Abstract

For the revision of the refractive indices and absorption of the In1-xGaxAsyP1-y material system lattice matched to InP ellipsometric measurements were carried out. For the first time general parameters for the Tanguy model were determined from these measurements of these material compositions. With the help of these determined Tanguy parameters, the refractive indices and the absorption coefficients were reviewed in transparent and absorption region which includes the near and mid-infrared region. Furthermore, an estimation of the group velocity and the chromatic dispersion is presented for these material compositions.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Determination of the basic optical parameters of ZnSnN2

Fuling Deng, Hongtao Cao, Lingyan Liang, Jun Li, Junhua Gao, Hongliang Zhang, Ruifeng Qin, and Caichi Liu
Opt. Lett. 40(7) 1282-1285 (2015)

Nonlinear photonics on-a-chip in III-V semiconductors: quest for promising material candidates

Shayan Saeidi, Kashif M. Awan, Lilian Sirbu, and Ksenia Dolgaleva
Appl. Opt. 56(19) 5532-5541 (2017)

Optical properties of Cu2ZnSnSe4 thin films and identification of secondary phases by spectroscopic ellipsometry

Özden Demircioğlu, José Fabio López Salas, Germain Rey, Thomas Weiss, Marina Mousel, Alex Redinger, Susanne Siebentritt, Jürgen Parisi, and Levent Gütay
Opt. Express 25(5) 5327-5340 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. Broberg and S. Lindgren, “Refractive index of In1-xGaxAsyP1-y layers and InP in the transparent wavelength region,” J. Appl. Phys. 55(9), 3376–3381 (1984).
    [Crossref]
  2. J.-P. Weber, “Optimization of the Carrier-Induced Effective Index Change in InGaAsP Waveguide-Applications to Tunable Bragg Filters,” J. Quantum Electron 30(8), 1801–1816 (1994).
    [Crossref]
  3. J. Buus and M. J. Adams, “Phase and group indices for double heterostructure lasers,” Solid-State and Electron Devices 3(6), 189–195 (1979).
    [Crossref]
  4. C. H. Henry, L. F. Johnson, R. A. Logan, and D. P. Clarke, “Determination of the Refractive Index of InGaAsP Epitaxial Layers by Mode Line Luminescence Spectroscopy,” J. Quantum Electron QE-21(12), 1887–1892 (1985).
    [Crossref]
  5. Y. Suematsu, K. Kishino, S. Arai, and F. Koyama, “Chapter 4 Dynamic Single-Mode Semiconductor Laser with a Distributed Reflector,” Semiconductors and Semimetals 22, Part B, pp. 205–255 (1985).
  6. F. Fiedler and A. Schlachetzki, “Optical Parameters of InP-Based Waveguides,” Solid-State Electron. 30(1), 73–83 (1987).
    [Crossref]
  7. H. Burkhard, H. W. Dinges, and E. Kuphal, “Optical properties of In1-xGaxP1-yAsy, InP, GaAs and GaP determined by ellipsometry,” J. Appl. Phys. 53(1), 655–662 (1982).
    [Crossref]
  8. M. A. Afromowitz, “Refractive Index Of Ga1-xAlxAs,” Solid State Commun. 15(1), 59–63 (1974).
    [Crossref]
  9. C. Tanguy, “Refractive Index of Direct Bandgap Semiconductors Near the Absorption Threshold: Influence of Excitonic Effects,” J.Quantum Electron. 32(10), 1746–1751 (1996).
    [Crossref]
  10. A. B. Djurisic, Y. Chan, and E. Herbert Li, “Progress in the room-temperature optical functions of semiconductors,” Mater. Sci. Eng. Rep. 38(6), 237–293 (2002).
    [Crossref]
  11. H. G. Bukkems, Y. S. Oei, U. Richter, and B. Gruska, “Analysis of III-V layer stacks on INR substrates using spectroscopic ellipsometry in NIR spectral range,” Thin Solid Films 364(1-2), 165–170 (2000).
    [Crossref]
  12. R. E. Nahory, M. A. Pollack, W. D. Johnston, and R. L. Barns, “Bandgap versus composition and demonstration of Vegard’s law for InGaAsP lattice-matched to InP,” Appl. Phys. Lett. 33(7), 659–661 (1978).
    [Crossref]
  13. Yu. A. Goldberg and N. M. Schmidt, “Handbook Series on Semiconductor Parameters,” 2, World Scientific, London, pp. 153–179 (1999)
  14. S. Adachi, “Material Parameters of InGaAsP and Related Binaries,” J. Appl. Phys. 53(12), 8775–8792 (1982).
    [Crossref]
  15. S. Zollner, “Model dielectric function for native oxides on compound semiconductors,” Appl. Phys. Lett. 63(18), 2523–2524 (1993).
    [Crossref]
  16. C. M. Herzinger, P. Snyder, F. Celii, Y. Kao, D. Chow, B. Johs, and J. Woollam, “Studies of thin strained InAs, AlAs and AlSb layers by spectroscopic ellipsometry,” J. Appl. Phys. 79(5), 2663–2674 (1996).
    [Crossref]
  17. C. Pollock and M. Lipson, “Integrated Photonics”, pp.132–136, Kluwer Academic Publisher, Boston, 2003.
  18. P. Runge, R. Elschner, and K. Petermann, “Chromatic Dispersion in InGaAsP Semiconductore Optical Amplifiers,” J. Quantum Electron. 46(5), 644–649 (2010).
    [Crossref]

