Abstract

Vanadium oxide is a promising material due to its thermochromic characteristics and is currently being evaluated for use in various thermal and optical applications. VO2 films were prepared on quartz substrates using the sol-gel method, spin coating, and annealing. To obtain VO2 films with high purity and improve their thermochromic properties, the effect of the annealing temperature on the film’s structure and properties was investigated. As the annealing temperature increased from 450 °C to 650 °C, the film’s phase component went through an amorphous phase, a VO2 phase with initial crystallization, a VO2 phase with high purity and mature crystallization, a VO2 phase with a small amount of a V2O5 phase, and a VO2 phase with a greater amount of a V2O5 phase. The film’s crystallinity improved continuously, and the film annealed at 550 °C was composed of fine, compact particles; higher temperatures resulted in coarser grains. The maximum transmittance mutation of the film to infrared radiation first increased and then decreased. The film annealed at 550 °C attained the maximum value of 67% at a wavelength of 2500 nm, and its phase transition temperature was 67.6 °C.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Study of the phase evolution, metal-insulator transition, and optical properties of vanadium oxide thin films

Taixing Huang, Lin Yang, Jun Qin, Fei Huang, Xupeng Zhu, Peiheng Zhou, Bo Peng, Huigao Duan, Longjiang Deng, and Lei Bi
Opt. Mater. Express 6(11) 3609-3621 (2016)

Incorporation of vanadium oxide films in optical fibers for temperature sensing and optical switching applications

Anuj Dhawan, Yashna Sharma, Leandra Brickson, and John F. Muth
Opt. Mater. Express 4(6) 1128-1139 (2014)

Selective IR response of highly textured phase change VO2 nanostructures obtained via oxidation of electron beam deposited metallic V films

Merve Ertas Uslu, I. Burc Misirlioglu, and Kursat Sendur
Opt. Mater. Express 8(8) 2035-2049 (2018)

References

  • View by:
  • |
  • |
  • |

  1. F. Espinosa-Magaña, A. Rosas, H. E. Esparza-Ponce, M. T. Ochoa-Lara, and A. Aguilar-Elguezabal, “In situ study of the metal-insulator transition in VO2 by EELS and ab initio calculations,” Micron 40(8), 787–792 (2009).
    [Crossref] [PubMed]
  2. J. Du, Y. F. Gao, Z. Chen, L. Kang, Z. T. Zhang, and H. J. Luo, “Enhancing thermochromic performance of VO2 films via increased microroughness by phase separation,” Sol. Energy Mater. Sol. Cells 110, 1–7 (2013).
    [Crossref]
  3. H. H. Yin, K. Yu, Z. L. Zhang, and Z. Q. Zhu, “Morphology-control of VO2(B) nanostructures in hydrothermal synthesis and their field emission properties,” Appl. Surf. Sci. 257(21), 8840–8845 (2011).
    [Crossref]
  4. V. R. Kolbunov, A. I. Ivon, Y. A. Kunitskiy, and I. M. Chernenko, “The influence of microstructure and phase composition of glass ceramics in the VO2-V2O5-P2O5-Cu2O-SnO2 system on the electrical properties related to the metal-semiconductor phase transition,” Ceram. Int. 39(4), 3613–3620 (2013).
    [Crossref]
  5. L. L. Zhao, L. Miao, S. Tanemura, J. H. Zhou, L. H. Chen, X. D. Xiao, and G. Xu, “A low cost preparation of VO2 thin films with improved thermochromic properties from a solution-based process,” Thin Solid Films 543, 157–161 (2013).
    [Crossref]
  6. F. J. Huo, J. Su, Y.-Q. Sun, C.-X. Yin, H.-B. Tong, and Z.-X. Nie, “A rhodamine-based dual chemosensor for the visual detection of copper and the ratiometric fluorescent detection of vanadium,” Dyes Pigments 86(1), 50–55 (2010).
    [Crossref]
  7. C. E. Lee, R. A. Atkins, W. N. Gibler, and H. F. Taylor, “Fiber optic application for thermal switching in vanadium dioxide films,” Appl. Opt. 28(21), 4511–4512 (1989).
    [Crossref] [PubMed]
  8. W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B. K. Meyer, W. Niessner, D. Schalch, and A. Scharmann, “Tungsten and fluorine co-doping of VO2 films,” Thin Solid Films 402(1-2), 226–231 (2002).
    [Crossref]
  9. A. A. Bugayev and M. C. Gupta, “Femtosecond holographic interferometry for studies of semiconductor ablation using vanadium dioxide film,” Opt. Lett. 28(16), 1463–1465 (2003).
    [Crossref] [PubMed]
  10. S. J. Yun, J. W. Lim, B. G. Chae, B. J. Kim, and H. T. Kim, “Characteristics of vanadium dioxide films deposited by RF-magnetron sputter deposition technique using V-metal target,” Physica B 403(5-9), 1381–1383 (2008).
    [Crossref]
  11. D. P. Paltrow, S. R. Gurkovich, K. C. Radford, and L. J. Denes, “Switchable Vanadium-Oxide Films by a Sol-Gel Process,” Appl. Phys. (Berl.) 70(1), 443–452 (1991).
    [Crossref]
  12. T. D. Manning and I. P. Parkin, “Vanadium (IV) oxide thin films on glass and silicon from the atmospheric pressure chemical vapour deposition reaction of VOCl3 and water,” Polyhedron 23(18), 3087–3095 (2004).
    [Crossref]
  13. J. Wu, W. X. Huang, Q. W. Shi, J. H. Cai, D. Zhao, Y. B. Zhang, and J. Z. Yan, “Effect of annealing temperature on thermochromic properties of vanadium dioxide thin films deposited by organic sol–gel method,” Appl. Surf. Sci. 268, 556–560 (2013).
    [Crossref]
  14. Y. X. Guo, H. Y. Xu, C. W. Zou, Z. Y. Yang, B. Tong, J. Y. Yu, Y. J. Zhang, L. Zhao, and Y. L. Wang, “Evolution of structure and electrical properties with annealing time in solution-based VO2 thin films,” J. Alloys Compd. 622, 913–917 (2015).
    [Crossref]
  15. D. X. Li, W. X. Huang, L. W. Song, and Q. W. Shi, “Thermal stability of VO2 thin films deposited by sol-gel method,” J. Sol-Gel Sci. Technol. 75(1), 189–197 (2015).
    [Crossref]
  16. H. F. Zhang, Z. M. Wu, X. F. Wu, W. Y. Yang, and Y. D. Jiang, “Transversal grain size effect on the phase transition hysteresis width of vanadium dioxide films comprising spherical nanoparticles,” Vacuum 104, 47–50 (2014).
    [Crossref]
  17. Y. K. Dou, J. B. Li, M. S. Cao, D. Z. Su, F. D. Rehman, J. S. Zhang, and H. B. Jin, “Oxidizing annealing effects on VO2 films with different microstructures,” Appl. Surf. Sci. 345, 232–237 (2015).
    [Crossref]
  18. G. Silversmit, D. Depla, H. Poelman, G. B. Marin, and R. de Gryse, “Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+),” J. Electron Spectrosc. Relat. Phenom. 135(2-3), 167–175 (2004).
    [Crossref]
  19. X. H. Liu, G. Y. Xie, C. Huang, Q. Xu, Y. F. Zhang, and Y. B. Luo, “A facile method for preparing VO2 nanobelts,” Mater. Lett. 62(12-13), 1878–1880 (2008).
    [Crossref]
  20. Z. Y. Yin, Y. F. Wang, W. Dong, L. Gang, and L. L. Zhang, “Influence of annealing temperature on infrared transmittance of VO2 film,” Infrared 30, 20–22 (2009).

