Abstract

The heterojunction of transition-metal dichalcogenides is an important task for their applications in optoelectronics and nanoelectronics owning to substantial enhancing and enticing the material, optical, and electronic properties. A precise and controllable nanostructure preparing method, although highly desired, remains quite challenging, especially for heterojunction growing. In this work, an inspiring strategy is first reported for the synthesis of the MoS2/ZnO composite structure through driving by the nano-photo-thermal energy. The ZnO NCs exhibit a 2D layer growth way on the surface of MoS2 nanosheets. MoS2/ZnO composite structures possess high quality optical properties for the application of heterojunction. The nano-photo-thermal energy drive nanoheterojunction growing technology is a promising strategy towards the facile and in situ controllable method of novel functional materials.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Selective patterned growth of ZnO nanowires/nanosheets and their photoluminescence properties

Kai Chen, Dao D. Thang, Satoshi Ishii, Ramu P. Sugavaneshwa, and Tadaaki Nagao
Opt. Mater. Express 5(2) 353-360 (2015)

Anomalous photoluminescence thermal quenching of sandwiched single layer MoS2

Malleswararao Tangi, Mohammad Khaled Shakfa, Pawan Mishra, Ming-Yang Li, Ming-Hui Chiu, Tien Khee Ng, Lain-Jong Li, and Boon S. Ooi
Opt. Mater. Express 7(10) 3697-3705 (2017)

High performance Cu2O/ZnO core-shell nanorod arrays synthesized using a nanoimprint GaN template by the hydrothermal growth technique

Yung-Sheng Chen, Che-Hao Liao, Yu-Lun Chueh, Chih-Chung Lai, Li-Yin Chen, Ann-Kuo Chu, Chie-Tong Kuo, and Hsiang-Chen Wang
Opt. Mater. Express 4(7) 1473-1486 (2014)

References

  • View by:
  • |
  • |
  • |

  1. F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
    [Crossref] [PubMed]
  2. K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, “Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices,” Nat. Nanotechnol. 8(11), 826–830 (2013).
    [Crossref] [PubMed]
  3. X. Xu, Z. Fan, S. Ding, D. Yu, and Y. Du, “Fabrication of MoS2 nanosheet@TiO2 nanotube hybrid nanostructures for lithium storage,” Nanoscale 6(10), 5245–5250 (2014).
    [Crossref] [PubMed]
  4. H. Xu, J. Wu, Q. Feng, N. Mao, C. Wang, and J. Zhang, “High Responsivity and Gate Tunable Graphene-MoS2 Hybrid Phototransistor,” Small 10(11), 2300–2306 (2014).
    [Crossref] [PubMed]
  5. L. Yu, Y.-H. Lee, X. Ling, E. J. G. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 Hybrid Technology for Large-Scale Two-Dimensional Electronics,” Nano Lett. 14(6), 3055–3063 (2014).
    [Crossref] [PubMed]
  6. X. Zhou, L.-J. Wan, and Y.-G. Guo, “Synthesis of MoS2 nanosheet-graphene nanosheet hybrid materials for stable lithium storage,” Chem. Commun. (Camb.) 49(18), 1838–1840 (2013).
    [Crossref] [PubMed]
  7. S. S. Chou, B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, and V. P. Dravid, “Chemically Exfoliated MoS2 as Near-Infrared Photothermal Agents,” Angew. Chem. Int. Ed. Engl. 52(15), 4160–4164 (2013).
    [Crossref] [PubMed]
  8. W. Yin, L. Yan, J. Yu, G. Tian, L. Zhou, X. Zheng, X. Zhang, Y. Yong, J. Li, Z. Gu, and Y. Zhao, “High-Throughput Synthesis of Single-Layer MoS2 Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy,” ACS Nano 8(7), 6922–6933 (2014).
    [Crossref] [PubMed]
  9. D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2 -PbS Quantum Dot Photodetectors,” Adv. Mater. 27(1), 176–180 (2015).
    [Crossref] [PubMed]
  10. B. Qu, Q. Ouyang, X. Yu, W. Luo, L. Qi, and Y. Chen, “Nonlinear absorption, nonlinear scattering, and optical limiting properties of MoS2-ZnO composite-based organic glasses,” Phys. Chem. Chem. Phys. 17(8), 6036–6043 (2015).
    [Crossref] [PubMed]
  11. K. H. Hu, X. G. Hu, Y. F. Xu, and J. D. Sun, “Synthesis of nano-MoS2/TiO2 composite and its catalytic degradation effect on methyl orange,” J. Mater. Sci. 45(10), 2640–2648 (2010).
    [Crossref]
  12. S. Wang, X. Li, Y. Chen, X. Cai, H. Yao, W. Gao, Y. Zheng, X. An, J. Shi, and H. Chen, “A Facile One-Pot Synthesis of a Two-Dimensional MoS2 /Bi2S3 Composite Theranostic Nanosystem for Multi-Modality Tumor Imaging and Therapy,” Adv. Mater. 27(17), 2775–2782 (2015).
    [Crossref] [PubMed]
  13. K. G. Eyink, L. Grazulis, M. Twyman, and K. Mahalingam, “Study of the driving force for the self-assembly of heterojunction quantum dots (zero D molecules) using finite element analysis,” J. Vac. Sci. Technol. B 28(3), C3C33 (2010).
    [Crossref]
  14. G. Z. Jia, Y. F. Wang, and J. H. Yao, “Fabrication and strain investigation of ZnO nanorods on Si composing sol-gel and chemical bath deposition method,” J. Phys. Chem. Solids 73(3), 495–498 (2012).
    [Crossref]
  15. A. M. Smith, A. M. Mohs, and S. Nie, “Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain,” Nat. Nanotechnol. 4(1), 56–63 (2009).
    [Crossref] [PubMed]
  16. R. Das, B. Rakshit, S. Debnath, and P. Mahadevan, “Microscopic model for the strain-driven direct to indirect band-gap transition in monolayer MoS2 and ZnO,” Phys. Rev. B 89(11), 115201 (2014).
    [Crossref]
  17. K. Bindumadhavan, S. K. Srivastava, and S. Mahanty, “MoS2-MWCNT hybrids as a superior anode in lithium-ion batteries,” Chem. Commun. (Camb.) 49(18), 1823–1825 (2013).
    [Crossref] [PubMed]
  18. P. Liang, B. Tai, H. Shu, T. Shen, and Q. Dong, “Doping properties of MoS2/ZnO (0001) heterojunction ruled by interfacial micro-structure: From first principles,” Solid State Commun. 204, 67–71 (2015).
    [Crossref]
  19. Y. Liu, S. Xie, H. Li, and X. Wang, “A Highly Efficient Sunlight Driven ZnO Nanosheet Photocatalyst: Synergetic Effect of P-Doping and MoS2 Atomic Layer Loading,” ChemCatChem 6(9), 2522–2526 (2014).
    [Crossref]
  20. Y.-H. Tan, K. Yu, J.-Z. Li, H. Fu, and Z.-Q. Zhu, “MoS2@ZnO nano-heterojunctions with enhanced photocatalysis and field emission properties,” J. Appl. Phys. 116(6), 064305 (2014).
    [Crossref]
  21. K. Zhang, Y. Zhang, T. Zhang, W. Dong, T. Wei, Y. Sun, X. Chen, G. Shen, and N. Dai, “Vertically coupled ZnO nanorods on MoS2 monolayers with enhanced Raman and photoluminescence emission,” Nano Res. 8(3), 743–750 (2015).
    [Crossref]
  22. Y. Yagang, L. Tolentino, Y. Zhongzheng, S. Xiaojuan, Z. Wen, C. Yongsheng, and W. Ching-ping, “High-Concentration Aqueous Dispersions of MoS 2,” Adv. Funct. Mater. 23(28), 3577–3583 (2013).
    [Crossref]
  23. K. P. Dhakal, D. L. Duong, J. Lee, H. Nam, M. Kim, M. Kan, Y. H. Lee, and J. Kim, “Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2,” Nanoscale 6(21), 13028–13035 (2014).
    [Crossref] [PubMed]
  24. G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B 82(16), 165424 (2010).
    [Crossref]
  25. G. Jia, X. Lu, B. Hao, X. Wang, Y. Li, and J. Yao, “Kinetic mechanism of ZnO hexagonal single crystal slices on GaN/sapphire by a layer-by-layer growth mode,” RSC Advances 3(31), 12826–12830 (2013).
    [Crossref]
  26. G. Z. Jia, W. K. Lou, F. Cheng, X. L. Wang, J. H. Yao, N. Dai, H. Q. Lin, and K. Chang, “Excellent photothermal conversion of core/shell CdSe/Bi2Se3 quantum dots,” Nano Res. 8(5), 1443–1453 (2015).
    [Crossref]
  27. H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions,” Nano Lett. 9(3), 1139–1146 (2009).
    [Crossref] [PubMed]
  28. D. K. Roper, W. Ahn, and M. Hoepfner, “Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles,” J Phys Chem C Nanomater Interfaces 111(9), 3636–3641 (2007).
    [Crossref] [PubMed]

