Abstract

We have investigated the suitability of atomic layer deposition (ALD) for SiO2 optical coatings and applied it to broadband antireflective multilayers in combination with HfO2 as the high refractive index material. SiO2 thin films were successfully grown using tris[dimethylamino]silane (3DMAS), bis[diethylamino]silane (BDEAS) with plasma activated oxygen as precursors, and the AP-LTO330 precursor with ozone, respectively. The amorphous SiO2 films show very low optical losses within a spectral range of 200 nm to 1100 nm. Laser calorimetric measurements show absorption losses of 300 nm thick SiO2 films of about 1.5 parts per million at a wavelength of 1064 nm. The films are optically homogeneous and possess a good scalability of film thickness. The film surface porosity - which correlates to a shift in the transmittance spectra under vacuum and air conditions - has been suppressed by optimized plasma parameters or Al2O3 sealing layers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mechanical, structural, and optical properties of PEALD metallic oxides for optical applications

Svetlana Shestaeva, Astrid Bingel, Peter Munzert, Lilit Ghazaryan, Christian Patzig, Andreas Tünnermann, and Adriana Szeghalmi
Appl. Opt. 56(4) C47-C59 (2017)

Atomic layer deposition process with TiF4 as a precursor for depositing metal fluoride thin films

Tero Pilvi, Mikko Ritala, Markku Leskelä, Martin Bischoff, Ute Kaiser, and Norbert Kaiser
Appl. Opt. 47(13) C271-C274 (2008)

Comparative study of SiO2, Si3N4 and TiO2 thin films as passivation layers for quantum cascade lasers

Simon Ferré, Alba Peinado, Enric Garcia-Caurel, Virginie Trinité, Mathieu Carras, and Robson Ferreira
Opt. Express 24(21) 24032-24044 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. H. Jeong, J. K. Kim, B. S. Kim, S. H. Shim, and B. T. Lee, “Characterization of SiO2 and TiO2 films prepared using rf magnetron sputtering and their application to anti-reflection coating,” Vacuum 76(4), 507–515 (2004).
    [Crossref]
  2. H. K. Pulker, “Optical coatings deposited by ion and plasma PVD processes,” Surf. Coat. Tech. 112(1-3), 250–256 (1999).
    [Crossref]
  3. U. Schulz, U. B. Schallenberg, and N. Kaiser, “Antireflection coating design for plastic optics,” Appl. Opt. 41(16), 3107–3110 (2002).
    [Crossref] [PubMed]
  4. R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410(1-2), 86–93 (2002).
    [Crossref]
  5. D. Riihelä, M. Ritala, R. Matero, and M. Leskelä, “Introduction atomic layer epitaxy for the deposition of optical thin films,” Thin Solid Films 289(1-2), 250–255 (1996).
    [Crossref]
  6. A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, and M. Knez, “Atomic layer deposition of Al2O3 and TiO2 multilayers for applications as bandpass filters and antireflection coatings,” Appl. Opt. 48(9), 1727–1732 (2009).
    [Crossref] [PubMed]
  7. N. T. Gabriel, S. S. Kim, and J. J. Talghader, “Control of thermal deformation in dielectric mirrors using mechanical design and atomic layer deposition,” Opt. Lett. 34(13), 1958–1960 (2009).
    [Crossref] [PubMed]
  8. H. Kumagai, K. Toyoda, K. Kobayashi, M. Obara, and Y. Iimura, “Titanium oxide aluminum oxide multilayer reflectors for “water-window” wavelengths,” Appl. Phys. Lett. 70(18), 2338–2340 (1997).
    [Crossref]
  9. O. Sneh, M. L. Wise, A. W. Ott, L. A. Okada, and S. M. George, “Atomic layer growth of SiO2 on Si(100) using SiCl4 and H2O in a binary reaction sequence,” Surf. Sci. 334(1-3), 135–152 (1995).
    [Crossref]
  10. M. Degai, K. Kanomata, K. Momiyama, S. Kubota, K. Hirahara, and F. Hirose, “Non-heating atomic layer deposition of SiO2 using tris(dimethylamino)silane and plasma-excited water vapor,” Thin Solid Films 525, 73–76 (2012).
    [Crossref]
  11. S. Kamiyama, T. Miura, and Y. Nara, “Comparison between SiO2 films deposited by atomic layer deposition with SiH2[N(CH3)2]2 and SiH[N(CH3)2]3 precursors,” Thin Solid Films 515(4), 1517–1521 (2006).
    [Crossref]
  12. V. Miikkulainen, M. Leskela, M. Ritala, and R. L. Puurunen, “Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends,” J. Appl. Phys. 113(2), 021301 (2013).
    [Crossref]
  13. B. B. Burton, S. W. Kang, S. W. Rhee, and S. M. George, “SiO2 atomic layer deposition using tris(dimethylamino)silane and hydrogen peroxide studied by in situ transmission FTIR spectroscopy,” J. Phys. Chem. C 113(19), 8249–8257 (2009).
    [Crossref]
  14. A. Kobayashi, N. Tsuji, A. Fukazawa, and N. Kobayashi, “Temperature dependence of SiO2 film growth with plasma-enhanced atomic layer deposition,” Thin Solid Films 520(11), 3994–3998 (2012).
    [Crossref]
  15. G. Dingemans, C. A. A. van Helvoirt, D. Pierreux, W. Keuning, and W. M. M. Kessels, “Plasma-assisted ALD for the conformal deposition of SiO2: Process, material and electronic properties,” J. Electrochem. Soc. 159(3), H277–H285 (2012).
    [Crossref]
  16. J. S. Choi, B. S. Yang, S. J. Won, J. R. Kim, S. Suh, H. K. Park, J. Heo, and H. J. Kim, “Low temperature formation of silicon oxide thin films by atomic layer deposition using NH3/O2-plasma,” Electrochem. Solid St. 2, P114–P116 (2013).
  17. “AP-LTO®330 is a registered trademark of Air Products and Chemicals, Inc. of Allentown, PA..”
  18. S. S. Kanyal, D. S. Jensen, A. E. Dadson, R. R. Vanfleet, R. C. Davis, and M. R. Linford, “Atomic layer deposition of aluminum-free silica onto patterned carbon nanotube forests in the preparation of microfabricated thin-layer chromatography plates,” Jpc-J. of Planar Chromat. 27(3), 151–156 (2014).
    [Crossref]
  19. M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
    [Crossref]
  20. K. Pfeiffer, S. Shestaeva, A. Bingel, P. Munzert, U. Schulz, N. Kaiser, A. Tünnermann, and A. Szeghalmi, “Atomic layer deposition for antireflection coatings using SiO2 as low-refractive index material,” (Proc. of SPIE9627, 2015).
  21. O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vak. Forsch. Prax. 21(5), 15–23 (2009).
    [Crossref]
  22. U. Willamowski, D. Ristau, and E. Welsch, “Measuring the absolute absorptance of optical laser components,” Appl. Opt. 37(36), 8362–8370 (1998).
    [Crossref] [PubMed]
  23. O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wuthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grossl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
    [Crossref]
  24. S. J. Song, S. W. Lee, G. H. Kim, J. Y. Seok, K. J. Yoon, J. H. Yoon, C. S. Hwang, J. Gatineau, and C. Ko, “Substrate dependent growth behaviors of plasma-enhanced atomic layer deposited nickel oxide films for resistive switching application,” Chem. Mater. 24(24), 4675–4685 (2012).
    [Crossref]
  25. K. J. Hughes and J. R. Engstrom, “Nucleation delay in atomic layer deposition on a thin organic layer and the role of reaction thermochemistry,” J. Vac. Sci. Technol. A 30(1), 01A102 (2012).
    [Crossref]
  26. H. C. M. Knoops, S. E. Potts, A. A. Bol, and W. M. M. Kessels, “27 - Atomic Layer Deposition,” in Handbook of Crystal Growth (Second Edition), T. F. Kuech, ed. (North-Holland, Boston, 2015), pp. 1101–1134.
  27. M. Ritala and J. Niinisto, “Chapter 4 Atomic Layer Deposition,” in Chemical Vapour Deposition: Precursors, Processes and Applications(The Royal Society of Chemistry, 2009), pp. 158–206.
  28. H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual-stresses in evaporated silicon dioxide thin-films - correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962–968 (1995).
    [Crossref]
  29. H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels, “Plasma-assisted atomic layer deposition: Basics, opportunities, and challenges,” J. Vac. Sci. Technol. A 29(5), 050801 (2011).
    [Crossref]
  30. H. B. Profijt, P. Kudlacek, M. C. M. van de Sanden, and W. M. M. Kessels, “Ion and photon surface interaction during remote plasma ALD of metal oxides,” J. Electrochem. Soc. 158(4), G88–G91 (2011).
    [Crossref]
  31. S. Ratzsch, E. B. Kley, A. Tünnermann, and A. Szeghalmi, “Influence of the oxygen plasma parameters on the atomic layer deposition of titanium dioxide,” Nanotechnology 26(2), 024003 (2015).
    [Crossref] [PubMed]
  32. S. Ratzsch, E. B. Kley, A. Tunnermann, and A. Szeghalmi, “Inhibition of crystal growth during plasma enhanced atomic layer deposition by applying BIAS,” Materials (Basel) 8(12), 7805–7812 (2015).
    [Crossref]
  33. S. S. Kim, N. T. Gabriel, W. B. Song, and J. J. Talghader, “Encapsulation of low-refractive-index SiO2 nanorods by Al2O3 with atomic layer deposition,” Opt. Express 15(24), 16285–16291 (2007).
    [Crossref] [PubMed]
  34. E. Langereis, M. Creatore, S. B. S. Heil, M. C. M. Van de Sanden, and W. M. M. Kessels, “Plasma-assisted atomic layer deposition of Al2O3 moisture permeation barriers on polymers,” Appl. Phys. Lett. 89(8), 081915 (2006).
    [Crossref]
  35. J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden, and W. M. M. Kessels, “Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3,” Prog. Photovolt. Res. Appl. 16(6), 461–466 (2008).
    [Crossref]

