Abstract

Titania is widely considered as an alternative constituent for replacing heavy metal oxides in optical glasses. Its effect on optical properties, however, is complex. This is due to the dielectric properties of the prevalent ionic species, Ti4+, the potential co-existence of trivalent titanium, Ti3+, giving rise to intrinsic and extrinsic charge transfer reactions, and the existence of different coordination polyhedra, depending on matrix composition. Here, we present a systematic study of the optical properties of the soda-lime-silicate glass system as a function of TiO2 addition. We consider the silica-rich region of the SiO2-Na2O-CaO-TiO2 quaternary, which may be taken as model for a variety of technical glasses. Trends are described in the refractive index, the Abbe number, the optical bandgap and the Urbach energy. The addition of TiO2 increases the refractive index and the optical dispersion while it lowers the optical bandgap and the Urbach Energy. Results are discussed in relation to relevant literature data towards using titania silicate glasses as high-index replacements for heavy metal – containing oxide glasses.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nd3+:Ga-Ge-Sb-S glasses and fibers for luminescence in mid-IR: synthesis, structural characterization and rare earth spectroscopy

R. Chahal, F. Starecki, J.-L. Doualan, P. Němec, A. Trapananti, C. Prestipino, G. Tricot, C. Boussard-Pledel, K. Michel, A. Braud, P. Camy, J.-L. Adam, B. Bureau, and V. Nazabal
Opt. Mater. Express 8(6) 1650-1671 (2018)

Nonlinear refractive index study on SiO2-Al2O3-La2O3 glasses

Christian Karras, Doris Litzkendorf, Stephan Grimm, Kay Schuster, Wolfgang Paa, and Herbert Stafast
Opt. Mater. Express 4(10) 2066-2077 (2014)

Thermal and optical properties of La2O3-Nb2O5 high refractive index glasses

Atsunobu Masuno, Hiroyuki Inoue, Kohei Yoshimoto, and Yasuhiro Watanabe
Opt. Mater. Express 4(4) 710-718 (2014)

References

  • View by:
  • |
  • |
  • |

  1. F. Gan, Optical and Spectroscopic Properties of Glass (Springer-Verlag, 1992).
  2. D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh, and A. A. Sokol, “Band alignment of rutile and anatase TiO₂,” Nat. Mater. 12(9), 798–801 (2013).
    [Crossref] [PubMed]
  3. W. Vogel, Glass chemistry. 2nd ed, (Springer Science & Business Media, 1994).
  4. G. W. Morey, US Patent 2,150,694, 1939, Eastman Kodak Company.
  5. G. W. Morey, British Patent 462 304, 1937, Eastman Kodak Company.
  6. C. R. Kurkjian and W. R. Prindle, “Perspectives on the History of Glass Composition,” J. Am. Ceram. Soc. 81(4), 795–813 (1998).
    [Crossref]
  7. R. D. Maurer, “Glass fibers for optical communications,” Proc. IEEE 61(4), 452–462 (1973).
    [Crossref]
  8. E. M. Vogel, “Glasses as Nonlinear Photonic Materials,” J. Am. Ceram. Soc. 72(5), 719–724 (1989).
    [Crossref]
  9. R. C. Turnbull and W. G. Lawrence, “The Role of Titania in Silica Glasses,” J. Am. Ceram. Soc. 35(2), 48–53 (1952).
    [Crossref]
  10. C. A. Hogarth and M. N. Khan, “A study of optical absorption in some sodium titanium silicate glasses,” J. Non-Cryst. Solids 24(2), 277–281 (1977).
    [Crossref]
  11. M. Villegas, A. de Pablos, and J. F. Navarro, “Caracterización de vidrios del sistema Na2O-TiO2-SiO2,” Bol. Soc. Esp. Ceram. Vidr. 33(1), 23–28 (1994).
  12. M. Abdel-Baki, F. A. A. Wahab, and F. El-Diasty, “Optical characterization of xTiO2–(60-x)SiO2–40Na2O glasses: I. Linear and nonlinear dispersion properties,” Mater. Chem. Phys. 96(2–3), 201–210 (2006).
    [Crossref]
  13. M. Abdel-Baki, F. El-Diasty, and F. A. A. Wahab, “Optical characterization of xTiO2–(60−x)SiO2–40Na2O glasses: II. Absorption edge, Fermi level, electronic polarizability and optical basicity,” Opt. Commun. 261(1), 65–70 (2006).
    [Crossref]
  14. V. Dimitrov and T. Komatsu, “Electronic polarizability and average single bond strength of ternary oxide glasses with high TiO2 contents,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol.Part B 52(6), 225–230 (2011).
  15. S. Le Boiteux, P. Segonds, L. Canioni, L. Sarger, T. Cardinal, C. Duchesne, E. Fargin, and G. Le Flem, “Nonlinear optical properties for TiO2 containing phosphate, borophosphate, and silicate glasses,” J. Appl. Phys. 81(3), 1481–1487 (1997).
    [Crossref]
  16. A. A. Higazy, A. Hussein, and M. A. Awaida, “A study of the optical absorption edge in silicate glasses containing TiO2 oxide,” J. Mater. Sci. 24(6), 2203–2208 (1989).
    [Crossref]
  17. A. A. Higazy, A. Hussein, M. A. Ewaida, and M. El-Hofy, “The effect of temperature on the optical absorption edge of the titanium oxide-doped soda-lime silica glasses,” J. Mater. Sci. Lett. 7(5), 453–456 (1988).
    [Crossref]
  18. H. A. Lorentz, “Ueber die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte,” Ann. Phys. 245(4), 641–665 (1880).
    [Crossref]
  19. L. Lorenz, “Ueber die Refractionsconstante,” Ann. Phys. 247(9), 70–103 (1880).
    [Crossref]
  20. J. A. Duffy, “Refractivity and coordination number changes of the Ti4+ ion in glass,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. Part B 47(5), 582–587 (2006).
  21. J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. Status Solidi15(2), 627–637 (1966) (b).
    [Crossref]
  22. N. F. Mott and E. A. Davis, Electronic Processes in Non-crystalline Materials (Oxford University Press, 1971).
  23. S. L. S. Rao, G. Ramadevudu, M. Shareefuddin, A. Hameed, M. N. Chary, and M. L. Rao, “Optical properties of alkaline earth borate glasses,” Int. J. Eng. Sci. Technol. 4(4), 25–35 (2013).
  24. F. Urbach, “The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids,” Phys. Rev. 92(5), 1324 (1953).
    [Crossref]
  25. S. Carlson, M. Clausén, L. Gridneva, B. Sommarin, and C. Svensson, “XAFS experiments at beamline I811, MAX-lab synchrotron source, Sweden,” J. Synchrotron Radiat. 13(Pt 5), 359–364 (2006).
    [Crossref] [PubMed]
  26. M. Newville, “EXAFS analysis using FEFF and FEFFIT,” J. Synchrotron Radiat. 8(Pt 2), 96–100 (2001).
    [Crossref] [PubMed]
  27. B. Ravel and M. Newville, “ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT,” J. Synchrotron Radiat. 12(Pt 4), 537–541 (2005).
    [Crossref] [PubMed]
  28. W. Hinz and P.-O. Kunth, “Phase Separation and Nucleation in Vitroceram Production,” Glastech. Ber. 34(9), 431–437 (1961).
  29. P. E. Doherty, D. W. Lee, and R. S. Davis, “Direct Observation of the Crystallization of Li2O-Al2O3-SiO2 Glasses Containing TiO2,” J. Am. Ceram. Soc. 50(2), 77–81 (1967).
    [Crossref]
  30. J. A. Duffy, “The electronic polarisability of oxygen in glass and the effect of composition,” J. Non-Cryst. Solids 297(2–3), 275–284 (2002).
    [Crossref]
  31. M. E. Lines, “Influence of d orbitals on the nonlinear optical response of transparent transition-metal oxides,” Phys. Rev. B Condens. Matter 43(14), 11978–11990 (1991).
    [Crossref] [PubMed]
  32. E. Vogel, M. Weber, and D. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses 32(6), 231–254 (1991).
  33. N. Boling, A. Glass, and A. Owyoung, “Empirical relationships for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14(8), 601–608 (1978).
    [Crossref]
  34. P. Hartmann, R. Jedamzik, S. Reichel, and B. Schreder, “Optical glass and glass ceramic historical aspects and recent developments: a Schott view,” Appl. Opt. 49(16), D157–D176 (2010).
    [Crossref]
  35. S. Richter, D. Möncke, F. Zimmermann, E. I. Kamitsos, L. Wondraczek, A. Tünnermann, and S. Nolte, “Ultrashort pulse induced modifications in ULE - from nanograting formation to laser darkening,” Opt. Mater. Express 5(8), 1834–1850 (2015).
    [Crossref]
  36. M. Dejneka, I. Dutta, and C. Smith, “Chemically Strengthened Low Crystallinity Black Glass-Ceramics with High Liquidus Viscosities,” Int. J. Appl. Glass Sci. 5(2), 146–160 (2014).
    [Crossref]
  37. R. G. Burns, “Intervalence Transitions in Mixed Valence Minerals of Iron and Titanium,” Annu. Rev. Earth Planet. Sci. 9(1), 345–383 (1981).
    [Crossref]
  38. M. Chavoutier, D. Caurant, O. Majérus, R. Boulesteix, P. Loiseau, C. Jousseaume, E. Brunet, and E. Lecomte, “Effect of TiO2 content on the crystallization and the color of (ZrO2,TiO2)-doped Li2O–Al2O3–SiO2 glasses,” J. Non-Cryst. Solids 384(0), 15–24 (2014).
    [Crossref]
  39. N. Serpone, “Is the Band Gap of Pristine TiO2 Narrowed by Anion- and Cation-Doping of Titanium Dioxide in Second-Generation Photocatalysts?” J. Phys. Chem. B 110(48), 24287–24293 (2006).
    [Crossref] [PubMed]
  40. Z. A. Weinberg, G. W. Rubloff, and E. Bassous, “Transmission, photoconductivity, and the experimental band gap of thermally grown SiO2 films,” Phys. Rev. B 19(6), 3107–3117 (1979).
    [Crossref]
  41. S. H. Wemple, “Refractive-Index Behavior of Amorphous Semiconductors and Glasses,” Phys. Rev. B 7(8), 3767–3777 (1973).
    [Crossref]
  42. K.-H. Sun, “Fundamental Condiftion of Glass Formation,” J. Am. Ceram. Soc. 30(9), 277–281 (1947).
    [Crossref]
  43. G. S. Henderson, “The Structure of Silicate Melts: A Glass Perspective,” Can. Mineral. 43(6), 1921–1958 (2005).
    [Crossref]
  44. F. Farges, G. E. Brown, A. Navrotsky, H. Gan, and J. J. Rehr, “Coordination chemistry of Ti(IV) in silicate glasses and melts: II. Glasses at ambient temperature and pressure,” Geochim. Cosmochim. Acta 60(16), 3039–3053 (1996).
    [Crossref]
  45. F. Farges, G. E. Brown, and J. J. Rehr, “Coordination chemistry of Ti (IV) in silicate glasses and melts: I. XAFS study of titanium coordination in oxide model compounds,” Geochim. Cosmochim. Acta 60(16), 3023–3038 (1996).
    [Crossref]
  46. F. Farges and G. E. Brown., “Coordination chemistry of titanium (IV) in silicate glasses and melts: IV. XANES studies of synthetic and natural volcanic glasses and tektites at ambient temperature and pressure,” Geochim. Cosmochim. Acta 61(9), 1863–1870 (1997).
    [Crossref]
  47. F. Farges, “A Ti K-edge EXAFS study of the medium range environment around Ti in oxide glasses,” J. Non-Cryst. Solids 244(1), 25–33 (1999).
    [Crossref]
  48. M. Kumar, A. Uniyal, A. P. S. Chauhan, and S. P. Singh, “Optical absorption and fluorescent behaviour of titanium ions in silicate glasses,” Bull. Mater. Sci. 26(3), 335–341 (2003).
    [Crossref]
  49. J. A. Duffy and M. D. Ingram, “An interpretation of glass chemistry in terms of the optical basicity concept,” J. Non-Cryst. Solids 21(3), 373–410 (1976).
    [Crossref]
  50. J. A. Duffy, “Electronic polarisability and related properties of the oxide ion,” Phys. Chem. Glasses 30(1), 1–4 (1989).
  51. V. Dimitrov and T. Komatsu, “Classification of oxide glasses: A polarizability approach,” J. Solid State Chem. 178(3), 831–846 (2005).
    [Crossref]
  52. C. W. Ponader, H. Boek, and J. E. Dickinson., “X-ray absorption study of the coordination of titanium in sodium-titanium-silicate glasses,” J. Non-Cryst. Solids 201(1–2), 81–94 (1996).
    [Crossref]
  53. E. Fargin, A. Berthereau, T. Cardinal, G. Le Flem, L. Ducasse, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Optical non-linearity in oxide glasses,” J. Non-Cryst. Solids 203(0), 96–101 (1996).
    [Crossref]
  54. F. W. Lytle, D. Sayers, and E. Stern, “Report of the international workshop on standards and criteria in X-ray absorption spectroscopy,” Phys. B 158(1–3), 701–722 (1989).

