Abstract

A magnetic coupling metasurface with a structure of a Ag nanograting/space layer/Ag reflector is proposed to achieve broad-band and broad-angular absorption response for 2D materials such as a MoS2 monolayer. By reducing the size of the Ag nanograting and thickness of the spacer into deep subwavelength, strong magnetic coupling effects occur within the metasurface. The magnetic coupling effects can confine large energy density and reduce the metallic optical loss to a relatively low value in the structure. Correspondingly, broadband absorption enhancement is achieved for the MoS2 monolayer. The average absorption within the visible wavelength range reaches as high as 72.7% and the value still remains over 40% when the incident angle increases up to 80°. It is revealed that the magnetic coupling effects are more efficient than both the plasmonic and the magnetic resonant effects to achieve broad-band and broad-angular absorption in ultrathin 2D material absorbers.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

8 December 2016: A correction was made to the author listing.


OSA Recommended Articles
Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures

Hua Lu, Xuetao Gan, Dong Mao, Yicun Fan, Dexing Yang, and Jianlin Zhao
Opt. Express 25(18) 21630-21636 (2017)

Enhanced near-infrared absorption in graphene with multilayer metal-dielectric-metal nanostructure

Lei Zhang, Linlong Tang, Wei Wei, Xinlu Cheng, Wei Wang, and Hong Zhang
Opt. Express 24(18) 20002-20009 (2016)

Plasmon-enhanced broadband absorption of MoS2-based structure using Au nanoparticles

Kun Zhou, Jinlin Song, Lu Lu, Zixue Luo, and Qiang Cheng
Opt. Express 27(3) 2305-2316 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10, 216 (2016).
  2. A. Pospischil, M. M. Furchi, and T. Mueller, “Solar-energy conversion and light emission in an atomic monolayer p-n diode,” Nat. Nanotechnol. 9(4), 257–261 (2014).
    [PubMed]
  3. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899 (2014).
  4. X. Li, J. Zhu, and B. Wei, “Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications,” Chem. Soc. Rev. 45(11), 3145–3187 (2016).
    [PubMed]
  5. C. Janisch, H. M. Song, C. J. Zhou, Z. Lin, A. L. Elías, D.X. Ji, M. Terrones, Q. Q. Gan, and Z. W. Liu, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3, 025017 (2016).
  6. J. Li, Q. Ji, S. Chu, Y. Zhang, Y. Li, Q. Gong, K. Liu, and K. Shi, “Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna,” Sci. Rep. 6, 23626 (2016).
    [PubMed]
  7. A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104, 031112 (2014).
  8. J. B. Zheng, R. A. Barton, and D. Englund, “Broadband Coherent Absorption in Chirped-Planar-Dielectric Cavities for 2D-Material Based Photovoltaics and Photodetectors,” ACS Photonics 1, 768–774 (2014).
  9. S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband Absorption Engineering to Enhance Light Absorption in Monolayer MoS2,” ACS Photonics 3, 853–862 (2016).
  10. J. R. Piper and S. H. Fan, “Broadband Absorption Enhancement in Solar Cells with an Atomically Thin Active Layer,” ACS Photonics 3, 571–577 (2016).
  11. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [PubMed]
  12. A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface Broadband Solar Absorber,” Sci. Rep. 6, 20347 (2016).
    [PubMed]
  13. C. L. Wan, Y. L. Ho, S. Nunez-Sanchez, L. F. Chen, M. Lopez-Garcia, J. Pugh, B. F. Zhu, P. Selvaraj, T. Mallick, S. Senthilarasu, and M. J. Cryan, “A selective metasurface absorber with an amorphous carbon interlayer for solar thermal applications,” Nano Energy 26, 392–397 (2016).
  14. S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
    [PubMed]
  15. Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect Absorbers,” Appl. Phys. Lett. 106, 043105 (2015).
  16. Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6, 32312 (2016).
    [PubMed]
  17. Y. B. Long, Y. X. Li, L. Shen, W. Y. Liang, H. D. Deng, and H. T. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D Appl. Phys. 49, 32LT01 (2016).
  18. J. Volakis, A. Chatterjee, and L. Kempel, Finite Element Method Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications (Wiley-IEEE Press, 1998).
  19. Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-m. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90, 205422 (2014).
  20. E. Palik and G. G. Dand, Handbook of Optical Constants of Solids (Academic, 1998)
  21. H. Y. Jeong, U. J. Kim, H. Kim, G. H. Han, H. Lee, M. S. Kim, Y. Jin, T. H. Ly, S. Y. Lee, Y. G. Roh, W. J. Joo, S. W. Hwang, Y. Park, and Y. H. Lee, “Optical Gain in MoS2 via Coupling with Nanostructured Substrate: Fabry-Perot Interference and Plasmonic Excitation,” ACS Nano 10(9), 8192–8198 (2016).
    [PubMed]
  22. W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15(6), 3333–3341 (2007).
    [PubMed]
  23. U. K. Chettiar, A. V. Kildishev, T. A. Klar, and V. M. Shalaev, “Negative index metamaterial combining magnetic resonators with metal films,” Opt. Express 14(17), 7872–7877 (2006).
    [PubMed]
  24. J. Hao, L. Zhou, and M. Qi, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).
  25. M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).