2015 (6)

D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2 -PbS Quantum Dot Photodetectors,” Adv. Mater. 27(1), 176–180 (2015).
[Crossref] [PubMed]

B. Qu, Q. Ouyang, X. Yu, W. Luo, L. Qi, and Y. Chen, “Nonlinear absorption, nonlinear scattering, and optical limiting properties of MoS2-ZnO composite-based organic glasses,” Phys. Chem. Chem. Phys. 17(8), 6036–6043 (2015).
[Crossref] [PubMed]

S. Wang, X. Li, Y. Chen, X. Cai, H. Yao, W. Gao, Y. Zheng, X. An, J. Shi, and H. Chen, “A Facile One-Pot Synthesis of a Two-Dimensional MoS2 /Bi2S3 Composite Theranostic Nanosystem for Multi-Modality Tumor Imaging and Therapy,” Adv. Mater. 27(17), 2775–2782 (2015).
[Crossref] [PubMed]

P. Liang, B. Tai, H. Shu, T. Shen, and Q. Dong, “Doping properties of MoS2/ZnO (0001) heterojunction ruled by interfacial micro-structure: From first principles,” Solid State Commun. 204, 67–71 (2015).
[Crossref]

K. Zhang, Y. Zhang, T. Zhang, W. Dong, T. Wei, Y. Sun, X. Chen, G. Shen, and N. Dai, “Vertically coupled ZnO nanorods on MoS2 monolayers with enhanced Raman and photoluminescence emission,” Nano Res. 8(3), 743–750 (2015).
[Crossref]

G. Z. Jia, W. K. Lou, F. Cheng, X. L. Wang, J. H. Yao, N. Dai, H. Q. Lin, and K. Chang, “Excellent photothermal conversion of core/shell CdSe/Bi2Se3 quantum dots,” Nano Res. 8(5), 1443–1453 (2015).
[Crossref]

2014 (9)

W. Yin, L. Yan, J. Yu, G. Tian, L. Zhou, X. Zheng, X. Zhang, Y. Yong, J. Li, Z. Gu, and Y. Zhao, “High-Throughput Synthesis of Single-Layer MoS2 Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy,” ACS Nano 8(7), 6922–6933 (2014).
[Crossref] [PubMed]

K. P. Dhakal, D. L. Duong, J. Lee, H. Nam, M. Kim, M. Kan, Y. H. Lee, and J. Kim, “Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2,” Nanoscale 6(21), 13028–13035 (2014).
[Crossref] [PubMed]

Y. Liu, S. Xie, H. Li, and X. Wang, “A Highly Efficient Sunlight Driven ZnO Nanosheet Photocatalyst: Synergetic Effect of P-Doping and MoS2 Atomic Layer Loading,” ChemCatChem 6(9), 2522–2526 (2014).
[Crossref]

Y.-H. Tan, K. Yu, J.-Z. Li, H. Fu, and Z.-Q. Zhu, “MoS2@ZnO nano-heterojunctions with enhanced photocatalysis and field emission properties,” J. Appl. Phys. 116(6), 064305 (2014).
[Crossref]

R. Das, B. Rakshit, S. Debnath, and P. Mahadevan, “Microscopic model for the strain-driven direct to indirect band-gap transition in monolayer MoS2 and ZnO,” Phys. Rev. B 89(11), 115201 (2014).
[Crossref]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

X. Xu, Z. Fan, S. Ding, D. Yu, and Y. Du, “Fabrication of MoS2 nanosheet@TiO2 nanotube hybrid nanostructures for lithium storage,” Nanoscale 6(10), 5245–5250 (2014).
[Crossref] [PubMed]

H. Xu, J. Wu, Q. Feng, N. Mao, C. Wang, and J. Zhang, “High Responsivity and Gate Tunable Graphene-MoS2 Hybrid Phototransistor,” Small 10(11), 2300–2306 (2014).
[Crossref] [PubMed]

L. Yu, Y.-H. Lee, X. Ling, E. J. G. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 Hybrid Technology for Large-Scale Two-Dimensional Electronics,” Nano Lett. 14(6), 3055–3063 (2014).
[Crossref] [PubMed]

2013 (6)

X. Zhou, L.-J. Wan, and Y.-G. Guo, “Synthesis of MoS2 nanosheet-graphene nanosheet hybrid materials for stable lithium storage,” Chem. Commun. (Camb.) 49(18), 1838–1840 (2013).
[Crossref] [PubMed]

S. S. Chou, B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, and V. P. Dravid, “Chemically Exfoliated MoS2 as Near-Infrared Photothermal Agents,” Angew. Chem. Int. Ed. Engl. 52(15), 4160–4164 (2013).
[Crossref] [PubMed]

K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, “Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices,” Nat. Nanotechnol. 8(11), 826–830 (2013).
[Crossref] [PubMed]

K. Bindumadhavan, S. K. Srivastava, and S. Mahanty, “MoS2-MWCNT hybrids as a superior anode in lithium-ion batteries,” Chem. Commun. (Camb.) 49(18), 1823–1825 (2013).
[Crossref] [PubMed]

Y. Yagang, L. Tolentino, Y. Zhongzheng, S. Xiaojuan, Z. Wen, C. Yongsheng, and W. Ching-ping, “High-Concentration Aqueous Dispersions of MoS 2,” Adv. Funct. Mater. 23(28), 3577–3583 (2013).
[Crossref]

G. Jia, X. Lu, B. Hao, X. Wang, Y. Li, and J. Yao, “Kinetic mechanism of ZnO hexagonal single crystal slices on GaN/sapphire by a layer-by-layer growth mode,” RSC Advances 3(31), 12826–12830 (2013).
[Crossref]

2012 (1)

G. Z. Jia, Y. F. Wang, and J. H. Yao, “Fabrication and strain investigation of ZnO nanorods on Si composing sol-gel and chemical bath deposition method,” J. Phys. Chem. Solids 73(3), 495–498 (2012).
[Crossref]

2010 (3)

K. G. Eyink, L. Grazulis, M. Twyman, and K. Mahalingam, “Study of the driving force for the self-assembly of heterojunction quantum dots (zero D molecules) using finite element analysis,” J. Vac. Sci. Technol. B 28(3), C3C33 (2010).
[Crossref]

K. H. Hu, X. G. Hu, Y. F. Xu, and J. D. Sun, “Synthesis of nano-MoS2/TiO2 composite and its catalytic degradation effect on methyl orange,” J. Mater. Sci. 45(10), 2640–2648 (2010).
[Crossref]

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B 82(16), 165424 (2010).
[Crossref]

2009 (2)

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions,” Nano Lett. 9(3), 1139–1146 (2009).
[Crossref] [PubMed]

A. M. Smith, A. M. Mohs, and S. Nie, “Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain,” Nat. Nanotechnol. 4(1), 56–63 (2009).
[Crossref] [PubMed]

2007 (1)

D. K. Roper, W. Ahn, and M. Hoepfner, “Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles,” J Phys Chem C Nanomater Interfaces 111(9), 3636–3641 (2007).
[Crossref] [PubMed]

Ahn, W.

D. K. Roper, W. Ahn, and M. Hoepfner, “Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles,” J Phys Chem C Nanomater Interfaces 111(9), 3636–3641 (2007).
[Crossref] [PubMed]

An, X.

S. Wang, X. Li, Y. Chen, X. Cai, H. Yao, W. Gao, Y. Zheng, X. An, J. Shi, and H. Chen, “A Facile One-Pot Synthesis of a Two-Dimensional MoS2 /Bi2S3 Composite Theranostic Nanosystem for Multi-Modality Tumor Imaging and Therapy,” Adv. Mater. 27(17), 2775–2782 (2015).
[Crossref] [PubMed]

Avouris, P.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Baffou, G.

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B 82(16), 165424 (2010).
[Crossref]

Bindumadhavan, K.

K. Bindumadhavan, S. K. Srivastava, and S. Mahanty, “MoS2-MWCNT hybrids as a superior anode in lithium-ion batteries,” Chem. Commun. (Camb.) 49(18), 1823–1825 (2013).
[Crossref] [PubMed]

Brinker, C. J.

S. S. Chou, B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, and V. P. Dravid, “Chemically Exfoliated MoS2 as Near-Infrared Photothermal Agents,” Angew. Chem. Int. Ed. Engl. 52(15), 4160–4164 (2013).
[Crossref] [PubMed]

Cai, X.

S. Wang, X. Li, Y. Chen, X. Cai, H. Yao, W. Gao, Y. Zheng, X. An, J. Shi, and H. Chen, “A Facile One-Pot Synthesis of a Two-Dimensional MoS2 /Bi2S3 Composite Theranostic Nanosystem for Multi-Modality Tumor Imaging and Therapy,” Adv. Mater. 27(17), 2775–2782 (2015).
[Crossref] [PubMed]

Carlson, M. T.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions,” Nano Lett. 9(3), 1139–1146 (2009).
[Crossref] [PubMed]

Chang, K.