2015 (1)

2014 (2)

M. Dejneka, I. Dutta, and C. Smith, “Chemically Strengthened Low Crystallinity Black Glass-Ceramics with High Liquidus Viscosities,” Int. J. Appl. Glass Sci. 5(2), 146–160 (2014).
[Crossref]

M. Chavoutier, D. Caurant, O. Majérus, R. Boulesteix, P. Loiseau, C. Jousseaume, E. Brunet, and E. Lecomte, “Effect of TiO2 content on the crystallization and the color of (ZrO2,TiO2)-doped Li2O–Al2O3–SiO2 glasses,” J. Non-Cryst. Solids 384(0), 15–24 (2014).
[Crossref]

2013 (2)

D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh, and A. A. Sokol, “Band alignment of rutile and anatase TiO₂,” Nat. Mater. 12(9), 798–801 (2013).
[Crossref] [PubMed]

S. L. S. Rao, G. Ramadevudu, M. Shareefuddin, A. Hameed, M. N. Chary, and M. L. Rao, “Optical properties of alkaline earth borate glasses,” Int. J. Eng. Sci. Technol. 4(4), 25–35 (2013).

2011 (1)

V. Dimitrov and T. Komatsu, “Electronic polarizability and average single bond strength of ternary oxide glasses with high TiO2 contents,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol.Part B 52(6), 225–230 (2011).

2010 (1)

2006 (5)

S. Carlson, M. Clausén, L. Gridneva, B. Sommarin, and C. Svensson, “XAFS experiments at beamline I811, MAX-lab synchrotron source, Sweden,” J. Synchrotron Radiat. 13(Pt 5), 359–364 (2006).
[Crossref] [PubMed]

M. Abdel-Baki, F. A. A. Wahab, and F. El-Diasty, “Optical characterization of xTiO2–(60-x)SiO2–40Na2O glasses: I. Linear and nonlinear dispersion properties,” Mater. Chem. Phys. 96(2–3), 201–210 (2006).
[Crossref]

M. Abdel-Baki, F. El-Diasty, and F. A. A. Wahab, “Optical characterization of xTiO2–(60−x)SiO2–40Na2O glasses: II. Absorption edge, Fermi level, electronic polarizability and optical basicity,” Opt. Commun. 261(1), 65–70 (2006).
[Crossref]

N. Serpone, “Is the Band Gap of Pristine TiO2 Narrowed by Anion- and Cation-Doping of Titanium Dioxide in Second-Generation Photocatalysts?” J. Phys. Chem. B 110(48), 24287–24293 (2006).
[Crossref] [PubMed]

J. A. Duffy, “Refractivity and coordination number changes of the Ti4+ ion in glass,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. Part B 47(5), 582–587 (2006).

2005 (3)

B. Ravel and M. Newville, “ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT,” J. Synchrotron Radiat. 12(Pt 4), 537–541 (2005).
[Crossref] [PubMed]

G. S. Henderson, “The Structure of Silicate Melts: A Glass Perspective,” Can. Mineral. 43(6), 1921–1958 (2005).
[Crossref]

V. Dimitrov and T. Komatsu, “Classification of oxide glasses: A polarizability approach,” J. Solid State Chem. 178(3), 831–846 (2005).
[Crossref]

2003 (1)

M. Kumar, A. Uniyal, A. P. S. Chauhan, and S. P. Singh, “Optical absorption and fluorescent behaviour of titanium ions in silicate glasses,” Bull. Mater. Sci. 26(3), 335–341 (2003).
[Crossref]

2002 (1)

J. A. Duffy, “The electronic polarisability of oxygen in glass and the effect of composition,” J. Non-Cryst. Solids 297(2–3), 275–284 (2002).
[Crossref]

2001 (1)

M. Newville, “EXAFS analysis using FEFF and FEFFIT,” J. Synchrotron Radiat. 8(Pt 2), 96–100 (2001).
[Crossref] [PubMed]

1999 (1)

F. Farges, “A Ti K-edge EXAFS study of the medium range environment around Ti in oxide glasses,” J. Non-Cryst. Solids 244(1), 25–33 (1999).
[Crossref]

1998 (1)

C. R. Kurkjian and W. R. Prindle, “Perspectives on the History of Glass Composition,” J. Am. Ceram. Soc. 81(4), 795–813 (1998).
[Crossref]

1997 (2)

S. Le Boiteux, P. Segonds, L. Canioni, L. Sarger, T. Cardinal, C. Duchesne, E. Fargin, and G. Le Flem, “Nonlinear optical properties for TiO2 containing phosphate, borophosphate, and silicate glasses,” J. Appl. Phys. 81(3), 1481–1487 (1997).
[Crossref]

F. Farges and G. E. Brown., “Coordination chemistry of titanium (IV) in silicate glasses and melts: IV. XANES studies of synthetic and natural volcanic glasses and tektites at ambient temperature and pressure,” Geochim. Cosmochim. Acta 61(9), 1863–1870 (1997).
[Crossref]

1996 (4)

C. W. Ponader, H. Boek, and J. E. Dickinson., “X-ray absorption study of the coordination of titanium in sodium-titanium-silicate glasses,” J. Non-Cryst. Solids 201(1–2), 81–94 (1996).
[Crossref]

E. Fargin, A. Berthereau, T. Cardinal, G. Le Flem, L. Ducasse, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Optical non-linearity in oxide glasses,” J. Non-Cryst. Solids 203(0), 96–101 (1996).
[Crossref]

F. Farges, G. E. Brown, A. Navrotsky, H. Gan, and J. J. Rehr, “Coordination chemistry of Ti(IV) in silicate glasses and melts: II. Glasses at ambient temperature and pressure,” Geochim. Cosmochim. Acta 60(16), 3039–3053 (1996).
[Crossref]

F. Farges, G. E. Brown, and J. J. Rehr, “Coordination chemistry of Ti (IV) in silicate glasses and melts: I. XAFS study of titanium coordination in oxide model compounds,” Geochim. Cosmochim. Acta 60(16), 3023–3038 (1996).
[Crossref]

1994 (1)

M. Villegas, A. de Pablos, and J. F. Navarro, “Caracterización de vidrios del sistema Na2O-TiO2-SiO2,” Bol. Soc. Esp. Ceram. Vidr. 33(1), 23–28 (1994).