2016 (10)

X. Li, J. Zhu, and B. Wei, “Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications,” Chem. Soc. Rev. 45(11), 3145–3187 (2016).
[PubMed]

J. Li, Q. Ji, S. Chu, Y. Zhang, Y. Li, Q. Gong, K. Liu, and K. Shi, “Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna,” Sci. Rep. 6, 23626 (2016).
[PubMed]

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10, 216 (2016).

S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband Absorption Engineering to Enhance Light Absorption in Monolayer MoS2,” ACS Photonics 3, 853–862 (2016).

J. R. Piper and S. H. Fan, “Broadband Absorption Enhancement in Solar Cells with an Atomically Thin Active Layer,” ACS Photonics 3, 571–577 (2016).

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface Broadband Solar Absorber,” Sci. Rep. 6, 20347 (2016).
[PubMed]

C. L. Wan, Y. L. Ho, S. Nunez-Sanchez, L. F. Chen, M. Lopez-Garcia, J. Pugh, B. F. Zhu, P. Selvaraj, T. Mallick, S. Senthilarasu, and M. J. Cryan, “A selective metasurface absorber with an amorphous carbon interlayer for solar thermal applications,” Nano Energy 26, 392–397 (2016).

Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6, 32312 (2016).
[PubMed]

Y. B. Long, Y. X. Li, L. Shen, W. Y. Liang, H. D. Deng, and H. T. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D Appl. Phys. 49, 32LT01 (2016).

H. Y. Jeong, U. J. Kim, H. Kim, G. H. Han, H. Lee, M. S. Kim, Y. Jin, T. H. Ly, S. Y. Lee, Y. G. Roh, W. J. Joo, S. W. Hwang, Y. Park, and Y. H. Lee, “Optical Gain in MoS2 via Coupling with Nanostructured Substrate: Fabry-Perot Interference and Plasmonic Excitation,” ACS Nano 10(9), 8192–8198 (2016).
[PubMed]

2015 (1)

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect Absorbers,” Appl. Phys. Lett. 106, 043105 (2015).

2014 (5)

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-m. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90, 205422 (2014).

A. Pospischil, M. M. Furchi, and T. Mueller, “Solar-energy conversion and light emission in an atomic monolayer p-n diode,” Nat. Nanotechnol. 9(4), 257–261 (2014).
[PubMed]

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899 (2014).

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104, 031112 (2014).

J. B. Zheng, R. A. Barton, and D. Englund, “Broadband Coherent Absorption in Chirped-Planar-Dielectric Cavities for 2D-Material Based Photovoltaics and Photodetectors,” ACS Photonics 1, 768–774 (2014).

2013 (1)

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[PubMed]

2011 (2)

J. Hao, L. Zhou, and M. Qi, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[PubMed]

2009 (1)

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).

2007 (1)

2006 (1)

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[PubMed]

Ayala-Orozco, C.

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104, 031112 (2014).

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[PubMed]

Azad, A. K.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface Broadband Solar Absorber,” Sci. Rep. 6, 20347 (2016).
[PubMed]

Bahauddin, S. M.

S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband Absorption Engineering to Enhance Light Absorption in Monolayer MoS2,” ACS Photonics 3, 853–862 (2016).

Barton, R. A.

J. B. Zheng, R. A. Barton, and D. Englund, “Broadband Coherent Absorption in Chirped-Planar-Dielectric Cavities for 2D-Material Based Photovoltaics and Photodetectors,” ACS Photonics 1, 768–774 (2014).

Borini, S.

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[PubMed]

Bruna, M.

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).

Cai, W.

Cai, Y.

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect Absorbers,” Appl. Phys. Lett. 106, 043105 (2015).