2015 (3)

Y. X. Guo, H. Y. Xu, C. W. Zou, Z. Y. Yang, B. Tong, J. Y. Yu, Y. J. Zhang, L. Zhao, and Y. L. Wang, “Evolution of structure and electrical properties with annealing time in solution-based VO2 thin films,” J. Alloys Compd. 622, 913–917 (2015).
[Crossref]

D. X. Li, W. X. Huang, L. W. Song, and Q. W. Shi, “Thermal stability of VO2 thin films deposited by sol-gel method,” J. Sol-Gel Sci. Technol. 75(1), 189–197 (2015).
[Crossref]

Y. K. Dou, J. B. Li, M. S. Cao, D. Z. Su, F. D. Rehman, J. S. Zhang, and H. B. Jin, “Oxidizing annealing effects on VO2 films with different microstructures,” Appl. Surf. Sci. 345, 232–237 (2015).
[Crossref]

2014 (1)

H. F. Zhang, Z. M. Wu, X. F. Wu, W. Y. Yang, and Y. D. Jiang, “Transversal grain size effect on the phase transition hysteresis width of vanadium dioxide films comprising spherical nanoparticles,” Vacuum 104, 47–50 (2014).
[Crossref]

2013 (4)

V. R. Kolbunov, A. I. Ivon, Y. A. Kunitskiy, and I. M. Chernenko, “The influence of microstructure and phase composition of glass ceramics in the VO2-V2O5-P2O5-Cu2O-SnO2 system on the electrical properties related to the metal-semiconductor phase transition,” Ceram. Int. 39(4), 3613–3620 (2013).
[Crossref]

L. L. Zhao, L. Miao, S. Tanemura, J. H. Zhou, L. H. Chen, X. D. Xiao, and G. Xu, “A low cost preparation of VO2 thin films with improved thermochromic properties from a solution-based process,” Thin Solid Films 543, 157–161 (2013).
[Crossref]

J. Du, Y. F. Gao, Z. Chen, L. Kang, Z. T. Zhang, and H. J. Luo, “Enhancing thermochromic performance of VO2 films via increased microroughness by phase separation,” Sol. Energy Mater. Sol. Cells 110, 1–7 (2013).
[Crossref]

J. Wu, W. X. Huang, Q. W. Shi, J. H. Cai, D. Zhao, Y. B. Zhang, and J. Z. Yan, “Effect of annealing temperature on thermochromic properties of vanadium dioxide thin films deposited by organic sol–gel method,” Appl. Surf. Sci. 268, 556–560 (2013).
[Crossref]

2011 (1)

H. H. Yin, K. Yu, Z. L. Zhang, and Z. Q. Zhu, “Morphology-control of VO2(B) nanostructures in hydrothermal synthesis and their field emission properties,” Appl. Surf. Sci. 257(21), 8840–8845 (2011).
[Crossref]

2010 (1)

F. J. Huo, J. Su, Y.-Q. Sun, C.-X. Yin, H.-B. Tong, and Z.-X. Nie, “A rhodamine-based dual chemosensor for the visual detection of copper and the ratiometric fluorescent detection of vanadium,” Dyes Pigments 86(1), 50–55 (2010).
[Crossref]

2009 (2)

F. Espinosa-Magaña, A. Rosas, H. E. Esparza-Ponce, M. T. Ochoa-Lara, and A. Aguilar-Elguezabal, “In situ study of the metal-insulator transition in VO2 by EELS and ab initio calculations,” Micron 40(8), 787–792 (2009).
[Crossref] [PubMed]

Z. Y. Yin, Y. F. Wang, W. Dong, L. Gang, and L. L. Zhang, “Influence of annealing temperature on infrared transmittance of VO2 film,” Infrared 30, 20–22 (2009).

2008 (2)

X. H. Liu, G. Y. Xie, C. Huang, Q. Xu, Y. F. Zhang, and Y. B. Luo, “A facile method for preparing VO2 nanobelts,” Mater. Lett. 62(12-13), 1878–1880 (2008).
[Crossref]

S. J. Yun, J. W. Lim, B. G. Chae, B. J. Kim, and H. T. Kim, “Characteristics of vanadium dioxide films deposited by RF-magnetron sputter deposition technique using V-metal target,” Physica B 403(5-9), 1381–1383 (2008).
[Crossref]

2004 (2)

T. D. Manning and I. P. Parkin, “Vanadium (IV) oxide thin films on glass and silicon from the atmospheric pressure chemical vapour deposition reaction of VOCl3 and water,” Polyhedron 23(18), 3087–3095 (2004).
[Crossref]

G. Silversmit, D. Depla, H. Poelman, G. B. Marin, and R. de Gryse, “Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+),” J. Electron Spectrosc. Relat. Phenom. 135(2-3), 167–175 (2004).
[Crossref]

2003 (1)

2002 (1)

W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B. K. Meyer, W. Niessner, D. Schalch, and A. Scharmann, “Tungsten and fluorine co-doping of VO2 films,” Thin Solid Films 402(1-2), 226–231 (2002).
[Crossref]

1991 (1)

D. P. Paltrow, S. R. Gurkovich, K. C. Radford, and L. J. Denes, “Switchable Vanadium-Oxide Films by a Sol-Gel Process,” Appl. Phys. (Berl.) 70(1), 443–452 (1991).
[Crossref]

1989 (1)

Aguilar-Elguezabal, A.