1991 (2)

M. E. Lines, “Influence of d orbitals on the nonlinear optical response of transparent transition-metal oxides,” Phys. Rev. B Condens. Matter 43(14), 11978–11990 (1991).
[Crossref] [PubMed]

E. Vogel, M. Weber, and D. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses 32(6), 231–254 (1991).

1989 (4)

E. M. Vogel, “Glasses as Nonlinear Photonic Materials,” J. Am. Ceram. Soc. 72(5), 719–724 (1989).
[Crossref]

A. A. Higazy, A. Hussein, and M. A. Awaida, “A study of the optical absorption edge in silicate glasses containing TiO2 oxide,” J. Mater. Sci. 24(6), 2203–2208 (1989).
[Crossref]

F. W. Lytle, D. Sayers, and E. Stern, “Report of the international workshop on standards and criteria in X-ray absorption spectroscopy,” Phys. B 158(1–3), 701–722 (1989).

J. A. Duffy, “Electronic polarisability and related properties of the oxide ion,” Phys. Chem. Glasses 30(1), 1–4 (1989).

1988 (1)

A. A. Higazy, A. Hussein, M. A. Ewaida, and M. El-Hofy, “The effect of temperature on the optical absorption edge of the titanium oxide-doped soda-lime silica glasses,” J. Mater. Sci. Lett. 7(5), 453–456 (1988).
[Crossref]

1981 (1)

R. G. Burns, “Intervalence Transitions in Mixed Valence Minerals of Iron and Titanium,” Annu. Rev. Earth Planet. Sci. 9(1), 345–383 (1981).
[Crossref]

1979 (1)

Z. A. Weinberg, G. W. Rubloff, and E. Bassous, “Transmission, photoconductivity, and the experimental band gap of thermally grown SiO2 films,” Phys. Rev. B 19(6), 3107–3117 (1979).
[Crossref]

1978 (1)

N. Boling, A. Glass, and A. Owyoung, “Empirical relationships for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14(8), 601–608 (1978).
[Crossref]

1977 (1)

C. A. Hogarth and M. N. Khan, “A study of optical absorption in some sodium titanium silicate glasses,” J. Non-Cryst. Solids 24(2), 277–281 (1977).
[Crossref]

1976 (1)

J. A. Duffy and M. D. Ingram, “An interpretation of glass chemistry in terms of the optical basicity concept,” J. Non-Cryst. Solids 21(3), 373–410 (1976).
[Crossref]

1973 (2)

R. D. Maurer, “Glass fibers for optical communications,” Proc. IEEE 61(4), 452–462 (1973).
[Crossref]

S. H. Wemple, “Refractive-Index Behavior of Amorphous Semiconductors and Glasses,” Phys. Rev. B 7(8), 3767–3777 (1973).
[Crossref]

1967 (1)

P. E. Doherty, D. W. Lee, and R. S. Davis, “Direct Observation of the Crystallization of Li2O-Al2O3-SiO2 Glasses Containing TiO2,” J. Am. Ceram. Soc. 50(2), 77–81 (1967).
[Crossref]

1961 (1)

W. Hinz and P.-O. Kunth, “Phase Separation and Nucleation in Vitroceram Production,” Glastech. Ber. 34(9), 431–437 (1961).

1953 (1)

F. Urbach, “The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids,” Phys. Rev. 92(5), 1324 (1953).
[Crossref]

1952 (1)

R. C. Turnbull and W. G. Lawrence, “The Role of Titania in Silica Glasses,” J. Am. Ceram. Soc. 35(2), 48–53 (1952).
[Crossref]

1947 (1)

K.-H. Sun, “Fundamental Condiftion of Glass Formation,” J. Am. Ceram. Soc. 30(9), 277–281 (1947).
[Crossref]

1880 (2)

H. A. Lorentz, “Ueber die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte,” Ann. Phys. 245(4), 641–665 (1880).
[Crossref]

L. Lorenz, “Ueber die Refractionsconstante,” Ann. Phys. 247(9), 70–103 (1880).
[Crossref]

Abdel-Baki, M.

M. Abdel-Baki, F. A. A. Wahab, and F. El-Diasty, “Optical characterization of xTiO2–(60-x)SiO2–40Na2O glasses: I. Linear and nonlinear dispersion properties,” Mater. Chem. Phys. 96(2–3), 201–210 (2006).
[Crossref]

M. Abdel-Baki, F. El-Diasty, and F. A. A. Wahab, “Optical characterization of xTiO2–(60−x)SiO2–40Na2O glasses: II. Absorption edge, Fermi level, electronic polarizability and optical basicity,” Opt. Commun. 261(1), 65–70 (2006).
[Crossref]

Awaida, M. A.

A. A. Higazy, A. Hussein, and M. A. Awaida, “A study of the optical absorption edge in silicate glasses containing TiO2 oxide,” J. Mater. Sci. 24(6), 2203–2208 (1989).
[Crossref]

Bassous, E.

Z. A. Weinberg, G. W. Rubloff, and E. Bassous, “Transmission, photoconductivity, and the experimental band gap of thermally grown SiO2 films,” Phys. Rev. B 19(6), 3107–3117 (1979).
[Crossref]

Berthereau, A.

E. Fargin, A. Berthereau, T. Cardinal, G. Le Flem, L. Ducasse, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Optical non-linearity in oxide glasses,” J. Non-Cryst. Solids 203(0), 96–101 (1996).
[Crossref]

Boek, H.

C. W. Ponader, H. Boek, and J. E. Dickinson., “X-ray absorption study of the coordination of titanium in sodium-titanium-silicate glasses,” J. Non-Cryst. Solids 201(1–2), 81–94 (1996).
[Crossref]

Boling, N.

N. Boling, A. Glass, and A. Owyoung, “Empirical relationships for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14(8), 601–608 (1978).
[Crossref]

Boulesteix, R.

M. Chavoutier, D. Caurant, O. Majérus, R. Boulesteix, P. Loiseau, C. Jousseaume, E. Brunet, and E. Lecomte, “Effect of TiO2 content on the crystallization and the color of (ZrO2,TiO2)-doped Li2O–Al2O3–SiO2 glasses,” J. Non-Cryst. Solids 384(0), 15–24 (2014).
[Crossref]

Brown, G. E.

F. Farges and G. E. Brown., “Coordination chemistry of titanium (IV) in silicate glasses and melts: IV. XANES studies of synthetic and natural volcanic glasses and tektites at ambient temperature and pressure,” Geochim. Cosmochim. Acta 61(9), 1863–1870 (1997).
[Crossref]

F. Farges, G. E. Brown, A. Navrotsky, H. Gan, and J. J. Rehr, “Coordination chemistry of Ti(IV) in silicate glasses and melts: II. Glasses at ambient temperature and pressure,” Geochim. Cosmochim. Acta 60(16), 3039–3053 (1996).
[Crossref]

F. Farges, G. E. Brown, and J. J. Rehr, “Coordination chemistry of Ti (IV) in silicate glasses and melts: I. XAFS study of titanium coordination in oxide model compounds,” Geochim. Cosmochim. Acta 60(16), 3023–3038 (1996).
[Crossref]

Brunet, E.

M. Chavoutier, D. Caurant, O. Majérus, R. Boulesteix, P. Loiseau, C. Jousseaume, E. Brunet, and E. Lecomte, “Effect of TiO2 content on the crystallization and the color of (ZrO2,TiO2)-doped Li2O–Al2O3–SiO2 glasses,” J. Non-Cryst. Solids 384(0), 15–24 (2014).
[Crossref]

Buckeridge, J.

D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh, and A. A. Sokol, “Band alignment of rutile and anatase TiO₂,” Nat. Mater. 12(9), 798–801 (2013).
[Crossref] [PubMed]

Burns, R. G.

R. G. Burns, “Intervalence Transitions in Mixed Valence Minerals of Iron and Titanium,” Annu. Rev. Earth Planet. Sci. 9(1), 345–383 (1981).
[Crossref]

Canioni, L.