Chen, H. T.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface Broadband Solar Absorber,” Sci. Rep. 6, 20347 (2016).
[PubMed]

Chen, L. F.

C. L. Wan, Y. L. Ho, S. Nunez-Sanchez, L. F. Chen, M. Lopez-Garcia, J. Pugh, B. F. Zhu, P. Selvaraj, T. Mallick, S. Senthilarasu, and M. J. Cryan, “A selective metasurface absorber with an amorphous carbon interlayer for solar thermal applications,” Nano Energy 26, 392–397 (2016).

Chen, Q.

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[PubMed]

Chenet, D. A.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-m. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90, 205422 (2014).

Chernikov, A.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-m. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90, 205422 (2014).

Chettiar, U. K.

Chu, S.

J. Li, Q. Ji, S. Chu, Y. Zhang, Y. Li, Q. Gong, K. Liu, and K. Shi, “Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna,” Sci. Rep. 6, 23626 (2016).
[PubMed]

Cryan, M. J.

C. L. Wan, Y. L. Ho, S. Nunez-Sanchez, L. F. Chen, M. Lopez-Garcia, J. Pugh, B. F. Zhu, P. Selvaraj, T. Mallick, S. Senthilarasu, and M. J. Cryan, “A selective metasurface absorber with an amorphous carbon interlayer for solar thermal applications,” Nano Energy 26, 392–397 (2016).

Dalvit, D. A. R.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface Broadband Solar Absorber,” Sci. Rep. 6, 20347 (2016).
[PubMed]

de Silva, V. C.

Deng, H.

Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6, 32312 (2016).
[PubMed]

Deng, H. D.

Y. B. Long, Y. X. Li, L. Shen, W. Y. Liang, H. D. Deng, and H. T. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D Appl. Phys. 49, 32LT01 (2016).

Drachev, V. P.

Dubey, M.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899 (2014).

Englund, D.

J. B. Zheng, R. A. Barton, and D. Englund, “Broadband Coherent Absorption in Chirped-Planar-Dielectric Cavities for 2D-Material Based Photovoltaics and Photodetectors,” ACS Photonics 1, 768–774 (2014).

Fan, S. H.

J. R. Piper and S. H. Fan, “Broadband Absorption Enhancement in Solar Cells with an Atomically Thin Active Layer,” ACS Photonics 3, 571–577 (2016).

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[PubMed]

Furchi, M. M.

A. Pospischil, M. M. Furchi, and T. Mueller, “Solar-energy conversion and light emission in an atomic monolayer p-n diode,” Nat. Nanotechnol. 9(4), 257–261 (2014).
[PubMed]

Gong, Q.

J. Li, Q. Ji, S. Chu, Y. Zhang, Y. Li, Q. Gong, K. Liu, and K. Shi, “Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna,” Sci. Rep. 6, 23626 (2016).
[PubMed]

Halas, N. J.

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104, 031112 (2014).

Han, G. H.

H. Y. Jeong, U. J. Kim, H. Kim, G. H. Han, H. Lee, M. S. Kim, Y. Jin, T. H. Ly, S. Y. Lee, Y. G. Roh, W. J. Joo, S. W. Hwang, Y. Park, and Y. H. Lee, “Optical Gain in MoS2 via Coupling with Nanostructured Substrate: Fabry-Perot Interference and Plasmonic Excitation,” ACS Nano 10(9), 8192–8198 (2016).
[PubMed]

Hao, J.

J. Hao, L. Zhou, and M. Qi, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).

Heinz, T. F.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-m. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90, 205422 (2014).

Hill, H. M.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-m. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90, 205422 (2014).

Ho, Y. L.

C. L. Wan, Y. L. Ho, S. Nunez-Sanchez, L. F. Chen, M. Lopez-Garcia, J. Pugh, B. F. Zhu, P. Selvaraj, T. Mallick, S. Senthilarasu, and M. J. Cryan, “A selective metasurface absorber with an amorphous carbon interlayer for solar thermal applications,” Nano Energy 26, 392–397 (2016).

Hone, J.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-m. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90, 205422 (2014).

Hwang, S. W.

H. Y. Jeong, U. J. Kim, H. Kim, G. H. Han, H. Lee, M. S. Kim, Y. Jin, T. H. Ly, S. Y. Lee, Y. G. Roh, W. J. Joo, S. W. Hwang, Y. Park, and Y. H. Lee, “Optical Gain in MoS2 via Coupling with Nanostructured Substrate: Fabry-Perot Interference and Plasmonic Excitation,” ACS Nano 10(9), 8192–8198 (2016).
[PubMed]

Jeong, H. Y.