G. Z. Jia, W. K. Lou, F. Cheng, X. L. Wang, J. H. Yao, N. Dai, H. Q. Lin, and K. Chang, “Excellent photothermal conversion of core/shell CdSe/Bi2Se3 quantum dots,” Nano Res. 8(5), 1443–1453 (2015).
[Crossref]

Chen, H.

S. Wang, X. Li, Y. Chen, X. Cai, H. Yao, W. Gao, Y. Zheng, X. An, J. Shi, and H. Chen, “A Facile One-Pot Synthesis of a Two-Dimensional MoS2 /Bi2S3 Composite Theranostic Nanosystem for Multi-Modality Tumor Imaging and Therapy,” Adv. Mater. 27(17), 2775–2782 (2015).
[Crossref] [PubMed]

Chen, X.

K. Zhang, Y. Zhang, T. Zhang, W. Dong, T. Wei, Y. Sun, X. Chen, G. Shen, and N. Dai, “Vertically coupled ZnO nanorods on MoS2 monolayers with enhanced Raman and photoluminescence emission,” Nano Res. 8(3), 743–750 (2015).
[Crossref]

Chen, Y.

B. Qu, Q. Ouyang, X. Yu, W. Luo, L. Qi, and Y. Chen, “Nonlinear absorption, nonlinear scattering, and optical limiting properties of MoS2-ZnO composite-based organic glasses,” Phys. Chem. Chem. Phys. 17(8), 6036–6043 (2015).
[Crossref] [PubMed]

S. Wang, X. Li, Y. Chen, X. Cai, H. Yao, W. Gao, Y. Zheng, X. An, J. Shi, and H. Chen, “A Facile One-Pot Synthesis of a Two-Dimensional MoS2 /Bi2S3 Composite Theranostic Nanosystem for Multi-Modality Tumor Imaging and Therapy,” Adv. Mater. 27(17), 2775–2782 (2015).
[Crossref] [PubMed]

Cheng, F.

G. Z. Jia, W. K. Lou, F. Cheng, X. L. Wang, J. H. Yao, N. Dai, H. Q. Lin, and K. Chang, “Excellent photothermal conversion of core/shell CdSe/Bi2Se3 quantum dots,” Nano Res. 8(5), 1443–1453 (2015).
[Crossref]

Ching-ping, W.

Y. Yagang, L. Tolentino, Y. Zhongzheng, S. Xiaojuan, Z. Wen, C. Yongsheng, and W. Ching-ping, “High-Concentration Aqueous Dispersions of MoS 2,” Adv. Funct. Mater. 23(28), 3577–3583 (2013).
[Crossref]

Chou, S. S.

S. S. Chou, B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, and V. P. Dravid, “Chemically Exfoliated MoS2 as Near-Infrared Photothermal Agents,” Angew. Chem. Int. Ed. Engl. 52(15), 4160–4164 (2013).
[Crossref] [PubMed]

Dai, N.

K. Zhang, Y. Zhang, T. Zhang, W. Dong, T. Wei, Y. Sun, X. Chen, G. Shen, and N. Dai, “Vertically coupled ZnO nanorods on MoS2 monolayers with enhanced Raman and photoluminescence emission,” Nano Res. 8(3), 743–750 (2015).
[Crossref]

G. Z. Jia, W. K. Lou, F. Cheng, X. L. Wang, J. H. Yao, N. Dai, H. Q. Lin, and K. Chang, “Excellent photothermal conversion of core/shell CdSe/Bi2Se3 quantum dots,” Nano Res. 8(5), 1443–1453 (2015).
[Crossref]

Das, R.

R. Das, B. Rakshit, S. Debnath, and P. Mahadevan, “Microscopic model for the strain-driven direct to indirect band-gap transition in monolayer MoS2 and ZnO,” Phys. Rev. B 89(11), 115201 (2014).
[Crossref]

De, M.

S. S. Chou, B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, and V. P. Dravid, “Chemically Exfoliated MoS2 as Near-Infrared Photothermal Agents,” Angew. Chem. Int. Ed. Engl. 52(15), 4160–4164 (2013).
[Crossref] [PubMed]

Debnath, S.

R. Das, B. Rakshit, S. Debnath, and P. Mahadevan, “Microscopic model for the strain-driven direct to indirect band-gap transition in monolayer MoS2 and ZnO,” Phys. Rev. B 89(11), 115201 (2014).
[Crossref]

Dhakal, K. P.

K. P. Dhakal, D. L. Duong, J. Lee, H. Nam, M. Kim, M. Kan, Y. H. Lee, and J. Kim, “Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2,” Nanoscale 6(21), 13028–13035 (2014).
[Crossref] [PubMed]

Ding, S.

X. Xu, Z. Fan, S. Ding, D. Yu, and Y. Du, “Fabrication of MoS2 nanosheet@TiO2 nanotube hybrid nanostructures for lithium storage,” Nanoscale 6(10), 5245–5250 (2014).
[Crossref] [PubMed]

Dong, Q.

P. Liang, B. Tai, H. Shu, T. Shen, and Q. Dong, “Doping properties of MoS2/ZnO (0001) heterojunction ruled by interfacial micro-structure: From first principles,” Solid State Commun. 204, 67–71 (2015).
[Crossref]

Dong, W.

K. Zhang, Y. Zhang, T. Zhang, W. Dong, T. Wei, Y. Sun, X. Chen, G. Shen, and N. Dai, “Vertically coupled ZnO nanorods on MoS2 monolayers with enhanced Raman and photoluminescence emission,” Nano Res. 8(3), 743–750 (2015).
[Crossref]

Dravid, V. P.

S. S. Chou, B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, and V. P. Dravid, “Chemically Exfoliated MoS2 as Near-Infrared Photothermal Agents,” Angew. Chem. Int. Ed. Engl. 52(15), 4160–4164 (2013).
[Crossref] [PubMed]

Du, Y.

X. Xu, Z. Fan, S. Ding, D. Yu, and Y. Du, “Fabrication of MoS2 nanosheet@TiO2 nanotube hybrid nanostructures for lithium storage,” Nanoscale 6(10), 5245–5250 (2014).
[Crossref] [PubMed]

Dubey, M.

L. Yu, Y.-H. Lee, X. Ling, E. J. G. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 Hybrid Technology for Large-Scale Two-Dimensional Electronics,” Nano Lett. 14(6), 3055–3063 (2014).
[Crossref] [PubMed]

Duong, D. L.

K. P. Dhakal, D. L. Duong, J. Lee, H. Nam, M. Kim, M. Kan, Y. H. Lee, and J. Kim, “Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2,” Nanoscale 6(21), 13028–13035 (2014).
[Crossref] [PubMed]

Eyink, K. G.

K. G. Eyink, L. Grazulis, M. Twyman, and K. Mahalingam, “Study of the driving force for the self-assembly of heterojunction quantum dots (zero D molecules) using finite element analysis,” J. Vac. Sci. Technol. B 28(3), C3C33 (2010).
[Crossref]

Fan, Z.

X. Xu, Z. Fan, S. Ding, D. Yu, and Y. Du, “Fabrication of MoS2 nanosheet@TiO2 nanotube hybrid nanostructures for lithium storage,” Nanoscale 6(10), 5245–5250 (2014).
[Crossref] [PubMed]

Feng, Q.

H. Xu, J. Wu, Q. Feng, N. Mao, C. Wang, and J. Zhang, “High Responsivity and Gate Tunable Graphene-MoS2 Hybrid Phototransistor,” Small 10(11), 2300–2306 (2014).
[Crossref] [PubMed]

Ferrari, A. C.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Foley, B. M.

S. S. Chou, B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, and V. P. Dravid, “Chemically Exfoliated MoS2 as Near-Infrared Photothermal Agents,” Angew. Chem. Int. Ed. Engl. 52(15), 4160–4164 (2013).
[Crossref] [PubMed]

Fu, H.

Y.-H. Tan, K. Yu, J.-Z. Li, H. Fu, and Z.-Q. Zhu, “MoS2@ZnO nano-heterojunctions with enhanced photocatalysis and field emission properties,” J. Appl. Phys. 116(6), 064305 (2014).
[Crossref]

Gao, W.

S. Wang, X. Li, Y. Chen, X. Cai, H. Yao, W. Gao, Y. Zheng, X. An, J. Shi, and H. Chen, “A Facile One-Pot Synthesis of a Two-Dimensional MoS2 /Bi2S3 Composite Theranostic Nanosystem for Multi-Modality Tumor Imaging and Therapy,” Adv. Mater. 27(17), 2775–2782 (2015).
[Crossref] [PubMed]

Ghosh, A.

K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, “Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices,” Nat. Nanotechnol. 8(11), 826–830 (2013).
[Crossref] [PubMed]

Girard, C.

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B 82(16), 165424 (2010).
[Crossref]

Goswami, S.