S. Le Boiteux, P. Segonds, L. Canioni, L. Sarger, T. Cardinal, C. Duchesne, E. Fargin, and G. Le Flem, “Nonlinear optical properties for TiO2 containing phosphate, borophosphate, and silicate glasses,” J. Appl. Phys. 81(3), 1481–1487 (1997).
[Crossref]

E. Fargin, A. Berthereau, T. Cardinal, G. Le Flem, L. Ducasse, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Optical non-linearity in oxide glasses,” J. Non-Cryst. Solids 203(0), 96–101 (1996).
[Crossref]

Cardinal, T.

S. Le Boiteux, P. Segonds, L. Canioni, L. Sarger, T. Cardinal, C. Duchesne, E. Fargin, and G. Le Flem, “Nonlinear optical properties for TiO2 containing phosphate, borophosphate, and silicate glasses,” J. Appl. Phys. 81(3), 1481–1487 (1997).
[Crossref]

E. Fargin, A. Berthereau, T. Cardinal, G. Le Flem, L. Ducasse, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Optical non-linearity in oxide glasses,” J. Non-Cryst. Solids 203(0), 96–101 (1996).
[Crossref]

Carlson, S.

S. Carlson, M. Clausén, L. Gridneva, B. Sommarin, and C. Svensson, “XAFS experiments at beamline I811, MAX-lab synchrotron source, Sweden,” J. Synchrotron Radiat. 13(Pt 5), 359–364 (2006).
[Crossref] [PubMed]

Catlow, C. R. A.

D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh, and A. A. Sokol, “Band alignment of rutile and anatase TiO₂,” Nat. Mater. 12(9), 798–801 (2013).
[Crossref] [PubMed]

Caurant, D.

M. Chavoutier, D. Caurant, O. Majérus, R. Boulesteix, P. Loiseau, C. Jousseaume, E. Brunet, and E. Lecomte, “Effect of TiO2 content on the crystallization and the color of (ZrO2,TiO2)-doped Li2O–Al2O3–SiO2 glasses,” J. Non-Cryst. Solids 384(0), 15–24 (2014).
[Crossref]

Chary, M. N.

S. L. S. Rao, G. Ramadevudu, M. Shareefuddin, A. Hameed, M. N. Chary, and M. L. Rao, “Optical properties of alkaline earth borate glasses,” Int. J. Eng. Sci. Technol. 4(4), 25–35 (2013).

Chauhan, A. P. S.

M. Kumar, A. Uniyal, A. P. S. Chauhan, and S. P. Singh, “Optical absorption and fluorescent behaviour of titanium ions in silicate glasses,” Bull. Mater. Sci. 26(3), 335–341 (2003).
[Crossref]

Chavoutier, M.

M. Chavoutier, D. Caurant, O. Majérus, R. Boulesteix, P. Loiseau, C. Jousseaume, E. Brunet, and E. Lecomte, “Effect of TiO2 content on the crystallization and the color of (ZrO2,TiO2)-doped Li2O–Al2O3–SiO2 glasses,” J. Non-Cryst. Solids 384(0), 15–24 (2014).
[Crossref]

Clausén, M.

S. Carlson, M. Clausén, L. Gridneva, B. Sommarin, and C. Svensson, “XAFS experiments at beamline I811, MAX-lab synchrotron source, Sweden,” J. Synchrotron Radiat. 13(Pt 5), 359–364 (2006).
[Crossref] [PubMed]

Davis, R. S.

P. E. Doherty, D. W. Lee, and R. S. Davis, “Direct Observation of the Crystallization of Li2O-Al2O3-SiO2 Glasses Containing TiO2,” J. Am. Ceram. Soc. 50(2), 77–81 (1967).
[Crossref]

de Pablos, A.

M. Villegas, A. de Pablos, and J. F. Navarro, “Caracterización de vidrios del sistema Na2O-TiO2-SiO2,” Bol. Soc. Esp. Ceram. Vidr. 33(1), 23–28 (1994).

Dejneka, M.

M. Dejneka, I. Dutta, and C. Smith, “Chemically Strengthened Low Crystallinity Black Glass-Ceramics with High Liquidus Viscosities,” Int. J. Appl. Glass Sci. 5(2), 146–160 (2014).
[Crossref]

Dickinson, J. E.

C. W. Ponader, H. Boek, and J. E. Dickinson., “X-ray absorption study of the coordination of titanium in sodium-titanium-silicate glasses,” J. Non-Cryst. Solids 201(1–2), 81–94 (1996).
[Crossref]

Dimitrov, V.

V. Dimitrov and T. Komatsu, “Electronic polarizability and average single bond strength of ternary oxide glasses with high TiO2 contents,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol.Part B 52(6), 225–230 (2011).

V. Dimitrov and T. Komatsu, “Classification of oxide glasses: A polarizability approach,” J. Solid State Chem. 178(3), 831–846 (2005).
[Crossref]

Doherty, P. E.

P. E. Doherty, D. W. Lee, and R. S. Davis, “Direct Observation of the Crystallization of Li2O-Al2O3-SiO2 Glasses Containing TiO2,” J. Am. Ceram. Soc. 50(2), 77–81 (1967).
[Crossref]

Ducasse, A.

E. Fargin, A. Berthereau, T. Cardinal, G. Le Flem, L. Ducasse, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Optical non-linearity in oxide glasses,” J. Non-Cryst. Solids 203(0), 96–101 (1996).
[Crossref]

Ducasse, L.

E. Fargin, A. Berthereau, T. Cardinal, G. Le Flem, L. Ducasse, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Optical non-linearity in oxide glasses,” J. Non-Cryst. Solids 203(0), 96–101 (1996).
[Crossref]

Duchesne, C.

S. Le Boiteux, P. Segonds, L. Canioni, L. Sarger, T. Cardinal, C. Duchesne, E. Fargin, and G. Le Flem, “Nonlinear optical properties for TiO2 containing phosphate, borophosphate, and silicate glasses,” J. Appl. Phys. 81(3), 1481–1487 (1997).
[Crossref]

Duffy, J. A.

J. A. Duffy, “Refractivity and coordination number changes of the Ti4+ ion in glass,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. Part B 47(5), 582–587 (2006).

J. A. Duffy, “The electronic polarisability of oxygen in glass and the effect of composition,” J. Non-Cryst. Solids 297(2–3), 275–284 (2002).
[Crossref]

J. A. Duffy, “Electronic polarisability and related properties of the oxide ion,” Phys. Chem. Glasses 30(1), 1–4 (1989).

J. A. Duffy and M. D. Ingram, “An interpretation of glass chemistry in terms of the optical basicity concept,” J. Non-Cryst. Solids 21(3), 373–410 (1976).
[Crossref]

Dunnill, C. W.

D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh, and A. A. Sokol, “Band alignment of rutile and anatase TiO₂,” Nat. Mater. 12(9), 798–801 (2013).
[Crossref] [PubMed]

Dutta, I.

M. Dejneka, I. Dutta, and C. Smith, “Chemically Strengthened Low Crystallinity Black Glass-Ceramics with High Liquidus Viscosities,” Int. J. Appl. Glass Sci. 5(2), 146–160 (2014).
[Crossref]

El-Diasty, F.

M. Abdel-Baki, F. El-Diasty, and F. A. A. Wahab, “Optical characterization of xTiO2–(60−x)SiO2–40Na2O glasses: II. Absorption edge, Fermi level, electronic polarizability and optical basicity,” Opt. Commun. 261(1), 65–70 (2006).
[Crossref]

M. Abdel-Baki, F. A. A. Wahab, and F. El-Diasty, “Optical characterization of xTiO2–(60-x)SiO2–40Na2O glasses: I. Linear and nonlinear dispersion properties,” Mater. Chem. Phys. 96(2–3), 201–210 (2006).
[Crossref]

El-Hofy, M.

A. A. Higazy, A. Hussein, M. A. Ewaida, and M. El-Hofy, “The effect of temperature on the optical absorption edge of the titanium oxide-doped soda-lime silica glasses,” J. Mater. Sci. Lett. 7(5), 453–456 (1988).
[Crossref]

Ewaida, M. A.

A. A. Higazy, A. Hussein, M. A. Ewaida, and M. El-Hofy, “The effect of temperature on the optical absorption edge of the titanium oxide-doped soda-lime silica glasses,” J. Mater. Sci. Lett. 7(5), 453–456 (1988).
[Crossref]

Farges, F.

F. Farges, “A Ti K-edge EXAFS study of the medium range environment around Ti in oxide glasses,” J. Non-Cryst. Solids 244(1), 25–33 (1999).
[Crossref]

F. Farges and G. E. Brown., “Coordination chemistry of titanium (IV) in silicate glasses and melts: IV. XANES studies of synthetic and natural volcanic glasses and tektites at ambient temperature and pressure,” Geochim. Cosmochim. Acta 61(9), 1863–1870 (1997).
[Crossref]

F. Farges, G. E. Brown, A. Navrotsky, H. Gan, and J. J. Rehr, “Coordination chemistry of Ti(IV) in silicate glasses and melts: II. Glasses at ambient temperature and pressure,” Geochim. Cosmochim. Acta 60(16), 3039–3053 (1996).
[Crossref]

F. Farges, G. E. Brown, and J. J. Rehr, “Coordination chemistry of Ti (IV) in silicate glasses and melts: I. XAFS study of titanium coordination in oxide model compounds,” Geochim. Cosmochim. Acta 60(16), 3023–3038 (1996).
[Crossref]

Fargin, E.