H. Y. Jeong, U. J. Kim, H. Kim, G. H. Han, H. Lee, M. S. Kim, Y. Jin, T. H. Ly, S. Y. Lee, Y. G. Roh, W. J. Joo, S. W. Hwang, Y. Park, and Y. H. Lee, “Optical Gain in MoS2 via Coupling with Nanostructured Substrate: Fabry-Perot Interference and Plasmonic Excitation,” ACS Nano 10(9), 8192–8198 (2016).
[PubMed]

Ji, Q.

J. Li, Q. Ji, S. Chu, Y. Zhang, Y. Li, Q. Gong, K. Liu, and K. Shi, “Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna,” Sci. Rep. 6, 23626 (2016).
[PubMed]

Jin, L.

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[PubMed]

Jin, Y.

H. Y. Jeong, U. J. Kim, H. Kim, G. H. Han, H. Lee, M. S. Kim, Y. Jin, T. H. Ly, S. Y. Lee, Y. G. Roh, W. J. Joo, S. W. Hwang, Y. Park, and Y. H. Lee, “Optical Gain in MoS2 via Coupling with Nanostructured Substrate: Fabry-Perot Interference and Plasmonic Excitation,” ACS Nano 10(9), 8192–8198 (2016).
[PubMed]

Joo, W. J.

H. Y. Jeong, U. J. Kim, H. Kim, G. H. Han, H. Lee, M. S. Kim, Y. Jin, T. H. Ly, S. Y. Lee, Y. G. Roh, W. J. Joo, S. W. Hwang, Y. Park, and Y. H. Lee, “Optical Gain in MoS2 via Coupling with Nanostructured Substrate: Fabry-Perot Interference and Plasmonic Excitation,” ACS Nano 10(9), 8192–8198 (2016).
[PubMed]

Kildishev, A. V.

Kim, H.

H. Y. Jeong, U. J. Kim, H. Kim, G. H. Han, H. Lee, M. S. Kim, Y. Jin, T. H. Ly, S. Y. Lee, Y. G. Roh, W. J. Joo, S. W. Hwang, Y. Park, and Y. H. Lee, “Optical Gain in MoS2 via Coupling with Nanostructured Substrate: Fabry-Perot Interference and Plasmonic Excitation,” ACS Nano 10(9), 8192–8198 (2016).
[PubMed]

Kim, M. S.

H. Y. Jeong, U. J. Kim, H. Kim, G. H. Han, H. Lee, M. S. Kim, Y. Jin, T. H. Ly, S. Y. Lee, Y. G. Roh, W. J. Joo, S. W. Hwang, Y. Park, and Y. H. Lee, “Optical Gain in MoS2 via Coupling with Nanostructured Substrate: Fabry-Perot Interference and Plasmonic Excitation,” ACS Nano 10(9), 8192–8198 (2016).
[PubMed]

Kim, U. J.

H. Y. Jeong, U. J. Kim, H. Kim, G. H. Han, H. Lee, M. S. Kim, Y. Jin, T. H. Ly, S. Y. Lee, Y. G. Roh, W. J. Joo, S. W. Hwang, Y. Park, and Y. H. Lee, “Optical Gain in MoS2 via Coupling with Nanostructured Substrate: Fabry-Perot Interference and Plasmonic Excitation,” ACS Nano 10(9), 8192–8198 (2016).
[PubMed]

Klar, T. A.

Kort-Kamp, W. J. M.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface Broadband Solar Absorber,” Sci. Rep. 6, 20347 (2016).
[PubMed]

Lauchner, A.

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104, 031112 (2014).

Lee, H.

H. Y. Jeong, U. J. Kim, H. Kim, G. H. Han, H. Lee, M. S. Kim, Y. Jin, T. H. Ly, S. Y. Lee, Y. G. Roh, W. J. Joo, S. W. Hwang, Y. Park, and Y. H. Lee, “Optical Gain in MoS2 via Coupling with Nanostructured Substrate: Fabry-Perot Interference and Plasmonic Excitation,” ACS Nano 10(9), 8192–8198 (2016).
[PubMed]

Lee, S. Y.