F. Espinosa-Magaña, A. Rosas, H. E. Esparza-Ponce, M. T. Ochoa-Lara, and A. Aguilar-Elguezabal, “In situ study of the metal-insulator transition in VO2 by EELS and ab initio calculations,” Micron 40(8), 787–792 (2009).
[Crossref] [PubMed]

Atkins, R. A.

Bugayev, A. A.

Burkhardt, W.

W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B. K. Meyer, W. Niessner, D. Schalch, and A. Scharmann, “Tungsten and fluorine co-doping of VO2 films,” Thin Solid Films 402(1-2), 226–231 (2002).
[Crossref]

Cai, J. H.

J. Wu, W. X. Huang, Q. W. Shi, J. H. Cai, D. Zhao, Y. B. Zhang, and J. Z. Yan, “Effect of annealing temperature on thermochromic properties of vanadium dioxide thin films deposited by organic sol–gel method,” Appl. Surf. Sci. 268, 556–560 (2013).
[Crossref]

Cao, M. S.

Y. K. Dou, J. B. Li, M. S. Cao, D. Z. Su, F. D. Rehman, J. S. Zhang, and H. B. Jin, “Oxidizing annealing effects on VO2 films with different microstructures,” Appl. Surf. Sci. 345, 232–237 (2015).
[Crossref]

Chae, B. G.

S. J. Yun, J. W. Lim, B. G. Chae, B. J. Kim, and H. T. Kim, “Characteristics of vanadium dioxide films deposited by RF-magnetron sputter deposition technique using V-metal target,” Physica B 403(5-9), 1381–1383 (2008).
[Crossref]

Chen, L. H.

L. L. Zhao, L. Miao, S. Tanemura, J. H. Zhou, L. H. Chen, X. D. Xiao, and G. Xu, “A low cost preparation of VO2 thin films with improved thermochromic properties from a solution-based process,” Thin Solid Films 543, 157–161 (2013).
[Crossref]

Chen, Z.

J. Du, Y. F. Gao, Z. Chen, L. Kang, Z. T. Zhang, and H. J. Luo, “Enhancing thermochromic performance of VO2 films via increased microroughness by phase separation,” Sol. Energy Mater. Sol. Cells 110, 1–7 (2013).
[Crossref]

Chernenko, I. M.

V. R. Kolbunov, A. I. Ivon, Y. A. Kunitskiy, and I. M. Chernenko, “The influence of microstructure and phase composition of glass ceramics in the VO2-V2O5-P2O5-Cu2O-SnO2 system on the electrical properties related to the metal-semiconductor phase transition,” Ceram. Int. 39(4), 3613–3620 (2013).
[Crossref]

Christmann, T.

W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B. K. Meyer, W. Niessner, D. Schalch, and A. Scharmann, “Tungsten and fluorine co-doping of VO2 films,” Thin Solid Films 402(1-2), 226–231 (2002).
[Crossref]

de Gryse, R.

G. Silversmit, D. Depla, H. Poelman, G. B. Marin, and R. de Gryse, “Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+),” J. Electron Spectrosc. Relat. Phenom. 135(2-3), 167–175 (2004).
[Crossref]

Denes, L. J.

D. P. Paltrow, S. R. Gurkovich, K. C. Radford, and L. J. Denes, “Switchable Vanadium-Oxide Films by a Sol-Gel Process,” Appl. Phys. (Berl.) 70(1), 443–452 (1991).
[Crossref]

Depla, D.

G. Silversmit, D. Depla, H. Poelman, G. B. Marin, and R. de Gryse, “Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+),” J. Electron Spectrosc. Relat. Phenom. 135(2-3), 167–175 (2004).
[Crossref]

Dong, W.

Z. Y. Yin, Y. F. Wang, W. Dong, L. Gang, and L. L. Zhang, “Influence of annealing temperature on infrared transmittance of VO2 film,” Infrared 30, 20–22 (2009).

Dou, Y. K.

Y. K. Dou, J. B. Li, M. S. Cao, D. Z. Su, F. D. Rehman, J. S. Zhang, and H. B. Jin, “Oxidizing annealing effects on VO2 films with different microstructures,” Appl. Surf. Sci. 345, 232–237 (2015).
[Crossref]

Du, J.

J. Du, Y. F. Gao, Z. Chen, L. Kang, Z. T. Zhang, and H. J. Luo, “Enhancing thermochromic performance of VO2 films via increased microroughness by phase separation,” Sol. Energy Mater. Sol. Cells 110, 1–7 (2013).
[Crossref]

Esparza-Ponce, H. E.

F. Espinosa-Magaña, A. Rosas, H. E. Esparza-Ponce, M. T. Ochoa-Lara, and A. Aguilar-Elguezabal, “In situ study of the metal-insulator transition in VO2 by EELS and ab initio calculations,” Micron 40(8), 787–792 (2009).
[Crossref] [PubMed]

Espinosa-Magaña, F.

F. Espinosa-Magaña, A. Rosas, H. E. Esparza-Ponce, M. T. Ochoa-Lara, and A. Aguilar-Elguezabal, “In situ study of the metal-insulator transition in VO2 by EELS and ab initio calculations,” Micron 40(8), 787–792 (2009).
[Crossref] [PubMed]

Franke, S.

W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B. K. Meyer, W. Niessner, D. Schalch, and A. Scharmann, “Tungsten and fluorine co-doping of VO2 films,” Thin Solid Films 402(1-2), 226–231 (2002).
[Crossref]

Gang, L.

Z. Y. Yin, Y. F. Wang, W. Dong, L. Gang, and L. L. Zhang, “Influence of annealing temperature on infrared transmittance of VO2 film,” Infrared 30, 20–22 (2009).

Gao, Y. F.

J. Du, Y. F. Gao, Z. Chen, L. Kang, Z. T. Zhang, and H. J. Luo, “Enhancing thermochromic performance of VO2 films via increased microroughness by phase separation,” Sol. Energy Mater. Sol. Cells 110, 1–7 (2013).
[Crossref]

Gibler, W. N.