2015 (2)

S. Ratzsch, E. B. Kley, A. Tünnermann, and A. Szeghalmi, “Influence of the oxygen plasma parameters on the atomic layer deposition of titanium dioxide,” Nanotechnology 26(2), 024003 (2015).
[Crossref] [PubMed]

S. Ratzsch, E. B. Kley, A. Tunnermann, and A. Szeghalmi, “Inhibition of crystal growth during plasma enhanced atomic layer deposition by applying BIAS,” Materials (Basel) 8(12), 7805–7812 (2015).
[Crossref]

2014 (2)

S. S. Kanyal, D. S. Jensen, A. E. Dadson, R. R. Vanfleet, R. C. Davis, and M. R. Linford, “Atomic layer deposition of aluminum-free silica onto patterned carbon nanotube forests in the preparation of microfabricated thin-layer chromatography plates,” Jpc-J. of Planar Chromat. 27(3), 151–156 (2014).
[Crossref]

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

2013 (2)

V. Miikkulainen, M. Leskela, M. Ritala, and R. L. Puurunen, “Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends,” J. Appl. Phys. 113(2), 021301 (2013).
[Crossref]

J. S. Choi, B. S. Yang, S. J. Won, J. R. Kim, S. Suh, H. K. Park, J. Heo, and H. J. Kim, “Low temperature formation of silicon oxide thin films by atomic layer deposition using NH3/O2-plasma,” Electrochem. Solid St. 2, P114–P116 (2013).

2012 (5)

A. Kobayashi, N. Tsuji, A. Fukazawa, and N. Kobayashi, “Temperature dependence of SiO2 film growth with plasma-enhanced atomic layer deposition,” Thin Solid Films 520(11), 3994–3998 (2012).
[Crossref]

G. Dingemans, C. A. A. van Helvoirt, D. Pierreux, W. Keuning, and W. M. M. Kessels, “Plasma-assisted ALD for the conformal deposition of SiO2: Process, material and electronic properties,” J. Electrochem. Soc. 159(3), H277–H285 (2012).
[Crossref]

S. J. Song, S. W. Lee, G. H. Kim, J. Y. Seok, K. J. Yoon, J. H. Yoon, C. S. Hwang, J. Gatineau, and C. Ko, “Substrate dependent growth behaviors of plasma-enhanced atomic layer deposited nickel oxide films for resistive switching application,” Chem. Mater. 24(24), 4675–4685 (2012).
[Crossref]

K. J. Hughes and J. R. Engstrom, “Nucleation delay in atomic layer deposition on a thin organic layer and the role of reaction thermochemistry,” J. Vac. Sci. Technol. A 30(1), 01A102 (2012).
[Crossref]

M. Degai, K. Kanomata, K. Momiyama, S. Kubota, K. Hirahara, and F. Hirose, “Non-heating atomic layer deposition of SiO2 using tris(dimethylamino)silane and plasma-excited water vapor,” Thin Solid Films 525, 73–76 (2012).
[Crossref]

2011 (2)

H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels, “Plasma-assisted atomic layer deposition: Basics, opportunities, and challenges,” J. Vac. Sci. Technol. A 29(5), 050801 (2011).
[Crossref]

H. B. Profijt, P. Kudlacek, M. C. M. van de Sanden, and W. M. M. Kessels, “Ion and photon surface interaction during remote plasma ALD of metal oxides,” J. Electrochem. Soc. 158(4), G88–G91 (2011).
[Crossref]

2009 (5)

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wuthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grossl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

B. B. Burton, S. W. Kang, S. W. Rhee, and S. M. George, “SiO2 atomic layer deposition using tris(dimethylamino)silane and hydrogen peroxide studied by in situ transmission FTIR spectroscopy,” J. Phys. Chem. C 113(19), 8249–8257 (2009).
[Crossref]

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vak. Forsch. Prax. 21(5), 15–23 (2009).
[Crossref]

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, and M. Knez, “Atomic layer deposition of Al2O3 and TiO2 multilayers for applications as bandpass filters and antireflection coatings,” Appl. Opt. 48(9), 1727–1732 (2009).
[Crossref] [PubMed]

N. T. Gabriel, S. S. Kim, and J. J. Talghader, “Control of thermal deformation in dielectric mirrors using mechanical design and atomic layer deposition,” Opt. Lett. 34(13), 1958–1960 (2009).
[Crossref] [PubMed]

2008 (1)

J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden, and W. M. M. Kessels, “Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3,” Prog. Photovolt. Res. Appl. 16(6), 461–466 (2008).
[Crossref]

2007 (1)

2006 (2)

E. Langereis, M. Creatore, S. B. S. Heil, M. C. M. Van de Sanden, and W. M. M. Kessels, “Plasma-assisted atomic layer deposition of Al2O3 moisture permeation barriers on polymers,” Appl. Phys. Lett. 89(8), 081915 (2006).
[Crossref]

S. Kamiyama, T. Miura, and Y. Nara, “Comparison between SiO2 films deposited by atomic layer deposition with SiH2[N(CH3)2]2 and SiH[N(CH3)2]3 precursors,” Thin Solid Films 515(4), 1517–1521 (2006).
[Crossref]

2004 (1)

S. H. Jeong, J. K. Kim, B. S. Kim, S. H. Shim, and B. T. Lee, “Characterization of SiO2 and TiO2 films prepared using rf magnetron sputtering and their application to anti-reflection coating,” Vacuum 76(4), 507–515 (2004).
[Crossref]