2010 (1)

P. Runge, R. Elschner, and K. Petermann, “Chromatic Dispersion in InGaAsP Semiconductore Optical Amplifiers,” J. Quantum Electron. 46(5), 644–649 (2010).
[Crossref]

2002 (1)

A. B. Djurisic, Y. Chan, and E. Herbert Li, “Progress in the room-temperature optical functions of semiconductors,” Mater. Sci. Eng. Rep. 38(6), 237–293 (2002).
[Crossref]

2000 (1)

H. G. Bukkems, Y. S. Oei, U. Richter, and B. Gruska, “Analysis of III-V layer stacks on INR substrates using spectroscopic ellipsometry in NIR spectral range,” Thin Solid Films 364(1-2), 165–170 (2000).
[Crossref]

1996 (2)

C. Tanguy, “Refractive Index of Direct Bandgap Semiconductors Near the Absorption Threshold: Influence of Excitonic Effects,” J.Quantum Electron. 32(10), 1746–1751 (1996).
[Crossref]

C. M. Herzinger, P. Snyder, F. Celii, Y. Kao, D. Chow, B. Johs, and J. Woollam, “Studies of thin strained InAs, AlAs and AlSb layers by spectroscopic ellipsometry,” J. Appl. Phys. 79(5), 2663–2674 (1996).
[Crossref]

1994 (1)

J.-P. Weber, “Optimization of the Carrier-Induced Effective Index Change in InGaAsP Waveguide-Applications to Tunable Bragg Filters,” J. Quantum Electron 30(8), 1801–1816 (1994).
[Crossref]

1993 (1)

S. Zollner, “Model dielectric function for native oxides on compound semiconductors,” Appl. Phys. Lett. 63(18), 2523–2524 (1993).
[Crossref]

1987 (1)

F. Fiedler and A. Schlachetzki, “Optical Parameters of InP-Based Waveguides,” Solid-State Electron. 30(1), 73–83 (1987).
[Crossref]

1985 (1)

C. H. Henry, L. F. Johnson, R. A. Logan, and D. P. Clarke, “Determination of the Refractive Index of InGaAsP Epitaxial Layers by Mode Line Luminescence Spectroscopy,” J. Quantum Electron QE-21(12), 1887–1892 (1985).
[Crossref]