Guo, Y. X.

Y. X. Guo, H. Y. Xu, C. W. Zou, Z. Y. Yang, B. Tong, J. Y. Yu, Y. J. Zhang, L. Zhao, and Y. L. Wang, “Evolution of structure and electrical properties with annealing time in solution-based VO2 thin films,” J. Alloys Compd. 622, 913–917 (2015).
[Crossref]

Gupta, M. C.

Gurkovich, S. R.

D. P. Paltrow, S. R. Gurkovich, K. C. Radford, and L. J. Denes, “Switchable Vanadium-Oxide Films by a Sol-Gel Process,” Appl. Phys. (Berl.) 70(1), 443–452 (1991).
[Crossref]

Huang, C.

X. H. Liu, G. Y. Xie, C. Huang, Q. Xu, Y. F. Zhang, and Y. B. Luo, “A facile method for preparing VO2 nanobelts,” Mater. Lett. 62(12-13), 1878–1880 (2008).
[Crossref]

Huang, W. X.

D. X. Li, W. X. Huang, L. W. Song, and Q. W. Shi, “Thermal stability of VO2 thin films deposited by sol-gel method,” J. Sol-Gel Sci. Technol. 75(1), 189–197 (2015).
[Crossref]

J. Wu, W. X. Huang, Q. W. Shi, J. H. Cai, D. Zhao, Y. B. Zhang, and J. Z. Yan, “Effect of annealing temperature on thermochromic properties of vanadium dioxide thin films deposited by organic sol–gel method,” Appl. Surf. Sci. 268, 556–560 (2013).
[Crossref]

Huo, F. J.

F. J. Huo, J. Su, Y.-Q. Sun, C.-X. Yin, H.-B. Tong, and Z.-X. Nie, “A rhodamine-based dual chemosensor for the visual detection of copper and the ratiometric fluorescent detection of vanadium,” Dyes Pigments 86(1), 50–55 (2010).
[Crossref]

Ivon, A. I.

V. R. Kolbunov, A. I. Ivon, Y. A. Kunitskiy, and I. M. Chernenko, “The influence of microstructure and phase composition of glass ceramics in the VO2-V2O5-P2O5-Cu2O-SnO2 system on the electrical properties related to the metal-semiconductor phase transition,” Ceram. Int. 39(4), 3613–3620 (2013).
[Crossref]

Jiang, Y. D.

H. F. Zhang, Z. M. Wu, X. F. Wu, W. Y. Yang, and Y. D. Jiang, “Transversal grain size effect on the phase transition hysteresis width of vanadium dioxide films comprising spherical nanoparticles,” Vacuum 104, 47–50 (2014).
[Crossref]

Jin, H. B.

Y. K. Dou, J. B. Li, M. S. Cao, D. Z. Su, F. D. Rehman, J. S. Zhang, and H. B. Jin, “Oxidizing annealing effects on VO2 films with different microstructures,” Appl. Surf. Sci. 345, 232–237 (2015).
[Crossref]

Kang, L.

J. Du, Y. F. Gao, Z. Chen, L. Kang, Z. T. Zhang, and H. J. Luo, “Enhancing thermochromic performance of VO2 films via increased microroughness by phase separation,” Sol. Energy Mater. Sol. Cells 110, 1–7 (2013).
[Crossref]

Kim, B. J.

S. J. Yun, J. W. Lim, B. G. Chae, B. J. Kim, and H. T. Kim, “Characteristics of vanadium dioxide films deposited by RF-magnetron sputter deposition technique using V-metal target,” Physica B 403(5-9), 1381–1383 (2008).
[Crossref]

Kim, H. T.

S. J. Yun, J. W. Lim, B. G. Chae, B. J. Kim, and H. T. Kim, “Characteristics of vanadium dioxide films deposited by RF-magnetron sputter deposition technique using V-metal target,” Physica B 403(5-9), 1381–1383 (2008).
[Crossref]

Kolbunov, V. R.

V. R. Kolbunov, A. I. Ivon, Y. A. Kunitskiy, and I. M. Chernenko, “The influence of microstructure and phase composition of glass ceramics in the VO2-V2O5-P2O5-Cu2O-SnO2 system on the electrical properties related to the metal-semiconductor phase transition,” Ceram. Int. 39(4), 3613–3620 (2013).
[Crossref]

Kriegseis, W.

W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B. K. Meyer, W. Niessner, D. Schalch, and A. Scharmann, “Tungsten and fluorine co-doping of VO2 films,” Thin Solid Films 402(1-2), 226–231 (2002).
[Crossref]

Kunitskiy, Y. A.

V. R. Kolbunov, A. I. Ivon, Y. A. Kunitskiy, and I. M. Chernenko, “The influence of microstructure and phase composition of glass ceramics in the VO2-V2O5-P2O5-Cu2O-SnO2 system on the electrical properties related to the metal-semiconductor phase transition,” Ceram. Int. 39(4), 3613–3620 (2013).
[Crossref]

Lee, C. E.

Li, D. X.

D. X. Li, W. X. Huang, L. W. Song, and Q. W. Shi, “Thermal stability of VO2 thin films deposited by sol-gel method,” J. Sol-Gel Sci. Technol. 75(1), 189–197 (2015).
[Crossref]

Li, J. B.

Y. K. Dou, J. B. Li, M. S. Cao, D. Z. Su, F. D. Rehman, J. S. Zhang, and H. B. Jin, “Oxidizing annealing effects on VO2 films with different microstructures,” Appl. Surf. Sci. 345, 232–237 (2015).
[Crossref]

Lim, J. W.

S. J. Yun, J. W. Lim, B. G. Chae, B. J. Kim, and H. T. Kim, “Characteristics of vanadium dioxide films deposited by RF-magnetron sputter deposition technique using V-metal target,” Physica B 403(5-9), 1381–1383 (2008).
[Crossref]

Liu, X. H.

X. H. Liu, G. Y. Xie, C. Huang, Q. Xu, Y. F. Zhang, and Y. B. Luo, “A facile method for preparing VO2 nanobelts,” Mater. Lett. 62(12-13), 1878–1880 (2008).
[Crossref]

Luo, H. J.

