Abstract

The adhesion layer used in nanofabrication process of metallic nanostructures affects the surface plasmon modes. We characterize the localized surface plasmon resonances (SPRs) of gold nanodisks of various diameters and heights while varying the thickness of the Ti adhesion layers. Scattering, absorption, and extinction coefficient calculations show a significant dependence of the SPR on the size of nanostructures and the adhesion layer thickness. Comparisons of peak resonance wavelengths of different Ti adhesion layer thicknesses indicate a significant red shift and a reduction in amplitude as the Ti thickness increases. A comparison of spectral broadening of the plasmon mode indicates a linear increase with Ti thickness and percentage. In addition, the decay time of the plasmon mode decreased significantly as the adhesion layer size increases. These observations aid in understanding size dependent adhesion layer effects and optimized fabrication of single nanoplasmonic structures.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic nanotweezers: strong influence of adhesion layer and nanostructure orientation on trapping performance

Brian J. Roxworthy and Kimani C. Toussaint
Opt. Express 20(9) 9591-9603 (2012)

Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

Surface plasmon enhanced photoluminescence in gold capped InGaAs quantum well nanodisk array

Jian Huang, Kar Hoo Patrick Tung, Liyuan Deng, Ning Xiang, Jianrong Dong, Aaron J. Danner, and Jinghua Teng
Opt. Mater. Express 3(12) 2003-2011 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [Crossref] [PubMed]
  2. E. Hutter, J. H. Fendler, and D. Roy, “Surface Plasmon Resonance Studies of Gold and Silver Nanoparticles Linked to Gold and Silver Substrates by 2-Aminoethanethiol and 1,6-Hexanedithiol,” J. Phys. Chem. B 105(45), 11159–11168 (2001).
    [Crossref]
  3. K.-T. Yong, Y. Sahoo, M. T. Swihart, and P. N. Prasad, “Synthesis and plasmonic properties of silver and gold nanoshells on polystyrene cores of different size and of gold–silver core–shell nanostructures,” Colloids Surf. A Physicochem. Eng. Asp. 290(1–3), 89–105 (2006).
    [Crossref]
  4. J. E. Millstone, S. J. Hurst, G. S. Métraux, J. I. Cutler, and C. A. Mirkin, “Colloidal gold and silver triangular nanoprisms,” Small 5(6), 646–664 (2009).
    [Crossref] [PubMed]
  5. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [Crossref] [PubMed]
  6. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
    [Crossref] [PubMed]
  7. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
    [Crossref] [PubMed]
  8. J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12(8), 3915–3919 (2012).
    [Crossref] [PubMed]
  9. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
    [Crossref] [PubMed]
  10. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single ‘Bowtie’ Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
    [Crossref]
  11. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
    [Crossref] [PubMed]
  12. J. Merlein, M. Kahl, A Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
  13. J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
    [Crossref] [PubMed]
  14. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
    [Crossref] [PubMed]
  15. F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
    [Crossref] [PubMed]
  16. A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation Damping in Surface-Enhanced Raman Scattering,” Phys. Rev. Lett. 48(14), 957–960 (1982).
    [Crossref]
  17. N. I. Grigorchuk, “Radiative damping of surface plasmon resonance in spheroidal metallic nanoparticle embedded in a dielectric medium,” J. Opt. Soc. Am. B 29(12), 3404–3411 (2012).
    [Crossref]
  18. K. Kolwas and A. Derkachova, “Damping rates of surface plasmons for particles of size from nano- to micrometers; reduction of the nonradiative decay,” J. Quant. Spectrosc. Radiat. Transf. 114, 45–55 (2013).
    [Crossref]
  19. R. C. Monreal, S. P. Apell, and T. J. Antosiewicz, “Surface scattering contribution to the plasmon width in embedded Ag nanospheres,” Opt. Express 22(21), 24994–25004 (2014).
    [Crossref] [PubMed]
  20. K. Fuchs and N. F. Mott, “The conductivity of thin metallic films according to the electron theory of metals,” Math. Proc. Cambridge 34(1), 100–108 (1938).
    [Crossref]
  21. P. Apell, R. Monreal, and F. Flores, “Effective relaxation time in small spheres: Diffuse surface scattering,” Solid State Commun. 52(12), 971–973 (1984).
    [Crossref]
  22. H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
    [Crossref] [PubMed]
  23. C. Hendrich, J. Bosbach, F. Stietz, F. Hubenthal, T. Vartanyan, and F. Träger, “Chemical interface damping of surface plasmon excitation in metal nanoparticles: a study by persistent spectral hole burning,” Appl. Phys. B 76(8), 869–875 (2003).
    [Crossref]
  24. P. Zijlstra, P. M. R. Paulo, K. Yu, Q.-H. Xu, and M. Orrit, “Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization,” Angew. Chem. Int. Ed. Engl. 51(33), 8352–8355 (2012).
    [Crossref] [PubMed]
  25. B. Lahiri, S. G. McMeekin, R. M. D. L. Rue, and N. P. Johnson, “Resonance hybridization in nanoantenna arrays based on asymmetric split-ring resonators,” Appl. Phys. Lett. 98(15), 153116 (2011).
    [Crossref]
  26. B. Lahiri, R. Dylewicz, R. M. De La Rue, and N. P. Johnson, “Impact of titanium adhesion layers on the response of arrays of metallic split-ring resonators (SRRs),” Opt. Express 18(11), 11202–11208 (2010).
    [Crossref] [PubMed]
  27. B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17(2), 1107–1115 (2009).
    [Crossref] [PubMed]
  28. S. J. Bauman, E. C. Novak, D. T. Debu, D. Natelson, and J. B. Herzog, “Fabrication of Sub-Lithography-Limited Structures via Nanomasking Technique for Plasmonic Enhancement Applications,” IEEE Trans. NanoTechnol. 14(5), 790–793 (2015).
    [Crossref]
  29. S. J. Bauman, D. T. Debu, and J. B. Herzog, “Plasmonic structures fabricated via nanomasking sub-10 nm lithography technique,” Proc. SPIE 9556, 95560M (2015).
    [Crossref]
  30. H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
    [Crossref] [PubMed]
  31. X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of Near-Field Resonances in Bowtie Antennae: Influence of Adhesion Layers,” Plasmonics 4(1), 37–50 (2009).
    [Crossref]
  32. C. Jeppesen, N. A. Mortensen, and A. Kristensen, “The effect of Ti and ITO adhesion layers on gold split-ring resonators,” Appl. Phys. Lett. 97(26), 263103 (2010).
    [Crossref]
  33. Y. Chen, Z. Li, Q. Xiang, Y. Wang, Z. Zhang, and H. Duan, “Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off,” Nanotechnology 26(40), 405301 (2015).
    [Crossref] [PubMed]
  34. P. Jahanshahi, M. Ghomeishi, and F. R. M. Adikan, “Adhesive layer effect on gold-silica thin film interfaces for surface plasmon resonance modeling,” in 2012 IEEE 3rd International Conference on Photonics, (IEEE 2012), pp. 89–92.
    [Crossref]
  35. F. Colas, D. Barchiesi, S. Kessentini, T. Toury, and M. L. de la Chapelle, “Comparison of adhesion layers of gold on silicate glasses for SERS detection,” J. Opt. 17(11), 114010 (2015).
    [Crossref]
  36. T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
    [Crossref] [PubMed]
  37. W.-S. Chang, F. Wen, D. Chakraborty, M.-N. Su, Y. Zhang, B. Shuang, P. Nordlander, J. E. Sader, N. J. Halas, and S. Link, “Tuning the acoustic frequency of a gold nanodisk through its adhesion layer,” Nat. Commun. 6, 7022 (2015).
    [Crossref] [PubMed]
  38. Y. Chen, Q. Xiang, Z. Li, Y. Wang, Y. Meng, and H. Duan, ““Sketch and Peel” Lithography for High-Resolution Multiscale Patterning,” Nano Lett. 16(5), 3253–3259 (2016).
    [Crossref] [PubMed]
  39. H. Ma, P. Tian, J. Pello, P. M. Bendix, and L. B. Oddershede, “Heat generation by irradiated complex composite nanostructures,” Nano Lett. 14(2), 612–619 (2014).
    [Crossref] [PubMed]
  40. J.-M. Jin, Theory and Computation of Electromagnetic Fields (John Wiley & Sons, 2011).
  41. K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 132(31), 10903–10910 (2010).
    [Crossref] [PubMed]
  42. C. Oubre and P. Nordlander, “Optical Properties of Metallodielectric Nanostructures Calculated Using the Finite Difference Time Domain Method,” J. Phys. Chem. B 108(46), 17740–17747 (2004).
    [Crossref]
  43. I. O. Sosa, C. Noguez, and R. G. Barrera, “Optical Properties of Metal Nanoparticles with Arbitrary Shapes,” J. Phys. Chem. B 107(26), 6269–6275 (2003).
    [Crossref]
  44. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).
  45. V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
    [Crossref] [PubMed]
  46. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  47. E. D. Palik, “Handbook of Optical Constants of Solids,” (Academic Press, 1997).
  48. D. Barchiesi, S. Kessentini, N. Guillot, M. L. de la Chapelle, and T. Grosges, “Localized surface plasmon resonance in arrays of nano-gold cylinders: inverse problem and propagation of uncertainties,” Opt. Express 21(2), 2245–2262 (2013).
    [Crossref] [PubMed]
  49. U. Kreibig and M. Vollmer, “Optical Properties of Metal Clusters,” (Springer Science & Business Media, 2013).
  50. M. J. Feldstein, C. D. Keating, Y.-H. Liau, M. J. Natan, and N. F. Scherer, “Electronic Relaxation Dynamics in Coupled Metal Nanoparticles,” J. Am. Chem. Soc. 119(28), 6638–6647 (1997).
    [Crossref]
  51. C. D. Grant, A. M. Schwartzberg, T. J. Norman, and J. Z. Zhang, “Ultrafast electronic relaxation and coherent vibrational oscillation of strongly coupled gold nanoparticle aggregates,” J. Am. Chem. Soc. 125(2), 549–553 (2003).
    [Crossref] [PubMed]
  52. J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11(0), 55–75 (1951).
    [Crossref]
  53. T. Okamoto, “Near-Field Spectral Analysis of Metallic Beads,” in Near-Field Optics and Surface Plasmon Polaritons, P. S. Kawata, Ed. (Springer Berlin Heidelberg, 2001), pp. 97–123.
  54. B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
    [Crossref]
  55. D. Zhu, A. Tang, H. Ye, M. Wang, C. Yang, and F. Teng, “Tunable near-infrared localized surface plasmon resonances of djurleite nanocrystals: effects of size, shape, surface-ligands and oxygen exposure time,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(26), 6686–6691 (2015).
    [Crossref]
  56. I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
    [Crossref] [PubMed]
  57. G. Lilley, M. Messner, and K. Unterrainer, “Improving the quality factor of the localized surface plasmon resonance,” Opt. Mater. Express 5(10), 2112–2120 (2015).
    [Crossref]
  58. R. G. Hobbs, V. R. Manfrinato, Y. Yang, S. A. Goodman, L. Zhang, E. A. Stach, and K. K. Berggren, “High-Energy Surface and Volume Plasmons in Nanopatterned Sub-10 nm Aluminum Nanostructures,” Nano Lett. 16(7), 4149–4157 (2016).
    [Crossref] [PubMed]
  59. B. S. Dennis, D. A. Czaplewski, M. I. Haftel, D. Lopez, G. Blumberg, and V. Aksyuk, “Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens,” Opt. Express 23(17), 21899–21908 (2015).
    [Crossref] [PubMed]
  60. J. M. Balbus, K. Florini, R. A. Denison, and S. A. Walsh, “Getting it right the first time: developing nanotechnology while protecting workers, public health, and the environment,” Ann. N. Y. Acad. Sci. 1076(1), 331–342 (2006).
    [Crossref] [PubMed]
  61. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239(1), 129–135 (2006).
    [Crossref] [PubMed]
  62. J. M. Stern, J. Stanfield, W. Kabbani, J.-T. Hsieh, and J. A. Cadeddu, “Selective prostate cancer thermal ablation with laser activated gold nanoshells,” J. Urol. 179(2), 748–753 (2008).
    [Crossref] [PubMed]
  63. C.-C. Chen, Y.-P. Lin, C.-W. Wang, H.-C. Tzeng, C.-H. Wu, Y.-C. Chen, C.-P. Chen, L.-C. Chen, and Y.-C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
    [Crossref] [PubMed]
  64. K.-S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
    [Crossref] [PubMed]
  65. G. V. Hartland, “Optical studies of dynamics in noble metal nanostructures,” Chem. Rev. 111(6), 3858–3887 (2011).
    [Crossref] [PubMed]
  66. A. Hoggard, L.-Y. Wang, L. Ma, Y. Fang, G. You, J. Olson, Z. Liu, W.-S. Chang, P. M. Ajayan, and S. Link, “Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene,” ACS Nano 7(12), 11209–11217 (2013).
    [Crossref] [PubMed]
  67. S. Link and M. A. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
    [Crossref]
  68. M. Bosman, E. Ye, S. F. Tan, C. A. Nijhuis, J. K. W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M.-Y. Han, “Surface plasmon damping quantified with an electron nanoprobe,” Sci. Rep. 3, 1312 (2013).
    [Crossref] [PubMed]