1984 (1)

B. Broberg and S. Lindgren, “Refractive index of In1-xGaxAsyP1-y layers and InP in the transparent wavelength region,” J. Appl. Phys. 55(9), 3376–3381 (1984).
[Crossref]

1982 (2)

H. Burkhard, H. W. Dinges, and E. Kuphal, “Optical properties of In1-xGaxP1-yAsy, InP, GaAs and GaP determined by ellipsometry,” J. Appl. Phys. 53(1), 655–662 (1982).
[Crossref]

S. Adachi, “Material Parameters of InGaAsP and Related Binaries,” J. Appl. Phys. 53(12), 8775–8792 (1982).
[Crossref]

1979 (1)

J. Buus and M. J. Adams, “Phase and group indices for double heterostructure lasers,” Solid-State and Electron Devices 3(6), 189–195 (1979).
[Crossref]

1978 (1)

R. E. Nahory, M. A. Pollack, W. D. Johnston, and R. L. Barns, “Bandgap versus composition and demonstration of Vegard’s law for InGaAsP lattice-matched to InP,” Appl. Phys. Lett. 33(7), 659–661 (1978).
[Crossref]

1974 (1)

M. A. Afromowitz, “Refractive Index Of Ga1-xAlxAs,” Solid State Commun. 15(1), 59–63 (1974).
[Crossref]

Adachi, S.

S. Adachi, “Material Parameters of InGaAsP and Related Binaries,” J. Appl. Phys. 53(12), 8775–8792 (1982).
[Crossref]

Adams, M. J.

J. Buus and M. J. Adams, “Phase and group indices for double heterostructure lasers,” Solid-State and Electron Devices 3(6), 189–195 (1979).
[Crossref]

Afromowitz, M. A.

M. A. Afromowitz, “Refractive Index Of Ga1-xAlxAs,” Solid State Commun. 15(1), 59–63 (1974).
[Crossref]

Barns, R. L.

R. E. Nahory, M. A. Pollack, W. D. Johnston, and R. L. Barns, “Bandgap versus composition and demonstration of Vegard’s law for InGaAsP lattice-matched to InP,” Appl. Phys. Lett. 33(7), 659–661 (1978).
[Crossref]

Broberg, B.

B. Broberg and S. Lindgren, “Refractive index of In1-xGaxAsyP1-y layers and InP in the transparent wavelength region,” J. Appl. Phys. 55(9), 3376–3381 (1984).
[Crossref]

Bukkems, H. G.

H. G. Bukkems, Y. S. Oei, U. Richter, and B. Gruska, “Analysis of III-V layer stacks on INR substrates using spectroscopic ellipsometry in NIR spectral range,” Thin Solid Films 364(1-2), 165–170 (2000).
[Crossref]

Burkhard, H.

H. Burkhard, H. W. Dinges, and E. Kuphal, “Optical properties of In1-xGaxP1-yAsy, InP, GaAs and GaP determined by ellipsometry,” J. Appl. Phys. 53(1), 655–662 (1982).
[Crossref]

Buus, J.

J. Buus and M. J. Adams, “Phase and group indices for double heterostructure lasers,” Solid-State and Electron Devices 3(6), 189–195 (1979).
[Crossref]

Celii, F.

C. M. Herzinger, P. Snyder, F. Celii, Y. Kao, D. Chow, B. Johs, and J. Woollam, “Studies of thin strained InAs, AlAs and AlSb layers by spectroscopic ellipsometry,” J. Appl. Phys. 79(5), 2663–2674 (1996).
[Crossref]

Chan, Y.

A. B. Djurisic, Y. Chan, and E. Herbert Li, “Progress in the room-temperature optical functions of semiconductors,” Mater. Sci. Eng. Rep. 38(6), 237–293 (2002).
[Crossref]

Chow, D.