J. Du, Y. F. Gao, Z. Chen, L. Kang, Z. T. Zhang, and H. J. Luo, “Enhancing thermochromic performance of VO2 films via increased microroughness by phase separation,” Sol. Energy Mater. Sol. Cells 110, 1–7 (2013).
[Crossref]

Luo, Y. B.

X. H. Liu, G. Y. Xie, C. Huang, Q. Xu, Y. F. Zhang, and Y. B. Luo, “A facile method for preparing VO2 nanobelts,” Mater. Lett. 62(12-13), 1878–1880 (2008).
[Crossref]

Manning, T. D.

T. D. Manning and I. P. Parkin, “Vanadium (IV) oxide thin films on glass and silicon from the atmospheric pressure chemical vapour deposition reaction of VOCl3 and water,” Polyhedron 23(18), 3087–3095 (2004).
[Crossref]

Marin, G. B.

G. Silversmit, D. Depla, H. Poelman, G. B. Marin, and R. de Gryse, “Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+),” J. Electron Spectrosc. Relat. Phenom. 135(2-3), 167–175 (2004).
[Crossref]

Meister, D.

W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B. K. Meyer, W. Niessner, D. Schalch, and A. Scharmann, “Tungsten and fluorine co-doping of VO2 films,” Thin Solid Films 402(1-2), 226–231 (2002).
[Crossref]

Meyer, B. K.

W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B. K. Meyer, W. Niessner, D. Schalch, and A. Scharmann, “Tungsten and fluorine co-doping of VO2 films,” Thin Solid Films 402(1-2), 226–231 (2002).
[Crossref]

Miao, L.

L. L. Zhao, L. Miao, S. Tanemura, J. H. Zhou, L. H. Chen, X. D. Xiao, and G. Xu, “A low cost preparation of VO2 thin films with improved thermochromic properties from a solution-based process,” Thin Solid Films 543, 157–161 (2013).
[Crossref]

Nie, Z.-X.

F. J. Huo, J. Su, Y.-Q. Sun, C.-X. Yin, H.-B. Tong, and Z.-X. Nie, “A rhodamine-based dual chemosensor for the visual detection of copper and the ratiometric fluorescent detection of vanadium,” Dyes Pigments 86(1), 50–55 (2010).
[Crossref]

Niessner, W.

W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B. K. Meyer, W. Niessner, D. Schalch, and A. Scharmann, “Tungsten and fluorine co-doping of VO2 films,” Thin Solid Films 402(1-2), 226–231 (2002).
[Crossref]

Ochoa-Lara, M. T.

F. Espinosa-Magaña, A. Rosas, H. E. Esparza-Ponce, M. T. Ochoa-Lara, and A. Aguilar-Elguezabal, “In situ study of the metal-insulator transition in VO2 by EELS and ab initio calculations,” Micron 40(8), 787–792 (2009).
[Crossref] [PubMed]

Paltrow, D. P.

D. P. Paltrow, S. R. Gurkovich, K. C. Radford, and L. J. Denes, “Switchable Vanadium-Oxide Films by a Sol-Gel Process,” Appl. Phys. (Berl.) 70(1), 443–452 (1991).
[Crossref]

Parkin, I. P.

T. D. Manning and I. P. Parkin, “Vanadium (IV) oxide thin films on glass and silicon from the atmospheric pressure chemical vapour deposition reaction of VOCl3 and water,” Polyhedron 23(18), 3087–3095 (2004).
[Crossref]

Poelman, H.

G. Silversmit, D. Depla, H. Poelman, G. B. Marin, and R. de Gryse, “Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+),” J. Electron Spectrosc. Relat. Phenom. 135(2-3), 167–175 (2004).
[Crossref]

Radford, K. C.

D. P. Paltrow, S. R. Gurkovich, K. C. Radford, and L. J. Denes, “Switchable Vanadium-Oxide Films by a Sol-Gel Process,” Appl. Phys. (Berl.) 70(1), 443–452 (1991).
[Crossref]

Rehman, F. D.

Y. K. Dou, J. B. Li, M. S. Cao, D. Z. Su, F. D. Rehman, J. S. Zhang, and H. B. Jin, “Oxidizing annealing effects on VO2 films with different microstructures,” Appl. Surf. Sci. 345, 232–237 (2015).
[Crossref]

Rosas, A.

F. Espinosa-Magaña, A. Rosas, H. E. Esparza-Ponce, M. T. Ochoa-Lara, and A. Aguilar-Elguezabal, “In situ study of the metal-insulator transition in VO2 by EELS and ab initio calculations,” Micron 40(8), 787–792 (2009).
[Crossref] [PubMed]

Schalch, D.

W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B. K. Meyer, W. Niessner, D. Schalch, and A. Scharmann, “Tungsten and fluorine co-doping of VO2 films,” Thin Solid Films 402(1-2), 226–231 (2002).
[Crossref]

Scharmann, A.

W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B. K. Meyer, W. Niessner, D. Schalch, and A. Scharmann, “Tungsten and fluorine co-doping of VO2 films,” Thin Solid Films 402(1-2), 226–231 (2002).
[Crossref]

Shi, Q. W.

D. X. Li, W. X. Huang, L. W. Song, and Q. W. Shi, “Thermal stability of VO2 thin films deposited by sol-gel method,” J. Sol-Gel Sci. Technol. 75(1), 189–197 (2015).
[Crossref]

J. Wu, W. X. Huang, Q. W. Shi, J. H. Cai, D. Zhao, Y. B. Zhang, and J. Z. Yan, “Effect of annealing temperature on thermochromic properties of vanadium dioxide thin films deposited by organic sol–gel method,” Appl. Surf. Sci. 268, 556–560 (2013).
[Crossref]

Silversmit, G.

G. Silversmit, D. Depla, H. Poelman, G. B. Marin, and R. de Gryse, “Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+),” J. Electron Spectrosc. Relat. Phenom. 135(2-3), 167–175 (2004).
[Crossref]

Song, L. W.

D. X. Li, W. X. Huang, L. W. Song, and Q. W. Shi, “Thermal stability of VO2 thin films deposited by sol-gel method,” J. Sol-Gel Sci. Technol. 75(1), 189–197 (2015).
[Crossref]

Su, D. Z.

Y. K. Dou, J. B. Li, M. S. Cao, D. Z. Su, F. D. Rehman, J. S. Zhang, and H. B. Jin, “Oxidizing annealing effects on VO2 films with different microstructures,” Appl. Surf. Sci. 345, 232–237 (2015).
[Crossref]

Su, J.