2016 (2)

Y. Chen, Q. Xiang, Z. Li, Y. Wang, Y. Meng, and H. Duan, ““Sketch and Peel” Lithography for High-Resolution Multiscale Patterning,” Nano Lett. 16(5), 3253–3259 (2016).
[Crossref] [PubMed]

R. G. Hobbs, V. R. Manfrinato, Y. Yang, S. A. Goodman, L. Zhang, E. A. Stach, and K. K. Berggren, “High-Energy Surface and Volume Plasmons in Nanopatterned Sub-10 nm Aluminum Nanostructures,” Nano Lett. 16(7), 4149–4157 (2016).
[Crossref] [PubMed]

2015 (8)

B. S. Dennis, D. A. Czaplewski, M. I. Haftel, D. Lopez, G. Blumberg, and V. Aksyuk, “Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens,” Opt. Express 23(17), 21899–21908 (2015).
[Crossref] [PubMed]

G. Lilley, M. Messner, and K. Unterrainer, “Improving the quality factor of the localized surface plasmon resonance,” Opt. Mater. Express 5(10), 2112–2120 (2015).
[Crossref]

Y. Chen, Z. Li, Q. Xiang, Y. Wang, Z. Zhang, and H. Duan, “Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off,” Nanotechnology 26(40), 405301 (2015).
[Crossref] [PubMed]

F. Colas, D. Barchiesi, S. Kessentini, T. Toury, and M. L. de la Chapelle, “Comparison of adhesion layers of gold on silicate glasses for SERS detection,” J. Opt. 17(11), 114010 (2015).
[Crossref]

W.-S. Chang, F. Wen, D. Chakraborty, M.-N. Su, Y. Zhang, B. Shuang, P. Nordlander, J. E. Sader, N. J. Halas, and S. Link, “Tuning the acoustic frequency of a gold nanodisk through its adhesion layer,” Nat. Commun. 6, 7022 (2015).
[Crossref] [PubMed]

D. Zhu, A. Tang, H. Ye, M. Wang, C. Yang, and F. Teng, “Tunable near-infrared localized surface plasmon resonances of djurleite nanocrystals: effects of size, shape, surface-ligands and oxygen exposure time,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(26), 6686–6691 (2015).
[Crossref]

S. J. Bauman, E. C. Novak, D. T. Debu, D. Natelson, and J. B. Herzog, “Fabrication of Sub-Lithography-Limited Structures via Nanomasking Technique for Plasmonic Enhancement Applications,” IEEE Trans. NanoTechnol. 14(5), 790–793 (2015).
[Crossref]

S. J. Bauman, D. T. Debu, and J. B. Herzog, “Plasmonic structures fabricated via nanomasking sub-10 nm lithography technique,” Proc. SPIE 9556, 95560M (2015).
[Crossref]

2014 (2)

R. C. Monreal, S. P. Apell, and T. J. Antosiewicz, “Surface scattering contribution to the plasmon width in embedded Ag nanospheres,” Opt. Express 22(21), 24994–25004 (2014).
[Crossref] [PubMed]

H. Ma, P. Tian, J. Pello, P. M. Bendix, and L. B. Oddershede, “Heat generation by irradiated complex composite nanostructures,” Nano Lett. 14(2), 612–619 (2014).
[Crossref] [PubMed]

2013 (4)

D. Barchiesi, S. Kessentini, N. Guillot, M. L. de la Chapelle, and T. Grosges, “Localized surface plasmon resonance in arrays of nano-gold cylinders: inverse problem and propagation of uncertainties,” Opt. Express 21(2), 2245–2262 (2013).
[Crossref] [PubMed]

A. Hoggard, L.-Y. Wang, L. Ma, Y. Fang, G. You, J. Olson, Z. Liu, W.-S. Chang, P. M. Ajayan, and S. Link, “Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene,” ACS Nano 7(12), 11209–11217 (2013).
[Crossref] [PubMed]

M. Bosman, E. Ye, S. F. Tan, C. A. Nijhuis, J. K. W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M.-Y. Han, “Surface plasmon damping quantified with an electron nanoprobe,” Sci. Rep. 3, 1312 (2013).
[Crossref] [PubMed]

K. Kolwas and A. Derkachova, “Damping rates of surface plasmons for particles of size from nano- to micrometers; reduction of the nonradiative decay,” J. Quant. Spectrosc. Radiat. Transf. 114, 45–55 (2013).
[Crossref]

2012 (4)

N. I. Grigorchuk, “Radiative damping of surface plasmon resonance in spheroidal metallic nanoparticle embedded in a dielectric medium,” J. Opt. Soc. Am. B 29(12), 3404–3411 (2012).
[Crossref]

P. Zijlstra, P. M. R. Paulo, K. Yu, Q.-H. Xu, and M. Orrit, “Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization,” Angew. Chem. Int. Ed. Engl. 51(33), 8352–8355 (2012).
[Crossref] [PubMed]

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12(8), 3915–3919 (2012).
[Crossref] [PubMed]

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

2011 (4)

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
[Crossref] [PubMed]

G. V. Hartland, “Optical studies of dynamics in noble metal nanostructures,” Chem. Rev. 111(6), 3858–3887 (2011).
[Crossref] [PubMed]

B. Lahiri, S. G. McMeekin, R. M. D. L. Rue, and N. P. Johnson, “Resonance hybridization in nanoantenna arrays based on asymmetric split-ring resonators,” Appl. Phys. Lett. 98(15), 153116 (2011).
[Crossref]

2010 (3)

B. Lahiri, R. Dylewicz, R. M. De La Rue, and N. P. Johnson, “Impact of titanium adhesion layers on the response of arrays of metallic split-ring resonators (SRRs),” Opt. Express 18(11), 11202–11208 (2010).
[Crossref] [PubMed]

C. Jeppesen, N. A. Mortensen, and A. Kristensen, “The effect of Ti and ITO adhesion layers on gold split-ring resonators,” Appl. Phys. Lett. 97(26), 263103 (2010).
[Crossref]

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 132(31), 10903–10910 (2010).
[Crossref] [PubMed]

2009 (5)

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref] [PubMed]

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of Near-Field Resonances in Bowtie Antennae: Influence of Adhesion Layers,” Plasmonics 4(1), 37–50 (2009).
[Crossref]

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17(2), 1107–1115 (2009).
[Crossref] [PubMed]

J. E. Millstone, S. J. Hurst, G. S. Métraux, J. I. Cutler, and C. A. Mirkin, “Colloidal gold and silver triangular nanoprisms,” Small 5(6), 646–664 (2009).
[Crossref] [PubMed]

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref] [PubMed]

2008 (3)

J. Merlein, M. Kahl, A Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
[Crossref] [PubMed]

J. M. Stern, J. Stanfield, W. Kabbani, J.-T. Hsieh, and J. A. Cadeddu, “Selective prostate cancer thermal ablation with laser activated gold nanoshells,” J. Urol. 179(2), 748–753 (2008).
[Crossref] [PubMed]

2007 (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

2006 (5)

K.-T. Yong, Y. Sahoo, M. T. Swihart, and P. N. Prasad, “Synthesis and plasmonic properties of silver and gold nanoshells on polystyrene cores of different size and of gold–silver core–shell nanostructures,” Colloids Surf. A Physicochem. Eng. Asp. 290(1–3), 89–105 (2006).
[Crossref]

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[Crossref] [PubMed]

C.-C. Chen, Y.-P. Lin, C.-W. Wang, H.-C. Tzeng, C.-H. Wu, Y.-C. Chen, C.-P. Chen, L.-C. Chen, and Y.-C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[Crossref] [PubMed]

J. M. Balbus, K. Florini, R. A. Denison, and S. A. Walsh, “Getting it right the first time: developing nanotechnology while protecting workers, public health, and the environment,” Ann. N. Y. Acad. Sci. 1076(1), 331–342 (2006).
[Crossref] [PubMed]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239(1), 129–135 (2006).
[Crossref] [PubMed]

2005 (4)

K.-S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[Crossref] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

2004 (3)

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
[Crossref] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single ‘Bowtie’ Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