2002 (2)

U. Schulz, U. B. Schallenberg, and N. Kaiser, “Antireflection coating design for plastic optics,” Appl. Opt. 41(16), 3107–3110 (2002).
[Crossref] [PubMed]

R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410(1-2), 86–93 (2002).
[Crossref]

1999 (1)

H. K. Pulker, “Optical coatings deposited by ion and plasma PVD processes,” Surf. Coat. Tech. 112(1-3), 250–256 (1999).
[Crossref]

1998 (1)

1997 (1)

H. Kumagai, K. Toyoda, K. Kobayashi, M. Obara, and Y. Iimura, “Titanium oxide aluminum oxide multilayer reflectors for “water-window” wavelengths,” Appl. Phys. Lett. 70(18), 2338–2340 (1997).
[Crossref]

1996 (1)

D. Riihelä, M. Ritala, R. Matero, and M. Leskelä, “Introduction atomic layer epitaxy for the deposition of optical thin films,” Thin Solid Films 289(1-2), 250–255 (1996).
[Crossref]

1995 (2)

O. Sneh, M. L. Wise, A. W. Ott, L. A. Okada, and S. M. George, “Atomic layer growth of SiO2 on Si(100) using SiCl4 and H2O in a binary reaction sequence,” Surf. Sci. 334(1-3), 135–152 (1995).
[Crossref]

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual-stresses in evaporated silicon dioxide thin-films - correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962–968 (1995).
[Crossref]

Ali, S.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Bingel, A.

K. Pfeiffer, S. Shestaeva, A. Bingel, P. Munzert, U. Schulz, N. Kaiser, A. Tünnermann, and A. Szeghalmi, “Atomic layer deposition for antireflection coatings using SiO2 as low-refractive index material,” (Proc. of SPIE9627, 2015).

Bitzer, M.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wuthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grossl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

Bosund, M.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Brendel, R.

J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden, and W. M. M. Kessels, “Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3,” Prog. Photovolt. Res. Appl. 16(6), 461–466 (2008).
[Crossref]

Brunner, R.

Buchanan, I.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Burton, B. B.

B. B. Burton, S. W. Kang, S. W. Rhee, and S. M. George, “SiO2 atomic layer deposition using tris(dimethylamino)silane and hydrogen peroxide studied by in situ transmission FTIR spectroscopy,” J. Phys. Chem. C 113(19), 8249–8257 (2009).
[Crossref]

Choi, J. S.

J. S. Choi, B. S. Yang, S. J. Won, J. R. Kim, S. Suh, H. K. Park, J. Heo, and H. J. Kim, “Low temperature formation of silicon oxide thin films by atomic layer deposition using NH3/O2-plasma,” Electrochem. Solid St. 2, P114–P116 (2013).

Chuvilin, A.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wuthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grossl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

Creatore, M.

E. Langereis, M. Creatore, S. B. S. Heil, M. C. M. Van de Sanden, and W. M. M. Kessels, “Plasma-assisted atomic layer deposition of Al2O3 moisture permeation barriers on polymers,” Appl. Phys. Lett. 89(8), 081915 (2006).
[Crossref]

Dadson, A. E.

S. S. Kanyal, D. S. Jensen, A. E. Dadson, R. R. Vanfleet, R. C. Davis, and M. R. Linford, “Atomic layer deposition of aluminum-free silica onto patterned carbon nanotube forests in the preparation of microfabricated thin-layer chromatography plates,” Jpc-J. of Planar Chromat. 27(3), 151–156 (2014).
[Crossref]

Davis, R. C.

S. S. Kanyal, D. S. Jensen, A. E. Dadson, R. R. Vanfleet, R. C. Davis, and M. R. Linford, “Atomic layer deposition of aluminum-free silica onto patterned carbon nanotube forests in the preparation of microfabricated thin-layer chromatography plates,” Jpc-J. of Planar Chromat. 27(3), 151–156 (2014).
[Crossref]

Degai, M.

M. Degai, K. Kanomata, K. Momiyama, S. Kubota, K. Hirahara, and F. Hirose, “Non-heating atomic layer deposition of SiO2 using tris(dimethylamino)silane and plasma-excited water vapor,” Thin Solid Films 525, 73–76 (2012).
[Crossref]

Dingemans, G.

G. Dingemans, C. A. A. van Helvoirt, D. Pierreux, W. Keuning, and W. M. M. Kessels, “Plasma-assisted ALD for the conformal deposition of SiO2: Process, material and electronic properties,” J. Electrochem. Soc. 159(3), H277–H285 (2012).
[Crossref]

Ebert, J.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wuthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grossl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

Engstrom, J. R.

K. J. Hughes and J. R. Engstrom, “Nucleation delay in atomic layer deposition on a thin organic layer and the role of reaction thermochemistry,” J. Vac. Sci. Technol. A 30(1), 01A102 (2012).
[Crossref]

Friedrich, K.

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vak. Forsch. Prax. 21(5), 15–23 (2009).
[Crossref]

Fukazawa, A.

A. Kobayashi, N. Tsuji, A. Fukazawa, and N. Kobayashi, “Temperature dependence of SiO2 film growth with plasma-enhanced atomic layer deposition,” Thin Solid Films 520(11), 3994–3998 (2012).
[Crossref]

Gabriel, N. T.

Gatineau, J.

S. J. Song, S. W. Lee, G. H. Kim, J. Y. Seok, K. J. Yoon, J. H. Yoon, C. S. Hwang, J. Gatineau, and C. Ko, “Substrate dependent growth behaviors of plasma-enhanced atomic layer deposited nickel oxide films for resistive switching application,” Chem. Mater. 24(24), 4675–4685 (2012).
[Crossref]

Gatto, A.

R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410(1-2), 86–93 (2002).
[Crossref]

Geenen, B.

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual-stresses in evaporated silicon dioxide thin-films - correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962–968 (1995).
[Crossref]

George, S. M.

B. B. Burton, S. W. Kang, S. W. Rhee, and S. M. George, “SiO2 atomic layer deposition using tris(dimethylamino)silane and hydrogen peroxide studied by in situ transmission FTIR spectroscopy,” J. Phys. Chem. C 113(19), 8249–8257 (2009).
[Crossref]

O. Sneh, M. L. Wise, A. W. Ott, L. A. Okada, and S. M. George, “Atomic layer growth of SiO2 on Si(100) using SiCl4 and H2O in a binary reaction sequence,” Surf. Sci. 334(1-3), 135–152 (1995).
[Crossref]

Gösele, U.

Grossl, M.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wuthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grossl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

Haimi, E.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Hannula, S. P.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Heber, J.

R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410(1-2), 86–93 (2002).
[Crossref]

Heil, S. B. S.

E. Langereis, M. Creatore, S. B. S. Heil, M. C. M. Van de Sanden, and W. M. M. Kessels, “Plasma-assisted atomic layer deposition of Al2O3 moisture permeation barriers on polymers,” Appl. Phys. Lett. 89(8), 081915 (2006).
[Crossref]

Helgert, M.

Heo, J.

J. S. Choi, B. S. Yang, S. J. Won, J. R. Kim, S. Suh, H. K. Park, J. Heo, and H. J. Kim, “Low temperature formation of silicon oxide thin films by atomic layer deposition using NH3/O2-plasma,” Electrochem. Solid St. 2, P114–P116 (2013).

Heyroth, F.

Hirahara, K.

M. Degai, K. Kanomata, K. Momiyama, S. Kubota, K. Hirahara, and F. Hirose, “Non-heating atomic layer deposition of SiO2 using tris(dimethylamino)silane and plasma-excited water vapor,” Thin Solid Films 525, 73–76 (2012).
[Crossref]

Hirose, F.