F. J. Huo, J. Su, Y.-Q. Sun, C.-X. Yin, H.-B. Tong, and Z.-X. Nie, “A rhodamine-based dual chemosensor for the visual detection of copper and the ratiometric fluorescent detection of vanadium,” Dyes Pigments 86(1), 50–55 (2010).
[Crossref]

Sun, Y.-Q.

F. J. Huo, J. Su, Y.-Q. Sun, C.-X. Yin, H.-B. Tong, and Z.-X. Nie, “A rhodamine-based dual chemosensor for the visual detection of copper and the ratiometric fluorescent detection of vanadium,” Dyes Pigments 86(1), 50–55 (2010).
[Crossref]

Tanemura, S.

L. L. Zhao, L. Miao, S. Tanemura, J. H. Zhou, L. H. Chen, X. D. Xiao, and G. Xu, “A low cost preparation of VO2 thin films with improved thermochromic properties from a solution-based process,” Thin Solid Films 543, 157–161 (2013).
[Crossref]

Taylor, H. F.

Tong, B.

Y. X. Guo, H. Y. Xu, C. W. Zou, Z. Y. Yang, B. Tong, J. Y. Yu, Y. J. Zhang, L. Zhao, and Y. L. Wang, “Evolution of structure and electrical properties with annealing time in solution-based VO2 thin films,” J. Alloys Compd. 622, 913–917 (2015).
[Crossref]

Tong, H.-B.

F. J. Huo, J. Su, Y.-Q. Sun, C.-X. Yin, H.-B. Tong, and Z.-X. Nie, “A rhodamine-based dual chemosensor for the visual detection of copper and the ratiometric fluorescent detection of vanadium,” Dyes Pigments 86(1), 50–55 (2010).
[Crossref]

Wang, Y. F.

Z. Y. Yin, Y. F. Wang, W. Dong, L. Gang, and L. L. Zhang, “Influence of annealing temperature on infrared transmittance of VO2 film,” Infrared 30, 20–22 (2009).

Wang, Y. L.

Y. X. Guo, H. Y. Xu, C. W. Zou, Z. Y. Yang, B. Tong, J. Y. Yu, Y. J. Zhang, L. Zhao, and Y. L. Wang, “Evolution of structure and electrical properties with annealing time in solution-based VO2 thin films,” J. Alloys Compd. 622, 913–917 (2015).
[Crossref]

Wu, J.

J. Wu, W. X. Huang, Q. W. Shi, J. H. Cai, D. Zhao, Y. B. Zhang, and J. Z. Yan, “Effect of annealing temperature on thermochromic properties of vanadium dioxide thin films deposited by organic sol–gel method,” Appl. Surf. Sci. 268, 556–560 (2013).
[Crossref]

Wu, X. F.

H. F. Zhang, Z. M. Wu, X. F. Wu, W. Y. Yang, and Y. D. Jiang, “Transversal grain size effect on the phase transition hysteresis width of vanadium dioxide films comprising spherical nanoparticles,” Vacuum 104, 47–50 (2014).
[Crossref]

Wu, Z. M.

H. F. Zhang, Z. M. Wu, X. F. Wu, W. Y. Yang, and Y. D. Jiang, “Transversal grain size effect on the phase transition hysteresis width of vanadium dioxide films comprising spherical nanoparticles,” Vacuum 104, 47–50 (2014).
[Crossref]

Xiao, X. D.

L. L. Zhao, L. Miao, S. Tanemura, J. H. Zhou, L. H. Chen, X. D. Xiao, and G. Xu, “A low cost preparation of VO2 thin films with improved thermochromic properties from a solution-based process,” Thin Solid Films 543, 157–161 (2013).
[Crossref]

Xie, G. Y.

X. H. Liu, G. Y. Xie, C. Huang, Q. Xu, Y. F. Zhang, and Y. B. Luo, “A facile method for preparing VO2 nanobelts,” Mater. Lett. 62(12-13), 1878–1880 (2008).
[Crossref]

Xu, G.

L. L. Zhao, L. Miao, S. Tanemura, J. H. Zhou, L. H. Chen, X. D. Xiao, and G. Xu, “A low cost preparation of VO2 thin films with improved thermochromic properties from a solution-based process,” Thin Solid Films 543, 157–161 (2013).
[Crossref]

Xu, H. Y.

Y. X. Guo, H. Y. Xu, C. W. Zou, Z. Y. Yang, B. Tong, J. Y. Yu, Y. J. Zhang, L. Zhao, and Y. L. Wang, “Evolution of structure and electrical properties with annealing time in solution-based VO2 thin films,” J. Alloys Compd. 622, 913–917 (2015).
[Crossref]

Xu, Q.

X. H. Liu, G. Y. Xie, C. Huang, Q. Xu, Y. F. Zhang, and Y. B. Luo, “A facile method for preparing VO2 nanobelts,” Mater. Lett. 62(12-13), 1878–1880 (2008).
[Crossref]

Yan, J. Z.

J. Wu, W. X. Huang, Q. W. Shi, J. H. Cai, D. Zhao, Y. B. Zhang, and J. Z. Yan, “Effect of annealing temperature on thermochromic properties of vanadium dioxide thin films deposited by organic sol–gel method,” Appl. Surf. Sci. 268, 556–560 (2013).
[Crossref]

Yang, W. Y.

H. F. Zhang, Z. M. Wu, X. F. Wu, W. Y. Yang, and Y. D. Jiang, “Transversal grain size effect on the phase transition hysteresis width of vanadium dioxide films comprising spherical nanoparticles,” Vacuum 104, 47–50 (2014).
[Crossref]

Yang, Z. Y.

Y. X. Guo, H. Y. Xu, C. W. Zou, Z. Y. Yang, B. Tong, J. Y. Yu, Y. J. Zhang, L. Zhao, and Y. L. Wang, “Evolution of structure and electrical properties with annealing time in solution-based VO2 thin films,” J. Alloys Compd. 622, 913–917 (2015).
[Crossref]

Yin, C.-X.

F. J. Huo, J. Su, Y.-Q. Sun, C.-X. Yin, H.-B. Tong, and Z.-X. Nie, “A rhodamine-based dual chemosensor for the visual detection of copper and the ratiometric fluorescent detection of vanadium,” Dyes Pigments 86(1), 50–55 (2010).
[Crossref]

Yin, H. H.