K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, “Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices,” Nat. Nanotechnol. 8(11), 826–830 (2013).
[Crossref] [PubMed]

Govorov, A. O.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions,” Nano Lett. 9(3), 1139–1146 (2009).
[Crossref] [PubMed]

Grazulis, L.

K. G. Eyink, L. Grazulis, M. Twyman, and K. Mahalingam, “Study of the driving force for the self-assembly of heterojunction quantum dots (zero D molecules) using finite element analysis,” J. Vac. Sci. Technol. B 28(3), C3C33 (2010).
[Crossref]

Gu, Z.

W. Yin, L. Yan, J. Yu, G. Tian, L. Zhou, X. Zheng, X. Zhang, Y. Yong, J. Li, Z. Gu, and Y. Zhao, “High-Throughput Synthesis of Single-Layer MoS2 Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy,” ACS Nano 8(7), 6922–6933 (2014).
[Crossref] [PubMed]

Guo, Y.-G.

X. Zhou, L.-J. Wan, and Y.-G. Guo, “Synthesis of MoS2 nanosheet-graphene nanosheet hybrid materials for stable lithium storage,” Chem. Commun. (Camb.) 49(18), 1838–1840 (2013).
[Crossref] [PubMed]

Hao, B.

G. Jia, X. Lu, B. Hao, X. Wang, Y. Li, and J. Yao, “Kinetic mechanism of ZnO hexagonal single crystal slices on GaN/sapphire by a layer-by-layer growth mode,” RSC Advances 3(31), 12826–12830 (2013).
[Crossref]

Hernandez, P.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions,” Nano Lett. 9(3), 1139–1146 (2009).
[Crossref] [PubMed]

Hoepfner, M.

D. K. Roper, W. Ahn, and M. Hoepfner, “Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles,” J Phys Chem C Nanomater Interfaces 111(9), 3636–3641 (2007).
[Crossref] [PubMed]

Hopkins, P. E.

S. S. Chou, B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, and V. P. Dravid, “Chemically Exfoliated MoS2 as Near-Infrared Photothermal Agents,” Angew. Chem. Int. Ed. Engl. 52(15), 4160–4164 (2013).
[Crossref] [PubMed]

Hu, K. H.

K. H. Hu, X. G. Hu, Y. F. Xu, and J. D. Sun, “Synthesis of nano-MoS2/TiO2 composite and its catalytic degradation effect on methyl orange,” J. Mater. Sci. 45(10), 2640–2648 (2010).
[Crossref]

Hu, X. G.

K. H. Hu, X. G. Hu, Y. F. Xu, and J. D. Sun, “Synthesis of nano-MoS2/TiO2 composite and its catalytic degradation effect on methyl orange,” J. Mater. Sci. 45(10), 2640–2648 (2010).
[Crossref]

Huang, J.

S. S. Chou, B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, and V. P. Dravid, “Chemically Exfoliated MoS2 as Near-Infrared Photothermal Agents,” Angew. Chem. Int. Ed. Engl. 52(15), 4160–4164 (2013).
[Crossref] [PubMed]

Jia, G.

G. Jia, X. Lu, B. Hao, X. Wang, Y. Li, and J. Yao, “Kinetic mechanism of ZnO hexagonal single crystal slices on GaN/sapphire by a layer-by-layer growth mode,” RSC Advances 3(31), 12826–12830 (2013).
[Crossref]

Jia, G. Z.

G. Z. Jia, W. K. Lou, F. Cheng, X. L. Wang, J. H. Yao, N. Dai, H. Q. Lin, and K. Chang, “Excellent photothermal conversion of core/shell CdSe/Bi2Se3 quantum dots,” Nano Res. 8(5), 1443–1453 (2015).
[Crossref]

G. Z. Jia, Y. F. Wang, and J. H. Yao, “Fabrication and strain investigation of ZnO nanorods on Si composing sol-gel and chemical bath deposition method,” J. Phys. Chem. Solids 73(3), 495–498 (2012).
[Crossref]

Kaehr, B.

S. S. Chou, B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, and V. P. Dravid, “Chemically Exfoliated MoS2 as Near-Infrared Photothermal Agents,” Angew. Chem. Int. Ed. Engl. 52(15), 4160–4164 (2013).
[Crossref] [PubMed]

Kan, M.

K. P. Dhakal, D. L. Duong, J. Lee, H. Nam, M. Kim, M. Kan, Y. H. Lee, and J. Kim, “Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2,” Nanoscale 6(21), 13028–13035 (2014).
[Crossref] [PubMed]

Kaxiras, E.

L. Yu, Y.-H. Lee, X. Ling, E. J. G. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 Hybrid Technology for Large-Scale Two-Dimensional Electronics,” Nano Lett. 14(6), 3055–3063 (2014).
[Crossref] [PubMed]

Kim, J.

K. P. Dhakal, D. L. Duong, J. Lee, H. Nam, M. Kim, M. Kan, Y. H. Lee, and J. Kim, “Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2,” Nanoscale 6(21), 13028–13035 (2014).
[Crossref] [PubMed]

S. S. Chou, B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, and V. P. Dravid, “Chemically Exfoliated MoS2 as Near-Infrared Photothermal Agents,” Angew. Chem. Int. Ed. Engl. 52(15), 4160–4164 (2013).
[Crossref] [PubMed]

Kim, M.

K. P. Dhakal, D. L. Duong, J. Lee, H. Nam, M. Kim, M. Kan, Y. H. Lee, and J. Kim, “Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2,” Nanoscale 6(21), 13028–13035 (2014).
[Crossref] [PubMed]

Kong, J.

L. Yu, Y.-H. Lee, X. Ling, E. J. G. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 Hybrid Technology for Large-Scale Two-Dimensional Electronics,” Nano Lett. 14(6), 3055–3063 (2014).
[Crossref] [PubMed]

Konstantatos, G.

D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2 -PbS Quantum Dot Photodetectors,” Adv. Mater. 27(1), 176–180 (2015).
[Crossref] [PubMed]

Koppens, F. H. L.

D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2 -PbS Quantum Dot Photodetectors,” Adv. Mater. 27(1), 176–180 (2015).
[Crossref] [PubMed]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Kufer, D.

D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2 -PbS Quantum Dot Photodetectors,” Adv. Mater. 27(1), 176–180 (2015).
[Crossref] [PubMed]

Lasanta, T.

D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2 -PbS Quantum Dot Photodetectors,” Adv. Mater. 27(1), 176–180 (2015).
[Crossref] [PubMed]

Lee, J.

K. P. Dhakal, D. L. Duong, J. Lee, H. Nam, M. Kim, M. Kan, Y. H. Lee, and J. Kim, “Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2,” Nanoscale 6(21), 13028–13035 (2014).
[Crossref] [PubMed]

Lee, Y. H.

K. P. Dhakal, D. L. Duong, J. Lee, H. Nam, M. Kim, M. Kan, Y. H. Lee, and J. Kim, “Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2,” Nanoscale 6(21), 13028–13035 (2014).
[Crossref] [PubMed]

Lee, Y.-H.

L. Yu, Y.-H. Lee, X. Ling, E. J. G. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 Hybrid Technology for Large-Scale Two-Dimensional Electronics,” Nano Lett. 14(6), 3055–3063 (2014).
[Crossref] [PubMed]

Li, H.

Y. Liu, S. Xie, H. Li, and X. Wang, “A Highly Efficient Sunlight Driven ZnO Nanosheet Photocatalyst: Synergetic Effect of P-Doping and MoS2 Atomic Layer Loading,” ChemCatChem 6(9), 2522–2526 (2014).
[Crossref]

Li, J.

W. Yin, L. Yan, J. Yu, G. Tian, L. Zhou, X. Zheng, X. Zhang, Y. Yong, J. Li, Z. Gu, and Y. Zhao, “High-Throughput Synthesis of Single-Layer MoS2 Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy,” ACS Nano 8(7), 6922–6933 (2014).
[Crossref] [PubMed]

Li, J.-Z.

Y.-H. Tan, K. Yu, J.-Z. Li, H. Fu, and Z.-Q. Zhu, “MoS2@ZnO nano-heterojunctions with enhanced photocatalysis and field emission properties,” J. Appl. Phys. 116(6), 064305 (2014).
[Crossref]

Li, X.

S. Wang, X. Li, Y. Chen, X. Cai, H. Yao, W. Gao, Y. Zheng, X. An, J. Shi, and H. Chen, “A Facile One-Pot Synthesis of a Two-Dimensional MoS2 /Bi2S3 Composite Theranostic Nanosystem for Multi-Modality Tumor Imaging and Therapy,” Adv. Mater. 27(17), 2775–2782 (2015).
[Crossref] [PubMed]

Li, Y.

G. Jia, X. Lu, B. Hao, X. Wang, Y. Li, and J. Yao, “Kinetic mechanism of ZnO hexagonal single crystal slices on GaN/sapphire by a layer-by-layer growth mode,” RSC Advances 3(31), 12826–12830 (2013).
[Crossref]

Liang, P.