C. Oubre and P. Nordlander, “Optical Properties of Metallodielectric Nanostructures Calculated Using the Finite Difference Time Domain Method,” J. Phys. Chem. B 108(46), 17740–17747 (2004).
[Crossref]

2003 (3)

I. O. Sosa, C. Noguez, and R. G. Barrera, “Optical Properties of Metal Nanoparticles with Arbitrary Shapes,” J. Phys. Chem. B 107(26), 6269–6275 (2003).
[Crossref]

C. D. Grant, A. M. Schwartzberg, T. J. Norman, and J. Z. Zhang, “Ultrafast electronic relaxation and coherent vibrational oscillation of strongly coupled gold nanoparticle aggregates,” J. Am. Chem. Soc. 125(2), 549–553 (2003).
[Crossref] [PubMed]

C. Hendrich, J. Bosbach, F. Stietz, F. Hubenthal, T. Vartanyan, and F. Träger, “Chemical interface damping of surface plasmon excitation in metal nanoparticles: a study by persistent spectral hole burning,” Appl. Phys. B 76(8), 869–875 (2003).
[Crossref]

2002 (1)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[Crossref] [PubMed]

2001 (1)

E. Hutter, J. H. Fendler, and D. Roy, “Surface Plasmon Resonance Studies of Gold and Silver Nanoparticles Linked to Gold and Silver Substrates by 2-Aminoethanethiol and 1,6-Hexanedithiol,” J. Phys. Chem. B 105(45), 11159–11168 (2001).
[Crossref]

1999 (1)

S. Link and M. A. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

1997 (1)

M. J. Feldstein, C. D. Keating, Y.-H. Liau, M. J. Natan, and N. F. Scherer, “Electronic Relaxation Dynamics in Coupled Metal Nanoparticles,” J. Am. Chem. Soc. 119(28), 6638–6647 (1997).
[Crossref]

1993 (1)

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
[Crossref] [PubMed]

1984 (1)

P. Apell, R. Monreal, and F. Flores, “Effective relaxation time in small spheres: Diffuse surface scattering,” Solid State Commun. 52(12), 971–973 (1984).
[Crossref]

1982 (1)

A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation Damping in Surface-Enhanced Raman Scattering,” Phys. Rev. Lett. 48(14), 957–960 (1982).
[Crossref]

1981 (1)

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1951 (1)

J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11(0), 55–75 (1951).
[Crossref]

1938 (1)

K. Fuchs and N. F. Mott, “The conductivity of thin metallic films according to the electron theory of metals,” Math. Proc. Cambridge 34(1), 100–108 (1938).
[Crossref]

Ajayan, P. M.

A. Hoggard, L.-Y. Wang, L. Ma, Y. Fang, G. You, J. Olson, Z. Liu, W.-S. Chang, P. M. Ajayan, and S. Link, “Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene,” ACS Nano 7(12), 11209–11217 (2013).
[Crossref] [PubMed]

Aksyuk, V.

Alivisatos, A. P.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Antosiewicz, T. J.

Aouani, H.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref] [PubMed]

Apell, P.

P. Apell, R. Monreal, and F. Flores, “Effective relaxation time in small spheres: Diffuse surface scattering,” Solid State Commun. 52(12), 971–973 (1984).
[Crossref]

Apell, S. P.

Arbouet, A.

M. Bosman, E. Ye, S. F. Tan, C. A. Nijhuis, J. K. W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M.-Y. Han, “Surface plasmon damping quantified with an electron nanoprobe,” Sci. Rep. 3, 1312 (2013).
[Crossref] [PubMed]

Balbus, J. M.

J. M. Balbus, K. Florini, R. A. Denison, and S. A. Walsh, “Getting it right the first time: developing nanotechnology while protecting workers, public health, and the environment,” Ann. N. Y. Acad. Sci. 1076(1), 331–342 (2006).
[Crossref] [PubMed]

Barber, P. W.

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[Crossref]

Barchiesi, D.

F. Colas, D. Barchiesi, S. Kessentini, T. Toury, and M. L. de la Chapelle, “Comparison of adhesion layers of gold on silicate glasses for SERS detection,” J. Opt. 17(11), 114010 (2015).
[Crossref]

D. Barchiesi, S. Kessentini, N. Guillot, M. L. de la Chapelle, and T. Grosges, “Localized surface plasmon resonance in arrays of nano-gold cylinders: inverse problem and propagation of uncertainties,” Opt. Express 21(2), 2245–2262 (2013).
[Crossref] [PubMed]

Barrera, R. G.

I. O. Sosa, C. Noguez, and R. G. Barrera, “Optical Properties of Metal Nanoparticles with Arbitrary Shapes,” J. Phys. Chem. B 107(26), 6269–6275 (2003).
[Crossref]

Bauman, S. J.

S. J. Bauman, D. T. Debu, and J. B. Herzog, “Plasmonic structures fabricated via nanomasking sub-10 nm lithography technique,” Proc. SPIE 9556, 95560M (2015).
[Crossref]

S. J. Bauman, E. C. Novak, D. T. Debu, D. Natelson, and J. B. Herzog, “Fabrication of Sub-Lithography-Limited Structures via Nanomasking Technique for Plasmonic Enhancement Applications,” IEEE Trans. NanoTechnol. 14(5), 790–793 (2015).
[Crossref]

Bendix, P. M.

H. Ma, P. Tian, J. Pello, P. M. Bendix, and L. B. Oddershede, “Heat generation by irradiated complex composite nanostructures,” Nano Lett. 14(2), 612–619 (2014).
[Crossref] [PubMed]

Berggren, K. K.

R. G. Hobbs, V. R. Manfrinato, Y. Yang, S. A. Goodman, L. Zhang, E. A. Stach, and K. K. Berggren, “High-Energy Surface and Volume Plasmons in Nanopatterned Sub-10 nm Aluminum Nanostructures,” Nano Lett. 16(7), 4149–4157 (2016).
[Crossref] [PubMed]

Blair, S.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref] [PubMed]

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of Near-Field Resonances in Bowtie Antennae: Influence of Adhesion Layers,” Plasmonics 4(1), 37–50 (2009).
[Crossref]

Blumberg, G.

Bolivar, P. H.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
[Crossref] [PubMed]

Boneberg, J.

J. Merlein, M. Kahl, A Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).

Bosbach, J.

C. Hendrich, J. Bosbach, F. Stietz, F. Hubenthal, T. Vartanyan, and F. Träger, “Chemical interface damping of surface plasmon excitation in metal nanoparticles: a study by persistent spectral hole burning,” Appl. Phys. B 76(8), 869–875 (2003).
[Crossref]

Bosman, M.

M. Bosman, E. Ye, S. F. Tan, C. A. Nijhuis, J. K. W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M.-Y. Han, “Surface plasmon damping quantified with an electron nanoprobe,” Sci. Rep. 3, 1312 (2013).
[Crossref] [PubMed]

Bratschitsch, R.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref] [PubMed]

J. Merlein, M. Kahl, A Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).

Cabrini, S.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Cadeddu, J. A.

J. M. Stern, J. Stanfield, W. Kabbani, J.-T. Hsieh, and J. A. Cadeddu, “Selective prostate cancer thermal ablation with laser activated gold nanoshells,” J. Urol. 179(2), 748–753 (2008).
[Crossref] [PubMed]

Chakraborty, D.

W.-S. Chang, F. Wen, D. Chakraborty, M.-N. Su, Y. Zhang, B. Shuang, P. Nordlander, J. E. Sader, N. J. Halas, and S. Link, “Tuning the acoustic frequency of a gold nanodisk through its adhesion layer,” Nat. Commun. 6, 7022 (2015).
[Crossref] [PubMed]

Chang, R. K.

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[Crossref]

Chang, W.-S.

W.-S. Chang, F. Wen, D. Chakraborty, M.-N. Su, Y. Zhang, B. Shuang, P. Nordlander, J. E. Sader, N. J. Halas, and S. Link, “Tuning the acoustic frequency of a gold nanodisk through its adhesion layer,” Nat. Commun. 6, 7022 (2015).
[Crossref] [PubMed]

A. Hoggard, L.-Y. Wang, L. Ma, Y. Fang, G. You, J. Olson, Z. Liu, W.-S. Chang, P. M. Ajayan, and S. Link, “Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene,” ACS Nano 7(12), 11209–11217 (2013).
[Crossref] [PubMed]

Chen, C.-C.

C.-C. Chen, Y.-P. Lin, C.-W. Wang, H.-C. Tzeng, C.-H. Wu, Y.-C. Chen, C.-P. Chen, L.-C. Chen, and Y.-C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[Crossref] [PubMed]

Chen, C.-P.

C.-C. Chen, Y.-P. Lin, C.-W. Wang, H.-C. Tzeng, C.-H. Wu, Y.-C. Chen, C.-P. Chen, L.-C. Chen, and Y.-C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[Crossref] [PubMed]

Chen, L.-C.

C.-C. Chen, Y.-P. Lin, C.-W. Wang, H.-C. Tzeng, C.-H. Wu, Y.-C. Chen, C.-P. Chen, L.-C. Chen, and Y.-C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, Q. Xiang, Z. Li, Y. Wang, Y. Meng, and H. Duan, ““Sketch and Peel” Lithography for High-Resolution Multiscale Patterning,” Nano Lett. 16(5), 3253–3259 (2016).
[Crossref] [PubMed]

Y. Chen, Z. Li, Q. Xiang, Y. Wang, Z. Zhang, and H. Duan, “Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off,” Nanotechnology 26(40), 405301 (2015).
[Crossref] [PubMed]

Chen, Y.-C.

C.-C. Chen, Y.-P. Lin, C.-W. Wang, H.-C. Tzeng, C.-H. Wu, Y.-C. Chen, C.-P. Chen, L.-C. Chen, and Y.-C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Colas, F.

F. Colas, D. Barchiesi, S. Kessentini, T. Toury, and M. L. de la Chapelle, “Comparison of adhesion layers of gold on silicate glasses for SERS detection,” J. Opt. 17(11), 114010 (2015).
[Crossref]

Cutler, J. I.

J. E. Millstone, S. J. Hurst, G. S. Métraux, J. I. Cutler, and C. A. Mirkin, “Colloidal gold and silver triangular nanoprisms,” Small 5(6), 646–664 (2009).
[Crossref] [PubMed]

Czaplewski, D. A.

de la Chapelle, M. L.

F. Colas, D. Barchiesi, S. Kessentini, T. Toury, and M. L. de la Chapelle, “Comparison of adhesion layers of gold on silicate glasses for SERS detection,” J. Opt. 17(11), 114010 (2015).
[Crossref]

D. Barchiesi, S. Kessentini, N. Guillot, M. L. de la Chapelle, and T. Grosges, “Localized surface plasmon resonance in arrays of nano-gold cylinders: inverse problem and propagation of uncertainties,” Opt. Express 21(2), 2245–2262 (2013).
[Crossref] [PubMed]

De La Rue, R. M.