M. Degai, K. Kanomata, K. Momiyama, S. Kubota, K. Hirahara, and F. Hirose, “Non-heating atomic layer deposition of SiO2 using tris(dimethylamino)silane and plasma-excited water vapor,” Thin Solid Films 525, 73–76 (2012).
[Crossref]

Hoex, B.

J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden, and W. M. M. Kessels, “Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3,” Prog. Photovolt. Res. Appl. 16(6), 461–466 (2008).
[Crossref]

Hughes, K. J.

K. J. Hughes and J. R. Engstrom, “Nucleation delay in atomic layer deposition on a thin organic layer and the role of reaction thermochemistry,” J. Vac. Sci. Technol. A 30(1), 01A102 (2012).
[Crossref]

Hwang, C. S.

S. J. Song, S. W. Lee, G. H. Kim, J. Y. Seok, K. J. Yoon, J. H. Yoon, C. S. Hwang, J. Gatineau, and C. Ko, “Substrate dependent growth behaviors of plasma-enhanced atomic layer deposited nickel oxide films for resistive switching application,” Chem. Mater. 24(24), 4675–4685 (2012).
[Crossref]

Iimura, Y.

H. Kumagai, K. Toyoda, K. Kobayashi, M. Obara, and Y. Iimura, “Titanium oxide aluminum oxide multilayer reflectors for “water-window” wavelengths,” Appl. Phys. Lett. 70(18), 2338–2340 (1997).
[Crossref]

Jakobs, S.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wuthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grossl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

Jensen, D. S.

S. S. Kanyal, D. S. Jensen, A. E. Dadson, R. R. Vanfleet, R. C. Davis, and M. R. Linford, “Atomic layer deposition of aluminum-free silica onto patterned carbon nanotube forests in the preparation of microfabricated thin-layer chromatography plates,” Jpc-J. of Planar Chromat. 27(3), 151–156 (2014).
[Crossref]

Jeong, S. H.

S. H. Jeong, J. K. Kim, B. S. Kim, S. H. Shim, and B. T. Lee, “Characterization of SiO2 and TiO2 films prepared using rf magnetron sputtering and their application to anti-reflection coating,” Vacuum 76(4), 507–515 (2004).
[Crossref]

Kaiser, N.

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vak. Forsch. Prax. 21(5), 15–23 (2009).
[Crossref]

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wuthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grossl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410(1-2), 86–93 (2002).
[Crossref]

U. Schulz, U. B. Schallenberg, and N. Kaiser, “Antireflection coating design for plastic optics,” Appl. Opt. 41(16), 3107–3110 (2002).
[Crossref] [PubMed]

K. Pfeiffer, S. Shestaeva, A. Bingel, P. Munzert, U. Schulz, N. Kaiser, A. Tünnermann, and A. Szeghalmi, “Atomic layer deposition for antireflection coatings using SiO2 as low-refractive index material,” (Proc. of SPIE9627, 2015).

Kaiser, U.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wuthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grossl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

Kaless, A.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wuthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grossl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

Kamiyama, S.

S. Kamiyama, T. Miura, and Y. Nara, “Comparison between SiO2 films deposited by atomic layer deposition with SiH2[N(CH3)2]2 and SiH[N(CH3)2]3 precursors,” Thin Solid Films 515(4), 1517–1521 (2006).
[Crossref]

Kang, S. W.

B. B. Burton, S. W. Kang, S. W. Rhee, and S. M. George, “SiO2 atomic layer deposition using tris(dimethylamino)silane and hydrogen peroxide studied by in situ transmission FTIR spectroscopy,” J. Phys. Chem. C 113(19), 8249–8257 (2009).
[Crossref]

Kanomata, K.

M. Degai, K. Kanomata, K. Momiyama, S. Kubota, K. Hirahara, and F. Hirose, “Non-heating atomic layer deposition of SiO2 using tris(dimethylamino)silane and plasma-excited water vapor,” Thin Solid Films 525, 73–76 (2012).
[Crossref]

Kanyal, S. S.

S. S. Kanyal, D. S. Jensen, A. E. Dadson, R. R. Vanfleet, R. C. Davis, and M. R. Linford, “Atomic layer deposition of aluminum-free silica onto patterned carbon nanotube forests in the preparation of microfabricated thin-layer chromatography plates,” Jpc-J. of Planar Chromat. 27(3), 151–156 (2014).
[Crossref]

Karwacki, E.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Kessels, W. M. M.

G. Dingemans, C. A. A. van Helvoirt, D. Pierreux, W. Keuning, and W. M. M. Kessels, “Plasma-assisted ALD for the conformal deposition of SiO2: Process, material and electronic properties,” J. Electrochem. Soc. 159(3), H277–H285 (2012).
[Crossref]

H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels, “Plasma-assisted atomic layer deposition: Basics, opportunities, and challenges,” J. Vac. Sci. Technol. A 29(5), 050801 (2011).
[Crossref]

H. B. Profijt, P. Kudlacek, M. C. M. van de Sanden, and W. M. M. Kessels, “Ion and photon surface interaction during remote plasma ALD of metal oxides,” J. Electrochem. Soc. 158(4), G88–G91 (2011).
[Crossref]

J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden, and W. M. M. Kessels, “Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3,” Prog. Photovolt. Res. Appl. 16(6), 461–466 (2008).
[Crossref]

E. Langereis, M. Creatore, S. B. S. Heil, M. C. M. Van de Sanden, and W. M. M. Kessels, “Plasma-assisted atomic layer deposition of Al2O3 moisture permeation barriers on polymers,” Appl. Phys. Lett. 89(8), 081915 (2006).
[Crossref]

Keuning, W.

G. Dingemans, C. A. A. van Helvoirt, D. Pierreux, W. Keuning, and W. M. M. Kessels, “Plasma-assisted ALD for the conformal deposition of SiO2: Process, material and electronic properties,” J. Electrochem. Soc. 159(3), H277–H285 (2012).
[Crossref]

Kilpi, L.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Kim, B. S.

S. H. Jeong, J. K. Kim, B. S. Kim, S. H. Shim, and B. T. Lee, “Characterization of SiO2 and TiO2 films prepared using rf magnetron sputtering and their application to anti-reflection coating,” Vacuum 76(4), 507–515 (2004).
[Crossref]

Kim, G. H.

S. J. Song, S. W. Lee, G. H. Kim, J. Y. Seok, K. J. Yoon, J. H. Yoon, C. S. Hwang, J. Gatineau, and C. Ko, “Substrate dependent growth behaviors of plasma-enhanced atomic layer deposited nickel oxide films for resistive switching application,” Chem. Mater. 24(24), 4675–4685 (2012).
[Crossref]

Kim, H. J.

J. S. Choi, B. S. Yang, S. J. Won, J. R. Kim, S. Suh, H. K. Park, J. Heo, and H. J. Kim, “Low temperature formation of silicon oxide thin films by atomic layer deposition using NH3/O2-plasma,” Electrochem. Solid St. 2, P114–P116 (2013).

Kim, J. K.

S. H. Jeong, J. K. Kim, B. S. Kim, S. H. Shim, and B. T. Lee, “Characterization of SiO2 and TiO2 films prepared using rf magnetron sputtering and their application to anti-reflection coating,” Vacuum 76(4), 507–515 (2004).
[Crossref]

Kim, J. R.

J. S. Choi, B. S. Yang, S. J. Won, J. R. Kim, S. Suh, H. K. Park, J. Heo, and H. J. Kim, “Low temperature formation of silicon oxide thin films by atomic layer deposition using NH3/O2-plasma,” Electrochem. Solid St. 2, P114–P116 (2013).

Kim, S. S.

Kley, E. B.