C. M. Herzinger, P. Snyder, F. Celii, Y. Kao, D. Chow, B. Johs, and J. Woollam, “Studies of thin strained InAs, AlAs and AlSb layers by spectroscopic ellipsometry,” J. Appl. Phys. 79(5), 2663–2674 (1996).
[Crossref]

Clarke, D. P.

C. H. Henry, L. F. Johnson, R. A. Logan, and D. P. Clarke, “Determination of the Refractive Index of InGaAsP Epitaxial Layers by Mode Line Luminescence Spectroscopy,” J. Quantum Electron QE-21(12), 1887–1892 (1985).
[Crossref]

Dinges, H. W.

H. Burkhard, H. W. Dinges, and E. Kuphal, “Optical properties of In1-xGaxP1-yAsy, InP, GaAs and GaP determined by ellipsometry,” J. Appl. Phys. 53(1), 655–662 (1982).
[Crossref]

Djurisic, A. B.

A. B. Djurisic, Y. Chan, and E. Herbert Li, “Progress in the room-temperature optical functions of semiconductors,” Mater. Sci. Eng. Rep. 38(6), 237–293 (2002).
[Crossref]

Elschner, R.

P. Runge, R. Elschner, and K. Petermann, “Chromatic Dispersion in InGaAsP Semiconductore Optical Amplifiers,” J. Quantum Electron. 46(5), 644–649 (2010).
[Crossref]

Fiedler, F.

F. Fiedler and A. Schlachetzki, “Optical Parameters of InP-Based Waveguides,” Solid-State Electron. 30(1), 73–83 (1987).
[Crossref]

Gruska, B.

H. G. Bukkems, Y. S. Oei, U. Richter, and B. Gruska, “Analysis of III-V layer stacks on INR substrates using spectroscopic ellipsometry in NIR spectral range,” Thin Solid Films 364(1-2), 165–170 (2000).
[Crossref]

Henry, C. H.

C. H. Henry, L. F. Johnson, R. A. Logan, and D. P. Clarke, “Determination of the Refractive Index of InGaAsP Epitaxial Layers by Mode Line Luminescence Spectroscopy,” J. Quantum Electron QE-21(12), 1887–1892 (1985).
[Crossref]

Herbert Li, E.

A. B. Djurisic, Y. Chan, and E. Herbert Li, “Progress in the room-temperature optical functions of semiconductors,” Mater. Sci. Eng. Rep. 38(6), 237–293 (2002).
[Crossref]

Herzinger, C. M.

C. M. Herzinger, P. Snyder, F. Celii, Y. Kao, D. Chow, B. Johs, and J. Woollam, “Studies of thin strained InAs, AlAs and AlSb layers by spectroscopic ellipsometry,” J. Appl. Phys. 79(5), 2663–2674 (1996).
[Crossref]

Johnson, L. F.

C. H. Henry, L. F. Johnson, R. A. Logan, and D. P. Clarke, “Determination of the Refractive Index of InGaAsP Epitaxial Layers by Mode Line Luminescence Spectroscopy,” J. Quantum Electron QE-21(12), 1887–1892 (1985).
[Crossref]

Johnston, W. D.

R. E. Nahory, M. A. Pollack, W. D. Johnston, and R. L. Barns, “Bandgap versus composition and demonstration of Vegard’s law for InGaAsP lattice-matched to InP,” Appl. Phys. Lett. 33(7), 659–661 (1978).
[Crossref]

Johs, B.

C. M. Herzinger, P. Snyder, F. Celii, Y. Kao, D. Chow, B. Johs, and J. Woollam, “Studies of thin strained InAs, AlAs and AlSb layers by spectroscopic ellipsometry,” J. Appl. Phys. 79(5), 2663–2674 (1996).
[Crossref]

Kao, Y.

C. M. Herzinger, P. Snyder, F. Celii, Y. Kao, D. Chow, B. Johs, and J. Woollam, “Studies of thin strained InAs, AlAs and AlSb layers by spectroscopic ellipsometry,” J. Appl. Phys. 79(5), 2663–2674 (1996).
[Crossref]

Kuphal, E.