Debu, D. T.

S. J. Bauman, D. T. Debu, and J. B. Herzog, “Plasmonic structures fabricated via nanomasking sub-10 nm lithography technique,” Proc. SPIE 9556, 95560M (2015).
[Crossref]

S. J. Bauman, E. C. Novak, D. T. Debu, D. Natelson, and J. B. Herzog, “Fabrication of Sub-Lithography-Limited Structures via Nanomasking Technique for Plasmonic Enhancement Applications,” IEEE Trans. NanoTechnol. 14(5), 790–793 (2015).
[Crossref]

Denison, R. A.

J. M. Balbus, K. Florini, R. A. Denison, and S. A. Walsh, “Getting it right the first time: developing nanotechnology while protecting workers, public health, and the environment,” Ann. N. Y. Acad. Sci. 1076(1), 331–342 (2006).
[Crossref] [PubMed]

Dennis, B. S.

Derkachova, A.

K. Kolwas and A. Derkachova, “Damping rates of surface plasmons for particles of size from nano- to micrometers; reduction of the nonradiative decay,” J. Quant. Spectrosc. Radiat. Transf. 114, 45–55 (2013).
[Crossref]

Devaux, E.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref] [PubMed]

Dhuey, S.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Duan, H.

Y. Chen, Q. Xiang, Z. Li, Y. Wang, Y. Meng, and H. Duan, ““Sketch and Peel” Lithography for High-Resolution Multiscale Patterning,” Nano Lett. 16(5), 3253–3259 (2016).
[Crossref] [PubMed]

Y. Chen, Z. Li, Q. Xiang, Y. Wang, Z. Zhang, and H. Duan, “Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off,” Nanotechnology 26(40), 405301 (2015).
[Crossref] [PubMed]

Dylewicz, R.

Ebbesen, T. W.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref] [PubMed]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

El-Sayed, I. H.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239(1), 129–135 (2006).
[Crossref] [PubMed]

El-Sayed, M. A.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239(1), 129–135 (2006).
[Crossref] [PubMed]

K.-S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[Crossref] [PubMed]

S. Link and M. A. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

Emmerling, M.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12(8), 3915–3919 (2012).
[Crossref] [PubMed]

Evans, B. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Fang, Y.

A. Hoggard, L.-Y. Wang, L. Ma, Y. Fang, G. You, J. Olson, Z. Liu, W.-S. Chang, P. M. Ajayan, and S. Link, “Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene,” ACS Nano 7(12), 11209–11217 (2013).
[Crossref] [PubMed]

Feldmann, J.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[Crossref] [PubMed]

Feldstein, M. J.

M. J. Feldstein, C. D. Keating, Y.-H. Liau, M. J. Natan, and N. F. Scherer, “Electronic Relaxation Dynamics in Coupled Metal Nanoparticles,” J. Am. Chem. Soc. 119(28), 6638–6647 (1997).
[Crossref]

Fendler, J. H.

E. Hutter, J. H. Fendler, and D. Roy, “Surface Plasmon Resonance Studies of Gold and Silver Nanoparticles Linked to Gold and Silver Substrates by 2-Aminoethanethiol and 1,6-Hexanedithiol,” J. Phys. Chem. B 105(45), 11159–11168 (2001).
[Crossref]

Fernández-Domínguez, A. I.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Fischer, H.

Flores, F.

P. Apell, R. Monreal, and F. Flores, “Effective relaxation time in small spheres: Diffuse surface scattering,” Solid State Commun. 52(12), 971–973 (1984).
[Crossref]

Florini, K.

J. M. Balbus, K. Florini, R. A. Denison, and S. A. Walsh, “Getting it right the first time: developing nanotechnology while protecting workers, public health, and the environment,” Ann. N. Y. Acad. Sci. 1076(1), 331–342 (2006).
[Crossref] [PubMed]

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[Crossref] [PubMed]

Freeman, R. G.

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 132(31), 10903–10910 (2010).
[Crossref] [PubMed]

Fritz, S.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
[Crossref] [PubMed]

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single ‘Bowtie’ Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Fuchs, K.

K. Fuchs and N. F. Mott, “The conductivity of thin metallic films according to the electron theory of metals,” Math. Proc. Cambridge 34(1), 100–108 (1938).
[Crossref]

Gargas, D.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Gérard, D.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref] [PubMed]

Giannini, V.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Girard, C.

M. Bosman, E. Ye, S. F. Tan, C. A. Nijhuis, J. K. W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M.-Y. Han, “Surface plasmon damping quantified with an electron nanoprobe,” Sci. Rep. 3, 1312 (2013).
[Crossref] [PubMed]

Goeckeritz, J.

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of Near-Field Resonances in Bowtie Antennae: Influence of Adhesion Layers,” Plasmonics 4(1), 37–50 (2009).
[Crossref]

Goodman, S. A.

R. G. Hobbs, V. R. Manfrinato, Y. Yang, S. A. Goodman, L. Zhang, E. A. Stach, and K. K. Berggren, “High-Energy Surface and Volume Plasmons in Nanopatterned Sub-10 nm Aluminum Nanostructures,” Nano Lett. 16(7), 4149–4157 (2016).
[Crossref] [PubMed]

Gordon, J. P.

A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation Damping in Surface-Enhanced Raman Scattering,” Phys. Rev. Lett. 48(14), 957–960 (1982).
[Crossref]

Grant, C. D.

C. D. Grant, A. M. Schwartzberg, T. J. Norman, and J. Z. Zhang, “Ultrafast electronic relaxation and coherent vibrational oscillation of strongly coupled gold nanoparticle aggregates,” J. Am. Chem. Soc. 125(2), 549–553 (2003).
[Crossref] [PubMed]

Grigorchuk, N. I.

Grosges, T.

Grossmann, S.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12(8), 3915–3919 (2012).
[Crossref] [PubMed]

Guillot, N.

Habteyes, T. G.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Haftel, M. I.

Halas, N. J.

W.-S. Chang, F. Wen, D. Chakraborty, M.-N. Su, Y. Zhang, B. Shuang, P. Nordlander, J. E. Sader, N. J. Halas, and S. Link, “Tuning the acoustic frequency of a gold nanodisk through its adhesion layer,” Nat. Commun. 6, 7022 (2015).
[Crossref] [PubMed]

Halm, A.

J. Merlein, M. Kahl, A Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).

Han, M.-Y.

M. Bosman, E. Ye, S. F. Tan, C. A. Nijhuis, J. K. W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M.-Y. Han, “Surface plasmon damping quantified with an electron nanoprobe,” Sci. Rep. 3, 1312 (2013).
[Crossref] [PubMed]

Hanke, T.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref] [PubMed]

Hartland, G. V.

G. V. Hartland, “Optical studies of dynamics in noble metal nanostructures,” Chem. Rev. 111(6), 3858–3887 (2011).
[Crossref] [PubMed]

Hecht, B.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12(8), 3915–3919 (2012).
[Crossref] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Heck, S. C.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Hendrich, C.

C. Hendrich, J. Bosbach, F. Stietz, F. Hubenthal, T. Vartanyan, and F. Träger, “Chemical interface damping of surface plasmon excitation in metal nanoparticles: a study by persistent spectral hole burning,” Appl. Phys. B 76(8), 869–875 (2003).
[Crossref]

Henry, A.-I.

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 132(31), 10903–10910 (2010).
[Crossref] [PubMed]

Herzog, J. B.

S. J. Bauman, E. C. Novak, D. T. Debu, D. Natelson, and J. B. Herzog, “Fabrication of Sub-Lithography-Limited Structures via Nanomasking Technique for Plasmonic Enhancement Applications,” IEEE Trans. NanoTechnol. 14(5), 790–793 (2015).
[Crossref]

S. J. Bauman, D. T. Debu, and J. B. Herzog, “Plasmonic structures fabricated via nanomasking sub-10 nm lithography technique,” Proc. SPIE 9556, 95560M (2015).
[Crossref]

Hibbins, A. P.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Hilger, A.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
[Crossref] [PubMed]

Hillier, J.

J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11(0), 55–75 (1951).
[Crossref]

Hobbs, R. G.

R. G. Hobbs, V. R. Manfrinato, Y. Yang, S. A. Goodman, L. Zhang, E. A. Stach, and K. K. Berggren, “High-Energy Surface and Volume Plasmons in Nanopatterned Sub-10 nm Aluminum Nanostructures,” Nano Lett. 16(7), 4149–4157 (2016).
[Crossref] [PubMed]

Hoggard, A.

A. Hoggard, L.-Y. Wang, L. Ma, Y. Fang, G. You, J. Olson, Z. Liu, W.-S. Chang, P. M. Ajayan, and S. Link, “Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene,” ACS Nano 7(12), 11209–11217 (2013).
[Crossref] [PubMed]

Hövel, H.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
[Crossref] [PubMed]

Hsieh, J.-T.

J. M. Stern, J. Stanfield, W. Kabbani, J.-T. Hsieh, and J. A. Cadeddu, “Selective prostate cancer thermal ablation with laser activated gold nanoshells,” J. Urol. 179(2), 748–753 (2008).
[Crossref] [PubMed]

Huang, X.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239(1), 129–135 (2006).
[Crossref] [PubMed]

Hubenthal, F.

C. Hendrich, J. Bosbach, F. Stietz, F. Hubenthal, T. Vartanyan, and F. Träger, “Chemical interface damping of surface plasmon excitation in metal nanoparticles: a study by persistent spectral hole burning,” Appl. Phys. B 76(8), 869–875 (2003).
[Crossref]

Hurst, S. J.

J. E. Millstone, S. J. Hurst, G. S. Métraux, J. I. Cutler, and C. A. Mirkin, “Colloidal gold and silver triangular nanoprisms,” Small 5(6), 646–664 (2009).
[Crossref] [PubMed]

Hutter, E.

E. Hutter, J. H. Fendler, and D. Roy, “Surface Plasmon Resonance Studies of Gold and Silver Nanoparticles Linked to Gold and Silver Substrates by 2-Aminoethanethiol and 1,6-Hexanedithiol,” J. Phys. Chem. B 105(45), 11159–11168 (2001).
[Crossref]

Jeppesen, C.

C. Jeppesen, N. A. Mortensen, and A. Kristensen, “The effect of Ti and ITO adhesion layers on gold split-ring resonators,” Appl. Phys. Lett. 97(26), 263103 (2010).
[Crossref]

Jiao, X.

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of Near-Field Resonances in Bowtie Antennae: Influence of Adhesion Layers,” Plasmonics 4(1), 37–50 (2009).
[Crossref]

Johnson, N. P.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kabbani, W.