S. Ratzsch, E. B. Kley, A. Tünnermann, and A. Szeghalmi, “Influence of the oxygen plasma parameters on the atomic layer deposition of titanium dioxide,” Nanotechnology 26(2), 024003 (2015).
[Crossref] [PubMed]

S. Ratzsch, E. B. Kley, A. Tunnermann, and A. Szeghalmi, “Inhibition of crystal growth during plasma enhanced atomic layer deposition by applying BIAS,” Materials (Basel) 8(12), 7805–7812 (2015).
[Crossref]

Knez, M.

Ko, C.

S. J. Song, S. W. Lee, G. H. Kim, J. Y. Seok, K. J. Yoon, J. H. Yoon, C. S. Hwang, J. Gatineau, and C. Ko, “Substrate dependent growth behaviors of plasma-enhanced atomic layer deposited nickel oxide films for resistive switching application,” Chem. Mater. 24(24), 4675–4685 (2012).
[Crossref]

Kobayashi, A.

A. Kobayashi, N. Tsuji, A. Fukazawa, and N. Kobayashi, “Temperature dependence of SiO2 film growth with plasma-enhanced atomic layer deposition,” Thin Solid Films 520(11), 3994–3998 (2012).
[Crossref]

Kobayashi, K.

H. Kumagai, K. Toyoda, K. Kobayashi, M. Obara, and Y. Iimura, “Titanium oxide aluminum oxide multilayer reflectors for “water-window” wavelengths,” Appl. Phys. Lett. 70(18), 2338–2340 (1997).
[Crossref]

Kobayashi, N.

A. Kobayashi, N. Tsuji, A. Fukazawa, and N. Kobayashi, “Temperature dependence of SiO2 film growth with plasma-enhanced atomic layer deposition,” Thin Solid Films 520(11), 3994–3998 (2012).
[Crossref]

Kolitsch, A.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wuthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grossl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

Kubota, S.

M. Degai, K. Kanomata, K. Momiyama, S. Kubota, K. Hirahara, and F. Hirose, “Non-heating atomic layer deposition of SiO2 using tris(dimethylamino)silane and plasma-excited water vapor,” Thin Solid Films 525, 73–76 (2012).
[Crossref]

Kudlacek, P.

H. B. Profijt, P. Kudlacek, M. C. M. van de Sanden, and W. M. M. Kessels, “Ion and photon surface interaction during remote plasma ALD of metal oxides,” J. Electrochem. Soc. 158(4), G88–G91 (2011).
[Crossref]

Kumagai, H.

H. Kumagai, K. Toyoda, K. Kobayashi, M. Obara, and Y. Iimura, “Titanium oxide aluminum oxide multilayer reflectors for “water-window” wavelengths,” Appl. Phys. Lett. 70(18), 2338–2340 (1997).
[Crossref]

Langereis, E.

E. Langereis, M. Creatore, S. B. S. Heil, M. C. M. Van de Sanden, and W. M. M. Kessels, “Plasma-assisted atomic layer deposition of Al2O3 moisture permeation barriers on polymers,” Appl. Phys. Lett. 89(8), 081915 (2006).
[Crossref]

Lee, B. T.

S. H. Jeong, J. K. Kim, B. S. Kim, S. H. Shim, and B. T. Lee, “Characterization of SiO2 and TiO2 films prepared using rf magnetron sputtering and their application to anti-reflection coating,” Vacuum 76(4), 507–515 (2004).
[Crossref]

Lee, S. W.

S. J. Song, S. W. Lee, G. H. Kim, J. Y. Seok, K. J. Yoon, J. H. Yoon, C. S. Hwang, J. Gatineau, and C. Ko, “Substrate dependent growth behaviors of plasma-enhanced atomic layer deposited nickel oxide films for resistive switching application,” Chem. Mater. 24(24), 4675–4685 (2012).
[Crossref]

Leplan, H.

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual-stresses in evaporated silicon dioxide thin-films - correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962–968 (1995).
[Crossref]

Leskela, M.

V. Miikkulainen, M. Leskela, M. Ritala, and R. L. Puurunen, “Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends,” J. Appl. Phys. 113(2), 021301 (2013).
[Crossref]

Leskelä, M.

D. Riihelä, M. Ritala, R. Matero, and M. Leskelä, “Introduction atomic layer epitaxy for the deposition of optical thin films,” Thin Solid Films 289(1-2), 250–255 (1996).
[Crossref]

Linford, M. R.

S. S. Kanyal, D. S. Jensen, A. E. Dadson, R. R. Vanfleet, R. C. Davis, and M. R. Linford, “Atomic layer deposition of aluminum-free silica onto patterned carbon nanotube forests in the preparation of microfabricated thin-layer chromatography plates,” Jpc-J. of Planar Chromat. 27(3), 151–156 (2014).
[Crossref]

Lipsanen, H.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Liu, X. W.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Matero, R.

D. Riihelä, M. Ritala, R. Matero, and M. Leskelä, “Introduction atomic layer epitaxy for the deposition of optical thin films,” Thin Solid Films 289(1-2), 250–255 (1996).
[Crossref]

Merkle, A.

J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden, and W. M. M. Kessels, “Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3,” Prog. Photovolt. Res. Appl. 16(6), 461–466 (2008).
[Crossref]

Miikkulainen, V.

V. Miikkulainen, M. Leskela, M. Ritala, and R. L. Puurunen, “Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends,” J. Appl. Phys. 113(2), 021301 (2013).
[Crossref]

Miura, T.

S. Kamiyama, T. Miura, and Y. Nara, “Comparison between SiO2 films deposited by atomic layer deposition with SiH2[N(CH3)2]2 and SiH[N(CH3)2]3 precursors,” Thin Solid Films 515(4), 1517–1521 (2006).
[Crossref]

Momiyama, K.

M. Degai, K. Kanomata, K. Momiyama, S. Kubota, K. Hirahara, and F. Hirose, “Non-heating atomic layer deposition of SiO2 using tris(dimethylamino)silane and plasma-excited water vapor,” Thin Solid Films 525, 73–76 (2012).
[Crossref]

Munnik, F.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wuthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grossl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

Munzert, P.

K. Pfeiffer, S. Shestaeva, A. Bingel, P. Munzert, U. Schulz, N. Kaiser, A. Tünnermann, and A. Szeghalmi, “Atomic layer deposition for antireflection coatings using SiO2 as low-refractive index material,” (Proc. of SPIE9627, 2015).

Nara, Y.

S. Kamiyama, T. Miura, and Y. Nara, “Comparison between SiO2 films deposited by atomic layer deposition with SiH2[N(CH3)2]2 and SiH[N(CH3)2]3 precursors,” Thin Solid Films 515(4), 1517–1521 (2006).
[Crossref]

Obara, M.

H. Kumagai, K. Toyoda, K. Kobayashi, M. Obara, and Y. Iimura, “Titanium oxide aluminum oxide multilayer reflectors for “water-window” wavelengths,” Appl. Phys. Lett. 70(18), 2338–2340 (1997).
[Crossref]

Okada, L. A.

O. Sneh, M. L. Wise, A. W. Ott, L. A. Okada, and S. M. George, “Atomic layer growth of SiO2 on Si(100) using SiCl4 and H2O in a binary reaction sequence,” Surf. Sci. 334(1-3), 135–152 (1995).
[Crossref]

Ott, A. W.

O. Sneh, M. L. Wise, A. W. Ott, L. A. Okada, and S. M. George, “Atomic layer growth of SiO2 on Si(100) using SiCl4 and H2O in a binary reaction sequence,” Surf. Sci. 334(1-3), 135–152 (1995).
[Crossref]

Park, H. K.