H. Burkhard, H. W. Dinges, and E. Kuphal, “Optical properties of In1-xGaxP1-yAsy, InP, GaAs and GaP determined by ellipsometry,” J. Appl. Phys. 53(1), 655–662 (1982).
[Crossref]

Lindgren, S.

B. Broberg and S. Lindgren, “Refractive index of In1-xGaxAsyP1-y layers and InP in the transparent wavelength region,” J. Appl. Phys. 55(9), 3376–3381 (1984).
[Crossref]

Logan, R. A.

C. H. Henry, L. F. Johnson, R. A. Logan, and D. P. Clarke, “Determination of the Refractive Index of InGaAsP Epitaxial Layers by Mode Line Luminescence Spectroscopy,” J. Quantum Electron QE-21(12), 1887–1892 (1985).
[Crossref]

Nahory, R. E.

R. E. Nahory, M. A. Pollack, W. D. Johnston, and R. L. Barns, “Bandgap versus composition and demonstration of Vegard’s law for InGaAsP lattice-matched to InP,” Appl. Phys. Lett. 33(7), 659–661 (1978).
[Crossref]

Oei, Y. S.

H. G. Bukkems, Y. S. Oei, U. Richter, and B. Gruska, “Analysis of III-V layer stacks on INR substrates using spectroscopic ellipsometry in NIR spectral range,” Thin Solid Films 364(1-2), 165–170 (2000).
[Crossref]

Petermann, K.

P. Runge, R. Elschner, and K. Petermann, “Chromatic Dispersion in InGaAsP Semiconductore Optical Amplifiers,” J. Quantum Electron. 46(5), 644–649 (2010).
[Crossref]

Pollack, M. A.

R. E. Nahory, M. A. Pollack, W. D. Johnston, and R. L. Barns, “Bandgap versus composition and demonstration of Vegard’s law for InGaAsP lattice-matched to InP,” Appl. Phys. Lett. 33(7), 659–661 (1978).
[Crossref]

Richter, U.

H. G. Bukkems, Y. S. Oei, U. Richter, and B. Gruska, “Analysis of III-V layer stacks on INR substrates using spectroscopic ellipsometry in NIR spectral range,” Thin Solid Films 364(1-2), 165–170 (2000).
[Crossref]

Runge, P.

P. Runge, R. Elschner, and K. Petermann, “Chromatic Dispersion in InGaAsP Semiconductore Optical Amplifiers,” J. Quantum Electron. 46(5), 644–649 (2010).
[Crossref]

Schlachetzki, A.

F. Fiedler and A. Schlachetzki, “Optical Parameters of InP-Based Waveguides,” Solid-State Electron. 30(1), 73–83 (1987).
[Crossref]

Snyder, P.

C. M. Herzinger, P. Snyder, F. Celii, Y. Kao, D. Chow, B. Johs, and J. Woollam, “Studies of thin strained InAs, AlAs and AlSb layers by spectroscopic ellipsometry,” J. Appl. Phys. 79(5), 2663–2674 (1996).
[Crossref]

Tanguy, C.

C. Tanguy, “Refractive Index of Direct Bandgap Semiconductors Near the Absorption Threshold: Influence of Excitonic Effects,” J.Quantum Electron. 32(10), 1746–1751 (1996).
[Crossref]

Weber, J.-P.

J.-P. Weber, “Optimization of the Carrier-Induced Effective Index Change in InGaAsP Waveguide-Applications to Tunable Bragg Filters,” J. Quantum Electron 30(8), 1801–1816 (1994).
[Crossref]

Woollam, J.

C. M. Herzinger, P. Snyder, F. Celii, Y. Kao, D. Chow, B. Johs, and J. Woollam, “Studies of thin strained InAs, AlAs and AlSb layers by spectroscopic ellipsometry,” J. Appl. Phys. 79(5), 2663–2674 (1996).
[Crossref]

Zollner, S.