J. M. Stern, J. Stanfield, W. Kabbani, J.-T. Hsieh, and J. A. Cadeddu, “Selective prostate cancer thermal ablation with laser activated gold nanoshells,” J. Urol. 179(2), 748–753 (2008).
[Crossref] [PubMed]

Kahl, M.

J. Merlein, M. Kahl, A Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).

Kamp, M.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12(8), 3915–3919 (2012).
[Crossref] [PubMed]

Kasemo, B.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
[Crossref] [PubMed]

Keating, C. D.

M. J. Feldstein, C. D. Keating, Y.-H. Liau, M. J. Natan, and N. F. Scherer, “Electronic Relaxation Dynamics in Coupled Metal Nanoparticles,” J. Am. Chem. Soc. 119(28), 6638–6647 (1997).
[Crossref]

Kern, J.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12(8), 3915–3919 (2012).
[Crossref] [PubMed]

Kessentini, S.

F. Colas, D. Barchiesi, S. Kessentini, T. Toury, and M. L. de la Chapelle, “Comparison of adhesion layers of gold on silicate glasses for SERS detection,” J. Opt. 17(11), 114010 (2015).
[Crossref]

D. Barchiesi, S. Kessentini, N. Guillot, M. L. de la Chapelle, and T. Grosges, “Localized surface plasmon resonance in arrays of nano-gold cylinders: inverse problem and propagation of uncertainties,” Opt. Express 21(2), 2245–2262 (2013).
[Crossref] [PubMed]

Khokhar, A. Z.

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single ‘Bowtie’ Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Knapp, A. G.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12(8), 3915–3919 (2012).
[Crossref] [PubMed]

Kolwas, K.

K. Kolwas and A. Derkachova, “Damping rates of surface plasmons for particles of size from nano- to micrometers; reduction of the nonradiative decay,” J. Quant. Spectrosc. Radiat. Transf. 114, 45–55 (2013).
[Crossref]

Krauss, G.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref] [PubMed]

Kreibig, U.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
[Crossref] [PubMed]

Kristensen, A.

C. Jeppesen, N. A. Mortensen, and A. Kristensen, “The effect of Ti and ITO adhesion layers on gold split-ring resonators,” Appl. Phys. Lett. 97(26), 263103 (2010).
[Crossref]

Kurz, H.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
[Crossref] [PubMed]

Kuttge, M.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
[Crossref] [PubMed]

Lahiri, B.

Langhammer, C.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
[Crossref] [PubMed]

Lee, K.-S.

K.-S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[Crossref] [PubMed]

Leiderer, P.

J. Merlein, M. Kahl, A Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).

Leitenstorfer, A.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref] [PubMed]

J. Merlein, M. Kahl, A Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).

Leone, S. R.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Li, Z.

Y. Chen, Q. Xiang, Z. Li, Y. Wang, Y. Meng, and H. Duan, ““Sketch and Peel” Lithography for High-Resolution Multiscale Patterning,” Nano Lett. 16(5), 3253–3259 (2016).
[Crossref] [PubMed]

Y. Chen, Z. Li, Q. Xiang, Y. Wang, Z. Zhang, and H. Duan, “Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off,” Nanotechnology 26(40), 405301 (2015).
[Crossref] [PubMed]

Liao, P. F.

A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation Damping in Surface-Enhanced Raman Scattering,” Phys. Rev. Lett. 48(14), 957–960 (1982).
[Crossref]

Liau, Y.-H.

M. J. Feldstein, C. D. Keating, Y.-H. Liau, M. J. Natan, and N. F. Scherer, “Electronic Relaxation Dynamics in Coupled Metal Nanoparticles,” J. Am. Chem. Soc. 119(28), 6638–6647 (1997).
[Crossref]

Lilley, G.

Lin, Y.-P.

C.-C. Chen, Y.-P. Lin, C.-W. Wang, H.-C. Tzeng, C.-H. Wu, Y.-C. Chen, C.-P. Chen, L.-C. Chen, and Y.-C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[Crossref] [PubMed]

Link, S.

W.-S. Chang, F. Wen, D. Chakraborty, M.-N. Su, Y. Zhang, B. Shuang, P. Nordlander, J. E. Sader, N. J. Halas, and S. Link, “Tuning the acoustic frequency of a gold nanodisk through its adhesion layer,” Nat. Commun. 6, 7022 (2015).
[Crossref] [PubMed]

A. Hoggard, L.-Y. Wang, L. Ma, Y. Fang, G. You, J. Olson, Z. Liu, W.-S. Chang, P. M. Ajayan, and S. Link, “Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene,” ACS Nano 7(12), 11209–11217 (2013).
[Crossref] [PubMed]

S. Link and M. A. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

Liu, Z.

A. Hoggard, L.-Y. Wang, L. Ma, Y. Fang, G. You, J. Olson, Z. Liu, W.-S. Chang, P. M. Ajayan, and S. Link, “Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene,” ACS Nano 7(12), 11209–11217 (2013).
[Crossref] [PubMed]

Lopez, D.

Ma, H.

H. Ma, P. Tian, J. Pello, P. M. Bendix, and L. B. Oddershede, “Heat generation by irradiated complex composite nanostructures,” Nano Lett. 14(2), 612–619 (2014).
[Crossref] [PubMed]

Ma, L.

A. Hoggard, L.-Y. Wang, L. Ma, Y. Fang, G. You, J. Olson, Z. Liu, W.-S. Chang, P. M. Ajayan, and S. Link, “Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene,” ACS Nano 7(12), 11209–11217 (2013).
[Crossref] [PubMed]

Mahdavi, F.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref] [PubMed]

Maier, S. A.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Manfrinato, V. R.

R. G. Hobbs, V. R. Manfrinato, Y. Yang, S. A. Goodman, L. Zhang, E. A. Stach, and K. K. Berggren, “High-Energy Surface and Volume Plasmons in Nanopatterned Sub-10 nm Aluminum Nanostructures,” Nano Lett. 16(7), 4149–4157 (2016).
[Crossref] [PubMed]

Martin, O. J. F.

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
[Crossref] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Marty, R.

M. Bosman, E. Ye, S. F. Tan, C. A. Nijhuis, J. K. W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M.-Y. Han, “Surface plasmon damping quantified with an electron nanoprobe,” Sci. Rep. 3, 1312 (2013).
[Crossref] [PubMed]

McMahon, J. M.

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 132(31), 10903–10910 (2010).
[Crossref] [PubMed]

McMeekin, S. G.

B. Lahiri, S. G. McMeekin, R. M. D. L. Rue, and N. P. Johnson, “Resonance hybridization in nanoantenna arrays based on asymmetric split-ring resonators,” Appl. Phys. Lett. 98(15), 153116 (2011).
[Crossref]

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17(2), 1107–1115 (2009).
[Crossref] [PubMed]

Meng, Y.

Y. Chen, Q. Xiang, Z. Li, Y. Wang, Y. Meng, and H. Duan, ““Sketch and Peel” Lithography for High-Resolution Multiscale Patterning,” Nano Lett. 16(5), 3253–3259 (2016).
[Crossref] [PubMed]

Merlein, J.

J. Merlein, M. Kahl, A Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).

Messinger, B. J.

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[Crossref]

Messner, M.

Métraux, G. S.

J. E. Millstone, S. J. Hurst, G. S. Métraux, J. I. Cutler, and C. A. Mirkin, “Colloidal gold and silver triangular nanoprisms,” Small 5(6), 646–664 (2009).
[Crossref] [PubMed]

Millstone, J. E.

J. E. Millstone, S. J. Hurst, G. S. Métraux, J. I. Cutler, and C. A. Mirkin, “Colloidal gold and silver triangular nanoprisms,” Small 5(6), 646–664 (2009).
[Crossref] [PubMed]

Mirkin, C. A.

J. E. Millstone, S. J. Hurst, G. S. Métraux, J. I. Cutler, and C. A. Mirkin, “Colloidal gold and silver triangular nanoprisms,” Small 5(6), 646–664 (2009).
[Crossref] [PubMed]

Mlayah, A.

M. Bosman, E. Ye, S. F. Tan, C. A. Nijhuis, J. K. W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M.-Y. Han, “Surface plasmon damping quantified with an electron nanoprobe,” Sci. Rep. 3, 1312 (2013).
[Crossref] [PubMed]

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single ‘Bowtie’ Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Monreal, R.

P. Apell, R. Monreal, and F. Flores, “Effective relaxation time in small spheres: Diffuse surface scattering,” Solid State Commun. 52(12), 971–973 (1984).
[Crossref]

Monreal, R. C.

Mortensen, N. A.

C. Jeppesen, N. A. Mortensen, and A. Kristensen, “The effect of Ti and ITO adhesion layers on gold split-ring resonators,” Appl. Phys. Lett. 97(26), 263103 (2010).
[Crossref]

Mott, N. F.

K. Fuchs and N. F. Mott, “The conductivity of thin metallic films according to the electron theory of metals,” Math. Proc. Cambridge 34(1), 100–108 (1938).
[Crossref]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Mulvaney, P.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[Crossref] [PubMed]

Natan, M. J.

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 132(31), 10903–10910 (2010).
[Crossref] [PubMed]

M. J. Feldstein, C. D. Keating, Y.-H. Liau, M. J. Natan, and N. F. Scherer, “Electronic Relaxation Dynamics in Coupled Metal Nanoparticles,” J. Am. Chem. Soc. 119(28), 6638–6647 (1997).
[Crossref]

Natelson, D.

S. J. Bauman, E. C. Novak, D. T. Debu, D. Natelson, and J. B. Herzog, “Fabrication of Sub-Lithography-Limited Structures via Nanomasking Technique for Plasmonic Enhancement Applications,” IEEE Trans. NanoTechnol. 14(5), 790–793 (2015).
[Crossref]

Nijhuis, C. A.

M. Bosman, E. Ye, S. F. Tan, C. A. Nijhuis, J. K. W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M.-Y. Han, “Surface plasmon damping quantified with an electron nanoprobe,” Sci. Rep. 3, 1312 (2013).
[Crossref] [PubMed]

Noguez, C.

I. O. Sosa, C. Noguez, and R. G. Barrera, “Optical Properties of Metal Nanoparticles with Arbitrary Shapes,” J. Phys. Chem. B 107(26), 6269–6275 (2003).
[Crossref]

Nordlander, P.

W.-S. Chang, F. Wen, D. Chakraborty, M.-N. Su, Y. Zhang, B. Shuang, P. Nordlander, J. E. Sader, N. J. Halas, and S. Link, “Tuning the acoustic frequency of a gold nanodisk through its adhesion layer,” Nat. Commun. 6, 7022 (2015).
[Crossref] [PubMed]

C. Oubre and P. Nordlander, “Optical Properties of Metallodielectric Nanostructures Calculated Using the Finite Difference Time Domain Method,” J. Phys. Chem. B 108(46), 17740–17747 (2004).
[Crossref]

Norman, T. J.