J. S. Choi, B. S. Yang, S. J. Won, J. R. Kim, S. Suh, H. K. Park, J. Heo, and H. J. Kim, “Low temperature formation of silicon oxide thin films by atomic layer deposition using NH3/O2-plasma,” Electrochem. Solid St. 2, P114–P116 (2013).

Pauleau, Y.

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual-stresses in evaporated silicon dioxide thin-films - correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962–968 (1995).
[Crossref]

Pfeiffer, K.

K. Pfeiffer, S. Shestaeva, A. Bingel, P. Munzert, U. Schulz, N. Kaiser, A. Tünnermann, and A. Szeghalmi, “Atomic layer deposition for antireflection coatings using SiO2 as low-refractive index material,” (Proc. of SPIE9627, 2015).

Pierreux, D.

G. Dingemans, C. A. A. van Helvoirt, D. Pierreux, W. Keuning, and W. M. M. Kessels, “Plasma-assisted ALD for the conformal deposition of SiO2: Process, material and electronic properties,” J. Electrochem. Soc. 159(3), H277–H285 (2012).
[Crossref]

Potts, S. E.

H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels, “Plasma-assisted atomic layer deposition: Basics, opportunities, and challenges,” J. Vac. Sci. Technol. A 29(5), 050801 (2011).
[Crossref]

Profijt, H. B.

H. B. Profijt, P. Kudlacek, M. C. M. van de Sanden, and W. M. M. Kessels, “Ion and photon surface interaction during remote plasma ALD of metal oxides,” J. Electrochem. Soc. 158(4), G88–G91 (2011).
[Crossref]

H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels, “Plasma-assisted atomic layer deposition: Basics, opportunities, and challenges,” J. Vac. Sci. Technol. A 29(5), 050801 (2011).
[Crossref]

Pulker, H. K.

H. K. Pulker, “Optical coatings deposited by ion and plasma PVD processes,” Surf. Coat. Tech. 112(1-3), 250–256 (1999).
[Crossref]

Putkonen, M.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Puurunen, R. L.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

V. Miikkulainen, M. Leskela, M. Ritala, and R. L. Puurunen, “Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends,” J. Appl. Phys. 113(2), 021301 (2013).
[Crossref]

Ratzsch, S.

S. Ratzsch, E. B. Kley, A. Tunnermann, and A. Szeghalmi, “Inhibition of crystal growth during plasma enhanced atomic layer deposition by applying BIAS,” Materials (Basel) 8(12), 7805–7812 (2015).
[Crossref]

S. Ratzsch, E. B. Kley, A. Tünnermann, and A. Szeghalmi, “Influence of the oxygen plasma parameters on the atomic layer deposition of titanium dioxide,” Nanotechnology 26(2), 024003 (2015).
[Crossref] [PubMed]

Rhee, S. W.

B. B. Burton, S. W. Kang, S. W. Rhee, and S. M. George, “SiO2 atomic layer deposition using tris(dimethylamino)silane and hydrogen peroxide studied by in situ transmission FTIR spectroscopy,” J. Phys. Chem. C 113(19), 8249–8257 (2009).
[Crossref]

Riihelä, D.

D. Riihelä, M. Ritala, R. Matero, and M. Leskelä, “Introduction atomic layer epitaxy for the deposition of optical thin films,” Thin Solid Films 289(1-2), 250–255 (1996).
[Crossref]

Ristau, D.

Ritala, M.

V. Miikkulainen, M. Leskela, M. Ritala, and R. L. Puurunen, “Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends,” J. Appl. Phys. 113(2), 021301 (2013).
[Crossref]

D. Riihelä, M. Ritala, R. Matero, and M. Leskelä, “Introduction atomic layer epitaxy for the deposition of optical thin films,” Thin Solid Films 289(1-2), 250–255 (1996).
[Crossref]

Robic, J. Y.

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual-stresses in evaporated silicon dioxide thin-films - correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962–968 (1995).
[Crossref]

Ronkainen, H.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Sajavaara, T.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Schallenberg, U. B.

Schmidt, J.

J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden, and W. M. M. Kessels, “Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3,” Prog. Photovolt. Res. Appl. 16(6), 461–466 (2008).
[Crossref]

Schulz, U.

U. Schulz, U. B. Schallenberg, and N. Kaiser, “Antireflection coating design for plastic optics,” Appl. Opt. 41(16), 3107–3110 (2002).
[Crossref] [PubMed]

K. Pfeiffer, S. Shestaeva, A. Bingel, P. Munzert, U. Schulz, N. Kaiser, A. Tünnermann, and A. Szeghalmi, “Atomic layer deposition for antireflection coatings using SiO2 as low-refractive index material,” (Proc. of SPIE9627, 2015).

Seok, J. Y.

S. J. Song, S. W. Lee, G. H. Kim, J. Y. Seok, K. J. Yoon, J. H. Yoon, C. S. Hwang, J. Gatineau, and C. Ko, “Substrate dependent growth behaviors of plasma-enhanced atomic layer deposited nickel oxide films for resistive switching application,” Chem. Mater. 24(24), 4675–4685 (2012).
[Crossref]

Shestaeva, S.

K. Pfeiffer, S. Shestaeva, A. Bingel, P. Munzert, U. Schulz, N. Kaiser, A. Tünnermann, and A. Szeghalmi, “Atomic layer deposition for antireflection coatings using SiO2 as low-refractive index material,” (Proc. of SPIE9627, 2015).

Shim, S. H.

S. H. Jeong, J. K. Kim, B. S. Kim, S. H. Shim, and B. T. Lee, “Characterization of SiO2 and TiO2 films prepared using rf magnetron sputtering and their application to anti-reflection coating,” Vacuum 76(4), 507–515 (2004).
[Crossref]

Sintonen, S.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Sneh, O.

O. Sneh, M. L. Wise, A. W. Ott, L. A. Okada, and S. M. George, “Atomic layer growth of SiO2 on Si(100) using SiCl4 and H2O in a binary reaction sequence,” Surf. Sci. 334(1-3), 135–152 (1995).
[Crossref]

Song, S. J.

S. J. Song, S. W. Lee, G. H. Kim, J. Y. Seok, K. J. Yoon, J. H. Yoon, C. S. Hwang, J. Gatineau, and C. Ko, “Substrate dependent growth behaviors of plasma-enhanced atomic layer deposited nickel oxide films for resistive switching application,” Chem. Mater. 24(24), 4675–4685 (2012).
[Crossref]

Song, W. B.

Stenzel, O.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wuthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grossl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vak. Forsch. Prax. 21(5), 15–23 (2009).
[Crossref]

Suh, S.

J. S. Choi, B. S. Yang, S. J. Won, J. R. Kim, S. Suh, H. K. Park, J. Heo, and H. J. Kim, “Low temperature formation of silicon oxide thin films by atomic layer deposition using NH3/O2-plasma,” Electrochem. Solid St. 2, P114–P116 (2013).

Szeghalmi, A.

S. Ratzsch, E. B. Kley, A. Tunnermann, and A. Szeghalmi, “Inhibition of crystal growth during plasma enhanced atomic layer deposition by applying BIAS,” Materials (Basel) 8(12), 7805–7812 (2015).
[Crossref]

S. Ratzsch, E. B. Kley, A. Tünnermann, and A. Szeghalmi, “Influence of the oxygen plasma parameters on the atomic layer deposition of titanium dioxide,” Nanotechnology 26(2), 024003 (2015).
[Crossref] [PubMed]

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, and M. Knez, “Atomic layer deposition of Al2O3 and TiO2 multilayers for applications as bandpass filters and antireflection coatings,” Appl. Opt. 48(9), 1727–1732 (2009).
[Crossref] [PubMed]

K. Pfeiffer, S. Shestaeva, A. Bingel, P. Munzert, U. Schulz, N. Kaiser, A. Tünnermann, and A. Szeghalmi, “Atomic layer deposition for antireflection coatings using SiO2 as low-refractive index material,” (Proc. of SPIE9627, 2015).