P. Liang, B. Tai, H. Shu, T. Shen, and Q. Dong, “Doping properties of MoS2/ZnO (0001) heterojunction ruled by interfacial micro-structure: From first principles,” Solid State Commun. 204, 67–71 (2015).
[Crossref]

Lin, H. Q.

G. Z. Jia, W. K. Lou, F. Cheng, X. L. Wang, J. H. Yao, N. Dai, H. Q. Lin, and K. Chang, “Excellent photothermal conversion of core/shell CdSe/Bi2Se3 quantum dots,” Nano Res. 8(5), 1443–1453 (2015).
[Crossref]

Lin, Y.

L. Yu, Y.-H. Lee, X. Ling, E. J. G. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 Hybrid Technology for Large-Scale Two-Dimensional Electronics,” Nano Lett. 14(6), 3055–3063 (2014).
[Crossref] [PubMed]

Ling, X.

L. Yu, Y.-H. Lee, X. Ling, E. J. G. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 Hybrid Technology for Large-Scale Two-Dimensional Electronics,” Nano Lett. 14(6), 3055–3063 (2014).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, S. Xie, H. Li, and X. Wang, “A Highly Efficient Sunlight Driven ZnO Nanosheet Photocatalyst: Synergetic Effect of P-Doping and MoS2 Atomic Layer Loading,” ChemCatChem 6(9), 2522–2526 (2014).
[Crossref]

Lou, W. K.

G. Z. Jia, W. K. Lou, F. Cheng, X. L. Wang, J. H. Yao, N. Dai, H. Q. Lin, and K. Chang, “Excellent photothermal conversion of core/shell CdSe/Bi2Se3 quantum dots,” Nano Res. 8(5), 1443–1453 (2015).
[Crossref]

Lu, X.

G. Jia, X. Lu, B. Hao, X. Wang, Y. Li, and J. Yao, “Kinetic mechanism of ZnO hexagonal single crystal slices on GaN/sapphire by a layer-by-layer growth mode,” RSC Advances 3(31), 12826–12830 (2013).
[Crossref]

Luo, W.

B. Qu, Q. Ouyang, X. Yu, W. Luo, L. Qi, and Y. Chen, “Nonlinear absorption, nonlinear scattering, and optical limiting properties of MoS2-ZnO composite-based organic glasses,” Phys. Chem. Chem. Phys. 17(8), 6036–6043 (2015).
[Crossref] [PubMed]

Mahadevan, P.

R. Das, B. Rakshit, S. Debnath, and P. Mahadevan, “Microscopic model for the strain-driven direct to indirect band-gap transition in monolayer MoS2 and ZnO,” Phys. Rev. B 89(11), 115201 (2014).
[Crossref]

Mahalingam, K.

K. G. Eyink, L. Grazulis, M. Twyman, and K. Mahalingam, “Study of the driving force for the self-assembly of heterojunction quantum dots (zero D molecules) using finite element analysis,” J. Vac. Sci. Technol. B 28(3), C3C33 (2010).
[Crossref]

Mahanty, S.

K. Bindumadhavan, S. K. Srivastava, and S. Mahanty, “MoS2-MWCNT hybrids as a superior anode in lithium-ion batteries,” Chem. Commun. (Camb.) 49(18), 1823–1825 (2013).
[Crossref] [PubMed]

Mao, N.

H. Xu, J. Wu, Q. Feng, N. Mao, C. Wang, and J. Zhang, “High Responsivity and Gate Tunable Graphene-MoS2 Hybrid Phototransistor,” Small 10(11), 2300–2306 (2014).
[Crossref] [PubMed]

Mohs, A. M.

A. M. Smith, A. M. Mohs, and S. Nie, “Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain,” Nat. Nanotechnol. 4(1), 56–63 (2009).
[Crossref] [PubMed]

Mueller, T.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Nam, H.

K. P. Dhakal, D. L. Duong, J. Lee, H. Nam, M. Kim, M. Kan, Y. H. Lee, and J. Kim, “Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2,” Nanoscale 6(21), 13028–13035 (2014).
[Crossref] [PubMed]

Navickaite, G.

D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2 -PbS Quantum Dot Photodetectors,” Adv. Mater. 27(1), 176–180 (2015).
[Crossref] [PubMed]

Nie, S.

A. M. Smith, A. M. Mohs, and S. Nie, “Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain,” Nat. Nanotechnol. 4(1), 56–63 (2009).
[Crossref] [PubMed]

Nikitskiy, I.

D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2 -PbS Quantum Dot Photodetectors,” Adv. Mater. 27(1), 176–180 (2015).
[Crossref] [PubMed]

Ouyang, Q.

B. Qu, Q. Ouyang, X. Yu, W. Luo, L. Qi, and Y. Chen, “Nonlinear absorption, nonlinear scattering, and optical limiting properties of MoS2-ZnO composite-based organic glasses,” Phys. Chem. Chem. Phys. 17(8), 6036–6043 (2015).
[Crossref] [PubMed]

Padmanabhan, M.

K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, “Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices,” Nat. Nanotechnol. 8(11), 826–830 (2013).
[Crossref] [PubMed]

Palacios, T.

L. Yu, Y.-H. Lee, X. Ling, E. J. G. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 Hybrid Technology for Large-Scale Two-Dimensional Electronics,” Nano Lett. 14(6), 3055–3063 (2014).
[Crossref] [PubMed]

Polini, M.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Qi, L.

B. Qu, Q. Ouyang, X. Yu, W. Luo, L. Qi, and Y. Chen, “Nonlinear absorption, nonlinear scattering, and optical limiting properties of MoS2-ZnO composite-based organic glasses,” Phys. Chem. Chem. Phys. 17(8), 6036–6043 (2015).
[Crossref] [PubMed]

Qu, B.

B. Qu, Q. Ouyang, X. Yu, W. Luo, L. Qi, and Y. Chen, “Nonlinear absorption, nonlinear scattering, and optical limiting properties of MoS2-ZnO composite-based organic glasses,” Phys. Chem. Chem. Phys. 17(8), 6036–6043 (2015).
[Crossref] [PubMed]

Quidant, R.

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B 82(16), 165424 (2010).
[Crossref]

Raghavan, S.

K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, “Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices,” Nat. Nanotechnol. 8(11), 826–830 (2013).
[Crossref] [PubMed]

Rakshit, B.

R. Das, B. Rakshit, S. Debnath, and P. Mahadevan, “Microscopic model for the strain-driven direct to indirect band-gap transition in monolayer MoS2 and ZnO,” Phys. Rev. B 89(11), 115201 (2014).
[Crossref]

Ramalingam, G.

K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, “Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices,” Nat. Nanotechnol. 8(11), 826–830 (2013).
[Crossref] [PubMed]

Richardson, H. H.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions,” Nano Lett. 9(3), 1139–1146 (2009).
[Crossref] [PubMed]

Roper, D. K.

D. K. Roper, W. Ahn, and M. Hoepfner, “Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles,” J Phys Chem C Nanomater Interfaces 111(9), 3636–3641 (2007).
[Crossref] [PubMed]

Roy, K.

K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, “Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices,” Nat. Nanotechnol. 8(11), 826–830 (2013).
[Crossref] [PubMed]

Sai, T. P.

K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, “Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices,” Nat. Nanotechnol. 8(11), 826–830 (2013).
[Crossref] [PubMed]

Santos, E. J. G.

L. Yu, Y.-H. Lee, X. Ling, E. J. G. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 Hybrid Technology for Large-Scale Two-Dimensional Electronics,” Nano Lett. 14(6), 3055–3063 (2014).
[Crossref] [PubMed]

Shen, G.

K. Zhang, Y. Zhang, T. Zhang, W. Dong, T. Wei, Y. Sun, X. Chen, G. Shen, and N. Dai, “Vertically coupled ZnO nanorods on MoS2 monolayers with enhanced Raman and photoluminescence emission,” Nano Res. 8(3), 743–750 (2015).
[Crossref]

Shen, T.

P. Liang, B. Tai, H. Shu, T. Shen, and Q. Dong, “Doping properties of MoS2/ZnO (0001) heterojunction ruled by interfacial micro-structure: From first principles,” Solid State Commun. 204, 67–71 (2015).
[Crossref]

Shi, J.

S. Wang, X. Li, Y. Chen, X. Cai, H. Yao, W. Gao, Y. Zheng, X. An, J. Shi, and H. Chen, “A Facile One-Pot Synthesis of a Two-Dimensional MoS2 /Bi2S3 Composite Theranostic Nanosystem for Multi-Modality Tumor Imaging and Therapy,” Adv. Mater. 27(17), 2775–2782 (2015).
[Crossref] [PubMed]

Shin, Y. C.

L. Yu, Y.-H. Lee, X. Ling, E. J. G. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 Hybrid Technology for Large-Scale Two-Dimensional Electronics,” Nano Lett. 14(6), 3055–3063 (2014).
[Crossref] [PubMed]

Shu, H.