H. Y. Jeong, U. J. Kim, H. Kim, G. H. Han, H. Lee, M. S. Kim, Y. Jin, T. H. Ly, S. Y. Lee, Y. G. Roh, W. J. Joo, S. W. Hwang, Y. Park, and Y. H. Lee, “Optical Gain in MoS2 via Coupling with Nanostructured Substrate: Fabry-Perot Interference and Plasmonic Excitation,” ACS Nano 10(9), 8192–8198 (2016).
[PubMed]

Lee, Y. H.

H. Y. Jeong, U. J. Kim, H. Kim, G. H. Han, H. Lee, M. S. Kim, Y. Jin, T. H. Ly, S. Y. Lee, Y. G. Roh, W. J. Joo, S. W. Hwang, Y. Park, and Y. H. Lee, “Optical Gain in MoS2 via Coupling with Nanostructured Substrate: Fabry-Perot Interference and Plasmonic Excitation,” ACS Nano 10(9), 8192–8198 (2016).
[PubMed]

Li, J.

J. Li, Q. Ji, S. Chu, Y. Zhang, Y. Li, Q. Gong, K. Liu, and K. Shi, “Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna,” Sci. Rep. 6, 23626 (2016).
[PubMed]

Li, X.

X. Li, J. Zhu, and B. Wei, “Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications,” Chem. Soc. Rev. 45(11), 3145–3187 (2016).
[PubMed]

Li, Y.

J. Li, Q. Ji, S. Chu, Y. Zhang, Y. Li, Q. Gong, K. Liu, and K. Shi, “Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna,” Sci. Rep. 6, 23626 (2016).
[PubMed]

Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6, 32312 (2016).
[PubMed]

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-m. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90, 205422 (2014).

Li, Y. X.

Y. B. Long, Y. X. Li, L. Shen, W. Y. Liang, H. D. Deng, and H. T. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D Appl. Phys. 49, 32LT01 (2016).

Liang, W. Y.

Y. B. Long, Y. X. Li, L. Shen, W. Y. Liang, H. D. Deng, and H. T. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D Appl. Phys. 49, 32LT01 (2016).

Liu, K.

J. Li, Q. Ji, S. Chu, Y. Zhang, Y. Li, Q. Gong, K. Liu, and K. Shi, “Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna,” Sci. Rep. 6, 23626 (2016).
[PubMed]

Liu, Q. H.

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect Absorbers,” Appl. Phys. Lett. 106, 043105 (2015).

Long, Y.

Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6, 32312 (2016).
[PubMed]

Long, Y. B.

Y. B. Long, Y. X. Li, L. Shen, W. Y. Liang, H. D. Deng, and H. T. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D Appl. Phys. 49, 32LT01 (2016).

Lopez-Garcia, M.

C. L. Wan, Y. L. Ho, S. Nunez-Sanchez, L. F. Chen, M. Lopez-Garcia, J. Pugh, B. F. Zhu, P. Selvaraj, T. Mallick, S. Senthilarasu, and M. J. Cryan, “A selective metasurface absorber with an amorphous carbon interlayer for solar thermal applications,” Nano Energy 26, 392–397 (2016).

Lou, J.

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104, 031112 (2014).

Luk, T. S.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface Broadband Solar Absorber,” Sci. Rep. 6, 20347 (2016).
[PubMed]

Ly, T. H.

H. Y. Jeong, U. J. Kim, H. Kim, G. H. Han, H. Lee, M. S. Kim, Y. Jin, T. H. Ly, S. Y. Lee, Y. G. Roh, W. J. Joo, S. W. Hwang, Y. Park, and Y. H. Lee, “Optical Gain in MoS2 via Coupling with Nanostructured Substrate: Fabry-Perot Interference and Plasmonic Excitation,” ACS Nano 10(9), 8192–8198 (2016).
[PubMed]

Mak, K. F.

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10, 216 (2016).

Mallick, T.

C. L. Wan, Y. L. Ho, S. Nunez-Sanchez, L. F. Chen, M. Lopez-Garcia, J. Pugh, B. F. Zhu, P. Selvaraj, T. Mallick, S. Senthilarasu, and M. J. Cryan, “A selective metasurface absorber with an amorphous carbon interlayer for solar thermal applications,” Nano Energy 26, 392–397 (2016).

Mueller, T.

A. Pospischil, M. M. Furchi, and T. Mueller, “Solar-energy conversion and light emission in an atomic monolayer p-n diode,” Nat. Nanotechnol. 9(4), 257–261 (2014).
[PubMed]

Najmaei, S.

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104, 031112 (2014).

Nunez-Sanchez, S.