S. Le Boiteux, P. Segonds, L. Canioni, L. Sarger, T. Cardinal, C. Duchesne, E. Fargin, and G. Le Flem, “Nonlinear optical properties for TiO2 containing phosphate, borophosphate, and silicate glasses,” J. Appl. Phys. 81(3), 1481–1487 (1997).
[Crossref]

E. Fargin, A. Berthereau, T. Cardinal, G. Le Flem, L. Ducasse, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Optical non-linearity in oxide glasses,” J. Non-Cryst. Solids 203(0), 96–101 (1996).
[Crossref]

Gan, H.

F. Farges, G. E. Brown, A. Navrotsky, H. Gan, and J. J. Rehr, “Coordination chemistry of Ti(IV) in silicate glasses and melts: II. Glasses at ambient temperature and pressure,” Geochim. Cosmochim. Acta 60(16), 3039–3053 (1996).
[Crossref]

Glass, A.

N. Boling, A. Glass, and A. Owyoung, “Empirical relationships for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14(8), 601–608 (1978).
[Crossref]

Gridneva, L.

S. Carlson, M. Clausén, L. Gridneva, B. Sommarin, and C. Svensson, “XAFS experiments at beamline I811, MAX-lab synchrotron source, Sweden,” J. Synchrotron Radiat. 13(Pt 5), 359–364 (2006).
[Crossref] [PubMed]

Grigorovici, R.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. Status Solidi15(2), 627–637 (1966) (b).
[Crossref]

Hameed, A.

S. L. S. Rao, G. Ramadevudu, M. Shareefuddin, A. Hameed, M. N. Chary, and M. L. Rao, “Optical properties of alkaline earth borate glasses,” Int. J. Eng. Sci. Technol. 4(4), 25–35 (2013).

Hartmann, P.

Henderson, G. S.

G. S. Henderson, “The Structure of Silicate Melts: A Glass Perspective,” Can. Mineral. 43(6), 1921–1958 (2005).
[Crossref]

Higazy, A. A.

A. A. Higazy, A. Hussein, and M. A. Awaida, “A study of the optical absorption edge in silicate glasses containing TiO2 oxide,” J. Mater. Sci. 24(6), 2203–2208 (1989).
[Crossref]

A. A. Higazy, A. Hussein, M. A. Ewaida, and M. El-Hofy, “The effect of temperature on the optical absorption edge of the titanium oxide-doped soda-lime silica glasses,” J. Mater. Sci. Lett. 7(5), 453–456 (1988).
[Crossref]

Hinz, W.

W. Hinz and P.-O. Kunth, “Phase Separation and Nucleation in Vitroceram Production,” Glastech. Ber. 34(9), 431–437 (1961).

Hogarth, C. A.

C. A. Hogarth and M. N. Khan, “A study of optical absorption in some sodium titanium silicate glasses,” J. Non-Cryst. Solids 24(2), 277–281 (1977).
[Crossref]

Hussein, A.

A. A. Higazy, A. Hussein, and M. A. Awaida, “A study of the optical absorption edge in silicate glasses containing TiO2 oxide,” J. Mater. Sci. 24(6), 2203–2208 (1989).
[Crossref]

A. A. Higazy, A. Hussein, M. A. Ewaida, and M. El-Hofy, “The effect of temperature on the optical absorption edge of the titanium oxide-doped soda-lime silica glasses,” J. Mater. Sci. Lett. 7(5), 453–456 (1988).
[Crossref]

Ingram, M. D.

J. A. Duffy and M. D. Ingram, “An interpretation of glass chemistry in terms of the optical basicity concept,” J. Non-Cryst. Solids 21(3), 373–410 (1976).
[Crossref]

Jedamzik, R.

Jousseaume, C.

M. Chavoutier, D. Caurant, O. Majérus, R. Boulesteix, P. Loiseau, C. Jousseaume, E. Brunet, and E. Lecomte, “Effect of TiO2 content on the crystallization and the color of (ZrO2,TiO2)-doped Li2O–Al2O3–SiO2 glasses,” J. Non-Cryst. Solids 384(0), 15–24 (2014).
[Crossref]

Kamitsos, E. I.

Keal, T. W.

D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh, and A. A. Sokol, “Band alignment of rutile and anatase TiO₂,” Nat. Mater. 12(9), 798–801 (2013).
[Crossref] [PubMed]

Khan, M. N.

C. A. Hogarth and M. N. Khan, “A study of optical absorption in some sodium titanium silicate glasses,” J. Non-Cryst. Solids 24(2), 277–281 (1977).
[Crossref]

Komatsu, T.

V. Dimitrov and T. Komatsu, “Electronic polarizability and average single bond strength of ternary oxide glasses with high TiO2 contents,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol.Part B 52(6), 225–230 (2011).

V. Dimitrov and T. Komatsu, “Classification of oxide glasses: A polarizability approach,” J. Solid State Chem. 178(3), 831–846 (2005).
[Crossref]

Krol, D.

E. Vogel, M. Weber, and D. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses 32(6), 231–254 (1991).

Kumar, M.

M. Kumar, A. Uniyal, A. P. S. Chauhan, and S. P. Singh, “Optical absorption and fluorescent behaviour of titanium ions in silicate glasses,” Bull. Mater. Sci. 26(3), 335–341 (2003).
[Crossref]

Kunth, P.-O.

W. Hinz and P.-O. Kunth, “Phase Separation and Nucleation in Vitroceram Production,” Glastech. Ber. 34(9), 431–437 (1961).

Kurkjian, C. R.

C. R. Kurkjian and W. R. Prindle, “Perspectives on the History of Glass Composition,” J. Am. Ceram. Soc. 81(4), 795–813 (1998).
[Crossref]

Lawrence, W. G.

R. C. Turnbull and W. G. Lawrence, “The Role of Titania in Silica Glasses,” J. Am. Ceram. Soc. 35(2), 48–53 (1952).
[Crossref]

Le Boiteux, S.

S. Le Boiteux, P. Segonds, L. Canioni, L. Sarger, T. Cardinal, C. Duchesne, E. Fargin, and G. Le Flem, “Nonlinear optical properties for TiO2 containing phosphate, borophosphate, and silicate glasses,” J. Appl. Phys. 81(3), 1481–1487 (1997).
[Crossref]

Le Flem, G.

S. Le Boiteux, P. Segonds, L. Canioni, L. Sarger, T. Cardinal, C. Duchesne, E. Fargin, and G. Le Flem, “Nonlinear optical properties for TiO2 containing phosphate, borophosphate, and silicate glasses,” J. Appl. Phys. 81(3), 1481–1487 (1997).
[Crossref]

E. Fargin, A. Berthereau, T. Cardinal, G. Le Flem, L. Ducasse, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Optical non-linearity in oxide glasses,” J. Non-Cryst. Solids 203(0), 96–101 (1996).
[Crossref]

Lecomte, E.

M. Chavoutier, D. Caurant, O. Majérus, R. Boulesteix, P. Loiseau, C. Jousseaume, E. Brunet, and E. Lecomte, “Effect of TiO2 content on the crystallization and the color of (ZrO2,TiO2)-doped Li2O–Al2O3–SiO2 glasses,” J. Non-Cryst. Solids 384(0), 15–24 (2014).
[Crossref]

Lee, D. W.

P. E. Doherty, D. W. Lee, and R. S. Davis, “Direct Observation of the Crystallization of Li2O-Al2O3-SiO2 Glasses Containing TiO2,” J. Am. Ceram. Soc. 50(2), 77–81 (1967).
[Crossref]

Lines, M. E.

M. E. Lines, “Influence of d orbitals on the nonlinear optical response of transparent transition-metal oxides,” Phys. Rev. B Condens. Matter 43(14), 11978–11990 (1991).
[Crossref] [PubMed]

Logsdail, A. J.

D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh, and A. A. Sokol, “Band alignment of rutile and anatase TiO₂,” Nat. Mater. 12(9), 798–801 (2013).
[Crossref] [PubMed]

Loiseau, P.

M. Chavoutier, D. Caurant, O. Majérus, R. Boulesteix, P. Loiseau, C. Jousseaume, E. Brunet, and E. Lecomte, “Effect of TiO2 content on the crystallization and the color of (ZrO2,TiO2)-doped Li2O–Al2O3–SiO2 glasses,” J. Non-Cryst. Solids 384(0), 15–24 (2014).
[Crossref]

Lorentz, H. A.

H. A. Lorentz, “Ueber die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte,” Ann. Phys. 245(4), 641–665 (1880).
[Crossref]

Lorenz, L.

L. Lorenz, “Ueber die Refractionsconstante,” Ann. Phys. 247(9), 70–103 (1880).
[Crossref]

Lytle, F. W.

F. W. Lytle, D. Sayers, and E. Stern, “Report of the international workshop on standards and criteria in X-ray absorption spectroscopy,” Phys. B 158(1–3), 701–722 (1989).

Majérus, O.