P. Liang, B. Tai, H. Shu, T. Shen, and Q. Dong, “Doping properties of MoS2/ZnO (0001) heterojunction ruled by interfacial micro-structure: From first principles,” Solid State Commun. 204, 67–71 (2015).
[Crossref]

Smith, A. M.

A. M. Smith, A. M. Mohs, and S. Nie, “Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain,” Nat. Nanotechnol. 4(1), 56–63 (2009).
[Crossref] [PubMed]

Srivastava, S. K.

K. Bindumadhavan, S. K. Srivastava, and S. Mahanty, “MoS2-MWCNT hybrids as a superior anode in lithium-ion batteries,” Chem. Commun. (Camb.) 49(18), 1823–1825 (2013).
[Crossref] [PubMed]

Sun, J. D.

K. H. Hu, X. G. Hu, Y. F. Xu, and J. D. Sun, “Synthesis of nano-MoS2/TiO2 composite and its catalytic degradation effect on methyl orange,” J. Mater. Sci. 45(10), 2640–2648 (2010).
[Crossref]

Sun, Y.

K. Zhang, Y. Zhang, T. Zhang, W. Dong, T. Wei, Y. Sun, X. Chen, G. Shen, and N. Dai, “Vertically coupled ZnO nanorods on MoS2 monolayers with enhanced Raman and photoluminescence emission,” Nano Res. 8(3), 743–750 (2015).
[Crossref]

Tai, B.

P. Liang, B. Tai, H. Shu, T. Shen, and Q. Dong, “Doping properties of MoS2/ZnO (0001) heterojunction ruled by interfacial micro-structure: From first principles,” Solid State Commun. 204, 67–71 (2015).
[Crossref]

Tan, Y.-H.

Y.-H. Tan, K. Yu, J.-Z. Li, H. Fu, and Z.-Q. Zhu, “MoS2@ZnO nano-heterojunctions with enhanced photocatalysis and field emission properties,” J. Appl. Phys. 116(6), 064305 (2014).
[Crossref]

Tandler, P. J.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions,” Nano Lett. 9(3), 1139–1146 (2009).
[Crossref] [PubMed]

Tian, G.

W. Yin, L. Yan, J. Yu, G. Tian, L. Zhou, X. Zheng, X. Zhang, Y. Yong, J. Li, Z. Gu, and Y. Zhao, “High-Throughput Synthesis of Single-Layer MoS2 Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy,” ACS Nano 8(7), 6922–6933 (2014).
[Crossref] [PubMed]

Tolentino, L.

Y. Yagang, L. Tolentino, Y. Zhongzheng, S. Xiaojuan, Z. Wen, C. Yongsheng, and W. Ching-ping, “High-Concentration Aqueous Dispersions of MoS 2,” Adv. Funct. Mater. 23(28), 3577–3583 (2013).
[Crossref]

Twyman, M.

K. G. Eyink, L. Grazulis, M. Twyman, and K. Mahalingam, “Study of the driving force for the self-assembly of heterojunction quantum dots (zero D molecules) using finite element analysis,” J. Vac. Sci. Technol. B 28(3), C3C33 (2010).
[Crossref]

Vitiello, M. S.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Wan, L.-J.

X. Zhou, L.-J. Wan, and Y.-G. Guo, “Synthesis of MoS2 nanosheet-graphene nanosheet hybrid materials for stable lithium storage,” Chem. Commun. (Camb.) 49(18), 1838–1840 (2013).
[Crossref] [PubMed]

Wang, C.

H. Xu, J. Wu, Q. Feng, N. Mao, C. Wang, and J. Zhang, “High Responsivity and Gate Tunable Graphene-MoS2 Hybrid Phototransistor,” Small 10(11), 2300–2306 (2014).
[Crossref] [PubMed]

Wang, H.

L. Yu, Y.-H. Lee, X. Ling, E. J. G. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 Hybrid Technology for Large-Scale Two-Dimensional Electronics,” Nano Lett. 14(6), 3055–3063 (2014).
[Crossref] [PubMed]

Wang, S.

S. Wang, X. Li, Y. Chen, X. Cai, H. Yao, W. Gao, Y. Zheng, X. An, J. Shi, and H. Chen, “A Facile One-Pot Synthesis of a Two-Dimensional MoS2 /Bi2S3 Composite Theranostic Nanosystem for Multi-Modality Tumor Imaging and Therapy,” Adv. Mater. 27(17), 2775–2782 (2015).
[Crossref] [PubMed]

Wang, X.

Y. Liu, S. Xie, H. Li, and X. Wang, “A Highly Efficient Sunlight Driven ZnO Nanosheet Photocatalyst: Synergetic Effect of P-Doping and MoS2 Atomic Layer Loading,” ChemCatChem 6(9), 2522–2526 (2014).
[Crossref]

G. Jia, X. Lu, B. Hao, X. Wang, Y. Li, and J. Yao, “Kinetic mechanism of ZnO hexagonal single crystal slices on GaN/sapphire by a layer-by-layer growth mode,” RSC Advances 3(31), 12826–12830 (2013).
[Crossref]

Wang, X. L.

G. Z. Jia, W. K. Lou, F. Cheng, X. L. Wang, J. H. Yao, N. Dai, H. Q. Lin, and K. Chang, “Excellent photothermal conversion of core/shell CdSe/Bi2Se3 quantum dots,” Nano Res. 8(5), 1443–1453 (2015).
[Crossref]

Wang, Y. F.

G. Z. Jia, Y. F. Wang, and J. H. Yao, “Fabrication and strain investigation of ZnO nanorods on Si composing sol-gel and chemical bath deposition method,” J. Phys. Chem. Solids 73(3), 495–498 (2012).
[Crossref]

Wei, T.

K. Zhang, Y. Zhang, T. Zhang, W. Dong, T. Wei, Y. Sun, X. Chen, G. Shen, and N. Dai, “Vertically coupled ZnO nanorods on MoS2 monolayers with enhanced Raman and photoluminescence emission,” Nano Res. 8(3), 743–750 (2015).
[Crossref]

Wen, Z.

Y. Yagang, L. Tolentino, Y. Zhongzheng, S. Xiaojuan, Z. Wen, C. Yongsheng, and W. Ching-ping, “High-Concentration Aqueous Dispersions of MoS 2,” Adv. Funct. Mater. 23(28), 3577–3583 (2013).
[Crossref]

Wu, J.

H. Xu, J. Wu, Q. Feng, N. Mao, C. Wang, and J. Zhang, “High Responsivity and Gate Tunable Graphene-MoS2 Hybrid Phototransistor,” Small 10(11), 2300–2306 (2014).
[Crossref] [PubMed]

Xiaojuan, S.

Y. Yagang, L. Tolentino, Y. Zhongzheng, S. Xiaojuan, Z. Wen, C. Yongsheng, and W. Ching-ping, “High-Concentration Aqueous Dispersions of MoS 2,” Adv. Funct. Mater. 23(28), 3577–3583 (2013).
[Crossref]

Xie, S.

Y. Liu, S. Xie, H. Li, and X. Wang, “A Highly Efficient Sunlight Driven ZnO Nanosheet Photocatalyst: Synergetic Effect of P-Doping and MoS2 Atomic Layer Loading,” ChemCatChem 6(9), 2522–2526 (2014).
[Crossref]

Xu, H.

H. Xu, J. Wu, Q. Feng, N. Mao, C. Wang, and J. Zhang, “High Responsivity and Gate Tunable Graphene-MoS2 Hybrid Phototransistor,” Small 10(11), 2300–2306 (2014).
[Crossref] [PubMed]

Xu, X.

X. Xu, Z. Fan, S. Ding, D. Yu, and Y. Du, “Fabrication of MoS2 nanosheet@TiO2 nanotube hybrid nanostructures for lithium storage,” Nanoscale 6(10), 5245–5250 (2014).
[Crossref] [PubMed]

Xu, Y. F.

K. H. Hu, X. G. Hu, Y. F. Xu, and J. D. Sun, “Synthesis of nano-MoS2/TiO2 composite and its catalytic degradation effect on methyl orange,” J. Mater. Sci. 45(10), 2640–2648 (2010).
[Crossref]

Yagang, Y.

Y. Yagang, L. Tolentino, Y. Zhongzheng, S. Xiaojuan, Z. Wen, C. Yongsheng, and W. Ching-ping, “High-Concentration Aqueous Dispersions of MoS 2,” Adv. Funct. Mater. 23(28), 3577–3583 (2013).
[Crossref]

Yan, L.

W. Yin, L. Yan, J. Yu, G. Tian, L. Zhou, X. Zheng, X. Zhang, Y. Yong, J. Li, Z. Gu, and Y. Zhao, “High-Throughput Synthesis of Single-Layer MoS2 Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy,” ACS Nano 8(7), 6922–6933 (2014).
[Crossref] [PubMed]

Yao, H.