S. Zollner, “Model dielectric function for native oxides on compound semiconductors,” Appl. Phys. Lett. 63(18), 2523–2524 (1993).
[Crossref]

Appl. Phys. Lett. (2)

R. E. Nahory, M. A. Pollack, W. D. Johnston, and R. L. Barns, “Bandgap versus composition and demonstration of Vegard’s law for InGaAsP lattice-matched to InP,” Appl. Phys. Lett. 33(7), 659–661 (1978).
[Crossref]

S. Zollner, “Model dielectric function for native oxides on compound semiconductors,” Appl. Phys. Lett. 63(18), 2523–2524 (1993).
[Crossref]

J. Appl. Phys. (4)

C. M. Herzinger, P. Snyder, F. Celii, Y. Kao, D. Chow, B. Johs, and J. Woollam, “Studies of thin strained InAs, AlAs and AlSb layers by spectroscopic ellipsometry,” J. Appl. Phys. 79(5), 2663–2674 (1996).
[Crossref]

S. Adachi, “Material Parameters of InGaAsP and Related Binaries,” J. Appl. Phys. 53(12), 8775–8792 (1982).
[Crossref]

B. Broberg and S. Lindgren, “Refractive index of In1-xGaxAsyP1-y layers and InP in the transparent wavelength region,” J. Appl. Phys. 55(9), 3376–3381 (1984).
[Crossref]

H. Burkhard, H. W. Dinges, and E. Kuphal, “Optical properties of In1-xGaxP1-yAsy, InP, GaAs and GaP determined by ellipsometry,” J. Appl. Phys. 53(1), 655–662 (1982).
[Crossref]

J. Quantum Electron (2)

J.-P. Weber, “Optimization of the Carrier-Induced Effective Index Change in InGaAsP Waveguide-Applications to Tunable Bragg Filters,” J. Quantum Electron 30(8), 1801–1816 (1994).
[Crossref]

C. H. Henry, L. F. Johnson, R. A. Logan, and D. P. Clarke, “Determination of the Refractive Index of InGaAsP Epitaxial Layers by Mode Line Luminescence Spectroscopy,” J. Quantum Electron QE-21(12), 1887–1892 (1985).
[Crossref]

J. Quantum Electron. (1)

P. Runge, R. Elschner, and K. Petermann, “Chromatic Dispersion in InGaAsP Semiconductore Optical Amplifiers,” J. Quantum Electron. 46(5), 644–649 (2010).
[Crossref]

J.Quantum Electron. (1)

C. Tanguy, “Refractive Index of Direct Bandgap Semiconductors Near the Absorption Threshold: Influence of Excitonic Effects,” J.Quantum Electron. 32(10), 1746–1751 (1996).
[Crossref]

Mater. Sci. Eng. Rep. (1)

A. B. Djurisic, Y. Chan, and E. Herbert Li, “Progress in the room-temperature optical functions of semiconductors,” Mater. Sci. Eng. Rep. 38(6), 237–293 (2002).
[Crossref]

Solid State Commun. (1)

M. A. Afromowitz, “Refractive Index Of Ga1-xAlxAs,” Solid State Commun. 15(1), 59–63 (1974).
[Crossref]

Solid-State and Electron Devices (1)

J. Buus and M. J. Adams, “Phase and group indices for double heterostructure lasers,” Solid-State and Electron Devices 3(6), 189–195 (1979).
[Crossref]

Solid-State Electron. (1)

F. Fiedler and A. Schlachetzki, “Optical Parameters of InP-Based Waveguides,” Solid-State Electron. 30(1), 73–83 (1987).
[Crossref]

Thin Solid Films (1)

H. G. Bukkems, Y. S. Oei, U. Richter, and B. Gruska, “Analysis of III-V layer stacks on INR substrates using spectroscopic ellipsometry in NIR spectral range,” Thin Solid Films 364(1-2), 165–170 (2000).
[Crossref]

Other (3)

Y. Suematsu, K. Kishino, S. Arai, and F. Koyama, “Chapter 4 Dynamic Single-Mode Semiconductor Laser with a Distributed Reflector,” Semiconductors and Semimetals 22, Part B, pp. 205–255 (1985).