M. Chavoutier, D. Caurant, O. Majérus, R. Boulesteix, P. Loiseau, C. Jousseaume, E. Brunet, and E. Lecomte, “Effect of TiO2 content on the crystallization and the color of (ZrO2,TiO2)-doped Li2O–Al2O3–SiO2 glasses,” J. Non-Cryst. Solids 384(0), 15–24 (2014).
[Crossref]

Maurer, R. D.

R. D. Maurer, “Glass fibers for optical communications,” Proc. IEEE 61(4), 452–462 (1973).
[Crossref]

Möncke, D.

Navarro, J. F.

M. Villegas, A. de Pablos, and J. F. Navarro, “Caracterización de vidrios del sistema Na2O-TiO2-SiO2,” Bol. Soc. Esp. Ceram. Vidr. 33(1), 23–28 (1994).

Navrotsky, A.

F. Farges, G. E. Brown, A. Navrotsky, H. Gan, and J. J. Rehr, “Coordination chemistry of Ti(IV) in silicate glasses and melts: II. Glasses at ambient temperature and pressure,” Geochim. Cosmochim. Acta 60(16), 3039–3053 (1996).
[Crossref]

Newville, M.

B. Ravel and M. Newville, “ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT,” J. Synchrotron Radiat. 12(Pt 4), 537–541 (2005).
[Crossref] [PubMed]

M. Newville, “EXAFS analysis using FEFF and FEFFIT,” J. Synchrotron Radiat. 8(Pt 2), 96–100 (2001).
[Crossref] [PubMed]

Nolte, S.

Owyoung, A.

N. Boling, A. Glass, and A. Owyoung, “Empirical relationships for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14(8), 601–608 (1978).
[Crossref]

Palgrave, R. G.

D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh, and A. A. Sokol, “Band alignment of rutile and anatase TiO₂,” Nat. Mater. 12(9), 798–801 (2013).
[Crossref] [PubMed]

Parkin, I. P.

D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh, and A. A. Sokol, “Band alignment of rutile and anatase TiO₂,” Nat. Mater. 12(9), 798–801 (2013).
[Crossref] [PubMed]

Ponader, C. W.

C. W. Ponader, H. Boek, and J. E. Dickinson., “X-ray absorption study of the coordination of titanium in sodium-titanium-silicate glasses,” J. Non-Cryst. Solids 201(1–2), 81–94 (1996).
[Crossref]

Powell, M. J.

D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh, and A. A. Sokol, “Band alignment of rutile and anatase TiO₂,” Nat. Mater. 12(9), 798–801 (2013).
[Crossref] [PubMed]

Prindle, W. R.

C. R. Kurkjian and W. R. Prindle, “Perspectives on the History of Glass Composition,” J. Am. Ceram. Soc. 81(4), 795–813 (1998).
[Crossref]

Ramadevudu, G.

S. L. S. Rao, G. Ramadevudu, M. Shareefuddin, A. Hameed, M. N. Chary, and M. L. Rao, “Optical properties of alkaline earth borate glasses,” Int. J. Eng. Sci. Technol. 4(4), 25–35 (2013).

Rao, M. L.

S. L. S. Rao, G. Ramadevudu, M. Shareefuddin, A. Hameed, M. N. Chary, and M. L. Rao, “Optical properties of alkaline earth borate glasses,” Int. J. Eng. Sci. Technol. 4(4), 25–35 (2013).

Rao, S. L. S.

S. L. S. Rao, G. Ramadevudu, M. Shareefuddin, A. Hameed, M. N. Chary, and M. L. Rao, “Optical properties of alkaline earth borate glasses,” Int. J. Eng. Sci. Technol. 4(4), 25–35 (2013).

Ravel, B.

B. Ravel and M. Newville, “ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT,” J. Synchrotron Radiat. 12(Pt 4), 537–541 (2005).
[Crossref] [PubMed]

Rehr, J. J.

F. Farges, G. E. Brown, and J. J. Rehr, “Coordination chemistry of Ti (IV) in silicate glasses and melts: I. XAFS study of titanium coordination in oxide model compounds,” Geochim. Cosmochim. Acta 60(16), 3023–3038 (1996).
[Crossref]

F. Farges, G. E. Brown, A. Navrotsky, H. Gan, and J. J. Rehr, “Coordination chemistry of Ti(IV) in silicate glasses and melts: II. Glasses at ambient temperature and pressure,” Geochim. Cosmochim. Acta 60(16), 3039–3053 (1996).
[Crossref]

Reichel, S.

Richter, S.

Rubloff, G. W.

Z. A. Weinberg, G. W. Rubloff, and E. Bassous, “Transmission, photoconductivity, and the experimental band gap of thermally grown SiO2 films,” Phys. Rev. B 19(6), 3107–3117 (1979).
[Crossref]

Sarger, L.

S. Le Boiteux, P. Segonds, L. Canioni, L. Sarger, T. Cardinal, C. Duchesne, E. Fargin, and G. Le Flem, “Nonlinear optical properties for TiO2 containing phosphate, borophosphate, and silicate glasses,” J. Appl. Phys. 81(3), 1481–1487 (1997).
[Crossref]

E. Fargin, A. Berthereau, T. Cardinal, G. Le Flem, L. Ducasse, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Optical non-linearity in oxide glasses,” J. Non-Cryst. Solids 203(0), 96–101 (1996).
[Crossref]

Sayers, D.

F. W. Lytle, D. Sayers, and E. Stern, “Report of the international workshop on standards and criteria in X-ray absorption spectroscopy,” Phys. B 158(1–3), 701–722 (1989).

Scanlon, D. O.

D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh, and A. A. Sokol, “Band alignment of rutile and anatase TiO₂,” Nat. Mater. 12(9), 798–801 (2013).
[Crossref] [PubMed]

Schreder, B.

Segonds, P.

S. Le Boiteux, P. Segonds, L. Canioni, L. Sarger, T. Cardinal, C. Duchesne, E. Fargin, and G. Le Flem, “Nonlinear optical properties for TiO2 containing phosphate, borophosphate, and silicate glasses,” J. Appl. Phys. 81(3), 1481–1487 (1997).
[Crossref]

E. Fargin, A. Berthereau, T. Cardinal, G. Le Flem, L. Ducasse, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Optical non-linearity in oxide glasses,” J. Non-Cryst. Solids 203(0), 96–101 (1996).
[Crossref]

Serpone, N.

N. Serpone, “Is the Band Gap of Pristine TiO2 Narrowed by Anion- and Cation-Doping of Titanium Dioxide in Second-Generation Photocatalysts?” J. Phys. Chem. B 110(48), 24287–24293 (2006).
[Crossref] [PubMed]

Shareefuddin, M.

S. L. S. Rao, G. Ramadevudu, M. Shareefuddin, A. Hameed, M. N. Chary, and M. L. Rao, “Optical properties of alkaline earth borate glasses,” Int. J. Eng. Sci. Technol. 4(4), 25–35 (2013).

Sherwood, P.

D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh, and A. A. Sokol, “Band alignment of rutile and anatase TiO₂,” Nat. Mater. 12(9), 798–801 (2013).
[Crossref] [PubMed]

Shevlin, S. A.

D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh, and A. A. Sokol, “Band alignment of rutile and anatase TiO₂,” Nat. Mater. 12(9), 798–801 (2013).
[Crossref] [PubMed]

Singh, S. P.

M. Kumar, A. Uniyal, A. P. S. Chauhan, and S. P. Singh, “Optical absorption and fluorescent behaviour of titanium ions in silicate glasses,” Bull. Mater. Sci. 26(3), 335–341 (2003).
[Crossref]

Smith, C.

M. Dejneka, I. Dutta, and C. Smith, “Chemically Strengthened Low Crystallinity Black Glass-Ceramics with High Liquidus Viscosities,” Int. J. Appl. Glass Sci. 5(2), 146–160 (2014).
[Crossref]

Sokol, A. A.

D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh, and A. A. Sokol, “Band alignment of rutile and anatase TiO₂,” Nat. Mater. 12(9), 798–801 (2013).
[Crossref] [PubMed]

Sommarin, B.

S. Carlson, M. Clausén, L. Gridneva, B. Sommarin, and C. Svensson, “XAFS experiments at beamline I811, MAX-lab synchrotron source, Sweden,” J. Synchrotron Radiat. 13(Pt 5), 359–364 (2006).
[Crossref] [PubMed]

Stern, E.

F. W. Lytle, D. Sayers, and E. Stern, “Report of the international workshop on standards and criteria in X-ray absorption spectroscopy,” Phys. B 158(1–3), 701–722 (1989).

Sun, K.-H.

K.-H. Sun, “Fundamental Condiftion of Glass Formation,” J. Am. Ceram. Soc. 30(9), 277–281 (1947).
[Crossref]

Svensson, C.

S. Carlson, M. Clausén, L. Gridneva, B. Sommarin, and C. Svensson, “XAFS experiments at beamline I811, MAX-lab synchrotron source, Sweden,” J. Synchrotron Radiat. 13(Pt 5), 359–364 (2006).
[Crossref] [PubMed]

Tauc, J.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. Status Solidi15(2), 627–637 (1966) (b).
[Crossref]

Tünnermann, A.

Turnbull, R. C.