H. H. Yin, K. Yu, Z. L. Zhang, and Z. Q. Zhu, “Morphology-control of VO2(B) nanostructures in hydrothermal synthesis and their field emission properties,” Appl. Surf. Sci. 257(21), 8840–8845 (2011).
[Crossref]

Yin, Z. Y.

Z. Y. Yin, Y. F. Wang, W. Dong, L. Gang, and L. L. Zhang, “Influence of annealing temperature on infrared transmittance of VO2 film,” Infrared 30, 20–22 (2009).

Yu, J. Y.

Y. X. Guo, H. Y. Xu, C. W. Zou, Z. Y. Yang, B. Tong, J. Y. Yu, Y. J. Zhang, L. Zhao, and Y. L. Wang, “Evolution of structure and electrical properties with annealing time in solution-based VO2 thin films,” J. Alloys Compd. 622, 913–917 (2015).
[Crossref]

Yu, K.

H. H. Yin, K. Yu, Z. L. Zhang, and Z. Q. Zhu, “Morphology-control of VO2(B) nanostructures in hydrothermal synthesis and their field emission properties,” Appl. Surf. Sci. 257(21), 8840–8845 (2011).
[Crossref]

Yun, S. J.

S. J. Yun, J. W. Lim, B. G. Chae, B. J. Kim, and H. T. Kim, “Characteristics of vanadium dioxide films deposited by RF-magnetron sputter deposition technique using V-metal target,” Physica B 403(5-9), 1381–1383 (2008).
[Crossref]

Zhang, H. F.

H. F. Zhang, Z. M. Wu, X. F. Wu, W. Y. Yang, and Y. D. Jiang, “Transversal grain size effect on the phase transition hysteresis width of vanadium dioxide films comprising spherical nanoparticles,” Vacuum 104, 47–50 (2014).
[Crossref]

Zhang, J. S.

Y. K. Dou, J. B. Li, M. S. Cao, D. Z. Su, F. D. Rehman, J. S. Zhang, and H. B. Jin, “Oxidizing annealing effects on VO2 films with different microstructures,” Appl. Surf. Sci. 345, 232–237 (2015).
[Crossref]

Zhang, L. L.

Z. Y. Yin, Y. F. Wang, W. Dong, L. Gang, and L. L. Zhang, “Influence of annealing temperature on infrared transmittance of VO2 film,” Infrared 30, 20–22 (2009).

Zhang, Y. B.

J. Wu, W. X. Huang, Q. W. Shi, J. H. Cai, D. Zhao, Y. B. Zhang, and J. Z. Yan, “Effect of annealing temperature on thermochromic properties of vanadium dioxide thin films deposited by organic sol–gel method,” Appl. Surf. Sci. 268, 556–560 (2013).
[Crossref]

Zhang, Y. F.

X. H. Liu, G. Y. Xie, C. Huang, Q. Xu, Y. F. Zhang, and Y. B. Luo, “A facile method for preparing VO2 nanobelts,” Mater. Lett. 62(12-13), 1878–1880 (2008).
[Crossref]

Zhang, Y. J.

Y. X. Guo, H. Y. Xu, C. W. Zou, Z. Y. Yang, B. Tong, J. Y. Yu, Y. J. Zhang, L. Zhao, and Y. L. Wang, “Evolution of structure and electrical properties with annealing time in solution-based VO2 thin films,” J. Alloys Compd. 622, 913–917 (2015).
[Crossref]

Zhang, Z. L.

H. H. Yin, K. Yu, Z. L. Zhang, and Z. Q. Zhu, “Morphology-control of VO2(B) nanostructures in hydrothermal synthesis and their field emission properties,” Appl. Surf. Sci. 257(21), 8840–8845 (2011).
[Crossref]

Zhang, Z. T.

J. Du, Y. F. Gao, Z. Chen, L. Kang, Z. T. Zhang, and H. J. Luo, “Enhancing thermochromic performance of VO2 films via increased microroughness by phase separation,” Sol. Energy Mater. Sol. Cells 110, 1–7 (2013).
[Crossref]

Zhao, D.

J. Wu, W. X. Huang, Q. W. Shi, J. H. Cai, D. Zhao, Y. B. Zhang, and J. Z. Yan, “Effect of annealing temperature on thermochromic properties of vanadium dioxide thin films deposited by organic sol–gel method,” Appl. Surf. Sci. 268, 556–560 (2013).
[Crossref]

Zhao, L.

Y. X. Guo, H. Y. Xu, C. W. Zou, Z. Y. Yang, B. Tong, J. Y. Yu, Y. J. Zhang, L. Zhao, and Y. L. Wang, “Evolution of structure and electrical properties with annealing time in solution-based VO2 thin films,” J. Alloys Compd. 622, 913–917 (2015).
[Crossref]

Zhao, L. L.

L. L. Zhao, L. Miao, S. Tanemura, J. H. Zhou, L. H. Chen, X. D. Xiao, and G. Xu, “A low cost preparation of VO2 thin films with improved thermochromic properties from a solution-based process,” Thin Solid Films 543, 157–161 (2013).
[Crossref]

Zhou, J. H.

L. L. Zhao, L. Miao, S. Tanemura, J. H. Zhou, L. H. Chen, X. D. Xiao, and G. Xu, “A low cost preparation of VO2 thin films with improved thermochromic properties from a solution-based process,” Thin Solid Films 543, 157–161 (2013).
[Crossref]

Zhu, Z. Q.

H. H. Yin, K. Yu, Z. L. Zhang, and Z. Q. Zhu, “Morphology-control of VO2(B) nanostructures in hydrothermal synthesis and their field emission properties,” Appl. Surf. Sci. 257(21), 8840–8845 (2011).
[Crossref]

Zou, C. W.