S. Wang, X. Li, Y. Chen, X. Cai, H. Yao, W. Gao, Y. Zheng, X. An, J. Shi, and H. Chen, “A Facile One-Pot Synthesis of a Two-Dimensional MoS2 /Bi2S3 Composite Theranostic Nanosystem for Multi-Modality Tumor Imaging and Therapy,” Adv. Mater. 27(17), 2775–2782 (2015).
[Crossref] [PubMed]

Yao, J.

G. Jia, X. Lu, B. Hao, X. Wang, Y. Li, and J. Yao, “Kinetic mechanism of ZnO hexagonal single crystal slices on GaN/sapphire by a layer-by-layer growth mode,” RSC Advances 3(31), 12826–12830 (2013).
[Crossref]

Yao, J. H.

G. Z. Jia, W. K. Lou, F. Cheng, X. L. Wang, J. H. Yao, N. Dai, H. Q. Lin, and K. Chang, “Excellent photothermal conversion of core/shell CdSe/Bi2Se3 quantum dots,” Nano Res. 8(5), 1443–1453 (2015).
[Crossref]

G. Z. Jia, Y. F. Wang, and J. H. Yao, “Fabrication and strain investigation of ZnO nanorods on Si composing sol-gel and chemical bath deposition method,” J. Phys. Chem. Solids 73(3), 495–498 (2012).
[Crossref]

Yin, W.

W. Yin, L. Yan, J. Yu, G. Tian, L. Zhou, X. Zheng, X. Zhang, Y. Yong, J. Li, Z. Gu, and Y. Zhao, “High-Throughput Synthesis of Single-Layer MoS2 Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy,” ACS Nano 8(7), 6922–6933 (2014).
[Crossref] [PubMed]

Yong, Y.

W. Yin, L. Yan, J. Yu, G. Tian, L. Zhou, X. Zheng, X. Zhang, Y. Yong, J. Li, Z. Gu, and Y. Zhao, “High-Throughput Synthesis of Single-Layer MoS2 Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy,” ACS Nano 8(7), 6922–6933 (2014).
[Crossref] [PubMed]

Yongsheng, C.

Y. Yagang, L. Tolentino, Y. Zhongzheng, S. Xiaojuan, Z. Wen, C. Yongsheng, and W. Ching-ping, “High-Concentration Aqueous Dispersions of MoS 2,” Adv. Funct. Mater. 23(28), 3577–3583 (2013).
[Crossref]

Yu, D.

X. Xu, Z. Fan, S. Ding, D. Yu, and Y. Du, “Fabrication of MoS2 nanosheet@TiO2 nanotube hybrid nanostructures for lithium storage,” Nanoscale 6(10), 5245–5250 (2014).
[Crossref] [PubMed]

Yu, J.

W. Yin, L. Yan, J. Yu, G. Tian, L. Zhou, X. Zheng, X. Zhang, Y. Yong, J. Li, Z. Gu, and Y. Zhao, “High-Throughput Synthesis of Single-Layer MoS2 Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy,” ACS Nano 8(7), 6922–6933 (2014).
[Crossref] [PubMed]

Yu, K.

Y.-H. Tan, K. Yu, J.-Z. Li, H. Fu, and Z.-Q. Zhu, “MoS2@ZnO nano-heterojunctions with enhanced photocatalysis and field emission properties,” J. Appl. Phys. 116(6), 064305 (2014).
[Crossref]

Yu, L.

L. Yu, Y.-H. Lee, X. Ling, E. J. G. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 Hybrid Technology for Large-Scale Two-Dimensional Electronics,” Nano Lett. 14(6), 3055–3063 (2014).
[Crossref] [PubMed]

Yu, X.

B. Qu, Q. Ouyang, X. Yu, W. Luo, L. Qi, and Y. Chen, “Nonlinear absorption, nonlinear scattering, and optical limiting properties of MoS2-ZnO composite-based organic glasses,” Phys. Chem. Chem. Phys. 17(8), 6036–6043 (2015).
[Crossref] [PubMed]

Zhang, J.

H. Xu, J. Wu, Q. Feng, N. Mao, C. Wang, and J. Zhang, “High Responsivity and Gate Tunable Graphene-MoS2 Hybrid Phototransistor,” Small 10(11), 2300–2306 (2014).
[Crossref] [PubMed]

Zhang, K.

K. Zhang, Y. Zhang, T. Zhang, W. Dong, T. Wei, Y. Sun, X. Chen, G. Shen, and N. Dai, “Vertically coupled ZnO nanorods on MoS2 monolayers with enhanced Raman and photoluminescence emission,” Nano Res. 8(3), 743–750 (2015).
[Crossref]

Zhang, T.

K. Zhang, Y. Zhang, T. Zhang, W. Dong, T. Wei, Y. Sun, X. Chen, G. Shen, and N. Dai, “Vertically coupled ZnO nanorods on MoS2 monolayers with enhanced Raman and photoluminescence emission,” Nano Res. 8(3), 743–750 (2015).
[Crossref]

Zhang, X.

W. Yin, L. Yan, J. Yu, G. Tian, L. Zhou, X. Zheng, X. Zhang, Y. Yong, J. Li, Z. Gu, and Y. Zhao, “High-Throughput Synthesis of Single-Layer MoS2 Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy,” ACS Nano 8(7), 6922–6933 (2014).
[Crossref] [PubMed]

Zhang, Y.

K. Zhang, Y. Zhang, T. Zhang, W. Dong, T. Wei, Y. Sun, X. Chen, G. Shen, and N. Dai, “Vertically coupled ZnO nanorods on MoS2 monolayers with enhanced Raman and photoluminescence emission,” Nano Res. 8(3), 743–750 (2015).
[Crossref]

Zhao, Y.

W. Yin, L. Yan, J. Yu, G. Tian, L. Zhou, X. Zheng, X. Zhang, Y. Yong, J. Li, Z. Gu, and Y. Zhao, “High-Throughput Synthesis of Single-Layer MoS2 Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy,” ACS Nano 8(7), 6922–6933 (2014).
[Crossref] [PubMed]

Zheng, X.

W. Yin, L. Yan, J. Yu, G. Tian, L. Zhou, X. Zheng, X. Zhang, Y. Yong, J. Li, Z. Gu, and Y. Zhao, “High-Throughput Synthesis of Single-Layer MoS2 Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy,” ACS Nano 8(7), 6922–6933 (2014).
[Crossref] [PubMed]

Zheng, Y.

S. Wang, X. Li, Y. Chen, X. Cai, H. Yao, W. Gao, Y. Zheng, X. An, J. Shi, and H. Chen, “A Facile One-Pot Synthesis of a Two-Dimensional MoS2 /Bi2S3 Composite Theranostic Nanosystem for Multi-Modality Tumor Imaging and Therapy,” Adv. Mater. 27(17), 2775–2782 (2015).
[Crossref] [PubMed]

Zhongzheng, Y.

Y. Yagang, L. Tolentino, Y. Zhongzheng, S. Xiaojuan, Z. Wen, C. Yongsheng, and W. Ching-ping, “High-Concentration Aqueous Dispersions of MoS 2,” Adv. Funct. Mater. 23(28), 3577–3583 (2013).
[Crossref]

Zhou, L.

W. Yin, L. Yan, J. Yu, G. Tian, L. Zhou, X. Zheng, X. Zhang, Y. Yong, J. Li, Z. Gu, and Y. Zhao, “High-Throughput Synthesis of Single-Layer MoS2 Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy,” ACS Nano 8(7), 6922–6933 (2014).
[Crossref] [PubMed]

Zhou, X.

X. Zhou, L.-J. Wan, and Y.-G. Guo, “Synthesis of MoS2 nanosheet-graphene nanosheet hybrid materials for stable lithium storage,” Chem. Commun. (Camb.) 49(18), 1838–1840 (2013).
[Crossref] [PubMed]

Zhu, Z.-Q.