R. C. Turnbull and W. G. Lawrence, “The Role of Titania in Silica Glasses,” J. Am. Ceram. Soc. 35(2), 48–53 (1952).
[Crossref]

Uniyal, A.

M. Kumar, A. Uniyal, A. P. S. Chauhan, and S. P. Singh, “Optical absorption and fluorescent behaviour of titanium ions in silicate glasses,” Bull. Mater. Sci. 26(3), 335–341 (2003).
[Crossref]

Urbach, F.

F. Urbach, “The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids,” Phys. Rev. 92(5), 1324 (1953).
[Crossref]

Vancu, A.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. Status Solidi15(2), 627–637 (1966) (b).
[Crossref]

Villegas, M.

M. Villegas, A. de Pablos, and J. F. Navarro, “Caracterización de vidrios del sistema Na2O-TiO2-SiO2,” Bol. Soc. Esp. Ceram. Vidr. 33(1), 23–28 (1994).

Vogel, E.

E. Vogel, M. Weber, and D. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses 32(6), 231–254 (1991).

Vogel, E. M.

E. M. Vogel, “Glasses as Nonlinear Photonic Materials,” J. Am. Ceram. Soc. 72(5), 719–724 (1989).
[Crossref]

Wahab, F. A. A.

M. Abdel-Baki, F. A. A. Wahab, and F. El-Diasty, “Optical characterization of xTiO2–(60-x)SiO2–40Na2O glasses: I. Linear and nonlinear dispersion properties,” Mater. Chem. Phys. 96(2–3), 201–210 (2006).
[Crossref]

M. Abdel-Baki, F. El-Diasty, and F. A. A. Wahab, “Optical characterization of xTiO2–(60−x)SiO2–40Na2O glasses: II. Absorption edge, Fermi level, electronic polarizability and optical basicity,” Opt. Commun. 261(1), 65–70 (2006).
[Crossref]

Walsh, A.

D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh, and A. A. Sokol, “Band alignment of rutile and anatase TiO₂,” Nat. Mater. 12(9), 798–801 (2013).
[Crossref] [PubMed]

Watson, G. W.

D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh, and A. A. Sokol, “Band alignment of rutile and anatase TiO₂,” Nat. Mater. 12(9), 798–801 (2013).
[Crossref] [PubMed]

Weber, M.

E. Vogel, M. Weber, and D. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses 32(6), 231–254 (1991).

Weinberg, Z. A.

Z. A. Weinberg, G. W. Rubloff, and E. Bassous, “Transmission, photoconductivity, and the experimental band gap of thermally grown SiO2 films,” Phys. Rev. B 19(6), 3107–3117 (1979).
[Crossref]

Wemple, S. H.

S. H. Wemple, “Refractive-Index Behavior of Amorphous Semiconductors and Glasses,” Phys. Rev. B 7(8), 3767–3777 (1973).
[Crossref]

Wondraczek, L.

Woodley, S. M.

D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh, and A. A. Sokol, “Band alignment of rutile and anatase TiO₂,” Nat. Mater. 12(9), 798–801 (2013).
[Crossref] [PubMed]

Zimmermann, F.

Ann. Phys. (2)

H. A. Lorentz, “Ueber die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte,” Ann. Phys. 245(4), 641–665 (1880).
[Crossref]

L. Lorenz, “Ueber die Refractionsconstante,” Ann. Phys. 247(9), 70–103 (1880).
[Crossref]

Annu. Rev. Earth Planet. Sci. (1)

R. G. Burns, “Intervalence Transitions in Mixed Valence Minerals of Iron and Titanium,” Annu. Rev. Earth Planet. Sci. 9(1), 345–383 (1981).
[Crossref]

Appl. Opt. (1)

Bol. Soc. Esp. Ceram. Vidr. (1)

M. Villegas, A. de Pablos, and J. F. Navarro, “Caracterización de vidrios del sistema Na2O-TiO2-SiO2,” Bol. Soc. Esp. Ceram. Vidr. 33(1), 23–28 (1994).

Bull. Mater. Sci. (1)

M. Kumar, A. Uniyal, A. P. S. Chauhan, and S. P. Singh, “Optical absorption and fluorescent behaviour of titanium ions in silicate glasses,” Bull. Mater. Sci. 26(3), 335–341 (2003).
[Crossref]

Can. Mineral. (1)

G. S. Henderson, “The Structure of Silicate Melts: A Glass Perspective,” Can. Mineral. 43(6), 1921–1958 (2005).
[Crossref]

Geochim. Cosmochim. Acta (3)

F. Farges, G. E. Brown, A. Navrotsky, H. Gan, and J. J. Rehr, “Coordination chemistry of Ti(IV) in silicate glasses and melts: II. Glasses at ambient temperature and pressure,” Geochim. Cosmochim. Acta 60(16), 3039–3053 (1996).
[Crossref]

F. Farges, G. E. Brown, and J. J. Rehr, “Coordination chemistry of Ti (IV) in silicate glasses and melts: I. XAFS study of titanium coordination in oxide model compounds,” Geochim. Cosmochim. Acta 60(16), 3023–3038 (1996).
[Crossref]

F. Farges and G. E. Brown., “Coordination chemistry of titanium (IV) in silicate glasses and melts: IV. XANES studies of synthetic and natural volcanic glasses and tektites at ambient temperature and pressure,” Geochim. Cosmochim. Acta 61(9), 1863–1870 (1997).
[Crossref]

Glastech. Ber. (1)

W. Hinz and P.-O. Kunth, “Phase Separation and Nucleation in Vitroceram Production,” Glastech. Ber. 34(9), 431–437 (1961).

IEEE J. Quantum Electron. (1)

N. Boling, A. Glass, and A. Owyoung, “Empirical relationships for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14(8), 601–608 (1978).
[Crossref]

Int. J. Appl. Glass Sci. (1)

M. Dejneka, I. Dutta, and C. Smith, “Chemically Strengthened Low Crystallinity Black Glass-Ceramics with High Liquidus Viscosities,” Int. J. Appl. Glass Sci. 5(2), 146–160 (2014).
[Crossref]

Int. J. Eng. Sci. Technol. (1)

S. L. S. Rao, G. Ramadevudu, M. Shareefuddin, A. Hameed, M. N. Chary, and M. L. Rao, “Optical properties of alkaline earth borate glasses,” Int. J. Eng. Sci. Technol. 4(4), 25–35 (2013).

J. Am. Ceram. Soc. (5)

P. E. Doherty, D. W. Lee, and R. S. Davis, “Direct Observation of the Crystallization of Li2O-Al2O3-SiO2 Glasses Containing TiO2,” J. Am. Ceram. Soc. 50(2), 77–81 (1967).
[Crossref]

C. R. Kurkjian and W. R. Prindle, “Perspectives on the History of Glass Composition,” J. Am. Ceram. Soc. 81(4), 795–813 (1998).
[Crossref]

E. M. Vogel, “Glasses as Nonlinear Photonic Materials,” J. Am. Ceram. Soc. 72(5), 719–724 (1989).
[Crossref]

R. C. Turnbull and W. G. Lawrence, “The Role of Titania in Silica Glasses,” J. Am. Ceram. Soc. 35(2), 48–53 (1952).
[Crossref]

K.-H. Sun, “Fundamental Condiftion of Glass Formation,” J. Am. Ceram. Soc. 30(9), 277–281 (1947).
[Crossref]

J. Appl. Phys. (1)

S. Le Boiteux, P. Segonds, L. Canioni, L. Sarger, T. Cardinal, C. Duchesne, E. Fargin, and G. Le Flem, “Nonlinear optical properties for TiO2 containing phosphate, borophosphate, and silicate glasses,” J. Appl. Phys. 81(3), 1481–1487 (1997).
[Crossref]

J. Mater. Sci. (1)

A. A. Higazy, A. Hussein, and M. A. Awaida, “A study of the optical absorption edge in silicate glasses containing TiO2 oxide,” J. Mater. Sci. 24(6), 2203–2208 (1989).
[Crossref]

J. Mater. Sci. Lett. (1)

A. A. Higazy, A. Hussein, M. A. Ewaida, and M. El-Hofy, “The effect of temperature on the optical absorption edge of the titanium oxide-doped soda-lime silica glasses,” J. Mater. Sci. Lett. 7(5), 453–456 (1988).
[Crossref]

J. Non-Cryst. Solids (7)

J. A. Duffy, “The electronic polarisability of oxygen in glass and the effect of composition,” J. Non-Cryst. Solids 297(2–3), 275–284 (2002).
[Crossref]

M. Chavoutier, D. Caurant, O. Majérus, R. Boulesteix, P. Loiseau, C. Jousseaume, E. Brunet, and E. Lecomte, “Effect of TiO2 content on the crystallization and the color of (ZrO2,TiO2)-doped Li2O–Al2O3–SiO2 glasses,” J. Non-Cryst. Solids 384(0), 15–24 (2014).
[Crossref]

C. A. Hogarth and M. N. Khan, “A study of optical absorption in some sodium titanium silicate glasses,” J. Non-Cryst. Solids 24(2), 277–281 (1977).
[Crossref]

C. W. Ponader, H. Boek, and J. E. Dickinson., “X-ray absorption study of the coordination of titanium in sodium-titanium-silicate glasses,” J. Non-Cryst. Solids 201(1–2), 81–94 (1996).
[Crossref]