C. L. Wan, Y. L. Ho, S. Nunez-Sanchez, L. F. Chen, M. Lopez-Garcia, J. Pugh, B. F. Zhu, P. Selvaraj, T. Mallick, S. Senthilarasu, and M. J. Cryan, “A selective metasurface absorber with an amorphous carbon interlayer for solar thermal applications,” Nano Energy 26, 392–397 (2016).

Park, Y.

H. Y. Jeong, U. J. Kim, H. Kim, G. H. Han, H. Lee, M. S. Kim, Y. Jin, T. H. Ly, S. Y. Lee, Y. G. Roh, W. J. Joo, S. W. Hwang, Y. Park, and Y. H. Lee, “Optical Gain in MoS2 via Coupling with Nanostructured Substrate: Fabry-Perot Interference and Plasmonic Excitation,” ACS Nano 10(9), 8192–8198 (2016).
[PubMed]

Piper, J. R.

J. R. Piper and S. H. Fan, “Broadband Absorption Enhancement in Solar Cells with an Atomically Thin Active Layer,” ACS Photonics 3, 571–577 (2016).

Pospischil, A.

A. Pospischil, M. M. Furchi, and T. Mueller, “Solar-energy conversion and light emission in an atomic monolayer p-n diode,” Nat. Nanotechnol. 9(4), 257–261 (2014).
[PubMed]

Pugh, J.

C. L. Wan, Y. L. Ho, S. Nunez-Sanchez, L. F. Chen, M. Lopez-Garcia, J. Pugh, B. F. Zhu, P. Selvaraj, T. Mallick, S. Senthilarasu, and M. J. Cryan, “A selective metasurface absorber with an amorphous carbon interlayer for solar thermal applications,” Nano Energy 26, 392–397 (2016).

Qi, M.

J. Hao, L. Zhou, and M. Qi, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).

Ramasubramaniam, A.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899 (2014).

Rigosi, A.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-m. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90, 205422 (2014).

Robatjazi, H.

S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband Absorption Engineering to Enhance Light Absorption in Monolayer MoS2,” ACS Photonics 3, 853–862 (2016).

Roh, Y. G.

H. Y. Jeong, U. J. Kim, H. Kim, G. H. Han, H. Lee, M. S. Kim, Y. Jin, T. H. Ly, S. Y. Lee, Y. G. Roh, W. J. Joo, S. W. Hwang, Y. Park, and Y. H. Lee, “Optical Gain in MoS2 via Coupling with Nanostructured Substrate: Fabry-Perot Interference and Plasmonic Excitation,” ACS Nano 10(9), 8192–8198 (2016).
[PubMed]

Selvaraj, P.

C. L. Wan, Y. L. Ho, S. Nunez-Sanchez, L. F. Chen, M. Lopez-Garcia, J. Pugh, B. F. Zhu, P. Selvaraj, T. Mallick, S. Senthilarasu, and M. J. Cryan, “A selective metasurface absorber with an amorphous carbon interlayer for solar thermal applications,” Nano Energy 26, 392–397 (2016).

Senthilarasu, S.

C. L. Wan, Y. L. Ho, S. Nunez-Sanchez, L. F. Chen, M. Lopez-Garcia, J. Pugh, B. F. Zhu, P. Selvaraj, T. Mallick, S. Senthilarasu, and M. J. Cryan, “A selective metasurface absorber with an amorphous carbon interlayer for solar thermal applications,” Nano Energy 26, 392–397 (2016).

Shalaev, V. M.

Shan, J.

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10, 216 (2016).

Shen, L.

Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6, 32312 (2016).
[PubMed]

Y. B. Long, Y. X. Li, L. Shen, W. Y. Liang, H. D. Deng, and H. T. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D Appl. Phys. 49, 32LT01 (2016).

Shi, K.

J. Li, Q. Ji, S. Chu, Y. Zhang, Y. Li, Q. Gong, K. Liu, and K. Shi, “Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna,” Sci. Rep. 6, 23626 (2016).
[PubMed]

Shih, E.-m.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-m. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90, 205422 (2014).

Sobhani, A.

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104, 031112 (2014).

Song, S.

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[PubMed]

Sun, F.

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[PubMed]

Sykora, M.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface Broadband Solar Absorber,” Sci. Rep. 6, 20347 (2016).
[PubMed]

Taylor, A. J.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface Broadband Solar Absorber,” Sci. Rep. 6, 20347 (2016).
[PubMed]

Thomann, I.

S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband Absorption Engineering to Enhance Light Absorption in Monolayer MoS2,” ACS Photonics 3, 853–862 (2016).

van der Zande, A. M.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-m. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90, 205422 (2014).