Y.-H. Tan, K. Yu, J.-Z. Li, H. Fu, and Z.-Q. Zhu, “MoS2@ZnO nano-heterojunctions with enhanced photocatalysis and field emission properties,” J. Appl. Phys. 116(6), 064305 (2014).
[Crossref]

ACS Nano (1)

W. Yin, L. Yan, J. Yu, G. Tian, L. Zhou, X. Zheng, X. Zhang, Y. Yong, J. Li, Z. Gu, and Y. Zhao, “High-Throughput Synthesis of Single-Layer MoS2 Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy,” ACS Nano 8(7), 6922–6933 (2014).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

Y. Yagang, L. Tolentino, Y. Zhongzheng, S. Xiaojuan, Z. Wen, C. Yongsheng, and W. Ching-ping, “High-Concentration Aqueous Dispersions of MoS 2,” Adv. Funct. Mater. 23(28), 3577–3583 (2013).
[Crossref]

Adv. Mater. (2)

D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2 -PbS Quantum Dot Photodetectors,” Adv. Mater. 27(1), 176–180 (2015).
[Crossref] [PubMed]

S. Wang, X. Li, Y. Chen, X. Cai, H. Yao, W. Gao, Y. Zheng, X. An, J. Shi, and H. Chen, “A Facile One-Pot Synthesis of a Two-Dimensional MoS2 /Bi2S3 Composite Theranostic Nanosystem for Multi-Modality Tumor Imaging and Therapy,” Adv. Mater. 27(17), 2775–2782 (2015).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

S. S. Chou, B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, and V. P. Dravid, “Chemically Exfoliated MoS2 as Near-Infrared Photothermal Agents,” Angew. Chem. Int. Ed. Engl. 52(15), 4160–4164 (2013).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (2)

K. Bindumadhavan, S. K. Srivastava, and S. Mahanty, “MoS2-MWCNT hybrids as a superior anode in lithium-ion batteries,” Chem. Commun. (Camb.) 49(18), 1823–1825 (2013).
[Crossref] [PubMed]

X. Zhou, L.-J. Wan, and Y.-G. Guo, “Synthesis of MoS2 nanosheet-graphene nanosheet hybrid materials for stable lithium storage,” Chem. Commun. (Camb.) 49(18), 1838–1840 (2013).
[Crossref] [PubMed]

ChemCatChem (1)

Y. Liu, S. Xie, H. Li, and X. Wang, “A Highly Efficient Sunlight Driven ZnO Nanosheet Photocatalyst: Synergetic Effect of P-Doping and MoS2 Atomic Layer Loading,” ChemCatChem 6(9), 2522–2526 (2014).
[Crossref]

J Phys Chem C Nanomater Interfaces (1)

D. K. Roper, W. Ahn, and M. Hoepfner, “Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles,” J Phys Chem C Nanomater Interfaces 111(9), 3636–3641 (2007).
[Crossref] [PubMed]

J. Appl. Phys. (1)

Y.-H. Tan, K. Yu, J.-Z. Li, H. Fu, and Z.-Q. Zhu, “MoS2@ZnO nano-heterojunctions with enhanced photocatalysis and field emission properties,” J. Appl. Phys. 116(6), 064305 (2014).
[Crossref]

J. Mater. Sci. (1)

K. H. Hu, X. G. Hu, Y. F. Xu, and J. D. Sun, “Synthesis of nano-MoS2/TiO2 composite and its catalytic degradation effect on methyl orange,” J. Mater. Sci. 45(10), 2640–2648 (2010).
[Crossref]

J. Phys. Chem. Solids (1)

G. Z. Jia, Y. F. Wang, and J. H. Yao, “Fabrication and strain investigation of ZnO nanorods on Si composing sol-gel and chemical bath deposition method,” J. Phys. Chem. Solids 73(3), 495–498 (2012).
[Crossref]

J. Vac. Sci. Technol. B (1)

K. G. Eyink, L. Grazulis, M. Twyman, and K. Mahalingam, “Study of the driving force for the self-assembly of heterojunction quantum dots (zero D molecules) using finite element analysis,” J. Vac. Sci. Technol. B 28(3), C3C33 (2010).
[Crossref]

Nano Lett. (2)

L. Yu, Y.-H. Lee, X. Ling, E. J. G. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, “Graphene/MoS2 Hybrid Technology for Large-Scale Two-Dimensional Electronics,” Nano Lett. 14(6), 3055–3063 (2014).
[Crossref] [PubMed]

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions,” Nano Lett. 9(3), 1139–1146 (2009).
[Crossref] [PubMed]

Nano Res. (2)

G. Z. Jia, W. K. Lou, F. Cheng, X. L. Wang, J. H. Yao, N. Dai, H. Q. Lin, and K. Chang, “Excellent photothermal conversion of core/shell CdSe/Bi2Se3 quantum dots,” Nano Res. 8(5), 1443–1453 (2015).
[Crossref]

K. Zhang, Y. Zhang, T. Zhang, W. Dong, T. Wei, Y. Sun, X. Chen, G. Shen, and N. Dai, “Vertically coupled ZnO nanorods on MoS2 monolayers with enhanced Raman and photoluminescence emission,” Nano Res. 8(3), 743–750 (2015).
[Crossref]

Nanoscale (2)

K. P. Dhakal, D. L. Duong, J. Lee, H. Nam, M. Kim, M. Kan, Y. H. Lee, and J. Kim, “Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2,” Nanoscale 6(21), 13028–13035 (2014).
[Crossref] [PubMed]

X. Xu, Z. Fan, S. Ding, D. Yu, and Y. Du, “Fabrication of MoS2 nanosheet@TiO2 nanotube hybrid nanostructures for lithium storage,” Nanoscale 6(10), 5245–5250 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, “Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices,” Nat. Nanotechnol. 8(11), 826–830 (2013).
[Crossref] [PubMed]

A. M. Smith, A. M. Mohs, and S. Nie, “Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain,” Nat. Nanotechnol. 4(1), 56–63 (2009).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

B. Qu, Q. Ouyang, X. Yu, W. Luo, L. Qi, and Y. Chen, “Nonlinear absorption, nonlinear scattering, and optical limiting properties of MoS2-ZnO composite-based organic glasses,” Phys. Chem. Chem. Phys. 17(8), 6036–6043 (2015).
[Crossref] [PubMed]

Phys. Rev. B (2)

R. Das, B. Rakshit, S. Debnath, and P. Mahadevan, “Microscopic model for the strain-driven direct to indirect band-gap transition in monolayer MoS2 and ZnO,” Phys. Rev. B 89(11), 115201 (2014).
[Crossref]

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B 82(16), 165424 (2010).
[Crossref]

RSC Advances (1)

G. Jia, X. Lu, B. Hao, X. Wang, Y. Li, and J. Yao, “Kinetic mechanism of ZnO hexagonal single crystal slices on GaN/sapphire by a layer-by-layer growth mode,” RSC Advances 3(31), 12826–12830 (2013).
[Crossref]

Small (1)

H. Xu, J. Wu, Q. Feng, N. Mao, C. Wang, and J. Zhang, “High Responsivity and Gate Tunable Graphene-MoS2 Hybrid Phototransistor,” Small 10(11), 2300–2306 (2014).
[Crossref] [PubMed]

Solid State Commun. (1)

P. Liang, B. Tai, H. Shu, T. Shen, and Q. Dong, “Doping properties of MoS2/ZnO (0001) heterojunction ruled by interfacial micro-structure: From first principles,” Solid State Commun. 204, 67–71 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) AFM image of MoS2 sample after grinding. (b) AFM height profile across the MoS2 nanosheets in the panel (a).
Fig. 2
Fig. 2 (a-d)Schematic illustration of the synthesis of MoS2/ZnO composite structures via a nano-photo-thermal energy driving method. (a)NMP treatment roughly exfoliation MoS2 through grinding. (b)producing fewlayer MoS2 nanosheets through sonication. (c)Zn ion absorbed on the surface of few-layer MoS2. (d)the ZnO nanosheets formed by treating of NIR laser illuminating.
Fig. 3
Fig. 3 Low magnfication TEM image for MoS2 after grinding(a), sonication(b), and MoS2/ZnO composite structure (c), respectively.
Fig. 4
Fig. 4 HRTEM analysis of MoS2 sheets and MoS2/ZnO composite structure (scale bar, 5 nm): (a) high resolution image showing the multilayer nature of the sheets (lower right corner) and high resolution image of the sheets showing the hexagonal structure of MoS2, the inset in (a) is fast Fourier transform of the electron diffraction pattern of a few layers of MoS2. (c) high resolution image showing MoS2/ZnO composite structure, the inset in (c) is fast Fourier transform of the electron diffraction pattern. (b) inverse transforms of contrast-enhanced FFTs of the marked areas in Figure (a). (d) A selected area for electron diffraction patterning of MoS2/ZnO composite structures. (e-f) the nanocrystal fringes (as shown by green boxes I, II, III, and IV in Fig. 1(c)) in the HRTEM images were digitally processed using a 2D Fourier transform scheme, contrast enhanced (see inset, Fig. 2(c)), and inverse transformed to obtain the 2D Fourier-transform filtered lattice fringes.
Fig. 5
Fig. 5 UV-vis absorption spectra of as-synthesized few-layer MoS2 and MoS2/ZnO suspension, all units are eV.
Fig. 6
Fig. 6 (a) Photographs and the Tyndall effect of Zn(Ac)2, MoS2 nanosheets, and MoS2/ZnO aqueous solution from left to right, respectively. (b)Photothermal effect of MoS2, MoS2 + Zn(Ac)2, and Zn(Ac)2 aqueous dispersion as a function of irradiation time (10 min) using the NIR laser shining (808 nm, 1.6 W). (c) Photothermal conversion effect of the aqueous dispersion of as a function of irradiation time using the NIR laser shining (808 nm, 1.6 W) for 10 min, and shut off then. (d) Time constant for heat transfer from the system is determined to be τs = 162.6s by applying the linear time data from the cooling period (after 600s) versus negative natural logarithm of driving force temperature, which is obtained from the cooling stage of panel (a).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

i m i C Np,i dT dt = Q Np + Q Surr Q Loss
Q I =I(1 10 A 808 )η
Q Loss =hA(T T Surr )
τ= m i C Np,i i hS

Metrics