E. Fargin, A. Berthereau, T. Cardinal, G. Le Flem, L. Ducasse, L. Canioni, P. Segonds, L. Sarger, and A. Ducasse, “Optical non-linearity in oxide glasses,” J. Non-Cryst. Solids 203(0), 96–101 (1996).
[Crossref]

J. A. Duffy and M. D. Ingram, “An interpretation of glass chemistry in terms of the optical basicity concept,” J. Non-Cryst. Solids 21(3), 373–410 (1976).
[Crossref]

F. Farges, “A Ti K-edge EXAFS study of the medium range environment around Ti in oxide glasses,” J. Non-Cryst. Solids 244(1), 25–33 (1999).
[Crossref]

J. Phys. Chem. B (1)

N. Serpone, “Is the Band Gap of Pristine TiO2 Narrowed by Anion- and Cation-Doping of Titanium Dioxide in Second-Generation Photocatalysts?” J. Phys. Chem. B 110(48), 24287–24293 (2006).
[Crossref] [PubMed]

J. Solid State Chem. (1)

V. Dimitrov and T. Komatsu, “Classification of oxide glasses: A polarizability approach,” J. Solid State Chem. 178(3), 831–846 (2005).
[Crossref]

J. Synchrotron Radiat. (3)

S. Carlson, M. Clausén, L. Gridneva, B. Sommarin, and C. Svensson, “XAFS experiments at beamline I811, MAX-lab synchrotron source, Sweden,” J. Synchrotron Radiat. 13(Pt 5), 359–364 (2006).
[Crossref] [PubMed]

M. Newville, “EXAFS analysis using FEFF and FEFFIT,” J. Synchrotron Radiat. 8(Pt 2), 96–100 (2001).
[Crossref] [PubMed]

B. Ravel and M. Newville, “ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT,” J. Synchrotron Radiat. 12(Pt 4), 537–541 (2005).
[Crossref] [PubMed]

Mater. Chem. Phys. (1)

M. Abdel-Baki, F. A. A. Wahab, and F. El-Diasty, “Optical characterization of xTiO2–(60-x)SiO2–40Na2O glasses: I. Linear and nonlinear dispersion properties,” Mater. Chem. Phys. 96(2–3), 201–210 (2006).
[Crossref]

Nat. Mater. (1)

D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh, and A. A. Sokol, “Band alignment of rutile and anatase TiO₂,” Nat. Mater. 12(9), 798–801 (2013).
[Crossref] [PubMed]

Opt. Commun. (1)

M. Abdel-Baki, F. El-Diasty, and F. A. A. Wahab, “Optical characterization of xTiO2–(60−x)SiO2–40Na2O glasses: II. Absorption edge, Fermi level, electronic polarizability and optical basicity,” Opt. Commun. 261(1), 65–70 (2006).
[Crossref]

Opt. Mater. Express (1)

Phys. B (1)

F. W. Lytle, D. Sayers, and E. Stern, “Report of the international workshop on standards and criteria in X-ray absorption spectroscopy,” Phys. B 158(1–3), 701–722 (1989).

Phys. Chem. Glasses (2)

J. A. Duffy, “Electronic polarisability and related properties of the oxide ion,” Phys. Chem. Glasses 30(1), 1–4 (1989).

E. Vogel, M. Weber, and D. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses 32(6), 231–254 (1991).

Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. Part B (1)

J. A. Duffy, “Refractivity and coordination number changes of the Ti4+ ion in glass,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. Part B 47(5), 582–587 (2006).

Phys. Chem. Glasses: Eur. J. Glass Sci. Technol.Part B (1)

V. Dimitrov and T. Komatsu, “Electronic polarizability and average single bond strength of ternary oxide glasses with high TiO2 contents,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol.Part B 52(6), 225–230 (2011).

Phys. Rev. (1)

F. Urbach, “The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids,” Phys. Rev. 92(5), 1324 (1953).
[Crossref]

Phys. Rev. B (2)

Z. A. Weinberg, G. W. Rubloff, and E. Bassous, “Transmission, photoconductivity, and the experimental band gap of thermally grown SiO2 films,” Phys. Rev. B 19(6), 3107–3117 (1979).
[Crossref]

S. H. Wemple, “Refractive-Index Behavior of Amorphous Semiconductors and Glasses,” Phys. Rev. B 7(8), 3767–3777 (1973).
[Crossref]

Phys. Rev. B Condens. Matter (1)

M. E. Lines, “Influence of d orbitals on the nonlinear optical response of transparent transition-metal oxides,” Phys. Rev. B Condens. Matter 43(14), 11978–11990 (1991).
[Crossref] [PubMed]

Proc. IEEE (1)

R. D. Maurer, “Glass fibers for optical communications,” Proc. IEEE 61(4), 452–462 (1973).
[Crossref]

Other (6)

W. Vogel, Glass chemistry. 2nd ed, (Springer Science & Business Media, 1994).

G. W. Morey, US Patent 2,150,694, 1939, Eastman Kodak Company.

G. W. Morey, British Patent 462 304, 1937, Eastman Kodak Company.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. Status Solidi15(2), 627–637 (1966) (b).
[Crossref]

N. F. Mott and E. A. Davis, Electronic Processes in Non-crystalline Materials (Oxford University Press, 1971).

F. Gan, Optical and Spectroscopic Properties of Glass (Springer-Verlag, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Quaternary diagram of the studied glass compositions.
Fig. 2
Fig. 2 Exemplary XRD pattern of specimen 1.4, showing that it is X-ray amorphous. The inset shows light scattering as a laser goes through.
Fig. 3
Fig. 3 Refractive index as a function of TiO2 content. Literature data taken from Refs [9, 11, 14]. The inset is a schematic of a V-block refractometer as it was used for measuring the refractive indices. Data of the present study are on nd (587.6 nm). For the cited data, Ref [14] is on nd, Ref [11] on nD (589 nm) and Ref [9] does not state the wavelength of consideration.
Fig. 4
Fig. 4 Refractive index as a function of Molar Electronic Polarizability per O atom, c.f. Eq. (1). Literature data taken from ref [9, 11, 14].
Fig. 5
Fig. 5 Abbe number and optical dispersion as a function of TiO2 content.
Fig. 6
Fig. 6 Representation of optical data of series 1-3 in the Abbe diagram, indicating the transition from flint to crown. Literature data on commercial optical glasses and indicated glass nomenclature have been adopted from [34] for referencing.
Fig. 7
Fig. 7 Absorption coefficient spectra in the visible range (380 to 780 nm) and the average transmission in the same range as a function of TiO2 content in the figure inset.
Fig. 8
Fig. 8 UV-Vis spectra of the 1st (a), 2nd (b) and 3rd (c) sample series in the 250-400 nm range. The insets are the corresponding Tauc plots. The dashed lines in the insets are guides to the eye, illustrating the determination of the optical bandgap.
Fig. 9
Fig. 9 Optical bandgap as a function of TiO2 content, the lines are guides for the eye. Data from the present work and literature are taken from ref [13, 16, 17]. The inset is a figure explaining indirect optical transitions, i.e. r = 2 in Eqs. (2) and 3.
Fig. 10
Fig. 10 Urbach energy as a function of TiO2 content. The dashed line is a guide for the eye. The inset shows a schematic image of an optical bandgap with an Urbach tail. Literature data on ternary TiO2-SiO2-Na2O are taken from [13].
Fig. 11
Fig. 11 Optical Bandgap and Urbach energy as a function of molar electronic polarizability.
Fig. 12
Fig. 12 Optical bandgap (a) and Urbach energy (b) as a function of the Na2O/TiO2 ratio. The dashed lines are guides to the eye. The different linear regimes indicate the Ti4+ coordination change.
Fig. 13
Fig. 13 Fourier transforms of k3-weighted EXAFS spectra (solid lines) and fits (dashed lines) as well as the R-factor that represents the goodness of fit [54], the spectra have been phase shift corrected.

Tables (5)

Tables Icon

Table 1 Raw materials used, the sodium addition was divided through 50% Na2CO3 and 50% NaNO3.

Tables Icon

Table 2 Normalized chemical composition of series 1-3 (mol%), analyzed using LA-ICP-MS.

Tables Icon

Table 3 Measured refractive indices, calculated optical dispersion and Abbe number.

Tables Icon

Table 4 Optical bandgap, Urbach energy and cut-off wavelength determined from UV-Vis-NIR spectra.

Tables Icon

Table 5 Average coordination number (CN) of Ti4+ to oxygen as determined by the fitting of the EXAFS spectra and Ti-O distances (R) and Debye-Waller factors (σ2) of the 1st and 2nd shell.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

α= 3 V m 4πN n 2 1 n 2 +2
D= n F' n C'
ν e = n e 1 n F' n C'
A( λ )= 1 t ln( I 0 I T )
A( λ )= Const hc λ ( hc λ E opt ) r
[ hc λ A( λ ) ] 1 r =Const( hc λ E opt )
A( λ )=B e ( hc/λ ΔE )
n 2 ( 10 13 esu )=K n d 1 V e 5/4
χ 3 ( 10 13 esu )= n d 12π n 2

Metrics