Wan, C. L.

C. L. Wan, Y. L. Ho, S. Nunez-Sanchez, L. F. Chen, M. Lopez-Garcia, J. Pugh, B. F. Zhu, P. Selvaraj, T. Mallick, S. Senthilarasu, and M. J. Cryan, “A selective metasurface absorber with an amorphous carbon interlayer for solar thermal applications,” Nano Energy 26, 392–397 (2016).

Wang, H.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899 (2014).

Wei, B.

X. Li, J. Zhu, and B. Wei, “Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications,” Chem. Soc. Rev. 45(11), 3145–3187 (2016).
[PubMed]

Weisse-Bernstein, N. R.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface Broadband Solar Absorber,” Sci. Rep. 6, 20347 (2016).
[PubMed]

Wen, F.

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104, 031112 (2014).

Xia, F.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899 (2014).

Xiao, D.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899 (2014).

Xu, H.

Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6, 32312 (2016).
[PubMed]

Xu, H. T.

Y. B. Long, Y. X. Li, L. Shen, W. Y. Liang, H. D. Deng, and H. T. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D Appl. Phys. 49, 32LT01 (2016).

Yuan, H. K.

Zhang, X.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-m. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90, 205422 (2014).

Zhang, Y.

J. Li, Q. Ji, S. Chu, Y. Zhang, Y. Li, Q. Gong, K. Liu, and K. Shi, “Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna,” Sci. Rep. 6, 23626 (2016).
[PubMed]

Zheng, J. B.

J. B. Zheng, R. A. Barton, and D. Englund, “Broadband Coherent Absorption in Chirped-Planar-Dielectric Cavities for 2D-Material Based Photovoltaics and Photodetectors,” ACS Photonics 1, 768–774 (2014).

Zhou, L.

J. Hao, L. Zhou, and M. Qi, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).

Zhu, B. F.

C. L. Wan, Y. L. Ho, S. Nunez-Sanchez, L. F. Chen, M. Lopez-Garcia, J. Pugh, B. F. Zhu, P. Selvaraj, T. Mallick, S. Senthilarasu, and M. J. Cryan, “A selective metasurface absorber with an amorphous carbon interlayer for solar thermal applications,” Nano Energy 26, 392–397 (2016).

Zhu, J.

X. Li, J. Zhu, and B. Wei, “Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications,” Chem. Soc. Rev. 45(11), 3145–3187 (2016).
[PubMed]

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect Absorbers,” Appl. Phys. Lett. 106, 043105 (2015).

ACS Nano (1)

H. Y. Jeong, U. J. Kim, H. Kim, G. H. Han, H. Lee, M. S. Kim, Y. Jin, T. H. Ly, S. Y. Lee, Y. G. Roh, W. J. Joo, S. W. Hwang, Y. Park, and Y. H. Lee, “Optical Gain in MoS2 via Coupling with Nanostructured Substrate: Fabry-Perot Interference and Plasmonic Excitation,” ACS Nano 10(9), 8192–8198 (2016).
[PubMed]

ACS Photonics (3)

J. B. Zheng, R. A. Barton, and D. Englund, “Broadband Coherent Absorption in Chirped-Planar-Dielectric Cavities for 2D-Material Based Photovoltaics and Photodetectors,” ACS Photonics 1, 768–774 (2014).

S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband Absorption Engineering to Enhance Light Absorption in Monolayer MoS2,” ACS Photonics 3, 853–862 (2016).

J. R. Piper and S. H. Fan, “Broadband Absorption Enhancement in Solar Cells with an Atomically Thin Active Layer,” ACS Photonics 3, 571–577 (2016).

Appl. Phys. Lett. (3)

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect Absorbers,” Appl. Phys. Lett. 106, 043105 (2015).

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104, 031112 (2014).

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).

Chem. Soc. Rev. (1)

X. Li, J. Zhu, and B. Wei, “Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications,” Chem. Soc. Rev. 45(11), 3145–3187 (2016).
[PubMed]

J. Phys. D Appl. Phys. (1)

Y. B. Long, Y. X. Li, L. Shen, W. Y. Liang, H. D. Deng, and H. T. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D Appl. Phys. 49, 32LT01 (2016).

Nano Energy (1)

C. L. Wan, Y. L. Ho, S. Nunez-Sanchez, L. F. Chen, M. Lopez-Garcia, J. Pugh, B. F. Zhu, P. Selvaraj, T. Mallick, S. Senthilarasu, and M. J. Cryan, “A selective metasurface absorber with an amorphous carbon interlayer for solar thermal applications,” Nano Energy 26, 392–397 (2016).