Y. X. Guo, H. Y. Xu, C. W. Zou, Z. Y. Yang, B. Tong, J. Y. Yu, Y. J. Zhang, L. Zhao, and Y. L. Wang, “Evolution of structure and electrical properties with annealing time in solution-based VO2 thin films,” J. Alloys Compd. 622, 913–917 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. (Berl.) (1)

D. P. Paltrow, S. R. Gurkovich, K. C. Radford, and L. J. Denes, “Switchable Vanadium-Oxide Films by a Sol-Gel Process,” Appl. Phys. (Berl.) 70(1), 443–452 (1991).
[Crossref]

Appl. Surf. Sci. (3)

Y. K. Dou, J. B. Li, M. S. Cao, D. Z. Su, F. D. Rehman, J. S. Zhang, and H. B. Jin, “Oxidizing annealing effects on VO2 films with different microstructures,” Appl. Surf. Sci. 345, 232–237 (2015).
[Crossref]

J. Wu, W. X. Huang, Q. W. Shi, J. H. Cai, D. Zhao, Y. B. Zhang, and J. Z. Yan, “Effect of annealing temperature on thermochromic properties of vanadium dioxide thin films deposited by organic sol–gel method,” Appl. Surf. Sci. 268, 556–560 (2013).
[Crossref]

H. H. Yin, K. Yu, Z. L. Zhang, and Z. Q. Zhu, “Morphology-control of VO2(B) nanostructures in hydrothermal synthesis and their field emission properties,” Appl. Surf. Sci. 257(21), 8840–8845 (2011).
[Crossref]

Ceram. Int. (1)

V. R. Kolbunov, A. I. Ivon, Y. A. Kunitskiy, and I. M. Chernenko, “The influence of microstructure and phase composition of glass ceramics in the VO2-V2O5-P2O5-Cu2O-SnO2 system on the electrical properties related to the metal-semiconductor phase transition,” Ceram. Int. 39(4), 3613–3620 (2013).
[Crossref]

Dyes Pigments (1)

F. J. Huo, J. Su, Y.-Q. Sun, C.-X. Yin, H.-B. Tong, and Z.-X. Nie, “A rhodamine-based dual chemosensor for the visual detection of copper and the ratiometric fluorescent detection of vanadium,” Dyes Pigments 86(1), 50–55 (2010).
[Crossref]

Infrared (1)

Z. Y. Yin, Y. F. Wang, W. Dong, L. Gang, and L. L. Zhang, “Influence of annealing temperature on infrared transmittance of VO2 film,” Infrared 30, 20–22 (2009).

J. Alloys Compd. (1)

Y. X. Guo, H. Y. Xu, C. W. Zou, Z. Y. Yang, B. Tong, J. Y. Yu, Y. J. Zhang, L. Zhao, and Y. L. Wang, “Evolution of structure and electrical properties with annealing time in solution-based VO2 thin films,” J. Alloys Compd. 622, 913–917 (2015).
[Crossref]

J. Electron Spectrosc. Relat. Phenom. (1)

G. Silversmit, D. Depla, H. Poelman, G. B. Marin, and R. de Gryse, “Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+),” J. Electron Spectrosc. Relat. Phenom. 135(2-3), 167–175 (2004).
[Crossref]

J. Sol-Gel Sci. Technol. (1)

D. X. Li, W. X. Huang, L. W. Song, and Q. W. Shi, “Thermal stability of VO2 thin films deposited by sol-gel method,” J. Sol-Gel Sci. Technol. 75(1), 189–197 (2015).
[Crossref]

Mater. Lett. (1)

X. H. Liu, G. Y. Xie, C. Huang, Q. Xu, Y. F. Zhang, and Y. B. Luo, “A facile method for preparing VO2 nanobelts,” Mater. Lett. 62(12-13), 1878–1880 (2008).
[Crossref]

Micron (1)

F. Espinosa-Magaña, A. Rosas, H. E. Esparza-Ponce, M. T. Ochoa-Lara, and A. Aguilar-Elguezabal, “In situ study of the metal-insulator transition in VO2 by EELS and ab initio calculations,” Micron 40(8), 787–792 (2009).
[Crossref] [PubMed]

Opt. Lett. (1)

Physica B (1)

S. J. Yun, J. W. Lim, B. G. Chae, B. J. Kim, and H. T. Kim, “Characteristics of vanadium dioxide films deposited by RF-magnetron sputter deposition technique using V-metal target,” Physica B 403(5-9), 1381–1383 (2008).
[Crossref]

Polyhedron (1)

T. D. Manning and I. P. Parkin, “Vanadium (IV) oxide thin films on glass and silicon from the atmospheric pressure chemical vapour deposition reaction of VOCl3 and water,” Polyhedron 23(18), 3087–3095 (2004).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

J. Du, Y. F. Gao, Z. Chen, L. Kang, Z. T. Zhang, and H. J. Luo, “Enhancing thermochromic performance of VO2 films via increased microroughness by phase separation,” Sol. Energy Mater. Sol. Cells 110, 1–7 (2013).
[Crossref]

Thin Solid Films (2)

L. L. Zhao, L. Miao, S. Tanemura, J. H. Zhou, L. H. Chen, X. D. Xiao, and G. Xu, “A low cost preparation of VO2 thin films with improved thermochromic properties from a solution-based process,” Thin Solid Films 543, 157–161 (2013).
[Crossref]

W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B. K. Meyer, W. Niessner, D. Schalch, and A. Scharmann, “Tungsten and fluorine co-doping of VO2 films,” Thin Solid Films 402(1-2), 226–231 (2002).
[Crossref]

Vacuum (1)

H. F. Zhang, Z. M. Wu, X. F. Wu, W. Y. Yang, and Y. D. Jiang, “Transversal grain size effect on the phase transition hysteresis width of vanadium dioxide films comprising spherical nanoparticles,” Vacuum 104, 47–50 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 XRD patterns of the films annealed at different temperatures.
Fig. 2
Fig. 2 Surface morphologies of the films annealed at different temperatures. (a) 450 °C; (b) 500 °C; (c) 550 °C; (d) 600 °C; (e) 650 °C.
Fig. 3
Fig. 3 XPS spectra of vanadium oxide films annealed at different temperatures.
Fig. 4
Fig. 4 Transmittance spectra at 25 °C and 90 °C of the films annealed at different temperatures. (a) 450 °C; (b) 500 °C; (c) 550 °C; (d) 600 °C; (e) 650 °C.
Fig. 5
Fig. 5 Effect of the annealing temperature on the maximum transmittance mutation and the variation ratio of the film.
Fig. 6
Fig. 6 DSC analysis of the VO2 film annealed at 550 °C with N2.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ ( λ ) = T r L T r H T r L
T = ( 1 R ) e 3 π 3 r 3 ( n 2 1 ) 2 d 4 λ 4

Metrics