C. D. Grant, A. M. Schwartzberg, T. J. Norman, and J. Z. Zhang, “Ultrafast electronic relaxation and coherent vibrational oscillation of strongly coupled gold nanoparticle aggregates,” J. Am. Chem. Soc. 125(2), 549–553 (2003).
[Crossref] [PubMed]

Novak, E. C.

S. J. Bauman, E. C. Novak, D. T. Debu, D. Natelson, and J. B. Herzog, “Fabrication of Sub-Lithography-Limited Structures via Nanomasking Technique for Plasmonic Enhancement Applications,” IEEE Trans. NanoTechnol. 14(5), 790–793 (2015).
[Crossref]

Oddershede, L. B.

H. Ma, P. Tian, J. Pello, P. M. Bendix, and L. B. Oddershede, “Heat generation by irradiated complex composite nanostructures,” Nano Lett. 14(2), 612–619 (2014).
[Crossref] [PubMed]

Oldham, M.

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of Near-Field Resonances in Bowtie Antennae: Influence of Adhesion Layers,” Plasmonics 4(1), 37–50 (2009).
[Crossref]

Olson, J.

A. Hoggard, L.-Y. Wang, L. Ma, Y. Fang, G. You, J. Olson, Z. Liu, W.-S. Chang, P. M. Ajayan, and S. Link, “Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene,” ACS Nano 7(12), 11209–11217 (2013).
[Crossref] [PubMed]

Orrit, M.

P. Zijlstra, P. M. R. Paulo, K. Yu, Q.-H. Xu, and M. Orrit, “Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization,” Angew. Chem. Int. Ed. Engl. 51(33), 8352–8355 (2012).
[Crossref] [PubMed]

Oubre, C.

C. Oubre and P. Nordlander, “Optical Properties of Metallodielectric Nanostructures Calculated Using the Finite Difference Time Domain Method,” J. Phys. Chem. B 108(46), 17740–17747 (2004).
[Crossref]

Paulo, P. M. R.

P. Zijlstra, P. M. R. Paulo, K. Yu, Q.-H. Xu, and M. Orrit, “Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization,” Angew. Chem. Int. Ed. Engl. 51(33), 8352–8355 (2012).
[Crossref] [PubMed]

Pello, J.

H. Ma, P. Tian, J. Pello, P. M. Bendix, and L. B. Oddershede, “Heat generation by irradiated complex composite nanostructures,” Nano Lett. 14(2), 612–619 (2014).
[Crossref] [PubMed]

Piotti, M. E.

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 132(31), 10903–10910 (2010).
[Crossref] [PubMed]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Prangsma, J. C.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12(8), 3915–3919 (2012).
[Crossref] [PubMed]

Prasad, P. N.

K.-T. Yong, Y. Sahoo, M. T. Swihart, and P. N. Prasad, “Synthesis and plasmonic properties of silver and gold nanoshells on polystyrene cores of different size and of gold–silver core–shell nanostructures,” Colloids Surf. A Physicochem. Eng. Asp. 290(1–3), 89–105 (2006).
[Crossref]

Rigneault, H.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref] [PubMed]

Rivas, J. G.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
[Crossref] [PubMed]

Roy, D.

E. Hutter, J. H. Fendler, and D. Roy, “Surface Plasmon Resonance Studies of Gold and Silver Nanoparticles Linked to Gold and Silver Substrates by 2-Aminoethanethiol and 1,6-Hexanedithiol,” J. Phys. Chem. B 105(45), 11159–11168 (2001).
[Crossref]

Rue, R. M. D. L.

B. Lahiri, S. G. McMeekin, R. M. D. L. Rue, and N. P. Johnson, “Resonance hybridization in nanoantenna arrays based on asymmetric split-ring resonators,” Appl. Phys. Lett. 98(15), 153116 (2011).
[Crossref]

Sader, J. E.

W.-S. Chang, F. Wen, D. Chakraborty, M.-N. Su, Y. Zhang, B. Shuang, P. Nordlander, J. E. Sader, N. J. Halas, and S. Link, “Tuning the acoustic frequency of a gold nanodisk through its adhesion layer,” Nat. Commun. 6, 7022 (2015).
[Crossref] [PubMed]

Sahoo, Y.

K.-T. Yong, Y. Sahoo, M. T. Swihart, and P. N. Prasad, “Synthesis and plasmonic properties of silver and gold nanoshells on polystyrene cores of different size and of gold–silver core–shell nanostructures,” Colloids Surf. A Physicochem. Eng. Asp. 290(1–3), 89–105 (2006).
[Crossref]

Sambles, J. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Sánchez-Gil, J. A.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
[Crossref] [PubMed]

Schatz, G. C.

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 132(31), 10903–10910 (2010).
[Crossref] [PubMed]

Scherer, N. F.

M. J. Feldstein, C. D. Keating, Y.-H. Liau, M. J. Natan, and N. F. Scherer, “Electronic Relaxation Dynamics in Coupled Metal Nanoparticles,” J. Am. Chem. Soc. 119(28), 6638–6647 (1997).
[Crossref]

Schuck, P. J.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single ‘Bowtie’ Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Schwartzberg, A. M.

C. D. Grant, A. M. Schwartzberg, T. J. Norman, and J. Z. Zhang, “Ultrafast electronic relaxation and coherent vibrational oscillation of strongly coupled gold nanoparticle aggregates,” J. Am. Chem. Soc. 125(2), 549–553 (2003).
[Crossref] [PubMed]

Sell, A.

J. Merlein, M. Kahl, A Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).

Shen, Y. R.

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[Crossref] [PubMed]

Shuang, B.

W.-S. Chang, F. Wen, D. Chakraborty, M.-N. Su, Y. Zhang, B. Shuang, P. Nordlander, J. E. Sader, N. J. Halas, and S. Link, “Tuning the acoustic frequency of a gold nanodisk through its adhesion layer,” Nat. Commun. 6, 7022 (2015).
[Crossref] [PubMed]

Sönnichsen, C.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[Crossref] [PubMed]

Sosa, I. O.

I. O. Sosa, C. Noguez, and R. G. Barrera, “Optical Properties of Metal Nanoparticles with Arbitrary Shapes,” J. Phys. Chem. B 107(26), 6269–6275 (2003).
[Crossref]

Stach, E. A.

R. G. Hobbs, V. R. Manfrinato, Y. Yang, S. A. Goodman, L. Zhang, E. A. Stach, and K. K. Berggren, “High-Energy Surface and Volume Plasmons in Nanopatterned Sub-10 nm Aluminum Nanostructures,” Nano Lett. 16(7), 4149–4157 (2016).
[Crossref] [PubMed]

Stanfield, J.

J. M. Stern, J. Stanfield, W. Kabbani, J.-T. Hsieh, and J. A. Cadeddu, “Selective prostate cancer thermal ablation with laser activated gold nanoshells,” J. Urol. 179(2), 748–753 (2008).
[Crossref] [PubMed]

Stern, J. M.

J. M. Stern, J. Stanfield, W. Kabbani, J.-T. Hsieh, and J. A. Cadeddu, “Selective prostate cancer thermal ablation with laser activated gold nanoshells,” J. Urol. 179(2), 748–753 (2008).
[Crossref] [PubMed]

Stevenson, P. C.

J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11(0), 55–75 (1951).
[Crossref]

Stietz, F.

C. Hendrich, J. Bosbach, F. Stietz, F. Hubenthal, T. Vartanyan, and F. Träger, “Chemical interface damping of surface plasmon excitation in metal nanoparticles: a study by persistent spectral hole burning,” Appl. Phys. B 76(8), 869–875 (2003).
[Crossref]

Su, M.-N.

W.-S. Chang, F. Wen, D. Chakraborty, M.-N. Su, Y. Zhang, B. Shuang, P. Nordlander, J. E. Sader, N. J. Halas, and S. Link, “Tuning the acoustic frequency of a gold nanodisk through its adhesion layer,” Nat. Commun. 6, 7022 (2015).
[Crossref] [PubMed]

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single ‘Bowtie’ Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Swihart, M. T.

K.-T. Yong, Y. Sahoo, M. T. Swihart, and P. N. Prasad, “Synthesis and plasmonic properties of silver and gold nanoshells on polystyrene cores of different size and of gold–silver core–shell nanostructures,” Colloids Surf. A Physicochem. Eng. Asp. 290(1–3), 89–105 (2006).
[Crossref]

Tan, S. F.

M. Bosman, E. Ye, S. F. Tan, C. A. Nijhuis, J. K. W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M.-Y. Han, “Surface plasmon damping quantified with an electron nanoprobe,” Sci. Rep. 3, 1312 (2013).
[Crossref] [PubMed]

Tang, A.

D. Zhu, A. Tang, H. Ye, M. Wang, C. Yang, and F. Teng, “Tunable near-infrared localized surface plasmon resonances of djurleite nanocrystals: effects of size, shape, surface-ligands and oxygen exposure time,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(26), 6686–6691 (2015).
[Crossref]

Teng, F.

D. Zhu, A. Tang, H. Ye, M. Wang, C. Yang, and F. Teng, “Tunable near-infrared localized surface plasmon resonances of djurleite nanocrystals: effects of size, shape, surface-ligands and oxygen exposure time,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(26), 6686–6691 (2015).
[Crossref]

Tian, P.

H. Ma, P. Tian, J. Pello, P. M. Bendix, and L. B. Oddershede, “Heat generation by irradiated complex composite nanostructures,” Nano Lett. 14(2), 612–619 (2014).
[Crossref] [PubMed]

Toury, T.

F. Colas, D. Barchiesi, S. Kessentini, T. Toury, and M. L. de la Chapelle, “Comparison of adhesion layers of gold on silicate glasses for SERS detection,” J. Opt. 17(11), 114010 (2015).
[Crossref]

Träger, F.

C. Hendrich, J. Bosbach, F. Stietz, F. Hubenthal, T. Vartanyan, and F. Träger, “Chemical interface damping of surface plasmon excitation in metal nanoparticles: a study by persistent spectral hole burning,” Appl. Phys. B 76(8), 869–875 (2003).
[Crossref]

Träutlein, D.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref] [PubMed]

Turkevich, J.

J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11(0), 55–75 (1951).
[Crossref]

Tzeng, H.-C.

C.-C. Chen, Y.-P. Lin, C.-W. Wang, H.-C. Tzeng, C.-H. Wu, Y.-C. Chen, C.-P. Chen, L.-C. Chen, and Y.-C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[Crossref] [PubMed]

Unterrainer, K.

