their role in glass technology,” J. Non-Cryst. Solids 19, 1–25 (1975).

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52), 5601–5617 (2006).

JOSA B (1)

X. Wu and W. Gao, “Dispersion analysis in micron resolution spectral domain optical coherence tomography,” JOSA B 34(1), 169–177 (2017).

Key Eng. Mater. (1)

T. Mahmoud, J. Tamaki, and J. Yan, “Three-dimensional shape modeling of diamond abrasive grains measured by a scanning laser microscope,” Key Eng. Mater. 238, 131–136 (2003).

Methods Appl. Fluoresc. (1)

G. De Luca, R. Breedijk, R. Hoebe, S. Stallinga, and E. Manders, “Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity,” Methods Appl. Fluoresc. 5(1), 015002 (2017).
[PubMed]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. EI-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995).

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[PubMed]

Precis. Eng. (1)

U. Bismayer, E. Brinksmeier, and B. Güttler, “Measurement of subsurface damage in silicon wafers,” Precis. Eng. 16(2), 139–144 (1994).

Proc. SPIE (4)

J. Wang and R. L. Maier, “Quasi-Brewster angle technique for evaluating the quality of optical surfaces,” Proc. SPIE 5375, 1286–1294 (2004).

K. R. Fine, R. Garbe, and T. Gip, “Non-destructive real-time direct measurement of subsurface damage,” Proc. SPIE 5799, 105–110 (2005).

J. C. Lambropoulos, Y. Li, P. D. Funkenbusch, and J. L. Ruckman, “Noncontact estimate of grinding-induced subsurface damage,” Proc. SPIE 3782, 41–50 (1999).

J. B. Johnson, D. W. Kim, R. E. Parks, and J. H. Burge, “New approach for pre-polish grinding with low subsurface damage,” Proc. SPIE 8126, 81261E (2011).

Semicond. Sci. Technol. (1)

Y. Gogotsi, C. Baek, and F. Kirscht, “Raman microspectroscopy study of processing-induced phase transformations and residual stress in silicon,” Semicond. Sci. Technol. 14(10), 936 (1999).

Sov. J. Opt. Technol. (1)

T. V. Vladimirova, N. Y. Gorban, and V. P. Maslov, “Investigation of the optical properties and structure of the surface layer of pyroceramic,” Sov. J. Opt. Technol. 46(9), 537–540 (1979).

Sov. Phys. Tech. Phys. (2)

F. K. Aleinikov, “The Effect of Certain Physical and Mechanical Properties on the Grinding of Brittle Materials,” Sov. Phys. Tech. Phys. 2(12), 2529–2538 (1957).

F. K. Aleinikov, “The influence of abrasive powder microhardness on the values of the coefficients of volume removal,” Sov. Phys. Tech. Phys. 2(3), 505–511 (1957).

Trans. Opt. Soc. (1)

F. W. Preston, “Structure of abraded glass surfaces,” Trans. Opt. Soc. 23(3), 141–164 (1922).

Other (7)

N. N. Kachalov, Principles of Glass Grinding and Polishing Processes (Academy of Sciences, 1946).

B. Lawn, Fracture of Brittle Solids (Cambridge University Press, 1993).

R. M. Brusasco, B. M. Penetrante, and J. E. Peterson, “UV-laser conditioning for reduction of 351-nm damage initiation in fused silica,” International Society for Optics and Photonics, 48–55 (2002).

P. P. Hed, D. F. Edwards, and J. B. Davis, “Subsurface damage in optical materials: origin, measurement and removal,” in Optical Fabrication and Testing Workshop, (Santa Clara, CA, 1988), pp. 1–17.

K. E. Puttick, C. Jeynes, and L. Whitmore, “Surface damage in nanoground silicon,” Proc. IMECH. 49–51 (1992).

D.W. Camp, M.R. Kozlowski and L.M. Sheehan,“Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Int. Soc. Opt. Photon. 356–364 (1998).

J. C. Lambropoulos, “From abrasive size to subsurface damage in grinding,” in Optical fabrication and testing, R. Parks, ed. (Optical Society of America, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the self-referenced SDOCT system. L1-L4: lenses; CCD: charge coupled device.

Fig. 2
Fig. 2

Cross-sectional images of SSD. (a)-(d) are the typical distributions and (e)-(h) are the magnified pictures corresponding to the red dashed boxes.

Fig. 3
Fig. 3

Reconstructed images of Sample 1 and Sample 5. (a) and (d) are the three dimensional images, (b) and (e) show the en-face images, and (c) and (f) present the corresponding binary images.

Fig. 4
Fig. 4

Change of LIDT with the lengths of cracks

Tables (5)

Tables Icon

Table 1 The theoretical formulas for the prediction of the maximum depth of the SSD

Tables Icon

Table 2 The linear relationship between the maximum depth of SSD and the SR

Tables Icon

Table 3 The empirical relationships between the maximum depth of SSD and the abrasive size L

Tables Icon

Table 4 Maximum depths of SSD with the increase of grinding time

Tables Icon

Table 5 Numbers of SSD, damage areas and damage density at different depths

Metrics