Talghader, J. J.

Thielsch, R.

R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410(1-2), 86–93 (2002).
[Crossref]

Toyoda, K.

H. Kumagai, K. Toyoda, K. Kobayashi, M. Obara, and Y. Iimura, “Titanium oxide aluminum oxide multilayer reflectors for “water-window” wavelengths,” Appl. Phys. Lett. 70(18), 2338–2340 (1997).
[Crossref]

Treichel, O.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wuthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grossl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

Tsuji, N.

A. Kobayashi, N. Tsuji, A. Fukazawa, and N. Kobayashi, “Temperature dependence of SiO2 film growth with plasma-enhanced atomic layer deposition,” Thin Solid Films 520(11), 3994–3998 (2012).
[Crossref]

Tunnermann, A.

S. Ratzsch, E. B. Kley, A. Tunnermann, and A. Szeghalmi, “Inhibition of crystal growth during plasma enhanced atomic layer deposition by applying BIAS,” Materials (Basel) 8(12), 7805–7812 (2015).
[Crossref]

Tünnermann, A.

S. Ratzsch, E. B. Kley, A. Tünnermann, and A. Szeghalmi, “Influence of the oxygen plasma parameters on the atomic layer deposition of titanium dioxide,” Nanotechnology 26(2), 024003 (2015).
[Crossref] [PubMed]

K. Pfeiffer, S. Shestaeva, A. Bingel, P. Munzert, U. Schulz, N. Kaiser, A. Tünnermann, and A. Szeghalmi, “Atomic layer deposition for antireflection coatings using SiO2 as low-refractive index material,” (Proc. of SPIE9627, 2015).

Vaha-Nissi, M.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

van de Sanden, M. C. M.

H. B. Profijt, P. Kudlacek, M. C. M. van de Sanden, and W. M. M. Kessels, “Ion and photon surface interaction during remote plasma ALD of metal oxides,” J. Electrochem. Soc. 158(4), G88–G91 (2011).
[Crossref]

H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels, “Plasma-assisted atomic layer deposition: Basics, opportunities, and challenges,” J. Vac. Sci. Technol. A 29(5), 050801 (2011).
[Crossref]

J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden, and W. M. M. Kessels, “Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3,” Prog. Photovolt. Res. Appl. 16(6), 461–466 (2008).
[Crossref]

E. Langereis, M. Creatore, S. B. S. Heil, M. C. M. Van de Sanden, and W. M. M. Kessels, “Plasma-assisted atomic layer deposition of Al2O3 moisture permeation barriers on polymers,” Appl. Phys. Lett. 89(8), 081915 (2006).
[Crossref]

van Helvoirt, C. A. A.

G. Dingemans, C. A. A. van Helvoirt, D. Pierreux, W. Keuning, and W. M. M. Kessels, “Plasma-assisted ALD for the conformal deposition of SiO2: Process, material and electronic properties,” J. Electrochem. Soc. 159(3), H277–H285 (2012).
[Crossref]

Vanfleet, R. R.

S. S. Kanyal, D. S. Jensen, A. E. Dadson, R. R. Vanfleet, R. C. Davis, and M. R. Linford, “Atomic layer deposition of aluminum-free silica onto patterned carbon nanotube forests in the preparation of microfabricated thin-layer chromatography plates,” Jpc-J. of Planar Chromat. 27(3), 151–156 (2014).
[Crossref]

Vinnichenko, M.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wuthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grossl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

Welsch, E.

Wilbrandt, S.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wuthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grossl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vak. Forsch. Prax. 21(5), 15–23 (2009).
[Crossref]

Willamowski, U.

Wise, M. L.

O. Sneh, M. L. Wise, A. W. Ott, L. A. Okada, and S. M. George, “Atomic layer growth of SiO2 on Si(100) using SiCl4 and H2O in a binary reaction sequence,” Surf. Sci. 334(1-3), 135–152 (1995).
[Crossref]

Won, S. J.

J. S. Choi, B. S. Yang, S. J. Won, J. R. Kim, S. Suh, H. K. Park, J. Heo, and H. J. Kim, “Low temperature formation of silicon oxide thin films by atomic layer deposition using NH3/O2-plasma,” Electrochem. Solid St. 2, P114–P116 (2013).

Wunderlich, B.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wuthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grossl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

Wuthrich, S.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wuthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grossl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

Yang, B. S.

J. S. Choi, B. S. Yang, S. J. Won, J. R. Kim, S. Suh, H. K. Park, J. Heo, and H. J. Kim, “Low temperature formation of silicon oxide thin films by atomic layer deposition using NH3/O2-plasma,” Electrochem. Solid St. 2, P114–P116 (2013).

Ylivaara, O. M. E.

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

Yoon, J. H.

S. J. Song, S. W. Lee, G. H. Kim, J. Y. Seok, K. J. Yoon, J. H. Yoon, C. S. Hwang, J. Gatineau, and C. Ko, “Substrate dependent growth behaviors of plasma-enhanced atomic layer deposited nickel oxide films for resistive switching application,” Chem. Mater. 24(24), 4675–4685 (2012).
[Crossref]

Yoon, K. J.

S. J. Song, S. W. Lee, G. H. Kim, J. Y. Seok, K. J. Yoon, J. H. Yoon, C. S. Hwang, J. Gatineau, and C. Ko, “Substrate dependent growth behaviors of plasma-enhanced atomic layer deposited nickel oxide films for resistive switching application,” Chem. Mater. 24(24), 4675–4685 (2012).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

E. Langereis, M. Creatore, S. B. S. Heil, M. C. M. Van de Sanden, and W. M. M. Kessels, “Plasma-assisted atomic layer deposition of Al2O3 moisture permeation barriers on polymers,” Appl. Phys. Lett. 89(8), 081915 (2006).
[Crossref]

H. Kumagai, K. Toyoda, K. Kobayashi, M. Obara, and Y. Iimura, “Titanium oxide aluminum oxide multilayer reflectors for “water-window” wavelengths,” Appl. Phys. Lett. 70(18), 2338–2340 (1997).
[Crossref]

Chem. Mater. (1)

S. J. Song, S. W. Lee, G. H. Kim, J. Y. Seok, K. J. Yoon, J. H. Yoon, C. S. Hwang, J. Gatineau, and C. Ko, “Substrate dependent growth behaviors of plasma-enhanced atomic layer deposited nickel oxide films for resistive switching application,” Chem. Mater. 24(24), 4675–4685 (2012).
[Crossref]

Electrochem. Solid St. (1)

J. S. Choi, B. S. Yang, S. J. Won, J. R. Kim, S. Suh, H. K. Park, J. Heo, and H. J. Kim, “Low temperature formation of silicon oxide thin films by atomic layer deposition using NH3/O2-plasma,” Electrochem. Solid St. 2, P114–P116 (2013).