Yu. A. Goldberg and N. M. Schmidt, “Handbook Series on Semiconductor Parameters,” 2, World Scientific, London, pp. 153–179 (1999)

C. Pollock and M. Lipson, “Integrated Photonics”, pp.132–136, Kluwer Academic Publisher, Boston, 2003.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic cross-sectional view of a layer model in SpectraRay 3.

Fig. 2
Fig. 2

Parameters (R (a), Γ (b), A (c), a (d), b (e), c(f) and d(g)) of the Tanguy model in dependence of the band gap energies of the different material compositions; squares – modeled parameters from the measurements, solid line – linear approximation of the modeled parameters.

Fig. 3
Fig. 3

Refractive indices in dependence of the wavelength for different material compositions; solid lines – refractive index calculated with the Tanguy model from the ellipsometric measuremets, dashed lines – general form obtained from linear fits of the ellipsometric measured Tanguy parameters Eqs. (1), (6)-(12). ◼ [1], ● [2], ▲ [4], ✕ [6] and + [7] are literature values. The color with the specified material compositions match.

Fig. 4
Fig. 4

Absorption coefficient in dependence of the wavelength for different material compositions.

Fig. 5
Fig. 5

Group refractive indices with respect to wavelength calculated from general form of the Tanguy model.

Fig. 6
Fig. 6

Chromatic material dispersion with respect to wavelength calculated from the general form of the Tanguy model.

Fig. 7
Fig. 7

Measured ellipsometric Ψ and Δ values with respect to wavelength; a) and b) Sample A; c) and d) Sample B; e) and f) Sample C; g) and h) Sample D; i) and j) Sample E; k) and l) Sample F; m) and n) Sample G; blue and green lines – measured Ψ and Δ values; red lines – fitted values

Tables (3)

Tables Icon

Table 1 Values of band gap near transition energies, wavelengths, material and lattice mismatch of the grown samples

Tables Icon

Table 2 Band gap energies of the In1-xGaxAsyP1-y compositions and Tanguy model parameters, which were determined by modelling the spectra

Tables Icon

Table 3 Band gap energies of the In1-xGaxAsyP1-y compositions measured by PL and band gap energies extracted from ellipsometric data

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

E g =( 1.350.668x1.068y+0.758 x 2 0.069 y 2 0.069xy0.332 x 2 y+0.03x y 2 )eV
f= a l a s a s
a=( 5.86880.417x+0.1896y+0.0125xy )Å.
n 2 1 a b ( E+iΓ ) 2 + A R ( E+iΓ ) 2 { ln E g 2 E g 2 ( E+iΓ ) 2 +π[ 2cot( π R E g )cot( π R E g ( E+iΓ ) )cot( π R E g +( E+iΓ ) ) ] }
MS E 2 = 1 2NM i=1 N [ ( Ψ i mod Ψ i exp σ Ψ,i exp ) 2 + ( Δ i mod Δ i exp σ Δ,i exp ) 2 ]
R=0.00115+0.00191 E g
Γ=0.000691+0.00433 E g
A=0.0453+2.1103 E g
a=72.32+12.78 E g
b=4.84+4.66 E g
c=0.015+0.02 E g
d=0.178+1.042 E g
k(E)=Im( ε( E )+ a b E 2 )+c( E E g )+d ( E E g ) 2
α( λ )= 4πk( λ ) λ
n G =nλ dn dλ
D= λ c d 2 n d λ 2

Metrics