Valley, N.

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 132(31), 10903–10910 (2010).
[Crossref] [PubMed]

Van Duyne, R. P.

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 132(31), 10903–10910 (2010).
[Crossref] [PubMed]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Vartanyan, T.

C. Hendrich, J. Bosbach, F. Stietz, F. Hubenthal, T. Vartanyan, and F. Träger, “Chemical interface damping of surface plasmon excitation in metal nanoparticles: a study by persistent spectral hole burning,” Appl. Phys. B 76(8), 869–875 (2003).
[Crossref]

Vollmer, M.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
[Crossref] [PubMed]

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[Crossref] [PubMed]

von Raben, K. U.

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[Crossref]

Walsh, S. A.

J. M. Balbus, K. Florini, R. A. Denison, and S. A. Walsh, “Getting it right the first time: developing nanotechnology while protecting workers, public health, and the environment,” Ann. N. Y. Acad. Sci. 1076(1), 331–342 (2006).
[Crossref] [PubMed]

Wang, C.-W.

C.-C. Chen, Y.-P. Lin, C.-W. Wang, H.-C. Tzeng, C.-H. Wu, Y.-C. Chen, C.-P. Chen, L.-C. Chen, and Y.-C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[Crossref] [PubMed]

Wang, F.

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[Crossref] [PubMed]

Wang, L.-Y.

A. Hoggard, L.-Y. Wang, L. Ma, Y. Fang, G. You, J. Olson, Z. Liu, W.-S. Chang, P. M. Ajayan, and S. Link, “Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene,” ACS Nano 7(12), 11209–11217 (2013).
[Crossref] [PubMed]

Wang, M.

D. Zhu, A. Tang, H. Ye, M. Wang, C. Yang, and F. Teng, “Tunable near-infrared localized surface plasmon resonances of djurleite nanocrystals: effects of size, shape, surface-ligands and oxygen exposure time,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(26), 6686–6691 (2015).
[Crossref]

Wang, Y.

Y. Chen, Q. Xiang, Z. Li, Y. Wang, Y. Meng, and H. Duan, ““Sketch and Peel” Lithography for High-Resolution Multiscale Patterning,” Nano Lett. 16(5), 3253–3259 (2016).
[Crossref] [PubMed]

Y. Chen, Z. Li, Q. Xiang, Y. Wang, Z. Zhang, and H. Duan, “Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off,” Nanotechnology 26(40), 405301 (2015).
[Crossref] [PubMed]

Wen, F.

W.-S. Chang, F. Wen, D. Chakraborty, M.-N. Su, Y. Zhang, B. Shuang, P. Nordlander, J. E. Sader, N. J. Halas, and S. Link, “Tuning the acoustic frequency of a gold nanodisk through its adhesion layer,” Nat. Commun. 6, 7022 (2015).
[Crossref] [PubMed]

Wenger, J.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref] [PubMed]

Wild, B.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref] [PubMed]

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[Crossref] [PubMed]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Wilson, O.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[Crossref] [PubMed]

Wokaun, A.

A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation Damping in Surface-Enhanced Raman Scattering,” Phys. Rev. Lett. 48(14), 957–960 (1982).
[Crossref]

Wood, E.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Wu, C.-H.

C.-C. Chen, Y.-P. Lin, C.-W. Wang, H.-C. Tzeng, C.-H. Wu, Y.-C. Chen, C.-P. Chen, L.-C. Chen, and Y.-C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[Crossref] [PubMed]

Wu, Y.-C.

C.-C. Chen, Y.-P. Lin, C.-W. Wang, H.-C. Tzeng, C.-H. Wu, Y.-C. Chen, C.-P. Chen, L.-C. Chen, and Y.-C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[Crossref] [PubMed]

Wustholz, K. L.

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 132(31), 10903–10910 (2010).
[Crossref] [PubMed]

Xiang, Q.

Y. Chen, Q. Xiang, Z. Li, Y. Wang, Y. Meng, and H. Duan, ““Sketch and Peel” Lithography for High-Resolution Multiscale Patterning,” Nano Lett. 16(5), 3253–3259 (2016).
[Crossref] [PubMed]

Y. Chen, Z. Li, Q. Xiang, Y. Wang, Z. Zhang, and H. Duan, “Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off,” Nanotechnology 26(40), 405301 (2015).
[Crossref] [PubMed]

Xu, Q.-H.

P. Zijlstra, P. M. R. Paulo, K. Yu, Q.-H. Xu, and M. Orrit, “Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization,” Angew. Chem. Int. Ed. Engl. 51(33), 8352–8355 (2012).
[Crossref] [PubMed]

Xu, T.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref] [PubMed]

Yang, C.

D. Zhu, A. Tang, H. Ye, M. Wang, C. Yang, and F. Teng, “Tunable near-infrared localized surface plasmon resonances of djurleite nanocrystals: effects of size, shape, surface-ligands and oxygen exposure time,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(26), 6686–6691 (2015).
[Crossref]

Yang, J. K. W.

M. Bosman, E. Ye, S. F. Tan, C. A. Nijhuis, J. K. W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M.-Y. Han, “Surface plasmon damping quantified with an electron nanoprobe,” Sci. Rep. 3, 1312 (2013).
[Crossref] [PubMed]

Yang, Y.

R. G. Hobbs, V. R. Manfrinato, Y. Yang, S. A. Goodman, L. Zhang, E. A. Stach, and K. K. Berggren, “High-Energy Surface and Volume Plasmons in Nanopatterned Sub-10 nm Aluminum Nanostructures,” Nano Lett. 16(7), 4149–4157 (2016).
[Crossref] [PubMed]

Ye, E.

M. Bosman, E. Ye, S. F. Tan, C. A. Nijhuis, J. K. W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M.-Y. Han, “Surface plasmon damping quantified with an electron nanoprobe,” Sci. Rep. 3, 1312 (2013).
[Crossref] [PubMed]

Ye, H.

D. Zhu, A. Tang, H. Ye, M. Wang, C. Yang, and F. Teng, “Tunable near-infrared localized surface plasmon resonances of djurleite nanocrystals: effects of size, shape, surface-ligands and oxygen exposure time,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(26), 6686–6691 (2015).
[Crossref]

Yong, K.-T.

K.-T. Yong, Y. Sahoo, M. T. Swihart, and P. N. Prasad, “Synthesis and plasmonic properties of silver and gold nanoshells on polystyrene cores of different size and of gold–silver core–shell nanostructures,” Colloids Surf. A Physicochem. Eng. Asp. 290(1–3), 89–105 (2006).
[Crossref]

You, G.

A. Hoggard, L.-Y. Wang, L. Ma, Y. Fang, G. You, J. Olson, Z. Liu, W.-S. Chang, P. M. Ajayan, and S. Link, “Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene,” ACS Nano 7(12), 11209–11217 (2013).
[Crossref] [PubMed]

Yu, K.

P. Zijlstra, P. M. R. Paulo, K. Yu, Q.-H. Xu, and M. Orrit, “Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization,” Angew. Chem. Int. Ed. Engl. 51(33), 8352–8355 (2012).
[Crossref] [PubMed]

Zäch, M.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
[Crossref] [PubMed]

Zhang, J. Z.

C. D. Grant, A. M. Schwartzberg, T. J. Norman, and J. Z. Zhang, “Ultrafast electronic relaxation and coherent vibrational oscillation of strongly coupled gold nanoparticle aggregates,” J. Am. Chem. Soc. 125(2), 549–553 (2003).
[Crossref] [PubMed]

Zhang, L.

R. G. Hobbs, V. R. Manfrinato, Y. Yang, S. A. Goodman, L. Zhang, E. A. Stach, and K. K. Berggren, “High-Energy Surface and Volume Plasmons in Nanopatterned Sub-10 nm Aluminum Nanostructures,” Nano Lett. 16(7), 4149–4157 (2016).
[Crossref] [PubMed]

Zhang, Y.

W.-S. Chang, F. Wen, D. Chakraborty, M.-N. Su, Y. Zhang, B. Shuang, P. Nordlander, J. E. Sader, N. J. Halas, and S. Link, “Tuning the acoustic frequency of a gold nanodisk through its adhesion layer,” Nat. Commun. 6, 7022 (2015).
[Crossref] [PubMed]

Zhang, Z.

Y. Chen, Z. Li, Q. Xiang, Y. Wang, Z. Zhang, and H. Duan, “Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off,” Nanotechnology 26(40), 405301 (2015).
[Crossref] [PubMed]

Zhu, D.

D. Zhu, A. Tang, H. Ye, M. Wang, C. Yang, and F. Teng, “Tunable near-infrared localized surface plasmon resonances of djurleite nanocrystals: effects of size, shape, surface-ligands and oxygen exposure time,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(26), 6686–6691 (2015).
[Crossref]

Zijlstra, P.

P. Zijlstra, P. M. R. Paulo, K. Yu, Q.-H. Xu, and M. Orrit, “Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization,” Angew. Chem. Int. Ed. Engl. 51(33), 8352–8355 (2012).
[Crossref] [PubMed]

Zoric, I.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
[Crossref] [PubMed]

Zuschlag, A

J. Merlein, M. Kahl, A Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).

ACS Nano (4)

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano 3(7), 2043–2048 (2009).
[Crossref] [PubMed]

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano 5(4), 2535–2546 (2011).
[Crossref] [PubMed]

A. Hoggard, L.-Y. Wang, L. Ma, Y. Fang, G. You, J. Olson, Z. Liu, W.-S. Chang, P. M. Ajayan, and S. Link, “Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene,” ACS Nano 7(12), 11209–11217 (2013).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

P. Zijlstra, P. M. R. Paulo, K. Yu, Q.-H. Xu, and M. Orrit, “Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization,” Angew. Chem. Int. Ed. Engl. 51(33), 8352–8355 (2012).
[Crossref] [PubMed]

Ann. N. Y. Acad. Sci. (1)

J. M. Balbus, K. Florini, R. A. Denison, and S. A. Walsh, “Getting it right the first time: developing nanotechnology while protecting workers, public health, and the environment,” Ann. N. Y. Acad. Sci. 1076(1), 331–342 (2006).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Appl. Phys. B (1)

C. Hendrich, J. Bosbach, F. Stietz, F. Hubenthal, T. Vartanyan, and F. Träger, “Chemical interface damping of surface plasmon excitation in metal nanoparticles: a study by persistent spectral hole burning,” Appl. Phys. B 76(8), 869–875 (2003).
[Crossref]

Appl. Phys. Lett. (2)

C. Jeppesen, N. A. Mortensen, and A. Kristensen, “The effect of Ti and ITO adhesion layers on gold split-ring resonators,” Appl. Phys. Lett. 97(26), 263103 (2010).
[Crossref]