J. Appl. Phys. (2)

V. Miikkulainen, M. Leskela, M. Ritala, and R. L. Puurunen, “Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends,” J. Appl. Phys. 113(2), 021301 (2013).
[Crossref]

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual-stresses in evaporated silicon dioxide thin-films - correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962–968 (1995).
[Crossref]

J. Electrochem. Soc. (2)

H. B. Profijt, P. Kudlacek, M. C. M. van de Sanden, and W. M. M. Kessels, “Ion and photon surface interaction during remote plasma ALD of metal oxides,” J. Electrochem. Soc. 158(4), G88–G91 (2011).
[Crossref]

G. Dingemans, C. A. A. van Helvoirt, D. Pierreux, W. Keuning, and W. M. M. Kessels, “Plasma-assisted ALD for the conformal deposition of SiO2: Process, material and electronic properties,” J. Electrochem. Soc. 159(3), H277–H285 (2012).
[Crossref]

J. Phys. Chem. C (1)

B. B. Burton, S. W. Kang, S. W. Rhee, and S. M. George, “SiO2 atomic layer deposition using tris(dimethylamino)silane and hydrogen peroxide studied by in situ transmission FTIR spectroscopy,” J. Phys. Chem. C 113(19), 8249–8257 (2009).
[Crossref]

J. Vac. Sci. Technol. A (2)

K. J. Hughes and J. R. Engstrom, “Nucleation delay in atomic layer deposition on a thin organic layer and the role of reaction thermochemistry,” J. Vac. Sci. Technol. A 30(1), 01A102 (2012).
[Crossref]

H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels, “Plasma-assisted atomic layer deposition: Basics, opportunities, and challenges,” J. Vac. Sci. Technol. A 29(5), 050801 (2011).
[Crossref]

Jpc-J. of Planar Chromat. (1)

S. S. Kanyal, D. S. Jensen, A. E. Dadson, R. R. Vanfleet, R. C. Davis, and M. R. Linford, “Atomic layer deposition of aluminum-free silica onto patterned carbon nanotube forests in the preparation of microfabricated thin-layer chromatography plates,” Jpc-J. of Planar Chromat. 27(3), 151–156 (2014).
[Crossref]

Materials (Basel) (1)

S. Ratzsch, E. B. Kley, A. Tunnermann, and A. Szeghalmi, “Inhibition of crystal growth during plasma enhanced atomic layer deposition by applying BIAS,” Materials (Basel) 8(12), 7805–7812 (2015).
[Crossref]

Nanotechnology (1)

S. Ratzsch, E. B. Kley, A. Tünnermann, and A. Szeghalmi, “Influence of the oxygen plasma parameters on the atomic layer deposition of titanium dioxide,” Nanotechnology 26(2), 024003 (2015).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Prog. Photovolt. Res. Appl. (1)

J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden, and W. M. M. Kessels, “Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3,” Prog. Photovolt. Res. Appl. 16(6), 461–466 (2008).
[Crossref]

Surf. Coat. Tech. (1)

H. K. Pulker, “Optical coatings deposited by ion and plasma PVD processes,” Surf. Coat. Tech. 112(1-3), 250–256 (1999).
[Crossref]

Surf. Sci. (1)

O. Sneh, M. L. Wise, A. W. Ott, L. A. Okada, and S. M. George, “Atomic layer growth of SiO2 on Si(100) using SiCl4 and H2O in a binary reaction sequence,” Surf. Sci. 334(1-3), 135–152 (1995).
[Crossref]

Thin Solid Films (7)

M. Degai, K. Kanomata, K. Momiyama, S. Kubota, K. Hirahara, and F. Hirose, “Non-heating atomic layer deposition of SiO2 using tris(dimethylamino)silane and plasma-excited water vapor,” Thin Solid Films 525, 73–76 (2012).
[Crossref]

S. Kamiyama, T. Miura, and Y. Nara, “Comparison between SiO2 films deposited by atomic layer deposition with SiH2[N(CH3)2]2 and SiH[N(CH3)2]3 precursors,” Thin Solid Films 515(4), 1517–1521 (2006).
[Crossref]

A. Kobayashi, N. Tsuji, A. Fukazawa, and N. Kobayashi, “Temperature dependence of SiO2 film growth with plasma-enhanced atomic layer deposition,” Thin Solid Films 520(11), 3994–3998 (2012).
[Crossref]

M. Putkonen, M. Bosund, O. M. E. Ylivaara, R. L. Puurunen, L. Kilpi, H. Ronkainen, S. Sintonen, S. Ali, H. Lipsanen, X. W. Liu, E. Haimi, S. P. Hannula, T. Sajavaara, I. Buchanan, E. Karwacki, and M. Vaha-Nissi, “Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors,” Thin Solid Films 558, 93–98 (2014).
[Crossref]

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wuthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grossl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517(21), 6058–6068 (2009).
[Crossref]

R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410(1-2), 86–93 (2002).
[Crossref]

D. Riihelä, M. Ritala, R. Matero, and M. Leskelä, “Introduction atomic layer epitaxy for the deposition of optical thin films,” Thin Solid Films 289(1-2), 250–255 (1996).
[Crossref]

Vacuum (1)

S. H. Jeong, J. K. Kim, B. S. Kim, S. H. Shim, and B. T. Lee, “Characterization of SiO2 and TiO2 films prepared using rf magnetron sputtering and their application to anti-reflection coating,” Vacuum 76(4), 507–515 (2004).
[Crossref]

Vak. Forsch. Prax. (1)

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vak. Forsch. Prax. 21(5), 15–23 (2009).
[Crossref]

Other (4)

K. Pfeiffer, S. Shestaeva, A. Bingel, P. Munzert, U. Schulz, N. Kaiser, A. Tünnermann, and A. Szeghalmi, “Atomic layer deposition for antireflection coatings using SiO2 as low-refractive index material,” (Proc. of SPIE9627, 2015).

H. C. M. Knoops, S. E. Potts, A. A. Bol, and W. M. M. Kessels, “27 - Atomic Layer Deposition,” in Handbook of Crystal Growth (Second Edition), T. F. Kuech, ed. (North-Holland, Boston, 2015), pp. 1101–1134.

M. Ritala and J. Niinisto, “Chapter 4 Atomic Layer Deposition,” in Chemical Vapour Deposition: Precursors, Processes and Applications(The Royal Society of Chemistry, 2009), pp. 158–206.

“AP-LTO®330 is a registered trademark of Air Products and Chemicals, Inc. of Allentown, PA..”

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Thickness calibration curve of SiO2 films on Si substrates and Ta2O5 sub-layers prepared using 3DMAS at 100°C and 200°C substrate temperature.
Fig. 2
Fig. 2 XRD pattern (left) and SEM micrograph (right) of 300 nm as-deposited SiO2 on Si substrate using 3DMAS at a substrate temperature of 200°C.
Fig. 3
Fig. 3 Optical losses (100% - T – R) of uncoated fused silica substrate and of SiO2 coated fused silica substrate using 3DMAS, BDEAS or the AP-LTO®330 precursor.
Fig. 4
Fig. 4 Film stress of a 300 nm SiO2 layer prepared with 3DMAS at 200°C over a time period of 20 days.
Fig. 5
Fig. 5 Transmission spectra measured in air and vacuum for SiO2 films with film thickness in a range of 290 nm and 360 nm prepared on glass substrates at (a) 200°C substrate temperature using 3DMAS, BDEAS or the AP-LTO®330 precursor and (b) 100°C substrate temperature using standard 3DMAS process, 3DMAS process with modified plasma parameters, and standard 3DMAS process applying an additional 3 nm Al2O3 sealing. The spectra are offset for clarity.
Fig. 6
Fig. 6 Refractive index under ambient conditions of SiO2 layers prepared at 200°C substrate temperature by using 3DMAS, BDEAS and the AP-LTO®300 precursor.
Fig. 7
Fig. 7 Simulated and measured transmittance spectra of uncoated and BBAR double-sided coated N-SF8 samples.
Fig. 8
Fig. 8 Transmittance spectra of BBAR double-sided coated N-SF8 sample measured under air conditions and under vacuum conditions 6 months after deposition. No vacuum-to-air shift of transmittance spectra occur.

Tables (3)

Tables Icon

Table 1 Process parameters of SiO2 depositions.

Tables Icon

Table 2 Comparison of results for SiO2 films deposited at 200°C substrate temperature.

Tables Icon

Table 3 Individual layer thickness of the BBAR coating and necessary ALD cycles to obtain the particular thickness.

Metrics