Nanoscale (1)

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[PubMed]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[PubMed]

Nat. Nanotechnol. (1)

A. Pospischil, M. M. Furchi, and T. Mueller, “Solar-energy conversion and light emission in an atomic monolayer p-n diode,” Nat. Nanotechnol. 9(4), 257–261 (2014).
[PubMed]

Nat. Photonics (2)

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899 (2014).

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10, 216 (2016).

Opt. Express (2)

Phys. Rev. B (2)

J. Hao, L. Zhou, and M. Qi, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-m. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90, 205422 (2014).

Sci. Rep. (3)

J. Li, Q. Ji, S. Chu, Y. Zhang, Y. Li, Q. Gong, K. Liu, and K. Shi, “Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna,” Sci. Rep. 6, 23626 (2016).
[PubMed]

Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6, 32312 (2016).
[PubMed]

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface Broadband Solar Absorber,” Sci. Rep. 6, 20347 (2016).
[PubMed]

Other (3)

C. Janisch, H. M. Song, C. J. Zhou, Z. Lin, A. L. Elías, D.X. Ji, M. Terrones, Q. Q. Gan, and Z. W. Liu, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3, 025017 (2016).

J. Volakis, A. Chatterjee, and L. Kempel, Finite Element Method Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications (Wiley-IEEE Press, 1998).

E. Palik and G. G. Dand, Handbook of Optical Constants of Solids (Academic, 1998)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Structure of the metasurface used in this paper. p, h denote the period and thickness of the Ag grating. w is the width of the Ag strips in the grating.
Fig. 2
Fig. 2 Energy density enhancement (U/U0) and absorption in Ag grips. (a) for Device I; (b) for Device II.
Fig. 3
Fig. 3 Optical electric field in the MDM metasurface. (a) and (b) for Device I with wavelength of 429nm and 571nm.(c) for Device II with wavelength of 650nm. |E| is the modulus of optical electric field in the device and |E0| denotes that of the incident light. The red arrows denote the electric displacement. The dotted line denotes the magnetic unit.
Fig. 4
Fig. 4 (a) Absorption spectrum for the MoS2 monolayer inserted in Device I and II. Black line for the MoS2 in Device I; red dotted line for the MoS2 in Device II; blue dashed line for a bare monolayer MoS2. (b) Absorption spectrum for the MoS2 monolayer inserted in Device I (black line) and in Device I without Ag grating (red dashed line).
Fig. 5
Fig. 5 (a) Absorption in the MoS2 monolayer as a function of the wavelength and thickness of the spacer layer. (b) Average absorption of the MoS2 monolayer as a function of the spacer layer. (c) Absorption in MoS2 monolayer when d is set as 40nm and 250nm. (d) Optical electric field in the MDM metasurface with d equal to 250nm. The wavelength is set as 620nm. |E| is the modulus of optical electric field in the device and |E0| denotes that of the incident light. The red arrows denote the electric displacement.
Fig. 6
Fig. 6 (a) Absorption in the MoS2 monolayer as a function of the wavelength and the period of grating. (b) Average absorption of the MoS2 monolayer as a function of the period of grating. (c), (d) and (e) denote the optical electric field when p is set as 50nm, 100nm and 200nm, respectively. The wavelength of the incident light is assumed to be 600nm. |E| is the modulus of optical electric field in the device and |E0| denotes that of the incident light.
Fig. 7
Fig. 7 (a) Absorption in the MoS2 monolayer as a function of the wavelength and incident light. (b) Average absorption of the MoS2 monolayer as a function of incident angle.
Fig. 8
Fig. 8 (a) Absorption for the MoSe2 monolayer when incident angle is varied. (b) Average absorption for the MoSe2 monolayer as a function of incident angle. (c) Absorption for graphene film with different layer number (N). (d) Average absorption in graphene film as a function of N.
Fig. 9
Fig. 9 (a) Absorption for the WS2 monolayer when incident angle is varied. (b) Average absorption of the WS2 within the wavelength range of 420-700nm as a function of incident angle. (c) Absorption for the WSe2 monolayer when incident angle is varied. (d) Average absorption of the WSe2 within the wavelength range of 420-800nm as a function of incident angle.
Fig. 10
Fig. 10 Absorption of MoS2 monolayer in Au-device and Al-device.

Metrics