B. Lahiri, S. G. McMeekin, R. M. D. L. Rue, and N. P. Johnson, “Resonance hybridization in nanoantenna arrays based on asymmetric split-ring resonators,” Appl. Phys. Lett. 98(15), 153116 (2011).
[Crossref]

Cancer Lett. (1)

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239(1), 129–135 (2006).
[Crossref] [PubMed]

Chem. Rev. (2)

G. V. Hartland, “Optical studies of dynamics in noble metal nanostructures,” Chem. Rev. 111(6), 3858–3887 (2011).
[Crossref] [PubMed]

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Colloids Surf. A Physicochem. Eng. Asp. (1)

K.-T. Yong, Y. Sahoo, M. T. Swihart, and P. N. Prasad, “Synthesis and plasmonic properties of silver and gold nanoshells on polystyrene cores of different size and of gold–silver core–shell nanostructures,” Colloids Surf. A Physicochem. Eng. Asp. 290(1–3), 89–105 (2006).
[Crossref]

Discuss. Faraday Soc. (1)

J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11(0), 55–75 (1951).
[Crossref]

IEEE Trans. NanoTechnol. (1)

S. J. Bauman, E. C. Novak, D. T. Debu, D. Natelson, and J. B. Herzog, “Fabrication of Sub-Lithography-Limited Structures via Nanomasking Technique for Plasmonic Enhancement Applications,” IEEE Trans. NanoTechnol. 14(5), 790–793 (2015).
[Crossref]

J. Am. Chem. Soc. (4)

M. J. Feldstein, C. D. Keating, Y.-H. Liau, M. J. Natan, and N. F. Scherer, “Electronic Relaxation Dynamics in Coupled Metal Nanoparticles,” J. Am. Chem. Soc. 119(28), 6638–6647 (1997).
[Crossref]

C. D. Grant, A. M. Schwartzberg, T. J. Norman, and J. Z. Zhang, “Ultrafast electronic relaxation and coherent vibrational oscillation of strongly coupled gold nanoparticle aggregates,” J. Am. Chem. Soc. 125(2), 549–553 (2003).
[Crossref] [PubMed]

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 132(31), 10903–10910 (2010).
[Crossref] [PubMed]

C.-C. Chen, Y.-P. Lin, C.-W. Wang, H.-C. Tzeng, C.-H. Wu, Y.-C. Chen, C.-P. Chen, L.-C. Chen, and Y.-C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[Crossref] [PubMed]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

D. Zhu, A. Tang, H. Ye, M. Wang, C. Yang, and F. Teng, “Tunable near-infrared localized surface plasmon resonances of djurleite nanocrystals: effects of size, shape, surface-ligands and oxygen exposure time,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(26), 6686–6691 (2015).
[Crossref]

J. Opt. (1)

F. Colas, D. Barchiesi, S. Kessentini, T. Toury, and M. L. de la Chapelle, “Comparison of adhesion layers of gold on silicate glasses for SERS detection,” J. Opt. 17(11), 114010 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (5)

E. Hutter, J. H. Fendler, and D. Roy, “Surface Plasmon Resonance Studies of Gold and Silver Nanoparticles Linked to Gold and Silver Substrates by 2-Aminoethanethiol and 1,6-Hexanedithiol,” J. Phys. Chem. B 105(45), 11159–11168 (2001).
[Crossref]

K.-S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[Crossref] [PubMed]

S. Link and M. A. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

C. Oubre and P. Nordlander, “Optical Properties of Metallodielectric Nanostructures Calculated Using the Finite Difference Time Domain Method,” J. Phys. Chem. B 108(46), 17740–17747 (2004).
[Crossref]

I. O. Sosa, C. Noguez, and R. G. Barrera, “Optical Properties of Metal Nanoparticles with Arbitrary Shapes,” J. Phys. Chem. B 107(26), 6269–6275 (2003).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

K. Kolwas and A. Derkachova, “Damping rates of surface plasmons for particles of size from nano- to micrometers; reduction of the nonradiative decay,” J. Quant. Spectrosc. Radiat. Transf. 114, 45–55 (2013).
[Crossref]

J. Urol. (1)

J. M. Stern, J. Stanfield, W. Kabbani, J.-T. Hsieh, and J. A. Cadeddu, “Selective prostate cancer thermal ablation with laser activated gold nanoshells,” J. Urol. 179(2), 748–753 (2008).
[Crossref] [PubMed]

Math. Proc. Cambridge (1)

K. Fuchs and N. F. Mott, “The conductivity of thin metallic films according to the electron theory of metals,” Math. Proc. Cambridge 34(1), 100–108 (1938).
[Crossref]

Nano Lett. (5)

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single ‘Bowtie’ Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12(8), 3915–3919 (2012).
[Crossref] [PubMed]

R. G. Hobbs, V. R. Manfrinato, Y. Yang, S. A. Goodman, L. Zhang, E. A. Stach, and K. K. Berggren, “High-Energy Surface and Volume Plasmons in Nanopatterned Sub-10 nm Aluminum Nanostructures,” Nano Lett. 16(7), 4149–4157 (2016).
[Crossref] [PubMed]

Y. Chen, Q. Xiang, Z. Li, Y. Wang, Y. Meng, and H. Duan, ““Sketch and Peel” Lithography for High-Resolution Multiscale Patterning,” Nano Lett. 16(5), 3253–3259 (2016).
[Crossref] [PubMed]

H. Ma, P. Tian, J. Pello, P. M. Bendix, and L. B. Oddershede, “Heat generation by irradiated complex composite nanostructures,” Nano Lett. 14(2), 612–619 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

Y. Chen, Z. Li, Q. Xiang, Y. Wang, Z. Zhang, and H. Duan, “Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off,” Nanotechnology 26(40), 405301 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

W.-S. Chang, F. Wen, D. Chakraborty, M.-N. Su, Y. Zhang, B. Shuang, P. Nordlander, J. E. Sader, N. J. Halas, and S. Link, “Tuning the acoustic frequency of a gold nanodisk through its adhesion layer,” Nat. Commun. 6, 7022 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

J. Merlein, M. Kahl, A Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).

Opt. Express (6)

Opt. Mater. Express (1)

Phys. Rev. B (2)

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. B Condens. Matter (1)

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
[Crossref] [PubMed]

Phys. Rev. Lett. (6)

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref] [PubMed]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[Crossref] [PubMed]

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[Crossref] [PubMed]

A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation Damping in Surface-Enhanced Raman Scattering,” Phys. Rev. Lett. 48(14), 957–960 (1982).
[Crossref]

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
[Crossref] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Plasmonics (1)

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of Near-Field Resonances in Bowtie Antennae: Influence of Adhesion Layers,” Plasmonics 4(1), 37–50 (2009).
[Crossref]

Proc. SPIE (1)

S. J. Bauman, D. T. Debu, and J. B. Herzog, “Plasmonic structures fabricated via nanomasking sub-10 nm lithography technique,” Proc. SPIE 9556, 95560M (2015).
[Crossref]

Sci. Rep. (1)

M. Bosman, E. Ye, S. F. Tan, C. A. Nijhuis, J. K. W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M.-Y. Han, “Surface plasmon damping quantified with an electron nanoprobe,” Sci. Rep. 3, 1312 (2013).
[Crossref] [PubMed]

Science (2)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Small (1)

J. E. Millstone, S. J. Hurst, G. S. Métraux, J. I. Cutler, and C. A. Mirkin, “Colloidal gold and silver triangular nanoprisms,” Small 5(6), 646–664 (2009).
[Crossref] [PubMed]

Solid State Commun. (1)

P. Apell, R. Monreal, and F. Flores, “Effective relaxation time in small spheres: Diffuse surface scattering,” Solid State Commun. 52(12), 971–973 (1984).
[Crossref]

Other (6)

P. Jahanshahi, M. Ghomeishi, and F. R. M. Adikan, “Adhesive layer effect on gold-silica thin film interfaces for surface plasmon resonance modeling,” in 2012 IEEE 3rd International Conference on Photonics, (IEEE 2012), pp. 89–92.
[Crossref]

E. D. Palik, “Handbook of Optical Constants of Solids,” (Academic Press, 1997).

U. Kreibig and M. Vollmer, “Optical Properties of Metal Clusters,” (Springer Science & Business Media, 2013).

T. Okamoto, “Near-Field Spectral Analysis of Metallic Beads,” in Near-Field Optics and Surface Plasmon Polaritons, P. S. Kawata, Ed. (Springer Berlin Heidelberg, 2001), pp. 97–123.

J.-M. Jin, Theory and Computation of Electromagnetic Fields (John Wiley & Sons, 2011).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Spectrum for various tTi when tAu = 15 nm D = 75 nm. (a) Calculated scattering spectra. Calculated (b) absorption spectra and (c) extinction spectra for the same parameters as in (a).
Fig. 2
Fig. 2 (a) Peak resonance wavelength for scattering, absorption and extinction spectra for D = 75 nm disk with tAu = 15 nm as a function of tTi. Effective (b) real and (c) imaginary dielectric calculated from the volume fraction of Au and Ti.
Fig. 3
Fig. 3 Comparison of the peak amplitude of spectra for various disk diameters with tAu = 15 nm. Maximum (a) absorption coefficient, (b) scattering coefficient and (c) extinction coefficient as a function of tTi. (d-f) are similar results from above, but include more values for D.
Fig. 4
Fig. 4 The comparison of peak resonance mode and linewidth of gold nanodisks as a function of tTi. (a) The comparison of the peak resonance of five diameters obtained from extinction efficiency spectra. (b) FWHM calculated from the Q scat spectra as a function of tTi. Linewidths of the gold nanodisks are extracted by fitting Gaussian functions to the scattering spectra.
Fig. 5
Fig. 5 Calculated broadening and damping parameters of nanodisks with tAu = 15 nm as a function of tTi for all considered diameters. (a) quantum efficiency (yield), (b) quality factor, and (c) plasmon modes dephasing (decay) time.
Fig. 6
Fig. 6 Calculated peak plasmon resonance wavelength (a) and the full width at half maxima (FWHM) (b) of nanodisks as a function of Ti% for four selected diameters, 75 nm, 100 nm, 150 nm and 200 nm.
Fig. 7
Fig. 7 Calculated dephasing time of nanodisks of diameter of 75 nm (a) and 200 nm (b) as a function of Ti%.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

×( 1 μ r ×E ) k 0 2 ε r E=0,
S scat = 1 2 Re{ E scat × H scat * }
Q scat = S scat dA π r 2 | I 0 | ,
Q abs = 2 π r 2 | I 0 | Re ( J tot E tot * +iω B tot H tot * )dV,
Γ= γ b + Γ rad + Γ esurf + Γ interface ,

Metrics